On the propagation of analyticity of solutions of differential equations with constant coefficients

By Jan Boman

1. Introduction

Let $P(D)$ be a partial differential operator with constant complex coefficients, let Ω be an open set in R^{n}, and write

$$
\Omega_{d}=\left\{x ; x \in \Omega, x_{n}>d\right\} .
$$

If E and F are sets, we let $E \backslash F$ denote the set $E \cap \subset F$. By $C^{\infty}(\Omega)$ we denote the set of infinitely differentiable complex valued functions in Ω. The following theorem is due to John [5] and Malgrange [6] (see also Hörmander [4], Ch. III, VIII).

Theorem 1. Let the distribution u in Ω satisfy the equation $P(D) u=f$, where $f \in$ $C^{\infty}\left(\Omega_{d}\right)$, and assume that $u \in C^{\infty}\left(\Omega_{d} \backslash F\right)$, where F is a compact subset of Ω, and d is a real number. Then $u \in C^{\infty}\left(\Omega_{d}\right)$.

The main purpose of this paper is to prove the analogous result with analyticity instead of infinite differentiability, i.e.

Theorem 2. Assume in addition to the hypotheses of Theorem 1 that u is real analytic in $\Omega_{d} \backslash F$ and that f is real analytic in Ω_{d}. Then u is real analytic in Ω_{d}.

We also prove a more general result involving classes of C^{∞} functions. Such classes are defined as follows. If $L=\left\{L_{k}\right\}_{k=1}^{\infty}$ is an increasing sequence of positive numbers and Ω an open subset of R^{n}, we denote by $C^{L}(\Omega)=C^{L}$ the set of functions $f \in C^{\infty}(\Omega)$ such that to every compact set $F \subset \Omega$ there exists a constant C such that

$$
\left|D^{\alpha} f(x)\right| \leqslant C^{k} L_{k}^{k}, \quad \text { if } \quad|\alpha|=k, x \in F, \quad k=1,2, \ldots
$$

Here D^{α} denotes $\left(\partial / \partial x_{1}\right)^{\alpha_{1}} \ldots\left(\partial / \partial x_{n}\right)^{\alpha_{n}}$ where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right),|\alpha|=\Sigma \alpha_{j}$. Note that $f \in C^{L}(\Omega)$, if $f \in C^{L}$ in some neighbourhood of every point in Ω. In fact this follows by applying the Borel-Lebesgue lemma. If $L_{k}=k$ for every k, the class $C^{L}(\Omega)$ is equal to the class $A(\Omega)$ of all real analytic functions on Ω. Here we shall only consider classes which contain $A(\Omega)$. Every such class can be defined by a sequence satisfying

$$
\begin{equation*}
L_{k} \geqslant k \quad(k=1,2, \ldots) . \tag{1.1}
\end{equation*}
$$

Definition. We say that the increasing sequence L is affine invariant, if for any positive integers a and b there exists a constant C such that $C^{-1} L_{k} \leqslant L_{a k+b} \leqslant C L_{k}$ for every k.

J. boman, Propagation of analyticity of solutions of differential equations

It is obvious that an increasing sequence L is affine invariant if and only if there exists a constant C such that

$$
\begin{equation*}
L_{2 k} \leqslant C L_{k} \quad(k=1,2, \ldots) \tag{1.2}
\end{equation*}
$$

The property of translation invariance is defined similarly. Clearly an increasing sequence L is translation invariant if and only if there exists a constant C such that

$$
\begin{equation*}
L_{k+1} \leqslant C L_{k} \quad(k=1,2, \ldots) \tag{1.3}
\end{equation*}
$$

We shall prove the following theorem, which contains Theorem 2 as a special case.
Theorem 3. Assume in addition to the hypotheses of Theorem 1 that $u \in C^{L}\left(\Omega_{d} \backslash F\right)$ and that $f \in C^{L}\left(\Omega_{d}\right)$, where L is affine invariant and satisfies (1.1). Then $u \in C^{L}\left(\Omega_{d}\right)$.

The situation is much simpler, if the set F is contained in the interior of Ω_{d}. The corresponding analogue of Theorem 1 is well known. Using our terminology we can formulate that result as follows.

Theorem 4. Let L be a translation invariant sequence satisfying (1.1). Let u be a distribution in $\Omega \subset R^{n}$, such that $P(D) u \in C^{L}(\Omega)$ and $u \in C^{L}(\Omega \backslash F)$, where F is a compact subset of Ω. Then $u \in C^{L}(\Omega)$.

Some results related to Theorem 4 have been given by Agranovič [1].
The basic tool in our proof of Theorem 3 is an inequality (3.1) between the partial Fourier transforms of v and $P(D) v$ with weight functions which depend on one space variable. The inequality is valid for functions with compact support. The usual technique is to apply the inequality to the function $v=\chi u$, where u is the solution of the equation $P(D) u=f$, and χ is a function in $C_{0}^{\infty}(\Omega)$ which is equal to 1 in a certain set. ($C_{0}^{\infty}(\Omega)$ denotes the set of functions in $C^{\infty}(\Omega)$, whose supports are compact subsets of Ω.) Then one obtains an estimate for the derivatives of u in the set $F \cap \Omega_{d}$ in terms of bounds for derivatives of u in the set $\Omega_{d} \backslash F$ and of f in the set Ω_{d} together with bounds for derivatives of χ. However, by this method one cannot prove that u is analytic, since the derivatives of χ grow too fast when the order of differentiation tends to infinity. Therefore, following an idea of Ehrenpreis [3], we use a sequence χ_{k} of functions in $C_{0}^{\infty}(\Omega)$, whose derivatives of order k have the same order of magnitude as the derivatives of an analytic function (see Lemma 1).

In the special case when C^{L} is non-quasianalytic, i.e., contains functions with compact support, we could simplify the proof by applying the above-mentioned inequality to the function χu where χ is a fixed function in C^{L} with compact support. The general case would then follow from the special case by means of a theorem on the intersection of non-quasianalytic classes, which is given in Boman [2]. However, we have preferred to give here the more direct proof outlined above.
I wish to thank professor Lars Hörmander for introducing me to the problem considered here and for suggesting several improvements of the manuscript.

2. Preliminary lemmas

We first construct the sequence χ_{k} of functions mentioned in the introduction. Take a non-negative function $\varphi \in C_{0}^{\infty}\left(R^{n}\right)$ such that $\int \varphi(x) d x=1$, and define for any positive a the function $\varphi_{(a)}$ by $\varphi_{(a)}(x)=a^{n} \varphi(a x)$. If K is a compact subset of $\Omega \subset R^{n}$ take $\Psi \in C_{0}^{\infty}(\Omega)$ such that $0 \leqslant \Psi \leqslant 1$ and $\Psi=1$ in a neigbourhood of K, and put

$$
\begin{equation*}
\chi_{k}=\varphi_{(k) \star} \ldots \varphi_{(k) \star} \Psi^{+}, \tag{2.1}
\end{equation*}
$$

where the convolution contains the function $\varphi_{(k)} k$ times.
Lemma 1. Let K be a compact subset of $\Omega \subset R^{n}$. If $\operatorname{supp} \varphi \subset\{x ;|x| \leqslant \varepsilon\}$ and ε is small enough, then the function χ_{k} defined by (2.1) is in $C_{0}^{\infty}(\Omega)$ and is equal to 1 in K for every k. Moreover, if $\int\left|\partial \varphi / \partial x_{i}\right| d x \leqslant C$ for each i and $C \geqslant 1$, then there exist constants $C_{0}=1, C_{1}, C_{2}, \ldots$ such that

$$
\begin{equation*}
\left|D^{\alpha} \chi_{k}\right| \leqslant C_{|\alpha|-j}(C k)^{j}, \quad 0 \leqslant j \leqslant \min (|\alpha|, k) . \tag{2.2}
\end{equation*}
$$

We shall later use the two special cases of (2.2) which are obtained by taking $j=|\alpha| \leqslant k$ and $j=0$ respectively:

$$
\begin{gather*}
\left|D^{\alpha} \chi_{k}\right| \leqslant(C k)^{|\alpha|} \quad(|\alpha| \leqslant k), \tag{2.2'}\\
\left|D^{\alpha} \chi_{k}\right| \leqslant C_{|\alpha|} .
\end{gather*}
$$

Proof of Lemma 1. Denote the convolution of k functions equal to $\varphi_{(k)}$ by Φ_{k}. It follows from the hypotheses that supp $\varphi_{(k)} \subset\{x ;|x| \leqslant \varepsilon / k\}$ and hence that $\operatorname{supp} \Phi_{k}$ $\subset\{x ;|x| \leqslant \varepsilon\}$. Also, $\int \Phi_{k} d x=1$, since $\int \varphi d x=\int \varphi_{(k)} d x=1$. This proves that $\chi_{k} \in C_{0}^{\infty}(\Omega)$ and that $\chi_{k}=1$ in K, if ε is small enough. It remains to prove the estimate (2.2). Set $\alpha=\alpha^{\prime}+\alpha^{\prime \prime}$, where $\left|\alpha^{\prime}\right|=j$ and $\left|\alpha^{\prime \prime}\right|=|\alpha|-j$. Then $D^{\alpha} \chi_{k}=D^{\alpha^{\prime}} \Phi_{k^{*}} D^{\alpha^{\prime \prime}} \Psi^{\prime}$. Putting $C_{m}=\sup _{|\beta| \leqslant m}\left|D^{\beta} \Psi\right|$ we obtain

$$
\begin{equation*}
\left|D^{\alpha} \chi_{k}\right| \leqslant C_{|\alpha|-j} \int\left|D^{\alpha^{\prime}} \Phi_{k}\right| d x . \tag{2.3}
\end{equation*}
$$

Since $\left|\alpha^{\prime}\right|=j \leqslant k$ we can compute $D^{\alpha} \Phi_{k}$ by letting at most one derivative act on each factor in the convolution. By the assumption we have $\int \varphi d x=1$, and also

$$
\begin{equation*}
\int\left|\left(\partial / \partial x_{i}\right) \varphi_{(k)}\right| d x=k \int\left|\partial \varphi / \partial x_{i}\right| d x \leqslant C k \tag{2.4}
\end{equation*}
$$

for any i. Since L^{1} is a normed ring under convolution, we thus obtain (2.2) from (2.3) and (2.4).

The use of the inequality $\left(2.2^{\prime}\right)$ is illustrated by the following lemma.
Lemma 2. Let L be an increasing sequence such that $L_{k} \geqslant k$ for every k. Assume that $u \in C^{L}(\Omega)$ and that the functions $\chi_{k} \in C^{\infty}(\Omega)$ satisfy $\left(2.2^{\prime}\right)$ in Ω. Then for any compact set $K \subset \Omega$ there exists a constant C such that

$$
\left|D^{\alpha}\left(\chi_{k} u\right)\right| \leqslant C^{k} L_{k}^{k}, \quad \text { if } \quad x \in K,|\alpha| \leqslant k, \quad k=1,2, \ldots
$$

Proof. Applying Leibniz' formula and (2.2') we obtain

$$
\left|D^{\alpha}\left(\chi_{k} u\right)\right| \leqslant 2^{k} \sup _{0 \leqslant j \leqslant k} C_{1}^{j} k^{j} C_{2}^{k-j+1} L_{k-j}^{k-j} \quad(x \in K,|\alpha| \leqslant k)
$$

Since L is increasing and $L_{k} \geqslant k$, this gives with a sufficiently large C

$$
\left|D^{x}\left(\chi_{k} u\right)\right| \leqslant 2^{k} \sup _{0 \leqslant j \leqslant k} C_{1}^{j} C_{2}^{k-j+1} L_{k}^{j} L_{k}^{k-j} \leqslant C^{k} L_{k}^{k}
$$

J. boman, Propagation of analyticity of solutions of differential equations

Next we give two lemmas on the well-known relation between the bounds of the derivatives of a function and the rate of growth of its Fourier transform at infinity. (See e.g. Paley and Wiener [8].) We define the Fourier transform \hat{w} of a function $w \in C_{0}^{\infty}\left(R^{s}\right)$ by $\hat{w}(\xi)=\int w(x) e^{-i<x, \xi\rangle} d x$, where $\langle x, \xi\rangle=x_{1} \xi_{1}+\ldots+x_{s} \xi_{s}$.

Lemma 3. Let k be a fixed positive integer and assume that $w \in C_{0}^{\infty}\left(R^{s}\right)$ satisfies

$$
\int|w| d x \leqslant C \quad \text { and } \quad \int\left|D^{\alpha} w\right| d x \leqslant C^{k} L_{k}^{k}, \quad \text { if } \quad|\alpha|=k
$$

Then there exist positive constants a and B which depend on C but are independent of k and w, such that

$$
|\hat{w}(\xi)|\left(1+\left(a|\xi| / L_{k}\right)^{k}\right) \leqslant B \quad\left(\xi \in R^{s}\right)
$$

Proof. Since $|\xi|^{2} \leqslant s \cdot \sup _{j}\left|\xi_{j}\right|^{2}$, we have

$$
\begin{equation*}
|\xi|^{k} \leqslant s^{k / 2} \sup _{j}\left|\xi_{j}\right|^{k} \quad(k \geqslant 1) \tag{2.5}
\end{equation*}
$$

Combining (2.5) with the formula

$$
\left(i \xi_{j}\right)^{k} \hat{w}=\int D_{j}^{k} w(x) e^{-i<x, \xi>} d x
$$

and with the assumption gives

$$
|\hat{w}| \leqslant C \quad \text { and } \quad|\xi|^{k}|\hat{w}| \leqslant s^{k / 2} C^{k} L_{k}^{k}
$$

With $a=(\sqrt{s} \cdot C)^{-1}$ this gives

$$
|\hat{w}|\left(1+\left(a|\xi| / L_{k}\right)^{k}\right) \leqslant C+1
$$

Lemma 4. Assume that $W \in L^{\infty}\left(R^{s}\right)$ and that

$$
\begin{equation*}
|W(\xi)|\left(1+\left(a|\xi| / L_{k}\right)^{k}\right) \leqslant B \quad\left(\xi \in R^{s}\right), \tag{2.6}
\end{equation*}
$$

where k is an integer $\geqslant s+1$. Then there exists a constant C depending on a and B but independent of W and k, such that

$$
\left|D^{\alpha} \hat{W}\right| \leqslant C^{k} L_{k}^{k}, \quad \text { if } \quad|\alpha| \leqslant k-s-1
$$

Proof. Since $D^{\alpha} \hat{W}(x)=\int(-i \xi)^{\alpha} W(\xi) e^{-i<x, \xi>} d \xi$,
we have by (2.6)

$$
\left|D^{\alpha} \hat{W}(x)\right| \leqslant B \int|\xi|^{|\alpha|}\left(1+\left(a|\xi| / L_{k}\right)^{k}\right)^{-1} d \xi \leqslant B\left(L_{k} \mid a\right)^{|\alpha|+s} \int|\xi|^{|\alpha|}\left(1+|\xi|^{k}\right)^{-1} d \xi
$$

When $|\xi| \leqslant 1$ the integrand is bounded by 1 , and when $|\xi| \geqslant 1$ it is bounded by $|\xi|^{|\alpha|-k} \leqslant|\xi|^{-1-s}$. This proves the statement.

Lemma 5. Assume that the sequence L is affine invariant. Then there exists a constant $b>0$ such that

$$
\begin{equation*}
\left(1+\left(b r / L_{k}\right)^{k}\right)^{2} \leqslant 2\left(1+\left(r / L_{2 k}\right)^{2 k}\right), \quad \text { if } \quad r>0, \quad k=1,2, \ldots \tag{2.7}
\end{equation*}
$$

Proof. By Cauchy's inequality

$$
\left(1+\left(b r / L_{k}\right)^{k}\right)^{2} \leqslant 2\left(1+\left(b r / L_{k}\right)^{2 k}\right)
$$

Now (2.7) follows, if b is chosen so that $b L_{2 k} \leqslant L_{k}$ for every k, which is possible by (1.2).
Lemma 6. If L is translation invariant, then for any fixed s we have with a constant C_{s}

$$
L_{k+s}^{k+s} \leqslant C_{s}^{k} L_{k}^{k} \quad(k=1,2, \ldots) .
$$

Proof. Using (1.3) we obtain

$$
L_{k+s}^{k+s}=L_{k+s}^{k} L_{k+s}^{s} \leqslant\left(C^{s} L_{k}\right)^{k}\left(C^{k+s-1} L_{1}\right)^{s} \leqslant C_{s}^{k} L_{k}^{k} \quad(k=1,2, \ldots)
$$

It is obvious that the class C^{L} is closed with respect to differentiation, if L is translation invariant.

3. The basic inequality

We shall make use of the partial Fourier transform of functions $v \in C_{0}^{\infty}\left(R^{n}\right)$ with respect to the variables $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)$

$$
\hat{v}\left(\xi^{\prime}, x_{n}\right)=\int v(x) e^{-i<x^{\prime}, \xi^{\prime}>} d x^{\prime}
$$

Lemma 7. Assume that the plane $x_{n}=0$ is non-characteristic with respect to $P(D)$, that Ω is a bounded subset of R^{n} and that γ is a positive continuous function defined for $\xi^{\prime} \in R^{n-1}$. Then there exists a constant C, which is independent of v and γ, such that

$$
\begin{equation*}
\sup _{\xi^{\prime}=1}\left|\hat{v}\left(\xi^{\prime}, x_{n}\right)\right|\left(\gamma\left(\xi^{\prime}\right)\right)^{x_{n}} \leqslant C \sup _{\xi^{\prime}} \int\left|P\left(i \xi^{\prime}, D_{n}\right) \hat{v}\left(\xi^{\prime}, x_{n}\right)\right|\left(\gamma\left(\xi^{\prime}\right)\right)^{x_{n}} d x_{n}, v \in C_{0}^{\infty}(\Omega) \tag{3.1}
\end{equation*}
$$

Proof. Let Q denote an arbitrary polynomial in one variable with leading coefficient 1. It is known (see e.g. Nirenberg [7]) that the following inequality holds for all $w \in C_{0}^{\infty}\left(R^{1}\right)$ which vanish outside a fixed inverval $-T \leqslant t \leqslant T$

$$
\begin{equation*}
\sup _{t}|w(t)| \leqslant C \int|Q(D) w(t)| d t \tag{3.2}
\end{equation*}
$$

Here C depends on the number T and the degree of Q, but is independent of the coefficients for the lower order terms of Q and the function w. In fact it is easy to prove (3.2) if one first reduces the general case to the special case when $Q(D)=$ $=D+a$, where a is a complex number. Applying (3.2) to the function $w_{1}(t)=w(t) e^{b t}$ and the polynomial $Q_{1}(\tau)=Q(\tau-b)$, where b is a constant, one obtains with the same constant C the inequality

$$
\begin{equation*}
\sup _{t}\left|e^{b t} w\right| \leqslant C \int\left|e^{b t} Q(D) w\right| d t, w \in C_{0}^{\infty}(-T, T) \tag{3.3}
\end{equation*}
$$

J. boman, Propagation of analyticity of solutions of differential equations

Now we can apply (3.3) to the function $w\left(x_{n}\right)=\hat{v}\left(\xi^{\prime}, x_{n}\right)$ and the polynomial $Q\left(\xi_{n}\right)=$ $P\left(i \xi^{\prime}, \xi_{n}\right)$, since the leading coefficient of $Q\left(\xi_{n}\right)$ is different from zero and independent of ξ^{\prime}, if the plane $x_{n}=0$ is non-characteristic with respect to $P(D)$. Choosing $b=\log \gamma\left(\xi^{\prime}\right)$ and taking supremum with respect to ξ^{\prime} gives (3.1).

In order to illustrate the technique used in the proof of Theorem 3 we now give a proof of Theorem 4.

4. Estimates for the derivatives of the solution

Proof of Theorem 4. Take bounded open sets ω and ω^{\prime} such that $F \subset \omega \subset \bar{\omega} \subset \omega \subset \bar{\omega}^{\prime}$ $\subset \Omega$. By Lemma 1 we can take functions χ_{k} of the form (2.1) such that $\chi_{k} \in C_{0}^{\infty}\left(\omega^{\prime}\right)$, $\chi_{k}=1$ in ω, and χ_{k} satisfies (2.2). Then $P(D)\left(\chi_{k} u\right) \in C_{0}^{\infty}\left(\omega^{\prime}\right)$, if the distribution u satisfies the assumptions of the theorem. Moreover, with a constant C independent of k we have

$$
\begin{equation*}
\left|D^{\alpha} P(D)\left(\chi_{k} u\right)\right| \leqslant C^{k} L_{k}^{k}, \quad \text { if } \quad|\alpha|+m \leqslant k \tag{4.1}
\end{equation*}
$$

where m is the order of $P(D)$. In fact, $\chi_{k}=1$ in ω, so that $P(D)\left(\chi_{k} u\right)$ is there equal to the function $P(D) u \in C^{L}$. Moreover, in an arbitrary compact set $K \subset \Omega \backslash F$, (4.1) must hold by virtue of Lemma 2 and the fact that $u \in C^{L}(\Omega \backslash F)$ by assumption. This shows that (4.1) holds for every x, since we can take K such that $K \cup \omega \supset \omega^{\prime}$. Now, let E bea fundamental solution of $P(D)$, which is a distribution of order p. Since $D^{\alpha}\left(\chi_{k} u\right)=$ $E * D^{\alpha} P(D)\left(\chi_{k} u\right)$ for any α, we then obtain

$$
\left|D^{\alpha}\left(\chi_{k} u\right)\right| \leqslant C \cdot \quad \sup _{|\beta| \leqslant k-m}\left|D^{\beta} P(D)\left(\chi_{k} u\right)\right| \leqslant C^{k} L_{k}^{k}, \quad \text { if } \quad|\alpha|+p+m \leqslant k
$$

Since $\chi_{k}=1$ in ω and L is translation invariant (Lemma 6), this gives with $|\alpha|=j$

$$
\left|D^{\alpha} u\right| \leqslant C^{j+p+m}\left(L_{j+p+m}\right)^{j+p+m} \leqslant C_{1}^{j} L_{j}^{j}(x \in \omega ; j=1,2, \ldots),
$$

which proves that $u \in C^{L}(\omega)$ and hence that $u \in C^{L}(\Omega)$.
Proof of Theorem 3. Let d be the infimum of all $\delta>d$ such that $u \in C^{L}\left(\Omega_{\delta}\right)$. Then it is clear that $u \in C^{L}\left(\Omega_{\bar{d}}\right)$, so that what we have to prove is that $d=d$. To do so we shall assume that $d>d$ and prove that $u \in C^{L}\left(\Omega_{\delta}\right)$ when $\delta=(d+3 \bar{d}) / 4$ in contradiction with the definition of d. In the first step we shall prove this using the additional assumption that the plane $x_{n}=0$ is non-characteristic with respect to $P(D)$.
Let ω and ω^{\prime} be two bounded open sets such that

$$
\left\{x ; x \in F,(3 d+\bar{d}) / 4 \leqslant x_{n} \leqslant \bar{d}\right\} \subset \omega \subset \bar{\omega} \subset \omega^{\prime} \subset \bar{\omega}^{\prime} \subset\left\{x ; x \in \Omega, d<x_{n}<(5 d-d) / 4\right\}
$$

(see Fig. 1). Applying Lemma 1 we construct functions $\chi_{k} \in C_{0}^{\infty}\left(\omega^{\prime}\right)$, such that $\chi_{k}=1$ in ω and the derivatives of χ_{k} satisfy the estimate (2.2). The main step of the proof will be applying the inequality (3.1) with suitable weight functions γ to the functions $v_{k}=\chi_{k+m} u$, where u is the solution of the equation $P(D) u=f$ which we are studying, and m is the order of $P(D)$. Note that Theorem 1 shows that $u \in C^{\infty}\left(\Omega_{d}\right)$, so that $v_{k} \in C_{0}^{\infty}\left(\omega^{\prime}\right)$ for every k. Using the assumptions that $u \in C^{L}\left(\Omega_{d} \backslash F\right)$ and that $u \in C^{L}\left(\Omega_{\bar{a}}^{-}\right)$ we shall first prove that v_{k} satisfies the estimates

$$
\begin{equation*}
\left|D^{\alpha} P(D) v_{k}\right| \leqslant C_{1}^{k} L_{k}^{k}, \quad \text { if } \quad x_{n}>(3 d+d) / 4,|\alpha|=k, \quad k=1,2, \ldots, \tag{4.2}
\end{equation*}
$$

Fig. 1.

$$
\begin{equation*}
\left|P(D) v_{k}\right| \leqslant C_{2}, \quad \text { if } \quad x \in R^{n}, \quad k=1,2, \ldots \tag{4.3}
\end{equation*}
$$

That (4.3) holds follows immediately from (2.2') and Leibniz' formula. We now prove (4.2). Take a compact set $K \subset \Omega_{\bar{d}}^{\bar{d}} \cup\left(\Omega_{d} \backslash F\right)$ such that $K \cup \omega \supset \omega_{(3 d+\bar{d}) / 4}^{\prime}$. Since v_{k} vanishes outside ω^{\prime}, it is clearly enough to prove (4.2) for $x \in K \cup \omega$. However, for $x \in K$, (4.2) follows from Lemma 2, Lemma 6 and the assumptions that $u \in C^{L}\left(\Omega_{d} \backslash F\right)$ and that $u \in C^{L}\left(\Omega_{\bar{d}}^{-}\right)$. On the other hand, (4.2) is trivial for $x \in \omega$, since $P(D) v_{k}$ is there equal to a fixed function $f \in C^{L}\left(\Omega_{d}\right)$.

From (4.3), (4.2) applied to derivatives with respect to x_{1}, \ldots, x_{n-1}, and from Lemma 3 we can now infer that there exist positive constants a and B which are independent of k such that

$$
\begin{array}{r}
\left|P\left(i \xi^{\prime}, D_{n}\right) \hat{v}_{k}\left(\xi^{\prime}, x_{n}\right)\right|\left(1+\left(a\left|\xi^{\prime}\right| / L_{k}\right)^{k}\right) \leqslant B, \\
x_{n}>(3 d+\bar{d}) / 4, \xi^{\prime} \in R^{n-1}, \quad k=1,2, \ldots \ldots
\end{array}
$$

if

Since L is affine invariant we can apply Lemma 5 and obtain with a new constant $a>0$

$$
\begin{gather*}
\left|P\left(i \xi^{\prime}, D_{n}\right) \hat{v}_{2 k}\left(\xi^{\prime}, x_{n}\right)\right|\left(1+\left(a\left|\xi^{\prime}\right| / L_{k}\right)^{k}\right)^{2} \leqslant 2 B, \\
x_{n}>(3 d+\bar{d}) / 4, \xi^{\prime} \in R^{n-1}, \quad k=1,2, \ldots \tag{4.4}
\end{gather*}
$$

if
From (4.3) we obtain

$$
\begin{equation*}
\left|P\left(i \xi^{\prime}, D_{n}\right) \hat{v}_{k}\left(\xi^{\prime}, x_{n}\right)\right| \leqslant C_{3}, \quad \text { if } \quad x_{n} \in R^{1}, \xi^{\prime} \in R^{n-1}, \quad k=1,2, \ldots \tag{4.5}
\end{equation*}
$$

Put $h\left(x_{n}\right)=2\left(x_{n}-(3 d+d) / 4\right) /(\bar{d}-d)$. Then $h\left(x_{n}\right) \leqslant 2$ when $x \in \omega^{\prime}$. Applying (4.5) when $x_{n}<(3 d+d) / 4$ and (4.4) when $x_{n}>(3 d+\bar{d}) / 4$ we obtain

$$
\int\left|P\left(i \xi^{\prime}, D_{n}\right) \hat{v_{2 k}}\left(\xi^{\prime}, x_{n}\right)\right|\left(1+\left(a\left|\xi^{\prime}\right| / L_{k}\right)^{k}\right)^{h\left(x_{n}\right)} d x_{n} \leqslant(\bar{d}-d)\left(C_{3}+2 B\right)=B_{1},
$$

if

$$
\xi^{\prime} \in R^{n-1}, \quad k=1,2, \ldots .
$$

J. boman, Propagation of analyticity of solutions of differential equations

Using our provisional assumption that the plane $x_{n}=0$ is non-characteristic we can apply Lemma 7 (after a translation in the x_{n} coordinate) and infer that

$$
\left|\hat{v}_{2 k}\left(\xi^{\prime}, x_{n}\right)\right|\left(1+\left(a\left|\xi^{\prime}\right| / L_{k}\right)^{k}\right)^{n\left(x_{n}\right)} \leqslant C B_{1}, \quad \text { if } \quad\left(\xi^{\prime}, x_{n}\right) \in R^{n}, \quad k=1,2, \ldots
$$

Since $h\left(x_{n}\right)>1$ when $x_{n}>(d+3 d) / 4$ this implies that

$$
\left|\hat{v}_{2 k}\left(\xi^{\prime}, x_{n}\right)\right|\left(1+\left(a\left|\xi^{\prime}\right| / L_{k}\right)^{k}\right) \leqslant C B_{1}, \quad \text { if } \quad x_{n}>(d+3 d) / 4, \quad \xi^{\prime} \in R^{n-1}, \quad k=1, \quad 2, \ldots
$$

By Lemma 4 and Fourier's inversion formula we obtain with a new C

$$
\left|D^{\prime \alpha} v_{2 k}\right| \leqslant C^{k} L_{k}^{k}, \quad \text { if } \quad x_{n}>(d+3 d) / 4,|\alpha| \leqslant k-n .
$$

Here $D^{\prime \alpha}$ denotes an arbitrary derivative with respect to $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)$. Since $\chi_{k}=1$ in ω and L is translation invariant, we now obtain with still another C

$$
\begin{equation*}
\left|D^{\prime \alpha} u\right| \leqslant C^{k} L_{k}^{k}, \quad \text { if } \quad x \in \omega, x_{n}>(d+3 \bar{d}) / 4,|\alpha| \leqslant k, \quad k=1,2, \ldots \tag{4.6}
\end{equation*}
$$

In order to estimate arbitrary derivatives of u including derivatives with respect to x_{n} we shall again make use of the assumption that $x_{n}=0$ is a non-characteristic plane.

Lemma 8. Assume that the plane $x_{n}=0$ is non-characteristic with respect to $P(D)$ and that $P(D) u \in C^{L}(\Omega)$. Assume further that $u \in C^{\infty}(\Omega)$ and that for every compact set $F \subset \Omega$ there exists a constant C, such that, if m denotes the order of $P(D)$,

$$
\begin{equation*}
\left|D^{\alpha} u\right| \leqslant C^{k} L_{k}^{k}, \quad \text { when } \quad x \in F,|\alpha| \leqslant k, \alpha_{n} \leqslant m-1, \quad k=1,2, \ldots . \tag{4.7}
\end{equation*}
$$

Then $u \in C^{L}(\Omega)$.
Proof. Since the plane $x_{n}=0$ is non-characteristic, the equation $P(D) u=f$ can be written

$$
\begin{equation*}
D_{n}^{m} u=\Sigma a_{\alpha} D^{\alpha} u+f \tag{4.8}
\end{equation*}
$$

where $\alpha_{n}<m$ and $|\alpha| \leqslant m$ in every term in the right-hand side. Take an arbitrary compact set $F \subset \Omega$, choose C_{1} such that $\left|D^{\alpha} f\right| \leqslant C_{1}^{k} L_{k}^{k}$ when $x \in F$ and $|\alpha| \leqslant k$, and take $B=1+\Sigma\left|a_{\alpha}\right|$. Differentiating (4.8) with respect to the x^{\prime} variables and applying (4.7) then gives

$$
\begin{equation*}
\left|D^{\alpha} u\right| \leqslant\left(B C^{k}+C_{1}^{k}\right) L_{k}^{k} \text {, if }|\alpha| \leqslant k, \alpha_{n} \leqslant m . \tag{4.9}
\end{equation*}
$$

Again differentiating (4.8) and applying (4.9) gives

$$
\left|D^{\alpha} u\right| \leqslant\left(B^{2} C^{k}+B C_{1}^{k}+C_{1}^{k}\right) L_{k}^{k}, \quad \text { if } \quad|\alpha| \leqslant k, \alpha_{n} \leqslant m+1 .
$$

Continuing this procedure we arrive at the estimate

$$
\left|D^{\alpha} u\right| \leqslant\left(B^{k} C^{k}+C_{1}^{k}\left(B^{k}-1\right) /(B-1)\right) L_{k}^{k} \leqslant C_{2}^{k} L_{k}^{k}, \quad \text { if } \quad x \in F, \quad|\alpha| \leqslant k, \quad k=1,2, \ldots,
$$

where C_{2} is a new constant. This proves the lemma.
End of proof of Theorem 3. We first prove the assertion of the theorem using the additional assumption that the plane $x_{n}=0$ is non-characteristic. Since the sequence L is translation invariant, the class C^{L} is closed with respect to differentiation. Then
it is clear that the functions $D_{n}^{j} u$ satisfy the assumptions of Theorem 3 for arbitrary j. Hence formula (4.6) must be valid with $D_{n}^{j} u$ instead of u and possibly a new C. Thus the assumptions of Lemma 8 are fulfilled, and we conclude that $u \in C^{L}\left(\Omega_{(d+3 \bar{d}) / 4}\right)$. In view of the definition of d this contradicts the assumption that $d>d$. This proves Theorem 3 in the special case when the plane $x_{n}=0$ is non-characteristic.

Finally, if the plane $x_{n}=0$ is characteristic, there are non-characteristic planes forming arbitrarily small angles with the plane $x_{n}=0$. Applying the result just proved to regions bounded by such planes instead of the plane $x_{n}=0$ we obtain the same result even if $x_{n}=0$ is characteristic. Thus the proof of Theorem 3 is complete.

REFERENGES

1. Agranovič, M. S., Partial differential equations with constant coefficients. Uspehi Mat. Nauk 16, No. 2, 27-94 (1961). (Russian; English translation in Russian Mathematical Surveys.)
2. Boman, J., On the intersection of classes of infinitely differentiable functions. Ark. Mat. 5, 301-309 (1964).
3. Ehrenpreis, L., Solution of some problems of division. IV. Invertible and elliptic operators. Amer. J. Math. 82, 522-588 (1960).
4. Hörmander, L., Linear partial differential operators. Springer-Verlag, Berlin 1963.
5. John, F., Continuous dependence on data for solutions of partial differential equations with prescribed bound. Comm. Pure Appl. Math. 13, 551-585 (1960).
a. Malgrange, B., Sur la propagation de la régularité des solutions des équations à coefficients constants. Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine 3 (53), 433-440 (1959).
6. Nirenberg, L., Uniqueness in Cauchy problems for differential equations with constant leading coefficients. Comm. Pure Appl. Math. 10, 89-105 (1957).
7. Paley, R. E. A. C. and Wiener, N., Fourier transforms in the complex domain. Amer. Math. Soc. Coll. Publ. 19 (1934).
