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On the boundary values of  harmonic functions in R 3 

By K J E L L - 0 V E  W I D M A N  

1. Introduction 

The purpose of this paper is to exhibit three theorems about the boundary 
values of harmonic functions, defined in R a regions which are bounded by  
Liapunov surfaces. Theorem 1 shows the existence almost everywhere of non- 
tangential boundary values of positive harmonic functions. A full proof of this 
theorem is given. Theorem 2 assures the existence almost everywhere of non- 
tangential boundary values for functions bounded in cones with vertex on the 
boundary and lying in the region. Theorem 3, finally, gives a necessary and 
sufficient condition for the existence of non-tangential boundary values, origin- 
ally derived by Marcinkiewicz and Zygmund and later generalized by  Stein. 
As the proofs of the two latter theorems differ from proofs published elsewhere 
only in the technical aspect, these are not  included here. 

2. Definitions 

We consider an open region ~1, bounded by  a Liapunov surface S r By 
Liapunov surface we mean a closed, bounded surface with the following pro- 
perties: 

1 ~ At every point of S 1 there exists a uniquely defined tangent plane, and 
thus also a normal. 

2 ~ . There exist two constants O ' > 0  and 2, 0<2~<1,  such that  if 0 is the 
angle between two normals, and r is the distance between their foot points, 
the following inequality holds 0 < C'.  r a. 

3 ~ There exists a constant d > 0  such that  if ~ is a sphere with radius d 
and center Q0 on the surface, a line parallel to .the normal at  Qo meets S 1 at  
most once inside ~. I t  is easily realized that  d may  be chosen arbitrarily small. 

For the properties of Liapunov surfaces see Gunther [5]. In  the sequel we 
shall consider only inner normals, which will simply be referred to as normals. 
We denote by V(Q, ~, h) a right circular cone having vertex at  Q E S 1, axis along 
the normal at  Q, alt i tude h, generating angle = ~ and being contained in ~1. 
Non-tangential approach to the boundary means approach inside some V(Q, ~, h). 
r(P, Q) will be the distance between P E ~  x and the tangent plane at  Q E S  1. 
The volume element in R a will be denoted by dv and the surface element by dS. 
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3. Lemmata 

If  QES 1 we introduce " the  local coordinate system" with the origin at Q, 
with the (xy)-plane in the tangent plane at  Q, and with the positive z-axis 
along the normal at  Q. Inside the Liapunov sphere, S 1 may be represented on 
the form z =/(x,  y). 

Lemma 1. I f  C'da < 1 we have 
A+I 

if( x, y)l < 2c'( x~ + y~)T 

and If(x, Y)I ~< 2C']P - QI l+x 

where P = (x, y, f(x, y)). 

Proof: Cf. Smirnov [7], p. 490. 

Lemma 2. Let co be < 7t/2. Then there is a constant d 1 such that if d < dl, a line 
making an angle <~ r with the normal at an arbitrary point Q E $1, will meet S 1 at 
most once inside the sphere with center Q and radius d. 

Proof: See Gunther [5], p. 6. 

Denote by  G(P, Q) the Green's function of ~1. 

Lemma 3. There is a constant Cl, depending on ~1 only, such that for any points 
P, Q we have 

C 1 

where (~G/Oxo) (P, Q) denotes differentiation in an arbitrary direction at P. In  patti .  
cular, for P E Slwe have 

i ~G <<. c1 ~n ( P, Q) [p_Q[2'  

aG/anp denoting the normal derivative at P. 

Proof: See Eidus [3]. 

Lemma 4. The derivatives of G(P, Q) are continuous in ~x U S r 

Proof: According to Schauder [6], a harmonic function in ~1, having tangen- 
tial derivatives along the boundary which satisfy a I-Ib]der condition, has deri- 
vatives of the first order tha t  are continuous in ~1 U S 1. Thus it  suffices to 
prove that  1/I P -  Q ], Q e ~1, P e S 1, has tangential derivatives of the above- 
mentioned kind. But  tha t  is clear, because the tangential derivatives may  be 
expressed as a linear combination of the partial derivatives of 1 l i P - Q I  with 
functions which themselves satisfy Hblder conditions, as coefficients. 
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Lemma 5. Let oJ be < ~/2. Then there exist two constants ~ > 0 and cla > 0 such 
that i] Q e Sz, B E f21, ] B -  Q] < ~ and i/ the angle between Q-B and the normal at Q is 
<~ co we have 

aG c~3 
(Q, B) >~IQ_BI=. an--~Q 

Proo/: I t  suffices to prove the lemma in the case oJ = 0. A simple application 
of Harnaek's inequality then gives the general case. We may  write (ef. Gunther 
[5], p. 202) 

1 1 I~ 1 8G 
G(P, P')-lp_p,[ ~._,[P_TI ~T(T ,P ' )dS (T ) .  

As we may regard the integral as the potential of a simple layer, we get (cf. 
Gunther [5], p. 62): 

aG(Q, 8)  1 1 f s  cos~  OG T 1 aG ~o IQ_BI ~ ~ ,[Q_T[S.~nnr ( , B ) d S ( T ) + ~ ( Q , B )  

i.e. OG 2 1 1" cos~  a(~ T 
8n---Q(Q'B)=HQ-B[~ "2--~Js, lQ-T-IZ~nnr ( ' B) dS(T), 

where r is the angle between QT and the normal at  Q. Choose ~ > 0 so that  
32 c I �9 C'- o ~ < 1 and ~ < d. I f  T = (~, ~], ~) we have by Lemma 1, when ~2 + ~?z ~< a2, 

~'< 2 C ' [ Q - T I  1+~ . 

Moreover ,  we have  cos ~=lQ_ T J' which gives us 

leos ~I-<<2C'IQ-Tr. 
For ~ small enough we evidently have 

1 IB-TI>~IB-QI. 
Hence 

/" cos~ 8G T 4c I -C '  
J, o..,.~o I Q-  ~ l ~  ~ '  "~ ~(~")I "~ l~-- Ql' f, o_~,~.ol Q- ~l ~-~ ~<~) 

.< 16c 1 �9 C' ~fV_~d2-<i~_Qi~- 
Having fixed a we find 

If[ c ~  8G T Q_TI>~al Q_ T]2-~nT( , B) dS(T) <~ ~ ' 4 ~ .  
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If  now 3 is chosen small enough, we get 

Thus 

1 2~ 

O G_G 2 1 /' cos ~ ~G 1 
anQ(Q, B)=  IQ_BI~ 2:zJz, l ~ - _ ~ l a ~ ( T ,  B)dS(T)>~IQ_Bla.  

Lemma 6. Let Po be a fixed point o/ f i r  There exists a constant c a > 0 such that 

aG 
- - -  ( Q, Po) >~ ca 
OnQ 

/or all Q E S r 

Proo/: Let 3 be as in Lemma 5. We may assume that  P 0 - Q  >3  for all 
Q E S r The set of points P, belonging to ~1, and for which P - Q I  ~> 5//2 when 
Q E $1, is compact and contains Po. Harnack's inequality gives 

1 
- u(Po) <~ u(P) <. c a �9 u(Po) 
C 3 

for every positive harmonic function and every P belonging to the set. Let Q 
be an arbitrary point E S 1. (SG/Sn•) (Q, P) is harmonic and positive. Moreover, 
there is a point P on the normal at  Q, for which 3 / 2 < I P - Q I  ~<3, and by 
Lemma 5 we get 

On--Q(Q, Po) ca OnQ(Q, P)~>~=c~>0.ca.($ 

Lemma 7. 11 Q and Q' ES1, IQ-Q'I>e>o, 

lim 8G p_,Q.~--nQ (Q, P) = 0  

uni/ormly in Q and Q'. 

Proo/: As in the proof of Lemma 5 we have 

~G ~ 2 1 fz  cos~0 8G T 
8n-----Q ( Q' P) = anQ I Q - P I ~ , ] Q - T I a OnT ( ' P) dS( T). 

Choose an arbitrary s > 0 .  I t  is easily realized, that  ( a / 0 n Q ) O / I Q - P I )  is uni- 
formly continuous in {Pl I Q -  P I ~> ~//2}. Choose al, 0 < a 1 < ~/3, so small tha t  

I 8 1 8 1 I e 
 -n lQ-Pl,  QlQ-p, I 
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if I P -  P '  ] < 2qr Finally choose a2, 0 < a2 < Q/3 so that  

144"c1"C"~ a e 
~2 ~ < ~" 

For [ P -  Q'[ < al/2 we now have 

fl aG T [p_Q,  la ( , P) dS(T) <~ A.  
T - Q ' I ~ o l  o T (~2 

where A is a constan,t not depending on Q' and a r  In fact, this inequality is 
a lemma of Liapunov s. I t  is proved in Gunther ]5 ], p. 200 for the case when 

t P 
P is on the normal at Q,  but the proof is easily extended to the more ge- 
neral case. Hence we get 

OG 
~_nr(T,P) dS (T )<A. lp_Q, l~  1 1 fl  cos 

T -  Q ~>az 

As in Lemma 5 we also get 

Finally 

2onQIQ-PI 

fl  cos ~ 0G ~ 1  T-Q t<o~[Q-T-12Onr (T'P) dS(T)<~ " 16 C'~" a~ < e-3" 

1 �9 0 0G 
2_7~ fl  r_Q,l<~,0n ~ 1 I Q -  T I OnT (T, P) dS(T) I 

~<~1 f tT- . ' l<- ,  0 ~ . I Q - p ] I  ~n.IQ-a 1 ] aG T(T,P) dS(T) 

O 1  1 ~  Oa 
+0n~]Q-----PI'~ r_~,l~>.,Unnr (T' P) dS(T) <<'3 + . A.  ]P-(r~ Q'I~ 

provided that  I P -  Q'I < qz/2. 

If  P is chosen so close to Q" that  A . ] P -  Q' a 1 1 < I the lemma is proved 

by inserting the resulting estimates in the integral representation of (OG/OnQ) 
(Q, P). 

4. Theorem 1 

I/  u 1 is a positive harmonic /unction in ~1, then u 1 has non-tangential boundary 
values almost everywhere on S r Moreover, the boundary values E LI(S1). 

Remark.  Fatou proved in 1906 that  a bounded harmonic function in the unit 
disk has non-tangential boundary values a.e. [4]. Using conformal mapping, Fatou's 
theorem may be stated for quite general plane regions. Calderon [1] and Carleson [2] 
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have proved similar theorems for regions in R" bounded by  planes, but  have weaker 
assumptions on the function. Tsuji [10] and Solomencev [8] have studied regions 
bounded by  curved surfaces, but  are assuming stronger regularity conditions than 
those in this paper. The method of proof used here is strongly related to the paper 
of prof. Carleson, to whom the author also owes his interest in this problem. 

Proo/: Let Q' be an arbi t rary point E S x. I t  suffices to prove the existence 
of boundary values in a neighbourhood of Q'. Assume d to be so small tha t  

1% d <  d 1 =.the number appearing in Lemma 2, if o)= arctg 1/2. 

2 ~ 8C'd~<l, i.e. 2C'dl+~<d/4. 

We introduce the local coordinate system with the origin at  Q'. Let  0 = (0, 0, 
3d/4). The condition 2 ~ shows tha t  a line through 0 and a point on S 1 inside 
the sphere ~ with center Q' and radius d will make an angle with the z-axis 

w h i c h  i s<a rc tg  1 /2=o) .  Condition 1 ~ and Lemma 2 show tha t  such a line 
meets S 1 at  most once inside ~. We now introduce polar coordinates with origin = 
O, 9 being the angle between radius vector and the plane through 0 parallel 
with the (x, y)-plane. What  we just  proved shows tha t  the par t  of S 1 which is 
inside ~ may be represented by  ~ = 01(0, 9)" Let  S be the part  of S 1 which is 
inside the cylinder, which in the local system has the equation xg+ y~=d2/4. 
The surface of this cylinder may  be represented in polar coordinates: ~ = Q~(0, 9)- 
The values of the vector (0, 9) for which (0, 9, ~1( 0, 9 ) ) E S  will be called "(0, 9)- 
values belonging to S". Evidently,  ( 0 , -  (g/4)) do not belong to S. Now let 
~F(0, 9) be an infinitely differentiable function, such tha t  0~XF~< 1, xF(0, 9 ) =  0 
for 9 > ~ -  (z~/4), and u~'(0, 9 ) =  1 for (0, 9) belonging to S. The existence of such 
a function is easily proved. The surface generated by 

q = ~(0, 9) = 0~( O, 9) ~F(O, f )  + 0~(0, 9)[1 - ~-F(O, 9)] 

satisfies the conditions of a Liapunov surface, apart  from not being bounded. 
If  we insert the halfsphere with radius d/2 and center (0, 0, d/2) however, we 
get a new region ~,  bounded by  a Liapunov surface. We denote by F the par t  
of 8~ which is not S and assume that  the normals of S 0 F satisfy 0 ~< C" r a. 

Consider the restriction u (as a function of the local coordinates) of u 1 to 
s Of course, u is harmonic and positive. Pu t  u~(x, y, z) = u(x, y, z + e). For e 
small enough this function is defined in ~)0 S 0 F, and thus it  may  be repre- 
sented as an integral (cf. Gunther [5], p. 202) 

u~(p)=~ f r u s u  ~ Q ~G 
1 ( ) ~nQ (Q' P) dS(Q). 

The measures d]u~(Q) = u6(Q) dS(Q) have compact support and uniformly bounded 
total  mass. For  by Lemma 6 and the fact tha t  u is positive, We get 

47g 

But  u~(O)-~u(O) and thus the total  mass is uniformly bounded. Hence we may 
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choose a weakly convergent subsequence, d/~-->d/u. A well-known theorem of 
Lebesgue allows us to decompose dp: 

d/a(Q) =/(Q) dS(Q) + da(Q), 

where /(Q)ELI(S U 1~), and da is singular. This gives us 

1 /" ~ G Q ,  
u(P) = ~ Jr u s ~nQ ( P )  [/(Q) dS(Q) + da(Q)]. 

We assert tha t  u(P)->/(Q) when P->Q non-tangentially, a.e. on S. By another 
weU-known theorem of Lebesgue we have for almost all T E S: 

ft (I/(Q) -/(T)IdS(Q) + da(Q)} = o(e~). 
Q-TI<8 

Assume Q0 to be such a point and choose an arbi t rary a < ~/2.  Let  h be so 
small tha t  V(Qo, a / 2 + ~ / 4 ,  h) is contained in s Suppose now tha t  0 > 0  is 
chosen so tha t  

1 ~ 4 J < d  and 4($<inf [Qo-Q[, QeF. 
2 ~ Lemma 5 is valid for r = ~/4.  

3 ~ ]/1 + ~ - 3 cos 2fl < -~ and V1 + .1~ _ ~ cos 2fl < ~ where fl = arctg [2C ~].  

4 ~ . Co < - ~ < ~ .  

We assume A to be an arbi t rary point E V(Q0, ~, h), such tha t  I A - Q 0 1 =  a < 0/2. 
Define 

Lo={PIPeS, IQo-Pl<a ). 

L,=(P]P6.S, 2"-1a<<. IQo-Pl<2"a) 

for ~= 1, 2 . . . .  , N where 2 % <  0/2 < 2N+la and 

N 

L=(ru m}- {o0 L,} 
As we can write 

f s  ~G 
1 /(Qo) ~nQ (Q' A) dS(Q) we get /(Qo)= ~ ~r 

1 N 8G ! 
~uPL,~-~r {I/(Q)-/r162162 
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su ~G [5~ ~ [su 8G ,,~ A, ~22 ~ a2 +o(1)  ,~p-~  ((2, A ) = ~ l i l 2 . 1  p ~n ~ ,  ~ " 
\ /~O(QeL~V Q J 

~nQ 
§ 0(1) sup --~ (Q, A). 

Qe~ L 
(I) 

To simplify the notations we put  (aG/~nQ)(Q, P)=K(Q, P). In  the sequel c~ 
denote constants not  depending on a, u or ~. We need estimates of K(Q, A) 
for Q EL,. For  the two cases ~ = 0 and ~ = 1 Lemma 5 gives 

C I E 1 = 6__ 4 

K(Q' A) < I Q -  A 1 - ~  < a2 sin2 _ 

Choose v, 2<u~<N,  let  Q~ be an arbi t rary  point EL~, and let B be the point  
on the normal a t  Q~, for which we have IQ~- B[ = 2 a. As 2~a ~< 2Na < ~ < d/4, 
B is in g3. I t  follows from Lemma 3 tha t  

E 1 

K(Q,, B) ~< 2~ ~. a2. (3) 

We denote b y  the (}~ ~)-system the local coordinate system with the origin a t  
Q0. Let  Mr be the point  of L~, whose projection along the ~-axis on the (~, ~])- 
plane i s  on the same line through Q0 as Q~ and which lies a t  a distance = 
3.2~-2a from Q0. Lett ing F 1 be the sphere with center Mr and radius 3" 2~-3a, 
we find tha t  B does n o t  lie inside F 1. Now there exists a constant c 5 such tha t  
K(Q, P)<~ %. K(Qv, B) for P CF r For by  Lemma 5 we have 

C 1 3  2-2~, a-2 K(Q~, B) >1 [ Q, _ B [~ = c13" " (4) 

From assumption 3 ~ about  ~ it follows tha t  [P-Q~]>~2~-4a for P ~ F  1, and 
from this fact  and Lemma 3 it follows tha t  

(4) and (5) give 

Cl .2-2~+s. a-2, K(Q. P)<~ iQ ~pi2<~Cl (5) 

K(Q,,, P) <~ c 1 a -2~+s. a -2 c 1 �9 28 
- -  ~ - ~ E 5 "  K(Q,, B) c13" 2 -2v ' a  -2 c13 

(6) 

Denoting by  h,(P) the harmonic measure of L~_ 1 L) L~ (J L,+I we find for P E OF t n g~ 

h,(P) >/c e > 0. (7) 

For  introduce the (X, Y, Z)-system = the local coordinate system with the origin a t  
Mr. The par t  of S, for which X 2 + y2 ~ (7" 2"-4a) ~ is contained in L~-I U L~ U L~+I. 
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This follows from assumption 4 ~ about  (~; if Q is on said par t  of S we have 
[Q-M,,[2<~(7.2"-4.a)~+(2C[7.2~-%]I+~)~<2"-Ia, while for QES but  Q~L~-I 
U L: U L,+I we evidently have I Q-M,,[ >~2"-la. If  P is an arbi t rary point of 

OF 1 ~ ~ ,  we find for PES h : ( P ) = l ,  and hence we ma_y assume that  Pq.S. Put  
P ' = t h e  projection of P on the (X, Y)-plane and P'P=I, [P'-P[=[/[. We 
proved above tha t  

_<llIlcL:_IUL:UL,+,, U= Q[QES, Q=(x,  Y,Z):~[(x, Y, o ) - P ' ] ~ 1 2  j 

If  p "  E U the angle between P"P and 1 is < ~/8,  and from assumption 4 ~ about 
it  follows tha t  the angle between l and the normal a t  P "  is < ~/8 .  Hence the 

angle between P"P and the normal at  P "  is < g /4 .  Lemma 5 and assumption 
2 ~ about ~ then give 

~G_G (p , ,  p)/> c z a  
8he,, 16 [ 1 [2" 

Thus 

! 8_GG C13 h,(P): I (Q, P) aS(Q) ~>4zr.161l r . . . . . . .  144 ce>O" 4~ j L,_I u Lvu r.,+l ~nO 

:For P ESF N ~ i t  follows from (6) and (7) 

K(Q,, P) .< 

I f  Q is any  other boundary point of ~\F1, we have hm h:(P)>10, while by 
p--~Q 

Lemma 7 we have 

hm K(Q,, P) 
e.+~ K(Q,, B--) - O. 

Together with (3), the maximum principle then gives for P E~\F1 

K(Q,, P) < c~ . h,(P) . K(Q,, B) < c~ . h,(P) . c I �9 2 -2,, a -z. 

Particularly we get for P =  A 

K(Q,, A) <~ c~. h,(A), c , -  2 -2v- a -2. (8) 

Inserting (2) and (8) in (!) we find 

[u(A)-l(Oo)l<-,cs.e +~ ~ .c,.,:~, h,(A)+O(1), supo,L ~0a (Q, A). 
Now ~:~/~(P)-.< 3, as we may regard ~.~=2h,(P) as the harmonic measure of 
a certain subset of S, each point being counted at  most three times. From 
Lemma 7 it  follows 

A-,,. t , ,  r. lira Isup 0G onQ } ~--(Q, A) =0. 
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Hence ~oolimlu(A)-/(Q~176 

But  e(~/2)-->0 when ~-~0, and thus the first par t  of the theorem is proved. 
We remarked above tha t  the boundary values ELI(S U F) and thus also ELl(S). 

The latter part  of the theorem now follows from the simple fact tha t  we can 
cover S 1 with a finite number of such neighbourhoods S. 

5. Theorem 2 

I / u  is harmonic in ~1, and i / /or  almost all Q there is a cone V(Q, o~, h) in u~hich u 
is bounded, then u has non-tangential boundary values almost everywhere on S 1. 

R e m a r k .  The analogue of this theorem in the case S 1 is a plane was proved by 
Calderon [1]. Having proved Theorem 1, Theorem 2 follows as in Calderon's paper, 
his proof needing only minor modifications to be applicable in this case. We there- 
fore omit the proof. 

6. Theorem 3 

The harmonic /unction u in ~1 has non-tangential boundary values i/ and only i~ 

f l grad u(P)[~ . . . .  
v(• ~. h) r(P, Q) avtr)  < ~o 

almost everywhere in Q. 

Re mark .  The values of a and h may depend on Q. The formulation of this theorem 
is chosen because of its resemblance to a similar theorem by Stein [9], valid when S 1 
is a plane. Note tha t  in this case the theorem of Carleson [2] contains tha t  of Stein. 
The proof of Theorem 3 in principle follows Stein's proof, the difference being of a 
technical kind. However, the technical difficulties are overcome by the use of the 
methods developed in the lemmas and in Theorem 1. Hence we here are content 
with the mere statement of the theorem. 
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