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Introduction 

Most of the general theory of Banach algebras has been concerned with algebras 
over the complex field. The reason for this is clear: the power of function theoretic 
methods and the Gelfand representation [11]. But the complex algebras can be 
regarded as a subclass of the real algebras and it is natural to ask what can be said 
about  this larger class. In several respects the extension of results that  are known for 
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complex algebras is easy; many techniques valid for complex algebras will work in the 
real case as well (el. see. 2). Also since any real algebra can be embedded in a complex 
(see. 3), some general results can be obtained in this way from the complex case. In 
quite a few areas, however, new approaches are needed or different ("typically real") 
phenomena occur. 

In much of the hterature on Banach algebras incidental remarks on the real scalar 
case can be found. Among more systematic contributions we can mention [1], [19], 
[20] and in particular the monograph [24], in large portions of which the theory is 
presented simultaneously for real and complex scalars. The author's papers [15], [16], 
[17] deal with special problems for real normed algebras. 

This article intends to contribute to the theory of real Banach algebras in three 
central areas: (1) the structure of the (quasi-) regular group (Ch. III) ,  (2) abstract 
characterization of real function algebras (Ch. IV), (3) the relation between real B*- 
and  C*-algcbras (Ch. V). The questions studied here and in [15] lead us to introduce 
and investigate a certain classification of real Banach algebras (Ch. II). An introduc- 
tory chapter (Ch. I) gives some of the standard material from the general theory, 
modified for the real scalar case. 

For a more detailed survey of the contents the reader is referred to the short sum- 
maries which are found at the beginning of each chapter. 

Chapter I. General  theory of  real normed algebras 

This chapter intends to give a brief survey of those parts of the general theory of 
real normed algebras that  will be used in later chapters. Following the definitions 
(sec. 1), some standard notions and techniques (regular and quasi-regular group, 
adjunction of identity, natural norms, the function v (x), quotient algebras, comple- 
tion) are described (sec. 2). The spectrum of an element in a real algebra is defined and 
its relation to the complexification is discussed in section 3. For the Frobenius-Mazur 
Theorem 3.6 on real normed division algebras we give a complete proof whose alge- 
braic part  is self-contained and elementary. In the last part  (sec. 4) of the chapter 
the real counterpart of the Gelfand representation theory [11] for commutative 
complex Banach algebras is presented. 

All the material in the chapter is known in principle, although many things, most 
notably those of sec. 4, are rarely given explicitly for the real case. 

1. Definitions 

We let A be an associative algebra over the real numbers (R) or the complex 
numbers (C). A is called a topological algebra if it is also a Hausdorff topological space 
such that  addition, multiplication and multiplication by scalars (from A • A, A • A 
and R • A or C • A into A, respectively) are continuous functions. 

A norm on A is a real-valued function x- llxll on A with the properties 

IIx +yll Ilxll + Ilyll, 
I1 11 =l [llZll, 

LIxll >o  if .o 
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for all x, y EA and scalars ~. A norm defines a topology on A,  making A a topological 
vector space.Two norms, II  II and III Ill, define the same topology if and only if there 
are two numbers c and C such that  

0<c-< I1 11-<c 

for all x. Two norms satisfying such a relation are called equivalent. 
A topological algebra, the topology of which can be defined by a norm will be called 

a normed algebra. (This terminology, though slightly unusual, is quite practical; when 
a certain norm is replaced by an equivalent norm we can still speak of the same nor- 
med algebra.) A norm that  defines the topology for A is called admissible. A Banaeh 
algebra is a complete normed algebra. 

For a given norm II  II on A multiphcation is continuous, i.e. A is a normed algebra 
under I1" II, if and only if there exists a number K such that  

Ilxyll  <KIIxll IlYlI" 

We will see that  there are always admissible norms for which we can take K = 1 
(Proposition 2.3). 

If  A is an algebra over C we can make A an algebra over R simply by restricting 
scalar multiplication to R. Hence the class of complex algebras can be regarded as a 
subclass of the real algebra~; later on we will devote some effort to the characterization 
of this subclass, the real algebras of complex type (Ch. II). 

2. Basic techniques 

Throughout this section A is a normed algebra. If  A has an identity element e 
(ex =xe = x for all x) the set A together with algebra multiplication forms a semigroup 
(A, . )  with neutral element e. The elements with two-sided inverse in (A, . )  are called 
regular and form a group G, the regular group. 

If  there is no identity we can still do something equivalent. Let x o y = x + y - x y ;  
then (A, o) is a semigroup with neutral element 0. The elements with two-sided inverse 
in (A, o) are caned quasi-regular and form a group G q, the quasi.regular group. 

G and G q are topological groups with the (metric) topology of A [24, p. 19]. 

Proposition 2.1. I / A  has identity e, G q is homeomorphically isomorphic to G, under the 
map x--> e -- x. 

We can also "adjoin an identity". Let A be real and A x = R �9 A, direct sum as real 
normed vector spaces. Multiplication is defined by 

(fi, +fi  

and the topology for instance given through a norm 

II( ,x)ll = + Ilxll. 

Thus A 1 is a normed algebra with identity (1, 0) and we have 
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~roposition 2.2. Through x-->(O,x) A is embedded (homeomorphieaUy and isomor- 
phicaUy) as an ideal o/codimension 1 in A 1. An  element x E A  is quasi.regular in A i /and 
only i / (1,  - x )  is regular in A 1. 

A norm is called natural if 

II~yll < I1~11 Ilyll ~or an ~,y (submultiplicative), 

llell = 1 ~ a has identity. 

Proposition 2.3. Every normed algebra has an admissible natural norm. 

Proo/. If A has identity, let 

sun Ilxyll 
III �9 III = ~K II y I1 

for some admissible norm l" �9 Then "III is natural and equivalent to I1" I1" If  there 
is no identi ty put  x =H (O,x) , the latter taken in A r 

Remark. Using this device, the left regular representation, Gelfand [11] proved tha t  
a Banaeh space that  is also an algebra such that  multiplication with any fixed element 
is a continuous operation, is actually a topological (Banach) algebra. 

Definition 2.4. 

/or some natural norm I1" II- 

1 

v(x) = in f  II x~ II ~ 
n 

Proposition 2.5. 
1 

~(x)= lim ]]xn [[ ~ 
n - - )  oo 

/or any admissible norm II" II. 

For proof and further properties of ~, see [24, p. 10]. 
We notice tha t  v(x) is a topological invariant, independent of which admissible 

norm was chosen to define it. 

Proposition 2.6. I / A  is Banach and v(x) < 1 then x is quasi.regular. I / A  has identity 
and v(e - x )  < 1 then x is regular. 

~ X n Proo]. The series -L,n=l  and e + ~0ffil ( e -  x) n converge and are the desired 
inverses. 

Consequences of this are, among others, tha t  0 has a whole neighbourhood con- 
sisting of quasi-regular elements and that  G q (or G) is an open subset of A. 

Proposition 2.7. I / I  is a closed two.sided ideal in a normed algebra A,  A / I  is also a 
normed algebra. A [ I  is Banach i / A  is Banach. 
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Proo/. For [x]eAII  and II 11 a norm for _4, take I1[~]11 =inf~~ 
tion that  this is a norm, tha t  multiplication is continuous and that  completeness is 
preserved, is routine. 

For normed algebras we also have a standard procedure of completion. 

Proposition 2.8. Any  normed algebra A can be embedded (isomorphicaUy and topo- 
logically) as a dense subalgebra o /a  Banach algebra A',  called the completion o] A. 

X co Proo/. Let A~ be the space of all Cauchy sequences ( ,)n=l, xnEA. With a norm 
ll(xn)H =sup]]x,H A~ becomes a normed algebra. N={(xn);  xn-->0 } is a closed two- 
sided ideal. Then A ' = A ~ / N  is the desired Banaeh algebra and the embedding 
X---~(X n - -  X r162 - )n=l +N.  The conclusion follows from Proposition 2.7 and routine calcula- 
tions. 

3. Complexification and spectrum 

As was indicated in sec. 1 the notion of a real normed algebra is more general than 
that  of a complex normed algebra. The complex theory is better known and in some 
respects more satisfactory and we describe a procedure by which we can draw some 
results (but far from all) for real algebras in general from the complex theory. The 
real algebra A can be embedded in a larger ("twice as big") complex algebra. 

Let A c = A  �9 A, direct sum as real normed vector spaces, and define multiplication 

(a, b) (c, d) = (ac - bd, ad + bc) 

and multiplication by complex scalars 

(~ + i f )  (a, b) = (eta-fib, ~tb A-fa). 

Then A c is a complex algebra and a real normed algebra, an admissible norm is for 
instance 

II(a,b)H = HuH A-HbH. 

To show that  A c is a complex normed algebra we construct an admissible complex- 
homogeneous norm, following Kaplansky [20, p. 400], 

[llx[ll =maxr lI(cosq~ + isinq~)xll. 

A is embedded in Ac by  the real-algebra monomorphism x-->(x, 0). (A more detailed 
discussion [24, p. 8] shows that,  given a natural norm on A, there exists an admissible 
natural norm on A c such tha t  the embedding is an isometry with respect to these 
n o r m s . )  

The spectrum a c (x) for an element x of a complex algebra A is defined as the set of 
complex numbers $ such that  $-1 x is not quasi-regular, together with 0 if x -1 does 
not exist or A lacks identity. If the corresponding definition, with real numbers, is 
used for real algebras the spectrum would frequently be empty and give no informa- 
tion at all about  the element. We therefore adopt the following definition, due to 
Kaplansky [20]. 
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Definition 3.1. The spectrum o] an element in a real algebra A is the set o /complex  
numbers 

(rA(x) = {o:+ifl ~=0; (~2 +fl~)-~ (x2-2~x)  no t  quasi-regular} 

plus 0 i / x  -~ does not exist or A does not have identity. 

We notice in part icular  t ha t  for a real o~=O,o~EaA(x) if and  only if ~ - l x  is no t  
quasi-regular. 

Proposition 3.2. The spectrum o / a n  element o/ a real algebra is equal to the spectrum 
o / the  corresponding element in  the complexi/ication 

a ,  (x) = a~o ((x, 0)). 

Proo/. 0 is easily checked out  to belong to  neither or bo th  of the  sets. For  ~ +if l  ~ 0  
the element x' = (0~ + ifl) -1 (x, O) = (0~ 2 +fl2)-1 (ax, - ~ x )  e G q if and  only if x ~ = (~2 +/~2)-1 
(o~x, fix) E G ~, hence if and  only if x '  0 x" = (~2 +fl2)-1 (x ~ _ 2my, 0) e G q. 

Given a complex algebra A, " regarding"  it as a real algebra m a y  distort  the  not ion 
of spect rum but  in a non-essential  way: 

Proposition 3.3. I / A  is a complex algebra 

aA (x) = ~ (x) u ~ (x). 

Proposi t ion 3.2 enables us to quote, directly f rom the well-known theory  of complex 
algebras, the following two impor tan t  results: 

Proposition 3.4. For any element x in a normed algebra A ,  a A(x) contains at least one 
number ~ with [ ~ I >~v(x). I n  particular a A(x) is never empty. 

Proposition 3.5. I n  a Banach algebra A,  a A (x) is a compact set anal 

m a x  I~1 = ~(x) 
~ r A ( x )  

/or all x E A.  

A division algebra is an  algebra with ident i ty  in which every  non-zero element has a 
two-sided inverse. 

Theorem 3.6. A normed real division algebra A is isomorphic to the real numbers (R), 
the complex numbers ( C) or the quaternions (Q). 

Proo/. From Definition 3.1 and  Proposi t ion 3.4 follows t h a t  every  element t h a t  is 
no t  a scalar multiple of e satisfies an  irreducible quadrat ic  equation. Such an algebra 
is called quadratic and  we prove t h a t  every quadrat ic  real (associative) algebra is 
isomorphic to R, C or Q. 

I r A  has dimension 1 or 2 it is clearly isomorphic to R or C. Assume therefore t h a t  
there are x, y E A so t h a t  {e, x, y} is linearly independent.  Since any  x o which is no t  a 
multiple of e satisfies an equat ion (x 0 -~e )  2=  -~2e,~ :4:0, we can assume x ~ = y 2 =  - e .  
Wi th  a = x + y, b = x -  y we have ab + ba = 0 and 

xy  + yz = a ~ - x ~ - y~ = aea +~e, 

xy  + yx  = x ~ + y2 _ b ~ =fib + (~e 
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for scalars ~,fl,~,,5. Since {e, a, b} is also linearly independent ~=fl  =0  and ? =& We 
now put  e ~ = ( 2 - ? ) - t a ,  e~=(2+?)-�89 b, ea=ele ~ and notice tha t  e,e~,e2,e3 satisfy 
exactly the multipheation rules of the four basis elements of Q. Let their linear span 
in A be Q0. We prove that  Q0 = A. 

Assume that  there exists a z ~ Q0. As before we can take z 2 = - e .  From the quadratic 
law follows, for i = 1, 2, 3: 

e~z + ze, = (et + z) 2 - e~ - - z  2 =~(e ,  +z) +~,e, 

e,z +ze ,  = -- (e, --z)  ~ + e~ + z  ~ =#,(e, +z) +v,e. 

The linear independence gives u~ =p~ =0  and v~ =2~. Take u =r + ~.~2~ e~). Then 
e~ u +ue~ =0  for i = 1, 2, 3 and ~ can be chosen so that  u 2 = - e .  But  the associative law 
is not satisfied; we compute uel e2u in two ways: 

u( (ele2)u ) = u(eau ) = u( - ue3) = - u2ea = e.a, 

(uel) (egu) = ( - e l u  ) ( - u e 2 )  =e  1 u2e2 = -e l e  2 = -e3: 

Hence Qo = A and the theorem is proved. 
Related results are given in [16] and [17]. 

4. Gel fand  representat ion 

The remarkable result of Gelfand that  a complex eomr~utative semi-simple Banach 
algebra is isomorphic to an algebra of continuous functions generalizes to real alge- 
bras in general. Some modifications of a technical nature are needed. 

Throughout this section we let A be a real normed algebra. A left ideal I is called 
modular  if there exists an element e~ such that  x - xez E I for all x E A. A direct conse- 
quence of Theorem 3.6 is that  if A is commutative and M is a closed modular maximal 
ideal A I M  is isomorphic to R or C. The (Jacobson) radical RA is the intersection of all 
modular maximal left ideals. A is called semi-s imple  if RA = (0} and radical if RA =A.  

Given a real normed algebra A, let CA be the set of non-zero continuous real algebra 
homomorphisms of A into C. We will call CA the Gel/and space of A. The connection 
between CA and the set of closed modular maximal ideals, ~ ,  is slightly more com- 
plicated than in the complex case and will now be described. 

Given ~0 ECA we define ~ by ~q(x) =~(x) (complex conjugate). This ~, as a function 
from CA into CA, is called the conjugate mapping. Since any ~ EtA maps A onto either 
R or C we can distinguish a "real" and a "complex" part  of CA 

r  = {r o f ( A ) = R ) =  {cp; ~q; =el) ,  

The extreme eases when either r or CA c is empty will be discussed somewhat in Chap- 
ter I I .  

Two homomorphisms ~0,~p ECA are called equivalent if ~ =yJ or ~ =vyJ. If  C~ is the set 
of equivalence classes we have 
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Proposition 4.1. For a commutative real normed algebra A with Gel/and space CA and 
conjugate mapping 1:, the set C~ is in one-to-one correspondence with ~ ,  the set of closed 
modular maximal ideals. 

Proof. We define the function T-+Ker~o,~0 EtA. Since Ker~  =KerT~0 and Ker~0 is a 
closed modular maximal  ideal this defines a function g from Ca into ~/.  From Theorem 
3.6 follows tha t  g is surjective. To prove tha t  it is also injective assume Ker  ~0 = Kerry. 
Then ~0 and ~0 induce an automorphism a on R or C so tha t  qo = a o ~o. But  for R, ~ = 
identi ty and for C, ~ = iden t i ty  or complex conjugation. Hence ~ and ~ are equivalent 
and g injective. 

We now proceed to define the Gelfand representation and state the results in two 
theorems. 

Definition 4.2. For an element x o /a  normed algebra A, the Gelfand /unction ~ is a 
complex-valued/unction on CA defined by 

~(~) =~(x), ~ Eta- 

Theorem 4.3. iT/A is a real normed algebra and the Gel/and space Ca is given the 
weakest topology in which all Gel/and functions 2~, x E A, are continuous, then 

(i) CA is locally compact, 
(ii) Ca is compact i / A  has identity, 

(iii) ~ is a homeomorphism, 
(iv) C~ is a closed subset of ~ ~. 

Proof. A * d~notes the real normed dual of A. We embed Ca in A* • A* in a one-to- 
1 

one manner ~-->~' = (�89 +T), ~ ( ~ - ~ ) .  An element (/,g)EA* x A* belongs to the 

image C~ if and only if (f,g) 4~0 and 

/(xy) =/(x) f (y) - g(x) g (y), 

g(xy) =/(x) g (y) +/(y) g (x) 

for all x, yEA.  We topologize A* with the weak* topology and A* • r and Ca 
accordingly. This topology on Ca is the weakest in which the Gelfand functions are 
continuous. A natural  norm on A induces a norm on A* and it is easy to see tha t  
C~ c S 1 • S1, where S 1 is the unit sphere in A. Since S 1 is weak* compact, the closure 
q~ is compact. But  a (f,g)E q~ must  satisfy the multiplicative relation above and 
consequently either belong to C~ or be =0.  Thus we have two cases: 

I .  0 r q~; Ca is compact.  In  particular if A has identity 0 cannot be an accumulation 
point. 

2. q~ =C~ U {0}; Ca is equal to a compact Hausdorff  space minus one point, hence 
locally compact. 

Since v corresponds to changing the sign of the second component in A* • A * (iii) is 
clear. Any ~ E ~ must  satisfy v~ =~ ,  hence ~ EC~ and CAR is closed. 

Remark. Since T is a homeomorphism it is easy to verify tha t  ~ in a commutat ive  
A, given the topology of C~, is compact  or locally compact as Ca [7, w 10, No. 6, 10]. 
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Now we can give the Gelfand representation theorem for real commutative Banach 
algebras. We recall tha t  in a Banach algebra all the modular maximal ideals are 
closed [24, p. 43], in particular RA = f/M~mM. If gs is a locally compact Hausdorff 
space C0(~ ) denotes the Banach algebra of all complex continuous functions that  
" tend to 0 at infinity" (i.e. tend to 0 after the filter generated by the complements of 
compact sets); the topology being defined by the maximum norm. If ~ is compact 
C0(~ ) = C(~), the algebra of all continuous functions on ~.  

Theorem 4.4. Let A be a real commutative Banach algebra and r its Gel/and space. 
The algebra homomorphism h :x-->F: o / A  into Co(~bn) has the properties 

(i) Ker h=RA, 
(ii) an(X) =&(r (the range o/ &) /or all x, with the possible exception o/ 0 i/ A does 

not have identity, 
(iii) max+E+Al&(~)l =v(x), 
(iv) h is continuous. 

Proo/. From the way the topology of CA is defined follows that  & E Co(~bA). From 
Proposition 4.1 follows that  K e r h =  f/CECA K e r q =  r MeTnM=R A and (i)is proved. 
For given x and oc+ifl#O put  Xo= (g2+f12)-i (x2_2ax). If oc+iflggan(X) then there 
exists a y so that xo+y=xoy  , ~o+?)=~o?) and ~o(~)#1, &(q~)#o~+ifl for all % If, 
on the other hand, o:+iflEan(X) the set I =  {y-yxo;  y E A )  is a proper modular ideal 
with x o = %  But  I is contained in some maximal modular ideal M with e M =e I =x  0. 
According to Proposition 4.1 there exists ~E~bA so that  &0(~0)=&0(z~0)=1; hence 
takes the value ~ + ifl at ~0 or vq. If A has identity every ideal is modular, and x is 
regular if and only if it does not belong to any maximal ideal; in other words 0~an(X) 
if and only if &@) =t=0 for all ~ ECA. Now (ii) is proved. From (ii) and Proposition 3.5 
follows (iii). Since v(x) <~ IIx]] for any natural norm ]] "]1, h is continuous and the proof 
is finished. 

Chapter II. Reality conditions 

The main object of this chapter is to present a certain classification of real Banach 
algebras. In  see. 6 the class of real algebras tha t  can also be complex is characterized 
and four "reality conditions", R1-R4, are introduced. I t  is shown (Theorems 6.5 and 
6.8) that  these conditions stand for increasing degrees of "real i ty" and also that,  when 
an identi ty is adjoined to an algebra, the reality properties are preserved (Lemma 
6.9). The significance of the conditions in various parts of the theory is discussed 
in sec. 7. I t  is finally shown that,  under suitable finiteness assumptions, an algebra 
can be decomposed in a "complex" and a "real" part  (Theorem 8.1). This result, like 
several notions and results of thechapter ,  is purely algebraic. 

5. The modified exponential function 

In a Banach algebra without identi ty we cannot define the usual exponential func- 
tion. I t  is, however, always possible to define the function 

~. xn 
x --> ixp x = - n.T 
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which is def ined a n d  cont inuous  for al l  x and  moreover  satisfies ixp  (x § y ) =  i x p x  o 
i x p y  for commut ing  x a n d  y. I f  the  a lgebra  A is c o m m u t a t i v e  ixp  is a semi-group 
homomorph i sm of (A, + ) in to  (A, o). The  func t ion  

x2 
n = l  n 

is def ined a n d  cont inuous  for all  x wi th  v(x) < 1 a n d  satisfies ixp  l(x) = x. I f  there  is an  
i d e n t i t y  e we clear ly  have  

e x p x  = e - i x p x ,  

log(e - x )  = l(x). 

F o r  fu ture  reference we make  two technica l  r emarks  concerning the  ixp  funct ion.  

L e m m a  5.1. I / , / o r  a topologically nilpotent element x in  a Banach algebra A,  ixp  ~x 
is a bounded/unction o/ the real variable c~( - ~ < ~ < ~ ) then x =0.  

Proo/. F o r  a cont inuous  l inear  f u n c t i o n a l / ,  the  funct ion  

(Z n 

~0 :~ (a )  = [ ( ixp~x)  = - ~ ~.. ](x ~) 
72=1 

can be ex t ended  to an  ent i re  funct ion  F on the  whole complex  plane.  Since 
/(x=) lI~ <~ K 1/~ ]1 x~ II 1/n we have  t h a t  

Izl 
for every  5 > 0. Hence  ~ is a t  mos t  of order  one, m in imum type ,  and  since i t  is bounded  
on the  real  axis a Phragmdn-Linde l6 f  theorem [5, p. 84] tel ls  t h a t  i t  mus t  be bounded.  
H e n c e / ( x )  = 0 for a r b i t r a r y  / and  x = 0. 

L e m m a  5.2. I /  /or some x there exists a convergent sequence ~ n , n = l , 2  ..... o/ real 
numbers such that ixp  ~ x = 0 / o r  all n then x = O. 

Proo/. Le t  / be a l inear  func t iona l  and  ~, yJ as in the  proof  of L e m m a  5.1. Now yJ 
is an  ana ly t i c  funct ion  wi th  a non- i so la ted  zero, hence ~ =0 , / ( x )  = 0  for all  / and  x =0 .  

6. Rea l i t y  conditions 

As we have  a l r eady  po in t ed  ou t  (sec. 1) the  c omple x  (normed) a lgebras  can be 
regarded  as a subclass of the  real  (normed) algebras.  Nex t  we look into  th is  s i tua t ion  
in some detai l .  

Defini t ion 6.1. A real (normed) algebra is said to be o /complex  type i / i t  is possible to 
extend the scalar multiplication to complex scalars so that the algebra becomes a complex 
(normed) algebra. 

A somewha t  more  technica l  descr ip t ion  can be given: 
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Proposition 6.2. A real (normed) algebra A is o/complex type i / a n d  only i / there 
exists a (continuous) linear operator J on A satis/ying 

J(ab) =Ja  .b =a .Jb 

and such that - j 2  is the identity map. 

Proo]. The "only if" part is trivial; a-->ia is a map with the desired properties. 
Assume J given with the properties above. A complex scalar multiplication can 

then be defined 
(~ +i~)a = ~a +~Ja.  

If  A is normed, let II" II be an admissible (real) norm. Following Kaplansky [20] we 
can construct an equivalent, complex norm 

[11 x I1[ = max~ II cos v �9 x + sin V. Jx  II. 

Corollary 6.3. A real (normed) algebra A with identity e is o] complex type i /and  only 
i] there exists an element ~ in the center o] A,  satis/ying ~2= _ e. 

Proo/. If  such a j exists, take J:x-+]x. If  A is of complex type, ] = J e  with the J of 
Proposition 6.2 has the desired properties. 

The question whether scalar multiplication can be extended to complex numbers 
or not is not trivial even if the compatibility with multiplication is disregarded, i.e. 
for real vector spaces. If  the dimension is finite complex scalars can be introduced if 
and only if it is even. Any infinite-dimensional real space can be given a complex 
structure in the algebraic sense. There are, however, infinite-dimensional real Banach 
spaces on which no complex multiplication exists, making them complex Banach 
spaces; Dieudonn6 [10]. 

Our main concern in the sequel will be real algebras that  are not of complex type. 
We introduce conditions, signifying different degrees of "reality" of an algebra A. 
The first set is such that  it can be used for algebras with or without topology: 

Definition 6.4. A real (normed) algebra A is said to be 

R1, o/real type, i/ A is not o/complex type. 
R 2 i / A  does not contain any subalgebra o/complex type with identity. 
R 4, o/strictly real type, i/ - x  2 is quasi.regular/or every x. 

I t  is clear that  the two following conditions are equivalent to R~: 

R~': A does not contain any subalgebra isomorphic to the complex numbers. 
R'2": The equation x 8 §  =0  has no solution in A except 0. 

Theorem 6.5. For a real algebra A we have 

(a)  R 4 ~ R2, 
(b) R 4 ~ R 2 ~ R 1 i / A  has identity. 

Proo/. If  A is not R 2 we have some ]c=~0 satisfying/c +k3 =0. If  A is also R 4 there 
exists a y such that  

0 = y o  (--]~2)=y_k2_t_yk~. 
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Multiplying by/c  gives/c3_ y(/c + ]ca) = 0 and k = 0 against the assumption.  This proves 
(a). I n  (b) it is trivial t ha t  R 2 ~ R 1 if A has identity.  

For  a Banach algebra we have al ternative formulations and one addit ional  condi- 
tion. 

Definition 6.6. A real Banach  algebra A is said to be 

R~ i / i x p  x = 0 impl ies  x = O, 
R'3 i / i x p  ~x is a bounded/unc t ion  o/c~, - co < ~ < ~ , only i /  x = O, 
R'4 i /  (~A(x) is rea l /or  every x E A .  

Proposition 6.7. For  a B a n a c h  algebra A 

(a) R 2 ~ R'2, 

(b) R 4 ~:~ R'4. 

Proo/.  (a) Assume tha t  A is not  R~, ixpx = 0  with x~:0.  Then, according to L e m m a  
5.2, ixp2 -~ x~:0 bu t  ixp2 -n+l x = 0  for some n > 0 .  Pu t  y = 2 - ~ - l x  and  take e0= l /2  
ixp2y and i o e o - e o i x p y .  Then e~ =e  0 and i~= - %  and so the algebra generated by  
e 0 and i 0 is isomorphic to the complex numbers,  and A is not  R 2. If  A is no t  R 2 we 
have an element/C 4 0  such that /c  +lca =0.  Then ixp2~/c = - / c s i n 2 z  /c2(1 - c o s 2 z )  = 0  
and A is not  R~. 

(b) I t  is well known tha t  R 4 and R~ are equivalent  if A is commuta t ive  [24, p. 119]. 
For  a given x let B be a maximal,  commuta t ive  subalgebra containing x. Then quasi- 
inverses of elements in B are a l ready in B; in part icular  spectra of elements do no t  
change (except possibly for 0) when restricted to B. I f  A is R4, B is also R4, hence 
aB (x) and ~A(X) are real. Thus R 4 ~ R~ and since R~ ~ R a is obvious f rom Definition 3.1 
the proof is complete. 

F rom now on we leave out  the primes in the conditions and use the different formu- 
lations interchangeably.  

Theorem 6.8. For  a real B a n a c h  algebra A 

(a) R 4 ~ R 3 ~ R2, 
(b) R 4 ~ R a ~ R 2 ~ R 1 i / A  has identity,  
(c) R 4 ~ R 1 i / A  is not radical. 
(d) A n y  radical A is Ra. 

Proo/.  Assume tha t  A is Ra. The quotient  algebra A / R  A (RA is the radical) is semi. 
simple and R~, hence commuta t ive  (Theorem 7.1). If, for z C A / R A ,  i xp~z  is bounded 
this is t rue also for its Gelfand funct ion h(ixp ~z) = ixp as Bu t  since 2 is real s = 0 and  
z = 0 .  Hence, if x E A  and ixp~x is bounded,  xERA and r (x )=0 .  But  then, according 
to Lemma 5.1, x = 0  and A is R a. R 3 ~ R 2 is obvious since if ixpx  =0 ,  ixp~x is periodic 
in ~, hence bounded,  and x =0.  Thus (a) is proved. Then (b) follows f rom Theorem 
6.5. For  (c) let A be str ict ly real and P a primitive ideal (see [18, Ch. I]). Since P is 
closed A l P  is a primitive Banach  algebra. An  a rgument  by  Kap lansky  [20, p. 405] 
shows tha t  A l P  is isomorphic to the real numbers.  I f  A is also of complex type  then, 
for every x, x 2 = - (Jx)  2. Then x mus t  be mapped  into 0 of A / P  and x EP  for every P .  
But  this implies t ha t  every x is in the radical, cont ra ry  to the assumption.  (d), finally, 
is trivial since all elements in a radical algebra are quasi-regular. 
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Theorems 6.5 and  6.8 a p p a r e n t l y  give us reason to regard  R 1 th rough  R 4 as suc- 
cessively s t ronger  r ea l i ty  condi t ions.  I t  is easy  to  see b y  examples  t h a t  none of the  
four  are equ iva len t  (see [15, p. 30]). 

W e  also not ice  t h a t  t he  r ea l i t y  condi t ions  are  p rese rved  when an  i d e n t i t y  is 
ad jo ined .  Given A,  A 1 is the  a lgebra  def ined in sec. 2. 

L e m m a  6.9. For a real (normed) algebra A 

(a) A1 is always R1, 
(b) A 1 is R 2 i] and only i/  A is R 2. 
I / A  is a Banach algebra 
(c) A 1 is R 3 i/  and only i/ A is Ra, 
(d) A 1 is R 4 i / a n d  only i/  A is Ra. 

Proo]. (a) a n d  (b) are  t r iv ia l .  F o r  (c) we not ice  t h a t  for (~ ,x)EA 1 

ixp  ~(~, x) = (1 - exp  a~, exp  a~ . ixp ~x). 

F o r  this  to  be bounded  i t  is necessary  t h a t  ~ = 0 ;  thus  i t  is bounde d  if and  only  if 
= 0 and  ixp  ~x is bounded  in A.  
I n  (d), i t  is clear t h a t  if A 1 is Rr then  A is R 4. F o r  the  " i f"  p a r t  a t echn ique  due  to  

Civin and  Yood  [9] is used. W e  assume t h a t  A is R 4 and  prove  t h a t  ~ , ( ( ~ , x )  e) is non- 
nega t ive  real  for a n y  (~, x) E A 1. Take  h - 2~x § x 2 and  le t  B be a m a x i m a l  c o m m u t a t i v e  
suba lgebra  of A conta in ing  h. B is a c o m m u t a t i v e  Banach  a lgebra  and, t hanks  to  the  
max ima l i t y ,  as(x)  =0A(x) (except  poss ib ly  for 0) for x E B. I f  B is rad ica l  the  conclu- 
s ion is clear, hence assume t h a t  B has  a n o n - e m p t y  Gel fand space CB and  a Gel fand 
r ep resen ta t ion  x-~&. F o r  eve ry  ~v E r  there  is a u E B such t h a t  u(~) = 1. W i t h  y = ~u 
+ xu  we have  y2 = ~2u2 + hu ~ C B and  

0 < ~(q)  = ~2~(~) + ~(q) ~(~)  = ~ + ~@). 

Hence  a ~  ((0, h)) = aA (h) = aB (h) >~ - ~2 

a n d  f ina l ly  aA, ((~, x) ~) = aA~ ((~,  h)) = ~2 + a~ (h) > 0 

a n d  the  proof  is f inished.  

7. Significance o f  the conditions 

Str ic t  rea l i ty ,  R4, was used a l r eady  in Gel fand ' s  original  p a p e r  [11] in order  to  
m a k e  sure t h a t  the  r ep resen ta t ion  of a real  c o m m u t a t i v e  Banach  a lgebra  only  con- 
sists of r ea l -va lued  funct ions.  I t  is clear f rom sect ion 4 tha t ,  for a c o m m u t a t i v e  real  
Banach  a lgebra ,  R 4 and  r =~b~ are  equ iva len t  condi t ions ,  and  tha t ,  for a R 4 a lgebra ,  
the  Gel fand space CA can  be ident i f ied  wi th  the  set  of modu la r  m a x i m a l  ideals.  R 4 is 
in fact  a ve ry  s t rong condi t ion,  which is seen for ins tance  f rom the  r e ma rka b l e  resul t  
t h a t  a R 4 Banach  a lgebra  is c o m m u t a t i v e  modulo  i ts  radical :  

Theorem 7.1. (Kap lansky)  A strictly real semi-simple Banach algebra is commutative. 

The proof  [20, p. 405] amoun t s  to  showing (by  means  of the  dens i ty  theorem)  t h a t  
a n y  p r imi t ive  R 4 Banach  a lgebra  is i somorphic  to  the  real  numbers .  Since a subd i rec t  
sum of c o m m u t a t i v e  r ings is c o m m u t a t i v e  the  conclusion follows. 
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I n  Chapter  IV  some cr i ter ia  for s t r ic t  r ea l i t y  are  given. I n  t h a t  con tex t  the  closely 
re la ted  p rob lem to charac ter ize  those  real  a lgebras  whose Gel fand  r ep resen ta t ion  
consists of all  real  funct ions  in C0(r ) is discussed.  

The R a condi t ion  was in t roduced  b y  the  presen t  au tho r  in connect ion  wi th  s tudies  
of the  geometr ica l  p roper t ies  of t he  uni t  sphere [15]. A po in t  on the  b o u n d a r y  of a 
convex set is cal led a vertex if no s t r a igh t  line th rough  the  po in t  is a t a n g e n t  of the  set. 
A real  Banach  a lgebra  wi th  i d e n t i t y  e is sa id  to  have  the  vertex property if e is a ve r t ex  
of every  uni t  sphere t h a t  belongs to  an  admiss ib le  n a t u r a l  norm.  We have  [15, 
Theorem 2]: 

Theorem 7.2. A real Banaeh algebra with identity has the vertex property i /and  only 
i / i t  is R 3. 

I t  would be in teres t ing  to  know if there  is an a lgebra ic  condi t ion  equ iva len t  to  R a 
(cf. P ropos i t ion  6.7). 

Since a n y  a lgebra  wi thou t  non-zero i dcmpo ten t s  is Re, a n d  so qui te  a few complex  
a lgebras  are  in fac t  Re, th is  condi t ion  seems ra the r  weak.  F r o m  Chap te r  I I I ,  however,  
i t  will be clear t h a t  R e is the  "co r r ec t "  r ea l i ty  condi t ion  for  the  quas i - regular  group; 
in R e real  a lgebras  th is  group has  d i s t inc t ive ly  different  connec t iv i ty  p roper t ies  f rom 
t h a t  of complex ( type)  algebras.  

8. A decomposition theorem 

I n  th is  section, which is pu re ly  algebraic,  we give a theorem to the  effect t h a t  a 
c o m m u t a t i v e  real  a lgebra  sa t i s fy ing some sui table  f ini teness condi t ion  can be spl i t  
in a d i rec t  sum of a complex  t y p e  a lgebra  and  a R2-algebra, t hus  enabhng  us to  a 
cer ta in  ex t en t  to d i sc r imina te  be tween  the  " complex"  and  the  " rea l "  p roper t i e s  of 
the  algebra.  

We consider the  two condi t ions  on an  a lgebra  A:  
DCS = A n y  descending chain 

A = A o ~ A I ~  . . . ~ A ~ A n + I  ~ ... 

of ideals of A,  such t h a t  An+l is d i rec t  s u m m a n d  in An, has  on ly  a f ini te  n u m b e r  of 
d i s t inc t  members .  

F I  = The center  of A contains  only  a f ini te  number  of idempoten t s .  
Clearly, DCS is impl ied  b y  the  more fami l ia r  Ar t in  descending chain condi t ion  for 

ideals,  a ]ortiori b y  A being f ini te  dimensional .  The F I  condi t ion,  on the  o ther  
hand,  is of ten sat isf ied b y  func t ion  algebras.  Moreover,  DCS impl ies  F I .  

Theorem 8.1. A commutative real algebra, satis/ying the F I  (or the DCS) condition, 
is the direct sum o /an  algebra o/complex type with identity and a R 2 algebra. 

Proo/. If  A is no t  R2, we have  e lements  e 1 and  k such t h a t  - k  e = e  1 and  e~ = e  x. 
W i t h  A I = e l A  and  A e = {a-ela;  a E A }  we have  

A = A  1 @ A e, 

where A 1 is of complex  type .  I f  A is R 2 we t a k e  A 1 = {0}. Then  we can spl i t  up  A e in 
the  same manner ,  A e = A 3  $ A4, then  A 4 and  so on. The resul t  can be descr ibed  b y  the  
d iag ram 
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A --> A 2 --> A 4 --~ A G - *  . . .  

t t ~ 
A 1 A a A~ A 7 

t t t t 
0 0 0 0 

where all the maps are algebra homomorphisms and 

1. At] horizontal maps are onto and split. 
2. Sequences containing only one horizontal map are exact. 
3. All members of the middle row are of complex type with identity. 

Since each non-zero A 1 , A 3 . . .  contains a different idempotent, the F I  condition 
guarantees that  only a finite number of them are == {0 } and the upper row becomes 
stationary from some element on. (The D C S  tells directly that only a finite number 
of the A, A 2... can be different.) Hence, for some n, we have 

A = A  1 @ A a �9 ... ~ A2n_ 1 �9 A2~ , 

where it is impossible to split up A2n non-trivially, hence A2~ is R 2. Since a direct 
sum of complex type algebras with identity is again of complex type with identity, 
the conclusion follows. 

Without any finiteness assumption of the type D C S  or F I ,  the conclusion of Theo- 
rem 8.1 is no longer valid. To see this, let cR be the algebra of all sequences of complex 
numbers converging to real limits (with component-wise multiplication). Assume that  

cR =A~ �9 AR 

with Ac of complex type with identity. Its imaginary unit/c = {~} satisfies/c +k3=0,  
hence we must have ~ = + i or 0, and consequently there is an N such that  ~ =0, 
n>~N.  Hence ~n=0, n > ~ N  for all {~} EAc. But A n  is never R2: the elements with an 
arbitrary complex number in the Nth  position and O's elsewhere belong to An, but 
they clearly form a subalgebra isomorphic to the complex numbers. 

Without the commutativity condition the theorem does not hold; for a finite-di- 
mensional (i.e. D C S )  counterexample take the algebra of all 2 • 2 matrices with real 
entries. This algebra is obviously not of complex type, but it contains a subalgebra 
isomorphic to the complex numbers, namely matrices of the form 

hence it is not R 2. But it is simple, thus indecomposable. 

R e m a r k  1. Since the decomposition in Theorem 8.1 is in fact effected by an idempo- 
tent it is clear that, if A is a topological algebra, both summands are closed. In  parti- 
cular if A is a Banach algebra the summands are Banach algebras. 

R e m a r k  2. There exists a purely ring-theoretic anMogue to Theorem 8.I. A ring 
(R, +,  .) is said to be of complex type if there exists a group endomorphism J on 
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(R~/+), satisfying J(ab)=J(a) .b=a.J (b)  and such tha t  - J ~  is the identity. I t  is 
called R~ if the equation x a + x = 0 has no solution x # 0  in R. I f  the conditions DCS and 
F I  are read with "r ing" instead of "algebra" we have: 

A commutative ring, satis/ying F I  (or DCS), is the direct sum o / a  ring o/complex 
type with identity and a R2 ring. 

Chapter III. The quasi-regular group 

In  this chapter the main object of s tudy is the group of quasi-regular elenl~nts of 
a commutat ive Banach algebra. We first show tha t  for a "sufficiently real" (i.e. R2) 
algebra the principal component of the quasi-regular group is simply connected (Theo- 
rem 9.3). This depends on the extension of a result by  Blum [4] to the general case of 
real algebras without identity. 

A theorem by  Lorch [21] says tha t  in a complex commutat ive Banach algebra with 
identi ty the (quasi-) regular group either is connected or has an infinite number  of 
components. This is obviously not true for real algebras in general but  we obtain a 
satisfactory analogue for real commutat ive R2 algebras: the components of the quasi- 
regular group are a t  least as many  as the idempotents of the algebra, equal in number  
if the set of components is finite (Theorem 10.3). I t  is also shown tha t  the Lorch 
result is true even without the assumption of identity. Finally (sec. 12) we make 
some remarks on how a recent result on the cohomology of the maximal  ideal space is 
related to the questions discussed in the chapter. 

9. Structure of  Gg 

The set of quasi-regular elements, which we have called G q, is a group under the 
circle operation (xoy = x + y -  ~ )  and a topological group in the topology of the alge- 
bra (see. 2). I t s  principal component (the maximal  connected subset of G r containing 
0) is called G~. The following lemma, which is well known for the case with identi ty 
[24, p. 14], is technically important .  

Lemma 9.1. I n  a Banach algebra A,  Gg is the subgroup generated by ixp (A). I / A  is 
commutative x-+ixpx is a homomorphism o / ( A ,  +) onto (G~, o). 

Proo/. Since ixp tx, 0 ~ t <. 1, is a continuous pa th  in G q between 0 and ixp x we have 
ixp (A) c G~. I f  G' is the group generated by  ixp (A) we show tha t  G' is open and closed 
in G q. 

There exists a neighbourhood U of 0 consisting only of elements ixpa,  a EA  
(see. 5). For  a x E G' the set x o U is a nei_ghbourhood of x and belongs to G', hence x 
is an interior point and G' is open. I f  x E G' then (x o U) f) G' is not empty,  hence an a 
exists so tha t  x o ixpa=gEG'  and xEG'. (As by-products we get tha t  G~ is pathwise 
connected and open in Gq.) 

From here on we restrict our at tent ion to commutat ive  algebras. Let  HI(Gg) (or 
only YI1) denote the fundamental  group of G~. The following theorem generalizes a 
result by  Blum [4] for complex algebras with identity. We take P = (x; ixp x = 0 ), 
which is a subgroup of (A, + ). 

Theorem 9.2. I n  a commutative Banach algebra HI(G~) is isomorphic to P. 
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Prop/. P is the kernel of the epimorphism ixp :A-->G~, hence A l P  is isomorphic to 
G~. We show tha t  P is discrete, which is the case if 0 is an isolated point of P. Assume 
tha t  x e P  and I[xll < 1. Since ixpx  = 0 the spectrum of x only consists of points 2zdN, 
N=O, _ 1 ,  •  .... Since I lx l l<l  we have tha t  the spectrum of x is {0} and so x is 
topologically nilpotent. But  ~ ( ~ ) = i x p a x  is continuous and periodic in ~, hence 
bounded, and Lemma 5.1. shows tha t  q0(~) = 0  and x =0.  Since A is locally connected, 
simply connected and locally simply connected, P discrete and ixp an open map,  a 
theorem by  Schreier [28] applies and shows tha t  the fundamental  group of (the to- 
rus) AlP  is isomorphic to P.  

Theorem 9.3. For a commutative Banach algebra A the/ollowing statements are equi- 
valent: 

(a) ixp :A-->G~ is an isomorphism, 
(b) A is R,, 
(c) G~ is simply connected, 
(d) G~ is torsion/ree. 

Prop/. From Lemma 9.1, Proposition 6.7 and Theorem 9.2, respectively, follows 
tha t  {a), (b) and (c) are all equivalent t o P  =(0}. We prove tha t  (b) and (d) are equiva- 
lent. 

Assume tha t  A is not R 2. Then i x p x = 0  for some x # 0 .  From Lcmma 5.2 follows 
tha t  there exists an integer n >~ 2 such tha t  y~ = ixp  n- ix  #0. Then y~ EGg and y~  0 
so G~ is not torsion free. Now assume tha t  there is a z E G~ such tha t  z # 0  and z ~ =0.  
According to Lemma 9.1 z = i x p u  for some u, and so ixpNu=z~ and A is not 
R~, which completes the proof. 

Thus we have tha t  for "sufficiently real" Banach algebras G~ is simply connected. 
For every non- R 2 algebra,.in particular every complex algebra with identity, how- 
ever, II  1 has a subgroup isomorphic to the additive group of integers. For complex 
algebras without ident i ty it can very well happen tha t  Gg is simply connected. For 
every radical Banach algebra, for instance, we have A = G q = G~. 

We conclude this section with a technical remark on commutat ive  complex t y p e  
algebras. 

T h e o r e m  9.4. A commutative real Banach algebra A with identity e is o/complex type 
i /and  only i/  - e belongs to the principal component o/the regular group. 

Proo/. I f  A is of complex type,  exp (iqe), 0 ~<q ~<~t, is a pa th  in G between e and - e ;  
hence - e belongs to the principal component  Ge. I f  - e E Ge then (Lemma 9.1) there 
is a u E A such tha t  exp u = - e. But  then j = exp �89 is an imaginary unit  and A is of 
complex type. 

t0 .  Components of G q 

In  this section we s tudy the quasi-regular group G q of a commutat ive  Banach 
algebra, in particular the number  of components of G q. For  complex Banach algebras 
with ident i ty we have a result by  Lorch [21, Theorem 12]: 

G q (and G) either is connected or has an infinite number o/components. 
I t  is immediate  tha t  this does not  hold for real algebras in general. For  instance 

for the real numbers R, G q = R - ( 1  } and has two components. A counterpart  to 
Lorch's theorem will be given for real R2-algebras. As a preparat ion we prove two 
lemmas. 
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Lemma 10.1. Every element o/finite odd order in G q belongs to its principal component 

Proof. LetZ~ ~ =0, n odd. The line segment 

A@) = (1 -~) r ,  0 <T ~< 1, 

connects 0 and r. But with 

n-1 
B(T) = [(1-- T) n - ( - $ ) n ] - I  ~ (1--T)k( 'T)n-k-lr ' /~ 

k=l 

we have A(~)oB(~)=0.  Hence A@)EG q and rEGg. (This result obviously holds in 
any power associative real topological algebra, i.e. not necessarily commutative, 
associative or normed.) 

Lemma 10.2. Let A be an abelian topological group such that its principal component 
is torsion/ree. 1 / x  and y are two elements o/finite order in A they belong to di//erent 
components unless x =y. 

Proo/. Assume x and y are in the same component, A'.  z-->x-lz maps A'  homeo- 
morphically onto the principal component Ae. Then x-lyEAe and x- ly  is of finite 
order, hence x-ly = e and x = y. 

For the formulation of the main theorem we introduce the set of idempotents 
i = { y ;  y2 =~}. Gq/G~, the set of components of G q, is called K. 

Theorem 10.3. In  a commutative R 2 Banach algebra holds 

(a) card I <. card K, 
(b) card I =card K i / K  is finite. 

Proof. We first introduce the subset S of G q consisting of all elements of order 2, 
S =  {x; x ~ =2x-x2=O}.  Evidently x--->~x is a one-to-one map of S onto I ,  so card 
1 = card S. 

To every element x E S we associate the component of G q, Fx, in which it lies, defin- 
ing a function 

/:x-+Fx 

of S into K. But G8 is torsion free (Theorem 9.3) and Lemma 10.2 shows that  / is 
injective, which proves (a). 

Now assume that  K is finite, take an arbitrary element F E K and let k EF. The 
powers k ~ n=l ,2 , . . . ,  cannot all lie in different components. If  k ~ and k ~162 are 
in the same component, k~176162176 and there exists uEA such that  
i x p u = k  ~ (Lemma 9.1). The element v = k o i x p ( - u / 1 )  satisfies v~ and veF.  
Lemma 10.1 together with the fact that  Gg is torsion free shows that  there are no 
elements in G q of odd, finite order. Hence l =2  ~ and v ~ = 0  for some n ~>0. But in a 

R~ algebra, x ~ =0  for some n >  1 implies that  already x~ To see this, assume 
that  x~ but x~ Then 

k = �89 ( 2 x  - 3 x  ~ + x 3) = �89 ( z  ~ - x )  
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is 4=0, because otherwise x~176176 against the assumption. But  k also 
satisfies k + k s = 0 (notice the formal identities k = �89 - x )  [ 1 - (1 -x)2]  and (1 - x )  4 = 1) 
and the algebra would not be R 2. Hence we have v~ yES and F =Fv so / is onto 
and the proof of (b) is complete. 

The inequality in (a) above can be strict. An example (slightly modified after  S. 
Kakutani)  is the following. A is the real R 2 algebra of all continuous complex func- 
tions on the unit  circle I z l = 1 tha t  take only real values a t  z = 1. The e lements / , ,  with 
/n(z) =zn, n = 0 ,  1,2. . ,  lie in different components of G, but  the number  of idempo- 
tents is 2. 

11. The regular group of  A 1 

In  this section we investigate the connection between the properties of the quasi- 
regular group of A and tha t  of A 1 (A with adjoined identity, see. 2). Here we reserve 
the notat ion G and G 1 for the regular group of A~ and its principal component, while 
G q and G8 stand for the quasiregular group and its principal component  in A. 

For a given component  F of G q we define the subsets 

of A r 
F + = { ~ ( 1 , - g ) ; a > 0 ,  gEF}, F - = - F  + 

Theorem 11.1. I[ A is a real Banach algebra then 

(a) to every component F o/ G ~ in A correspond two components F + and F - o / G  
in A1, 

(b) card G/GI=2 card Gq/G~, 
(c) the/undamental groups o/ G~) and G 1 are isomorphic, 

Hi(G1) _~ 1L(aS). 

Proo[. The map x--->(1, - x )  is a homeomorphism of G q onto the subset (1, - G  q) c G. 
I f  U is a maximal  connected subset of G q then (1, - F )  o F +  and F + is clearly maximal  
connected. F§ and U- are homeomorphic and lie in disjoint homeomorphic half- 
spaces, hence F -  is also a component. Since for any  component  A of G either A or 
- A  must  contain an element (1, - g ) ,  gEG q, (a) and (b) are proved. 

For (c), we rely on Theorem 9.2. Since ixp (~ ,x )=0  implies ~ = 0  we have 

III(G1) _ {(~,x); ixp (~,x) =0}  = {(0,x); ixpx  =0}  ~_ HI(Gg). 

For  an algebra of complex type we can, as an alternative to the construction used 
above, adjoin a complex identity~ take 

Ale = C �9 A, 

direct sum as normed vector spaces, with the algebra operations defined as in see. 2. 
We use the notations G, G1, G q, Gg as above, and for a component  F of G q we define 
the subset 

r ~  {CO, -9 ) ;  C#0,  g e r }  
of A w. 
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Theorem 11.2. I / A  is a Banach algebra o/complex type and a complex identity i8 
adjoined, then 

(a) to every component F o[ G ~ in A corresponds a component F ~ o /G in A w, 
(b) card GIG 1 =card Gq/G~, 
(c) the /undamental group o/ G 1 is isomorphic to the direct sum o/the fundamental 

group o/G~ with the integers Z, 

YI I (G1) = YI 1 (G~) (t) Z. 

Pro@ (a) and (b) follow as in Theorem 11.1. For (c) we notice tha t  ixp(~,x)= 
(1 - e x p , ,  exp~ .ixpx) =0  if and only if ~ =2~in,  nEZ, and ixpx =0. Hence Theorem 
9.2 gives 

II~(G~) _~ {(~, x); ixp (~, x) = 0} = {(2~in, x); n EZ, ixp x = 0 } _ Z �9 II~(G~). 

A simple consequence of Theorem 11.2 (b) is that  Lorch's theorem (see sec. 10) 
generahzes to the case without identity: 

Theorem 11.3. In  a Banach algebra o/ complex type the quasi-regular group either is 
connected or has an in/inite number o/components. 

12. Remarks on a cohomology result 

A recent result due to Arens [2] and Royden [25], [26] is that,  for a complex com- 
mutat ive Banach algebra with identity, G/G1 (as a group) is isomorphic to HI(~/I,Z), 
the first ~ech cohomology group of the maximal ideal space ~ with the integers as 
coefficient group. We can make two remarks on this, due to the fact t h a t / o r  any 
compact space ~,  HI(~,Z) is torsion/ree. 

This is immediately clear when ~ is a finite simplicial complex. Then HI(~,Z) 
is isomorphic to the direct sum of the free (Betti) part  of HI(~,Z ) and the torsion 
part  of Ho(~,Z ) [8, p. 127]. Since H o is always free HI(~,Z) is torsion free. 

For ~ an arbitrary, compact space H~(~,Z) is the direct hmit of HI(g2o,Z), where 
~o are finite simphcial complexes: the finite open coverings (or "nerves" of such 
coverings) of ~ (for terminology, see [14, p. 132]). Since a direct limit of torsion free 
groups is torsion free, the conclusion follows. 

Hence, if HI(s is not trivial, it is infinite. Since we also know of real commuta- 
tive Banach algebras in which GIG 1 is finite but  non-trivial, we can make the two 
remarks: 

1. For real, commutative Banach algebras in general it is not true that  G/G~ 
~HX(~,Z) for any compact space ~.  

2. For complex, commutative Banach algebras with identi ty the result tha t  
G/GI~HI(TII, Z) (Arens, Royden) implies tha t  GIG 1 has either one or an infinite 
number of elements (Lorch). 

Chapter IV. Strict reality- and full function algebras 

The first part  (sec. 13) of this chapter contains criteria for a real Banach algebra 
to be strictly real (R4). One of the conditions (Theorem 13.1) is analytic in character, 
the other (Theorem 13.3) deals with geometric properties of the unit sphere and corn- 
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plements previous results by  the author  [15]. These conditions can also be formulated 
in terms of an ordering of the algebra (see. 14). In  section 15 we give criteria for a 
Banach algebra A to be homeomorphically (or isometrically) isomorphic to a C~(~), 
the algebra of all continuous real functions on a locally compact space tha t  tend to 0 
at  infinity. The key to these results is the observation (Theorem 15.2) tha t  if, in a 
strictly real algebra, the spectral radius v(x) is in a certain sense compatible with the 
topology, the algebra is isomorphic to C0(~bA). The results generahze a theorem by 
Segal [29] tha t  has been used in his work on the foundations of quantum mechanics. 

13. Conditions for strict reality 

We recall the definition ixp x = - ~ n %  ~ (n!)-i xn and s tar t  with an analytic criterion 
of strict reality. 

Theorem 13.1. 1[ in a real Banaeh algebra ixp(-~x2) ,~>~0,  is a bounded/unction 
o /~ /or  every x, then the algebra is strictly real. 

Proo/. Take an arbi t rary element x of the algebra A and let B be a maximal,  com- 
muta t ive  subalgebra containing x. B is closed and the spectrum of x in B coincides 
with the spectrum of x in A (except possibly for 0). I f  k is the image of x in the Gelfand 
representation of B, ixp ( -  ~k~) is a bounded (complex function-valued) function of 
~. Then Re &2>~0 and the spectrum of x is contained in the "double wedge" / Imp/  
~<[Re~[ of the complex plane. Since this holds for every element it follows from the 
spectral mapping theorem (for powers) tha t  the spectrum of every element must  be 
real. 

The condition tha t  i x p ( -  gx 2) is bounded for all x, which is sufficient for strict 
reality, is not necessary, which will be shown by  examples. We first make an observa- 
tion about  "topologically very ni lpotent"  elements. 

Lemma 13.2. I[ x is an element o/ a Banach algebra such that IIx"[l~l"=o(n-1), 
n - + ~ ,  and ixp ~x is bounded/or ~ 0  then x=O. 

Proo/. For any continuous linear funct ional / , / ( ixp  ~c) =~(~) is an analytic function 
on the real line tha t  can be extended to an entire function on the whole complex 
plane. As such, it is at  most of order ~,1 minimum type,  and since it is also bounded 
on the positive real line a Phragmdn-Lindel6f theorem tells tha t  it must  be constant 
(cf. Lemma 5.1). Hence / (x )  =0 for all ] and x = 0 .  

Remark. Results of this type are obtained by  Lumer  and Phillips [22]. They also 
disprove the conjecture by  Bolmenblust and Karlin [6] that ,  in a Banach algebra 
with identity, no ray e +~x,  a~>0, xE RA, can be a tangent  of a natural  unit  sphere. 
I t  is true, however, tha t  no full straight line e + ~x, - o o  < a < ~ ,  x topologically 
nilpotent, can be a tangent  of a natural  unit sphere ([15], cf. also Lemma 5.1 and 
Theorem 7.2). 

In  view of Lemma 13.2 it is sufficient to exhibit an element x # 0 in a Banach algebra 
satisfying HxS"H a/- =o(n-1). The closed subalgebra generated by  x will then be a radi- 
cal Banaeh algebra and automatical ly strictly real (Theorem 6.8, (d)) but  ixp( - ~ x  ~) 
must  be unbounded. A trivial example is then a nilpotent element x, where Ilxa"ll = 0  
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f rom some n on. A little less trivial  is the following. The algebra is the vector  space 
C [0,1] with the m a x i m u m  norm ]]-[I and  the mult ipl ication 

x ~+ y(t) = SI  x(t - s) y(s) ds. 

Let  c be the funct ion with c(t) = 1. I t  is easily verified t h a t  

1 

c " ( t ) - - ( n _ l ~ !  and IIc "lV= (2n= =n-SO(l )"  

Nex t  we give a condit ion for strict  reali ty in terms of the geometry  of the uni t  
sphere. For  an algebra with ident i ty  e, we define the enveloping cone at  e of a certain 
na tura l  uni t  sphere to be the collection of all rays  e + ~x, :r >~ 0, t ha t  either are tangents  
to the  uni t  sphere or cut  th rough  it. I n  terms of the Gateau differential r  
lim~_~+0 ~ l(II e + gxl] - 1) the rays in the  enveloping cone are precisely those belonging to 
x such t h a t  r 4 0 .  The au thor  has proved t h a t  if a Banach  algebra is str ict ly real 
then the  enveloping cone at e does no t  contain a full line th rough  e for any  natura l  
uni t  sphere (vertex p roper ty  [15, Theorem 4], ef. Theorem 7.2). The following theorem, 
which also deals with the  local properties of a uni t  sphere at  e, is in a way  comple- 
men ta ry  to this result. 

Theorem 13.3. I / a  Banach algebra with identiy e has a natural norm such that every 
ray e -  ocx 2, ~ >~ O, is in the enveloping cone at e, the algebra is strictly real. 

Proo/. The assumpt ion is equivalent  to  r  2) ~<0 for every x for some natura l  
norm H' I[" But  we also have ~b(x) =lim~_,+0 ~-1 logllex p ~xll ' [15, p. 25]. Wi th  h(~) = log 
]]exp ( - ax 2) ]], ~ >~ 0, we have h(~ +fl) <~ h(~) + h(fl). From this follows 

h(:) h(~) 
n 

for any  na tura l  number  n. If  h(~) > 0 for some :r this inequal i ty  shows t h a t  we cannot  
h a v e  

r  x ~) = l i m  h(a_) ~< 0 
a-~+0 

and so we conclude tha t  h(~)~<0 for all ~>~0. But  then ]]exp( -~)H < 1 and Theorem 
13.1 shows tha t  the algebra is str ict ly real. 

14. Order-theoretic formulat ion 

We call a set K in a real vector  space a cone (with ver tex  at  0) if x, y E K implies 
x + y E K and ~x E K for every  ~ >~ 0. K is called proper if - x E K and  x E K together  
imply  x =0 .  Given a cone K we can define a part ial  ordering (the K:ordering)  of the  
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space by defining x ~> y as x - y  E K. Then x ~> y and y ~> x imply x = y  if and only if K 
is proper; K consists of all positive elements, x >~ 0. 

The image of an enveloping cone at e under the mapping x-->e-x is a cone (with 
vertex at 0) which we call N. N is proper if and only if the unit sphere has a vertex 
at e (cf. Theorem 7.2). Theorem 13.3 can now be reformulated in terms of N-ordering. 

Theorem 14.1. I / a  Banach algebra with identity has a natural norm such that in the 
corresponding N.ordering every square is positive then it is strictly real. 

I t  follows that  under the assumptions of the theorem N is proper [15, Theorem 4]. 
For a commutative algebra it is obvious that  the set of all x, such that  ixp ( -  ax) 

is bounded for a ~> 0, form a cone. If  we call this cone E we get directly from Theorem 
13.1. 

Theorem 14.2. I /  in a commutative Banach algebra every square is positive in the 
E-ordering then the algebra is strictly real. 

E is proper if and only if A is R a. From Theorem 6.8 it follows that  E is proper if 
the algebra satisfies the assumptions of Theorem 14.2. 

A discussion of ordered real algebras is found in Kadison [19]. (In our discussion 
the ordering has no a priori connection with the multiplicative structure, i.e., it is 
not  necessarily an algebra ordering in the sense of [19].) 

15. Abstract characterization of C~ (~) 

If  ~ is a locally compact Hausdorff space, C~(s denotes the real Banach algebra 
of all real continuous functions that  tend to 0 at infinity; the topology is defined by 
the sup norm. In  the abundance of properties for Cg(~), we can ask for a set of topolo- 
gical or metric conditions oh a Banach algebra A to guarantee that  A is isomorphic 
and homeomorphic to a C~(~2). Largely two different sets of conditions of this kind 
can be found in the literature: 

I. A is commutative and has a natural norm that  satisfies IIxll 2 <~zcllx2 +y21t for all 
x and y and some fixed ~. 

This follows as a special case of a theorem by Arens and Kaplansky on real com- 
mutative *-algebras [1] (also [24, p. 191]) and depends on the fact that  the complexi- 
fication of A is (essentially) complex B* (cf. also sec. 18). 

II .  A is commutative, has identity and a natural norm that  satisfies 

IIx ll=llzll  and IIx -Y ll <<.maxll  ll, llY2!!. 
T h i s  is due to Segal [29, Theorem 1]. Conditions of type I have been used by Kadi- 

son [19]; different proofs of I and I I  have been given by Aurora [3]. 
We are going to give conditions that  in a sense generahze I I .  Theorems 15.2 and 

15.3 show that  the conditions in I I  can be relaxed considerably. In  the following 
we denote, as usual, v(x)=~m=+=ll~=ll "= f o r  s o m e  admissible norm (and hence for 
all). S~ is the set of x for which v(x) <~ 1. 

Lemma 15.1. The conditions 

(i) S~ is bounded, 
(ii) for some admissible norm (not necessarily natural) it holds that IIx ll >  llzll 

/or all x and some fixed ~ > O, 
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(iii) /or every neighbourhood V o/ 0 there is a neighbourhood U o / 0  such that x~ V 
implies xe$ U, 

( iv)/or  some admissible norm there exist positive constants m, M such that mllxll 
<~v(x) <~MHxll /or all x, 

on a normed algebra are equivalent. 

Proo/. (i) means tha t  for some admissible norm I1" II, which we can choose as 
natural,  r(x)~< 1 implies Ilxll ~< C for some fixed C. Hence for any  x we have 

4 C  and v(x)>~C lllxl[, 

and since ][. ]] is natural  
c-1llxll <~(x)< Ilxll. 

Thus (i) and (iv) are equivalent. 
(ii) and (iii) are easily seen to be equivalent for a normed algebra. I f  (ii) holds we 

have, for some admissible natural  norm I" I and fixed • > 0, 

From this follows by  direct computat ion v(x)>~lx]  and 

But from (iv) follows 

II x211 = M-~v(x)2 >~ M-lm211 x II 2 

and so (ii) and (iv) are equivalent. 
The following result will be used for the metric-topological characterization of C~(~) 

but  it has also independent interest. In  a slightly weaker form (and with a different 
proof) it is found by  Kadison [19, Theorem 6.6]. 

Theorem 15.2. A strictly real Banach algebra A satis/ying one of the conditions 
(i)-(iv) o/Lemma 15.1 is isomorphic and homeomorphic to C~(r 

Proo/. Since v(x)=0 implies x =0,  A is semi-simple. Then Theorem 7.1 (Kaplansky) 
applies and shows tha t  A is commutative.  

For any  x and the Gelfand mapping (sec. 4), h: x-+&, & is real and so h is a map into 
C~(~bA). A and h(A) are isomorphic and, since ~(x)=sup~r v an admissible 
norm for A and h an isometry under ~ and the sup norm. But  from Stone-Weierstrass'  
theorem follows tha t  h(A) is dense in C~(r Being complete it must  be closed, we 
have h(A)=C~(r and the theorem is proved. 

By combining the criteria of strict reality from section 13, the result of Theorem 
15.2 and the different conditions from Lemma 15.1 it is now possible to formulate 
various metric-topological conditions for an algebra to be a C~(~). We choose a 
metric formulation tha t  might be applicable. 

Theorem 15.3. A real Banach algebra A with identity e that has an admissible natural 
norm satis/ying 

(i) e - ~ x 2 [ ~ < l + o ( ~  ), a -++0 ,  
(ii) x 2 >~klx 2, k>O, 
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[or all x EA, is isomorphic and homeomorphic to C~(r with CA compact Hausdor//; in 
particular A is commutative. I /  k=  1 it is isometric with respect to ]]. II and the sup 
norm. 

Proo/. Condition (i) and Theorem 13.3 tell tha t  A is strictly real. But  (ii) is condi- 
tion (ii) in Lemma 15.1 and so Theorem 15.2 gives the conclusion. 

Corollary 15.4. (Segal.) A real (commutative) Banach algebra with identity and an 
admissible natural norm satis]ying 

II <max(ll  ll,llY ll), 

is isometrically isomorphic to CR(r 

Chapter V. Real  algebras with  involut ion  

One of the main results in the theory of complex Banach algebras is tha t  a B*- 
algebra (a *-algebra with norm satisfying IIx]l ~= IIx*xll) is isomorphic and isometric 
to a C*-algebra (a self-adjoint algebra of bounded operators on a Hilbert space). 
This chapter deals with the corresponding problem for real algebras. 

After some introductory discussion of real *-algebras and some conditions relating 
the involution to the topology (sec. 16) we obtain a negative answer to the question 
whether a real B*-algebra is necessarily C*. I t  is shown, however, tha t  a symmetric 
( - x * x  is quasi-regular for all x) real Banaeh *-algebra with a norm satisfying 
]lx[[ ~ <<-flllx*xH is isomorphic and homeomorphic to a C*-algebra (Thorem 17.6). If 
the norm condition is strengthened, symmetry will follow and so C*-algebras can be 
characterized by  norm conditions only (Theorem 18.6): 

A real Banach *-algebra with identi ty and a norm satisfying IIx]] 2= IIx*xll for an 
and [[x[12<~o:[ix*x+y*y[[ for all normal, commuting x, y and a constant ~, is isomor- 
phic and isometric to a C*-algebra. 

The same result is obtained (under slightly stronger hypotheses) even for non- 
complete normed algebras and algebras without identi ty (Theorem 18.7). 

In some parts of this chapter the technique can be borrowed, with no or little 
change, from the complex case. Brief mention is always made, however, in order to 
make the presentation self-contained. 

16. Definitions and preliminaries 

All algebras treated here have the real numbers as their scalar field. With a *-al- 
gebra is meant an algebra on which is defined-an involution, x-+x*, which is an in- 
volutive (x** =x) linear operator and moreover satisfies (xy)* =y 'x* .  For a complex 
algebra, regarded also as a real algebra, real involution clearly is a more general 
concept than complex involution. A *-algebra is called symmetric if - x * x  is quasi- 
regular for all x. 

An element x of a *-algebra is called hermitian if x* =x, antihermitian if x* = - x  
and normal if x*x=xx*.  The sets of hermitian, antihermitian and normal elements 
will be denoted H, K and N respectively. 
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We make  some remarks  abou t  decomposi t ion of elements and  linear functionals.  
Since x =  �89 +x * )+ �89  and  0* =0 ,  it is clear t h a t  every  element  has a unique 
decomposit ion in a hermit ian  and  an ant ihermit ian part .  A linear funct ional  F is 
called hermitian if F(x*) = F(x) and  antihermitian if F(x*) = - F ( x ) .  A hermit ian func- 
t ional  satisfying F(x*x)>~O for all x is called positive. I f  we take  F = H + K ,  H(x) 
= �89  and  K(x)=�89 F ( x - x * ) ,  we see t h a t  every  Iinear funct ional  can be 
expressed uniquely as a sum of a hermit ian  and  an ant ihermit ian  functional.  I f  
x = h + k ,  hEH and  k E K ,  we also have F(x )=H(h)+K(k )  with H and K as above. 

I n  a no rmed  *-algebra it m a y  or m a y  not  happen  t h a t  involut ion is continuous.  
I f  it is, it  is also isometric with respect  to a norm: 

Proposition 16.1. I /  a normed algebra has a continuous involution there exists an 
admissible natural norm such that Hx*lI = ]ixH /or all x. 

Proot. Let  �9 I be ~ natural ,  admissible norm.  Then  I lxll = max  (I x I, I x*D is natural ,  
equivalent  to  - and  has the desired property.  

We define, for later use, some conditions linking norms with the involution. 

Definition 16.2. A natural norm on a *-algebra is called 

b ' i f  x 2<~fl I x*xl /~ all x and s~ c~ fl 
B ' i f  x I 2 =  x*x /or all x, 
Dc* if [x][ 2= x*x /or all x and ]]x[[~<0t x*x+y*y[[ /or all normal, commuting x, y 

and some constant or, 
D* if[[x[] ~= [Ix*x[[ and [[x[[~[[x*x+y*y[[ /or all x, y and some constant or. 
A *-algebra with an admissible b*(B*,Dc*,D*) norm will be called a b*-(B*-, 

De,*-. D*-) alaebra. 

I t  is clear t h a t  these conditions are successive s trengthenings of each other, i.e. 
every  D*-algebra is Dc*, every Dc* is B* and  every  B* is b*. I n  all four  cases involu- 
t ion  is continuous:  for b* we get  ]lx*ll ~fli]x[I and  hence (Proposit ion 16.1) we have a 
b*-norm with ]]xi] = lix*H, for the  other  three this ident i ty  is au tomat ic  f rom the 
conditions. 

I f  A is a real *-algebra, A 1 (see. 2) can be made  a real *-algebra by  defining (~,x)* 
= (~,x*). For  later use we state two technical lemmas abou t  A 1. 

L e m m a  16.3. I / A  is a b*-(B*-,D*-) algebra then A 1 is also b*(B*, D*). 

Proo/. For  (~ ,x)eA 1 and  II' [[ a na tura l  norm on A, we define 

Ill( ,x)lll = sup II z +=11. 
Ilzll=l 

Since - is an  operator  norm,  it is na tura l  on A 1. Assume tha t  Hxil~<~o~Hx*x+y*yi] 
and  x ' i ]  = xi] for all x, yEA.  Then, for Xl=(~,x),yl=(~l,y)EA1 

II z+x li < ]l( z+xz) * (w+v )ll 

~ gliZ*]]" ]]iXl*Xl 21-yl*y I ]]]']]Z]] 

and  Hlxllll[~<~HiXl*Xl+yi*yi [H. 
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In  the same way, if 11~112~<~11~*~11 and IIx*ll = I1~11 

This proves the b* part .  I f  8 = 1  it follows IIIx~ *111 =111~111 and Illxilll~=lllx~*xllll . 
The D* case, finally, follows from B* and the calculation above. 

The next  lemma is proved under somewhat more general assumptions than  will be 
needed in sec. 17, but  seems to have independent interest. The technique is par t ly  
due to Civin and Yood [9]. 

Lemma 16.4. I f  A is a real symmetric Banach *-algebra with continuous involution, 
A 1 is also symmetric. 

Proof. We show tha t  aA,((~,x)*(~,x)) is non-negative. Let  h =~(x* +x)+x*x and B 
a subalgebra of A which is maximal  with respect to the properties of being commuta- 
tive, contain h and be contained in H. Then B is a strictly real Banaeh algebra and 
as(b) =~rA(b ) (except possibly for 0) for b E B. We proceed as in the proof of Lemma 6.9 
(d) to show tha t  

a s ( h ) = a A ( h ) > ~ - ~  and aAl((~,x)* (~,x))>~0. 

By a C*-algebra will be meant  a *-subalgebra of B(XH), the algebra of all bounded 
linear operators on a Hilbert  space Xn, with involution defined as taking the adjoint 
of an operator. A C*-algebra is, unless otherwise stated, supposed to carry with it the 
operator norm of B(XH), IAl2=sup(x,x)-i (Ax, Ax). This norm satisfies IAI2<IA*A 
§  hence a C*-algebra is necessarily D*. 

17. Representation of symmetric b*-a~gebras 

The purpose of this section is to prove tha t  every real, symmetric  b*-algebra is 
homeomorphically isomorphic to a C*-algebra and, if it is also B*, isometric with 
respect to the B*-norm. For complex algebras it is a classical result [12] tha t  a sym- 
metric B*-algebra is isometric to a C*-algebra. I t  was conjectured and later, through 
the contributions of several authors, proved tha t  the symmet ry  condition is redun- 
dant,  see [27]. (Another conjecture of [121, tha t  B* could be weakened to ]]x*x H = 
]lx*ll Hxll, was recently proved by Glimm and Kadison [13].) 

Our first remark will be tha t  in the real case the assumption of symmet ry  cannot 
be waived entirely. We notice: 

Propos i t ion  17.1. Every complete C*-algebra with identity is symmetric. 

Proof. Let  the C*-algebra be A and its identi ty p. This is a self-adjoint projection 
tha t  commutes with every element of A. Then we can regard A as a closed *-subal- 
gebra of B(pXH) rather  than  of B(XH). Since A now contains the identi ty of B(pXH) 
a standard argument,  see [23, I, p. 299], gives the result. 

The complex numbers C, as a real algebra, is commutat ive,  hence involution can 
be defined as the iden t i ty  map. The usual absolute value is a B*-norm but  C is obvi- 
ously not symmetric.  Then {Proposition 17.1) it cannot be C*; the answer to the ques- 
tion [24, p. 181] if a real B*-algebra is necessarily C*, is negative. 

The decisive step in the proof of the announced result is the extension Theorem 
17.5. In  preparat ion for this we prove three lemmas. The line of a lgument  will be in 
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principle that  of the classical [12] but  modifications, sometimes quite significant, have 
to be done to take c~re of the real scalar case. 

The sets of "posi t ive" and "semi-positive" elements are defined 

P + = { x ;  x * - x  and aA(X)>0}, 

P - { x ;  x * = x  and aA(x)>~0}. 

Lemma 17.2. In  a symmetric real *-algebra with identity 

(a) (~A(x) is real/or every xEH,  
(b) x*xEP /or every x. 

Pro@ We recall tha t  in a real algebra A with identity e the complex number  
+ i/~ belongs to aA(X) if and only if x' = (x ~e)2 +/~2 ~ is singular. For fl 4=-0 we have 

tha t  

which is regular according to the symmet ry  assumption. This proves (a). Now we 
know tha t  x 'x ,  being hermitian, has real spectrum. If  - z 2  E CfA(X*X), ~ real, then with 
x 1 =z-~x we have 0 E aA(e + Xl *Xl) contrary to the symmetry  assumption. Therefore 
~A(X*X) is non-negative. 

Lemma 17.3. In  a Banach *-algebra with identity and continuous involution there 
exists to every element x EP + an element y EP + such that y2 =x. 

Pro@ We can assume tha t  C~A(X)~(0,1) (open interval) and then, for z = e - x ,  
(~A(Z) ~ (0, 1). We define the sequence of polynomials 

P,,(~) = ~ 0  ( - 1) ~ ~ 

for which holds tha t  

( a ) l i m P ~ ( ~ ) = V l - ~  for ~ E ( - 1 , 1 ) ,  

the convergence being uniform on every inner subinterval. 
(b) P0(~) = 1 and P,(~) is a decreasing sequence for each positive ~, since the coeffi- 

cients of Pn (except the first) are negative. 
If  we define v~ =P,~(z), v~ is hermitian and since v(z)< 1 there exists a y such tha t  

l i m v ~ = y ,  y * = y  and y 2 _ _ e _ z = x .  

According to (a) and (b) above, Pn maps the interval (0,1) into itself and the spectral 
mapping theorem gives 

aA(rn) =aA(P,(z)) =P,((rA(z)) cP,((0 ,1))  c (0,1). 

Since y and v~ commute  we can apply ~ continuity theorem for the spectrum [24, 
p. 36] and obtain aA(y) >10. But 0 E aA(y) means tha t  y is singular which is impossible 
when y2 = x  is regular. Thus it is proved tha t  y Ep+. 
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Lemma 17,4. In  a symmetric Banach *-algebra with identity and continuous involution 
Xl, X 2 EP implies x 1 + x 2 EP. 

Proo/. (Well known [23, IX,  p. 302].) We show that  z =x  1 +x2 + 2~e is regular for 
~>0 .  From Lemma 17.3 z=(xl§  ) 2+ ~ 2 2 =Yl y2=yl (e+Yl  - y2) with Yl, 
y2EP+. But hA(y; 2 y,~)=hA(y; 1 u*uyl)=hA(u'u)>~0, (u=y2y~ 1) because of the sym- 
metry. Thus z is the product of regular elements, hence regular. 

We are ready to state the important extension theorem for positive functionals. 

Theorem 17.5. Let A be a symmetric Banach *-algebra with identity and continuous 
involution such that the only topologically nilpotent hermitian element is O. To every 
element a E A belongs a positive/unctional F a with norm 1, satis/ying Fa(a*a)=v(a*a). 

Remark. Since the norm of any positive functional F is F(e) [23, p. 190] it is inde- 
pendent of the choice of (natural, admissible) norm for A. 

Proo/. If  x EP  and - x E P  then hA(x)= (0}, x is topologically nilpotent and x = 0  
according to the assumption. Together with Lemma 17.4 this shows that  P is a proper 
convex cone in the real space H. Moreover, e is an interior element of P. Now let S~ 
be the subspace O f H spanned by the elements e and a*a. On S~ we define F~ as 

Fa(~e + ~a*a) -- ~ § ~v(a*a). 

I t  is clear that  Fa is non-negative on S~ N P and since Sa N P also contains the interior 
point e of P, we can apply a standard extension theorem [23, p. 63] and get F a defined 
on the whole of H and taking non-negative values on P. Finally we extend F a to all 
of A by defining 

Fo(x)=Fo(X*§ 
\ 2 /  

and this F~ clearly has the stated properties. 
We can now give the main representation theorem. 

Theorem 17.6. A complete, symmetric real b*-algebra is homeomorphically *-isomor- 
phic to a C*-algebra. 

Proo/. Lemmas 16.3 and 16.4 show that  we can adjoin identity, if necessary, without 
affecting the assumptions. Hence we assume identity from here on. 

For a b*-norm and h e l l ,  v(h) >~/3-~Hh]l, hence ~(h) = 0  implies h =0  and the assump- 
tions of Theorem 17.5 are satisfied. For a certain aEA,  take F a according to that  
theorem and form the inner product (x,y)~=Fa(y*x). From here we proceed in a 
well-known manner. Let N~= (x; (x,x)~=0}, then N~ is a left ideal and we can 
form X~ = A  - N a  as left modules. The desired Hilbert space XH is the completion of 
the 12-normed direct sum of the Xa's. The left regular representation of A induces 
(via reduction to Xa, direct sum representation and extension by continuity) a 
*-representation b-->T~ of A on XH. We further get 

fi-�89 <~[ T~ I <~ Ilbll, 

where IIII is any given b*-norm and its b*-constant. This shows that  the represen- 
tation is a homeomorphism. Then A is homeomorphically *-isomorphic to its image 
by the representation and the theorem is proved. 
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Corollary 17.7. A complete symmetric real B*.algebra is isometrically (with respect to 
the B*-norm) *-isomorphic to a C*-algebra. 

Proof. I f  it is necessary to adjoin an identity, Lemma 16.3 tells tha t  we still have 
a B*-norm after doing this. The last inequality in the proof of Theorem 17.6 with 
/~=1 gives ITb]=i]biI . 

18. Characterization o f  real C*-algebras 

In  this section will be shown tha t  if the b*-condition is strengthened t o  Dc*, 
symmet ry  follows and so real C*-algebras can be characterized by  a norm~condition 
only.  

We will repeatedly use the following theorem by  Arens and Kaplansky [1, Theorem 
9.1], also [24, p. 191]: 

A real commutat ive Banach *-algebra A with identi ty tha t  has an admissible norm 
satisfying Ilxll ~ < ~llx*x +y*y II for all x, y E A and some constant u, is homeomorphi- 
cally *-isomorphic to an algebra C(~,7). 

Here E2 is a compact Hausdorff  space, 7 a homeomorphism of f2 into itself such 
tha t  7 ~  =ident i ty .  C(f2,7) Consists of all complex-valued continuous functions such 
that /(0))  =/(Tw); involution on C(~,?)  is complex conjugation. 

We give two lemmas based on this result. 

Lemma 18.1. Let A be a Banach *-algebra with identity, continuous involution and an 
admissible norm satis/ying IIxII 2 ~< ~llx 2 +y211/or commuting x, y e H and a constant ~. 

Then 

(a) x E P  i / a n d  only i / v ( e - x / C )  < 1 /or  all sulliciently large positive numbers C; 
(b) to every x E H  belongs u, v E P  such that x = u - v ,  uv=O.  

Proo I. Take x E H  and let B be a maximal  commutat ive hermitian subalgebra 
containing x. Then as(x)=(rA(X), and moreover B is closed, hence Banach, and iso- 
morphic to the algebra of all real functions on a compact space ~,  according to the 
Arens-Kaplansky theorem. Let  Ix be the function corresponding to x. For (a) we 
notice tha t  if x E P  then/x(0))>~0 and I1-C-I/x(0))]  ~<1 for all C >  21v(x). If, for some 
C > O, v(e - x/C) ~< 1, 1 - C -1 1~(0)) < 1 and Ix(co) >~ O. 

For  (b) take /1(0)) = m a x  [/~(0)), 0] 

t~ (0 ) )  = - 1 , ( 0 ) )  + / 1 ( o ) ) .  

Then /1(0))>~0, /2(0))>~0 and /1(0))'/2(w) =0.  But  since every continuous function 
belongs to an element of B we have u, v so t h a t / l = / U ,  /~ =/ , ,  x = u -  v, uv =0  and 
u, v EP. 

Lemma 18.2. Let A be a real Banach *.algebra with identity, continuous involution and 
an admissible norm satis/ying I] x ]]2 ~< ~ ]]x*x + y*yil /or all commuting, normal x, y e A 
and a constant ~. I]  k* = - k  then - k ~ E P .  

Proo]. Let B be a maximal  commutat ive  *-subalgebra containing }. Then B con- 
tains inverses, in particular aB(k)=aA(k). But  B is also closed, hence Banach, and 
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isomorphic to a function algebra C(~,~). The function corresponding to k has only 
imaginary values, hence aB(k)=aA(k) is imaginary and aA(-k2) non-negative real. 

In  preparat ion for the announced result we prove two lemmas on Dc*-algebras. 

Lemma 18.3, In  a Banach Dc*-algebra with identity x, y EP implies x § y EP. 

Proo/. For the Dc*-norm and x EH we have Ilx.II = Ilxll . and v(x)= Ilxll, hence ~ is a 
norm on the real vector space H. Take C ~>v(x) +r(y). Then 

according to Lemma 18.1 (a), and then also x + y E P .  

Lemma 18.4. Let x be an element o /a  Banaeh Dc*-algebra with identity. I /  - x * x  EP 
then x*x = O. 

Proo/. I t  is easy to see tha t  x*x and xx* have the same spectrum except possibly 
for 0. I f  we write x = h + k with h E H, k E K (anti-hermitian) we have 

x*x =2h 2 +2( - k 2) + ( - x x * )  

and, according to Lemmas 18.2 and 18.3, x*xEP. Since both x*x and - x * x  belong to 
P we have a(x*x) = {0}. Then v(x*x) =0 and x*x =0.  

Theorem 18.5. A real Banach Dc*-algebra with identity is symmetric. 

Proo/. We will prove that ,  for every x,a(x*x)>~0. I f  this is true (e+x*x) -1 exists 
and the algebra is symmetric.  The proof depends in a well-known manner [27] on the 
preceding lemmas. Since x*x is hermitian we can write x * x = u - v  according to 
Lemma 18.1. Then 

- ( v x ) * ( v x )  = - v  x * x  v = - v ( u - v ) v  = v  a EP 

and Lemma 18.4 shows tha t  (vx)*(vx)=0. Then v3=0, v = 0  and x*x=uEP,  tha t  is 
a(x*z) >10. 

An immediate consequence of Theorem 18.5 and Corollary 17.7 is now 

Theorem 18.6. A complete real Dc*-algebra with identity is isometrically (with respect 
to the Dc*-norm) *-isomorphic to a C*-algebra. 

We do not know whether one or both assumptions of identi ty and completeness in 
Theorem 18.6 can be removed. However, if Dc* is replaced by the stronger D*, this 
is possible. Given a D*-algebra A, A 1 is a D*-algebra (Lemma 16.3). The completion 
A~ is also D* since the D*-relations hold on a dense subset. Hence A is isometrically 
embedded in a complete D*-algebra with identity, and Theorem 18.6 gives 

Theorem 18.7. A real D*-algebra is isometrically (with respect to the D*-norm) 
*-isomorphic to a C*-algebra. 

Corollary 18.8. I / a  real *-algebra has a natural norm satis/ying ]]xH2 ~< ][x*x +y*y[[ 
/or all x,y then it is isometrically *-isomorphic to a C*-algebra. 
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