
ARKIV FOR MATEMATIK Band 5 nr 15 

Communicated 27 November 1963 by L. G1LRDINO and L. CA~.ESON 

Non-associative normed algebras  and Hurwitz'  problem 

B y  LAIrs INGELSTAM 

1. Introduction 

We will deal here with algebras over the real or complex numbers. All algebras 
are supposed to have identity element (denoted e ) b u t  are not assumed associ- 
at ive or finite-dimensional in general. A norm is a real-valued function x-->llxll 
on the algebra such tha t  II~x = ~l" Ixtl for any scalar ~, x + y  I ~<l]xll+llyl] 
for arbitrary x and y and x > 0  for all x 5 0 .  We further consider the fol- 
lowing conditions on the norm: 

(i) A positive definite inner product (x, y) is defined on the algebra, so that  

(ii) Ilxyll=llxll.llyll for all 

Off) llell = '  and II Yll<llxll'llYll. 

The term normed algebra is usually reserved for algebras (not necessarily with 
identity) with norm satisfying (iii). A normed algebra satisfying ( i )and (iii)will 
be called a prehilbert algebra with identity and one satisfying (ii) an absolute- 
valued algebra. 

The classical result by A. Hurwitz [3] is that  a finite-dimensional real normed 
algebra that  satisfies (i) and (ii) must  be isomorphic to the real numbers (R), 
the complex numbers (C), the quaternions (Q) or the Cayley numbers (D). 

More recent results tha t  can be regarded as generalizations of Hurwitz'  theorem 
have been mainly along two lines: 

I. Other scalar fields than the reals and no restriction on the dimension. 
N. Jaeobsson [6] has obtained a complete analogue of Hurwitz'  result for arbi- 
t rary ,fields of characteristic 52 .  Largely the same result was earlier obtained 
b y  I. Kaplansky [7]. 

II.  No inner product is assumed, i.e. the algebras considered are real absolute- 
valued. A. A. Albert [1, Theorem 2] has proved tha t  an algebraic (see below) 
such algebra is isomorphic to R, C, Q or D. A related result is due to F. B. 
Wright [11]: An absolute-valued division algebra is isomorphic to R, C, Q or D. 

We recall some definitions for (non-associative) algebras. Let A denote an 
algebra and A~ the subalgebra generated by the identity and an element x. A 
is called 
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quadratic if Az is a field of order 2 over the ground field for all x except 
scalar multiples of e, 

algebraic if A~ has finite dimension, 
alternative if x(xy)= (xx)y and (yx)x=y(xx) for all x, y in A, 
power assOCiative if A~ is associative and commutat ive  for all x. I f  A is 

alternative or quadratic it is also power associative. 

Our first result will go in the direction I I .  We prove (Theorem 2.2) tha t  a 
power associative real normed algebra satisfying (ii) mus t  be isomorphic to 
R, C, Q or D. The second main result in this paper  generalizes Hurwitz '  theorem 
in another  direction. We keep condition (i), replace (ii) by  the weaker ( i i i )and 
are then able to prove tha t  an alternative such algebra is isomorphic to R, C, Q 
or D (Theorem 3.1). (Since al ternat ivi ty in fact  follows almost  immediately from 
(i) and (ii), see [6, p. 58] or [7], we are justified in calling our results gener- 
alizations of Hurwitz '  theorem.) Both proofs use Banaeh algebra methods and 
in the lat ter  we rely on a previously published result [4] by  the author on the 
associative case. Some results by  E. Strzelecki, announced in [10] without  proofs, 
deal with situations similar to ours. 

For  algebras over the complex field we get, under the same assumptions, tha t  
the only possible algebra is the complex field itself (Corollaries 2.3 and 3.2). 
In  the last  section we construct a class of algebras, generalizing Q and D. I n  
this class we can find examples tha t  show the natural  limitations of the kind 
of results obtained or cited in the paper. 

An algebra A o v e r  the real numbers is said to be of complex type [5] if 
t h e  scalar multiplication can be extended to the complex numbers so tha t  A 
becomes a complex algebra. 

Lemma 1.1. Of the real algebras R, C, Q and D only C is of complex type. 

Proof. I t  is easy to see tha t  an algebra with identi ty e is of complex type 
only if there exists an element ] in its center satisfying ~2= _ e, see [5, p. 29]. 
Since the centers of R, Q and D are all isomorphic to R the conclusion follows. 

2. Absolute-valued algebras 

We begin by  quoting a special case of the announced theorem. 

t e m m a  2.1. A commutative and associative real absolute-valued algebra with 
identity is isomorphic to ,R or C. 

Proof. An absolute-~alued algebra cannot have any  non-zero topological divi- 
sors of 0. Hence a result by  I.  Kaplansky  [8, Theo rem 3.1] applies and gives 
the conclusion. 

Theorem 2.2. A power associative real absolute-valued algebra with identity is 
isomorphic to R, C, Q or D. 

Proof. We f i rs t  show tha t .  the algebra, which we call A, is quadratic.  Le t  x 
be an element which is not a scalar multiple of e and B the algebra generated 
by  x and e. According to the assumption B is associative and commutat ive.  
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From Lemma 2.1 it now follows t h a t  B is isomorphic to C (since it is a t  least 
two-dimensional). Hence A is quadratic, in part icular  algebraic of order 2. But  
an algebraic absolute-valued algebra with ident i ty is isomorphic to R, C, Q or D; 
a result by  A. A. Albert  [1, Theorem 2]. 

The following corollary for complex scalars generalizes a well-known result for 
commutat ive  associative Banach algebras [9, p .  129]. 

Corollary 2.3 .  A p o w e r  assoc ia t ive  c o m p l e x  abso lu t e -va lued  algebra w i t h  i d e n t i t y  

i s  i s o m o r p h i c  to the c o m p l e x  n u m b e r s .  

P r o o / .  I f  scalar multiplication is restricted to real numbers the algebra, A, 
satisfies the conditions of Theorem 2.2. and A is isomorphic to R, C, Q or D. 
But  A is also of complex type and Lemma 1.1 tells tha t  A is isomorphic to C. 

3. Prehilhert algebras wi th  identity 

We recall tha t  a prehilbert  algebra with identi ty is an algebra with ident i ty 
(e) on which is defined a positive definite bilinear (in the complex case sesqui- 
linear) form (x, y), such tha t  the norm IIxJJ = (x, x) �89 satisfies 

il xy IJ < II x ll" iiY II, 

l i e l l = l  

Theorem 3.1. A n  a l t e rna t i ve  real  p reh i l be r t  a lgebra  w i t h  i d e n t i t y  is  i s o m o r p h i c  
to R ,  C,  Q or  D .  

P r o o / .  We first prove tha t  the algebra, A, is quadratic. Le t  x be an element 
which is not  a scalar multiple of e. The algebra spanned by  x and e is an as- 
sociative commutat ive  prehilbert  algebra with ident i ty and dimension ~>2. I t  
follows from [4, Theorem 2 and Remark]  tha t  it is isomorphic to C. Hence A 
is quadratic and also [1, Theorem 1] finite-dimensional, since it is alternative. 

For two given elements x and y we s tudy t h e  algebra A0, generated by  e, 
x and y. We distinguish two cases: 

1 .  The set {e, x, y} is linearly dependent. Then A 0 is generated by  e and one 
element and is isomorphic to R or C. 

2. The set {e, x, y} is linearly independent. Since A is quadra t ic ,  x a n d  y 
satisfy equations 

(x - he) ~ + ~ e  = 0, 

(y  - fie) + e}2e = O, 

with a, fl, 7, (~ scalars, 7 and ~ 0 .  With a = 7 - 1 ( x - a e )  and b = ~ - l ( y - f l e ) w e  

have a ~ = - e and b ~ = - e. I f  we further  put  u = a + b, v = a - b we get u v  + v u  = O. 
But  

ab § b a =  u 2 - a ~ - b ~ = u S - 2e = u u  + 2e, 

ab + ba = - (v ~ - a 2 - b ~) = - v 2 + 2e = i~v + ve 
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for scalars u, ~, /~, v. But  then v = ~, and x=/~  = 0 because of the linear inde- 
pendence and u z, v z are (negative) multiples of e. Adjusting by scalars we get 
elements i, ~ such that  

i~=~z= - e ,  i~+fl=O 

and A 0 is generated by  (e, i, j}. But  since A is also assumed alternative the 
elements e, i, j, k = ij satisfy the defining relations for the four basis elements 
of the quaternion algebra. Hence A o is isomorphic to Q. 

Now we have seen that  the subalgebra generated by  e and two elements x 
and y is isomorphic to R, C or Q. This subalgebra is of course a (pre-)Zilbert 
algebra with identity. In  [4], however, it  was observed tha t  the "usual" norms 
for R, C and Q are the only ones making them hilbert algebras with identity. 
Since these norms all satisfy (ii), the given norm, restricted to A0, must also 
satisfy (ii). But  this simply means that  for any pair x ,  y 

II II = II x I1" II y li- 

The result now follows from Theorem 2.2 (or already from Hurwitz '  original 
theorem [3]).  

The corollary for complex scalars is a slight generalization of a result, implicit 
in the article [2] by H. F. Bohnenblust and S. Karlin as pointed out in [4, 
Theorem 1]. 

Corollary 3.2. An alternative complex prehilbert algebra with identity is isomorphic 
to the complex numbers. 

Proo/. If  we restrict scalar multiplication to the real numbers and define a 
real inner product  as (x, y~ = Re(x, y), the norm is unchanged and the algebra 
satisfies the assumptions of Theorem 3.1. Then it is isomorphic to R, C, Q or D, 
but  since it  is also of complex type it  must  be isomorphic to C (Lemma 1.1). 

Remark. The assumption in Theorem 3.1 and [4, Theorem 2] can be  replaced 
by: A is a normed algebra with identi ty e whose norm satisfies ( i i i )andis  such 
that  the unit sphere has a unique hyperplane of support at e (i.e. e is regular 
in the sense of E. Strzelecki [10]). In the reasoning the condition (e, x)=O 
should then be replaced by x E H, where e + H is .the hyperplane of support to 
the unit sphere at  e. 

4. A class of algebras 

In  this section we construct a certain class of algebras, illustrating the natural  
limitations of some of  the results obta ined.  

Let  A be a non-void set and ~i~}a~h a set of symbols, indexed with A. Let  
A be the vector space generated by {i~}a~ A. We will define a multiplication on 
A, through 

i~. i~ = i~,, 

where ia~ is a doubly-indexed set in A. A distinguished element in A is called 0. 
i~, shall have the properties 
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i~o = io~ = i~ for all ~, 

i ~ =  . i ~ a  if O # ~ # p # O ,  

and i ~ = - i  o if 2 # 0 .  

Then i o = e is an identi ty for A. I f  we let 

x = Ztoe + ~.o ~ a~i~, y = flo e + ~.ofl~i~, 

we have (all ~ ' s  in the sequel will be finite sums taken over all of A except O) 

xy = (~o~o- ~ ~ ) e  + ~ (~o~ + ~o~) i~ + �89 ~ ~ ( ~ .  - ~.~)  i~.. 

We also define the inner product  

and the corresponding norm 

Proposit ion 4.1. A is a quadratic (hence power associative) algebra with identity 
such that every non-zero element o/ A has a two-sided inverse (A  is an "almost 
division algebra"). 

Proo]. Take x=o:oe+~.g~ia , aa#O for some 2 # 0 .  Then 

( z -  aoe)~ = - (:~ a~) e 

and the algebra generated by  x and e is isomorphic to C. Define the conjugate 
~ o f x  

Then 

so tha t  

is two-sided inverse of x. 

= aoe - ~ aaia. 

~.x=~-~=li~li~e 

Ilxll-2~ 

Hence we know the existence of quadratic, power associative algebras of any  
(finite or infinite) dimension. This, together with the result [1, Theorem 1] by  
Albert tha t  al ternative quadratic algebras over  any  field is of finite dimension 
1, 2, 4 or 8, gives a fairly complete idea of What can be said about  quadratic 
algebras in general. 

Proposit ion 4.2. I /  i a ~ = 0 / o r  0 #  ~ #: /~#0 A is a prehilbert algebra with identity. 
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Proo[. I t  only remains to prove [Ixyl]<~ltx]].][ytt . 

II ~ylr =11 ( ~ J o -  ~ ~ )  e + Z (~o~+ ~o~)i~ll ~ 

< ll~[I ~, t iyll  "~ iusing Schwartz' inequality). 

Thus we have constructed power associative prehilbert algebras with identi ty 
of any  dimension. In particular, Theorem 3.1 would not be true if "al ternat ive" 
was weakened to merely "powe r associative". 

The A of Proposition 4.2 is also an example of an "almost division algebra" 
tha t  is not  a division algebra, i.e. such tha t  the functions x-+ax and x-->xa map 
the algebra onto itself for every a4:0.  For instance x-->iax, ~+0 ,  maps A onk) 
the subspaee spanned by  e and ia and thus A is not a division algebra if i t  
has more than two dimensions. 

Another special case of some interest is when the product of two basis elements 
is plus or minus a new basis element (e.g. R, C, Q and D are of this type)~ 
Then we have 

i~-  i~.-~ i ~  = s iX.  t~) i~(~.,).  

where / and s axe functions 

[: A •  

s: A •  1, + 1}. 

For 2, # 4=0 / and s must satisfy 

/0.,  #)  --/(~u, ).), s i L  ~) = - s(~, ~.) if ~ . . , u  

and  /()., ).) = O, s()., 2) = - 1. 

An element u = ~ a i a  is called a pure veaor. 

Proposition 4.3. I] A has the proTer~ies menfioned above, and moreover f, restricted 
to the set where 0 * ~ * F' * 0 and , (  ~, ~, ) = + 1, ~, i~Seai~e, then Jl uv II = II ~ II " I[ ~ [[ 
[or all pure vectors u, v. I t /oUows that multiplication is continuous in fhe normed 
�9 o~o~y ~ II ~v II <- u it-ll" II y II. 

Proo/. I f  u=Y,a~ia, v= Zlhi~ we get  

In  this expression all the /-elements are different, and 
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s (~l,/~) = + 1 

= ~ Z ~ (  ~ +  ~ 

= (~: ~ ) ~  + ( ~  ~ )  (:~ t~) - (2: ~ ) ~  = It ~ II ~ II v ii ~. 

Now let x = g0 e + u, y = fie e + v. Then 

I1 ~y II = II ~o~o~ + ~0v + t~o~ + ~v II 

< I ~o~o I + I~ol Ilvll + It~ol II~ll + II ~ll" IIvll 

= ( l ~ 0 1 + [ [ ~ l l ) ( l ~ o l +  11~l[)<211~[[-Ilytl  

(using the elementary inequality ~ + ~ < V2(~ 2 + ~2)). 
This concludes the proof. 

Remark 1. If  A has finite dimension [ cannot be injective in the sense m e n -  
tioned in Proposition 4.3 unless dim A ~4 .  

Remark 2. Multiplication is not necessarily continuous in the normed topology. 
For an example, let A = {integers ~> 0} and define ikz = i~+~ if 0 < k < l, ik, = - ik+~ 

1 1 
if k > l > 0 .  With x ~ = ~ ( i l + i z + . . . + i , )  and y , = : = ~ ( i , + l + . . . + i 2 ~ )  we get 

Vn 

1 . 

x~y. = n (s~+2 + 2i.+a + . . . ' +  ( n -  1)i2~ + hi2.+1 + ( n -  1)i~+2 + . . .  + 2Q~-1 + ia=). 

I t  is then easily verified that  

[2n ~ + 1~ t 
II ~= II = 11 y= II = 1 but  II ~.y= II = k- -~-~  / -~ ~ ,  

when n-->~.  Hence multiplication is not (simultaneously) continuous. 

Remark 3. The completion of A as a normed space is congruent to the Hilbert  
space /~{A). If multiplication is continuous on A (as in Propositions 4.2 and 4.3) 
it can be extended to the whole of I~(A), to produce examples of (not neces- 
sarily associa t ive)Banach algebras with identity. 

We finally give an example of an absolute-valued algebra that  does not 
satisfy t h e  assumptions of Theorem 2.2. Let  A'  be a vector space as above 
and define 

Here s has values + 1 and -: 1, /(2, 2) = 0, s(2, 2) = constant, /(2, #) = ](g, 2) # 0 
and s(2, g) = -s(/x, 2) when 2#/x .  Moreover /, restricted t o  2, # such that  2 4 g  
and s(2,/x) = + 1, shall be injeetive. 
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P r o p o s i t i o n  4.4. With  the assumptions above 
(without identity ) . 

Proo/. C o m p u t a t i o n  as  in  P r o p o s i t i o n  4.3. 

A '  is an absolute-valued algebra 
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