A theorem of the Phragmén-Lindelöf type för second-order elliptic operators

By Lars Lithner

1. Introduction and notations

Let R^{n} be the real n-dimensional Euclidean space with coordinates $x=\left(x_{1}\right.$, $\left.x_{2}, \ldots, x_{n}\right),|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}$. C denotes the set of all complex-valued infinitely differentiable functions on R^{n} with compact supports and $L^{2}(\Omega)$ is the Hilbert space of all complex-valued square integrable functions on the set Ω.

In R^{1} let D be the domain $\{x \mid x \geqslant a\}$ where a is arbitrary and let L be the differential operator

$$
-\left(\frac{d}{d x}\right)^{2}+\lambda, \lambda>0
$$

The solutions of $L u=0$ are

$$
u(x)=C_{1} e^{V \bar{\lambda} x}+C_{2} e^{-V \bar{\lambda} x}
$$

where C_{1} and C_{2} are arbitrary constants. From this we conclude that if a solution is bounded in the domain D or if it belongs to $L^{2}(D)$ then it decreases like $e^{-\sqrt{\lambda} x}$ when x tends to infinity and the same holds for its derivative. In particular, $u e^{\mu x}$ and ($\left.d u / d x\right) e^{\mu x}$ belong to $L^{2}(D)$ if $\mu<\sqrt{\lambda}$.

In this paper we shall extend this result to second-order elliptic differential operators in R^{n}.

$$
L=-\sum_{i, k=1}^{n} a_{i k}(x) D_{i k}+\sum_{k=1}^{n} b_{k}(x) D_{k}+a(x),
$$

where $D_{i k}=\partial^{2} / \partial x_{i} \partial x_{k}, D_{k}=\partial / \partial x_{k}$ and $a_{i k}(x)=a_{k i}(x)$ (for simplicity we confine ourselves to the real domain).

Giving the result of the general case at the end of the paper we start with the operator $L=-\Delta+a(x)$, where Δ is the Laplace operator in R^{n} and where a is positive and continuous or, more generally, locally bounded and Borel measurable. Then we can prove that if u is a solution of $L u=0$ outside some compact set K and if u belongs to $L^{2}\left(R^{n}-K\right)$ then, in the same sense as above, u and its first derivatives decrease exponentially like $e^{-\varphi(x)}$ when $|x|$ tends to infinity. $\varphi(x)$ is the geodetic distance from the origin to the point x in the metric $d s^{2}=a(x)\left(d x_{1}^{2}+d x_{2}^{2}+\ldots+d x_{n}^{2}\right)$.

2. The special case

Let D be the domain $\{x||x| \geqslant R\}$, where R is a positive number and let B be the boundary of $D . L$ is the operator $-\Delta+a$ where the function a is strictly positive in R^{n}. Let $\varphi(x)$ be the geodetic distance from the origin to the point x in the metric $d s^{2}=a(x)\left(d x_{1}^{2}+d x_{2}^{2}+\ldots+d x_{n}^{2}\right)$ that is, $\varphi(x)$ is the greatest lower bound of

$$
\left|\int_{\Gamma} \sqrt{a(y)} \sqrt{d y_{1}^{2}+d y_{2}^{2}+\ldots+d y_{n}^{2}}\right|, y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

where Γ is a piecewise continuously differentiable curve starting at the origin and ending at x. Putting further conditions on a φ will be continuously differentiable.

Lemma 1. $|\operatorname{grad} \varphi(x)| \leqslant \sqrt{a(x)}$.
Proof. It is evident from the definition of φ that

$$
|\varphi(x+\Delta x)-\varphi(x)| \leqslant\left|\int_{\Gamma_{0}} \sqrt{a(y)} \sqrt{d} \overline{d y_{1}^{2}+d y_{2}^{2}+\ldots+d y_{n}^{2}}\right|
$$

where Γ_{0} is the straight line segment joining x and $x+\Delta x$. This gives the inequality.

Lemma 2. (Carleman [1].) If u belongs to $L^{2}(D)$ and is a solution of $L u=0$ then $\sqrt{-} u$ and $|\operatorname{grad} u|$ belong to $L^{2}(D)$.

Proof. Let ψ be a positive function in C. Then we have

$$
\begin{gathered}
0=\int_{D} u(x) \psi(x) L u(x) d x=\int_{D} a(x) \psi(x) u^{2}(x) d x-\int_{D} \sum_{1}^{n} u_{i i}(x) u(x) \psi(x) d x \\
u_{i k}=\frac{\partial^{2} u}{\partial x_{i} \partial x_{k}} .
\end{gathered}
$$

where

By partial integration we get

$$
\begin{align*}
0=\int_{B} M(u) d s & +\int_{D} \sum_{1}^{n} u_{i}^{2}(x) \psi(x) d x+ \\
& +\int_{D} \sum_{1}^{n} u_{i}(x) \psi_{i}(x) u(x) d x+\int_{D} a(x) \psi(x) u^{2}(x) d x \tag{1}
\end{align*}
$$

where $M(u)$ contains u and first derivatives of u and where $d s$ denotes the surface element. In the third integral we can integrate by part once more and get

$$
\begin{equation*}
\int_{D} \sum_{1}^{n} u_{i}(x) \psi_{i}(x) u(x) d x=\int_{B} M^{\prime}(u) d s-\frac{1}{2} \int_{D} \sum_{1}^{n} \psi_{i i}(x) u^{2}(x) d x \tag{2}
\end{equation*}
$$

where M^{\prime} is an analogue of M.

From (1) and (2) we get the following estimates

$$
\begin{aligned}
\int_{D} \psi(x) \operatorname{grad}^{2} u(x) d x & +\int_{D} a(x) \psi(x) u^{2}(x) d x \leqslant \\
& \leqslant\left|\int_{B}\left(M(u)+M^{\prime}(u)\right) d s\right|+\frac{1}{2} \int_{D} \sum_{1}^{n}\left|\psi_{i i}(x)\right| u^{2}(x) d x
\end{aligned}
$$

Letting ψ tend to 1 in such a way that $\psi_{i i}$ is bounded we conclude that the lemma is true.

We are now going to prove Theorem 1 below. As before, let $u \in L^{2}(D)$ be a solution of $L u=0$ and let v be a function with locally square integrable first derivatives such that $\sqrt{a} v$ and $|\operatorname{grad} v|$ belong to $L^{2}(D)$. An integration by parts gives

$$
\begin{align*}
0=\int_{D} v(x) L u(x) d x & =\int_{B} M(u, v) d s+ \\
& +\int_{D} \operatorname{grad} u(x) \cdot \operatorname{grad} v(x) d x+\int_{D} a(x) u(x) v(x) d x \tag{3}
\end{align*}
$$

where $M(u, v)$ contains u, grad u and v. In fact, this identity is true if we replace v by ψv, where $\psi \in C$. Letting ψ tend to 1 in such a way that $|\operatorname{grad} \psi|$ tends to zero, we get the general case.

Now let $0<\varepsilon<1$ and put

$$
f_{N}(x)=\min \left(e^{2(1-\varepsilon) \varphi(x)}, N\right)
$$

where N is a positive number and where φ is the function in Lemma 1. It follows from Lemma 1 and Lemma 2 that $\sqrt{a} f_{N} u$ and $\left|\operatorname{grad}\left(f_{N} u\right)\right|$ belong to $L^{2}(D)$. Thus we can substitute $f_{N} u$ for v in the formula (3) and get

$$
\begin{align*}
0=\int_{B} M\left(u, f_{N} u\right) d s & +\int_{D} f_{N}(x) \operatorname{grad}^{2} u(x) d x+ \\
& +\int_{D} u(x) \operatorname{grad} u(x) \cdot \operatorname{grad} f_{N}(x) d x+\int_{D} a(x) f_{N}(x) u^{2}(x) d x \tag{4}
\end{align*}
$$

From Lemma 1 it follows

$$
\begin{equation*}
\left|\operatorname{grad} f_{N}(x)\right| \leqslant 2(1-\varepsilon)|\operatorname{grad} \varphi(x)| f_{N}(x) \leqslant 2(1-\varepsilon) V \sqrt{a(x)} f_{N}(x) . \tag{5}
\end{equation*}
$$

From (4) and (5) we get

$$
\begin{aligned}
\int_{D} f_{N}(x) \operatorname{grad}^{2} u(x) d x & +\int_{D} a(x) f_{N}(x) u^{2}(x) d x \leqslant \\
& \leqslant\left|\int_{B} M\left(u, f_{N} \cdot u\right) d s\right|+2(1-\varepsilon) \int_{D} f_{N}(x) \sqrt{a(x)}|u(x)||\operatorname{grad} u(x)| d x
\end{aligned}
$$

L. Lithner, A theorem of the Phragmén-Lindelöf type

Using Schwarz's inequality we get

$$
\varepsilon\left(\int_{D} f_{N}(x) \operatorname{grad}^{2} u(x) d x+\int_{D} f_{N}(x) a(x) u^{2}(x) d x\right) \leqslant\left|\int_{B} M\left(u, f_{N} \cdot u\right) d s\right|
$$

For large N the right member is a constant and thus, letting N tend to infinity, we have proved the following

Theorem 1. If u belongs to $L^{2}(D)$ and is a solution of $L u=0$, then for every positive number ε

$$
\sqrt{a(x)} u(x) e^{(1-\varepsilon) \varphi(x)} \quad \text { and } \quad|\operatorname{grad} u(x)| e^{(1-\varepsilon) \varphi(x)}
$$

belong to $L^{2}(D)$.

3. The general case

Consider the operator

$$
L=-\sum_{i, k=1}^{n} a_{i k}(x) D_{i k}+\sum_{1}^{n} b_{k}(x) D_{k}+a(x)
$$

$a_{i k}(x)=a_{k i}(x)$. We suppose that a, besides the conditions in Theorem 1 , satisfies $a(x) \geqslant d>0$ outside some compact set.

The operator L is supposed to be uniformly elliptic in D, that is

$$
\sum_{i, k=1}^{n} a_{i k}(x) \xi_{i} \xi_{k} \geqslant \alpha \sum_{1}^{n} \xi_{i}^{2} \text { for all } x \text { in } D
$$

where α is a positive number. Further we suppose that $\partial a_{i k}(x) / \partial x_{k}$ and $b_{k}(x), i$, $k=1,2, \ldots, n$, tend to zero when $|x|$ tends to infinity.

With the same technique as in the proof of Theorem 1 we can prove
Theorem 2. If u belongs to $L^{2}(D)$ and is a solution of $L u=0$, then for every positive ε

$$
u e^{(1-\varepsilon) \varphi} \quad \text { and } \quad|\operatorname{grad} u| e^{(1-\varepsilon) \varphi} \quad \text { belong to } \quad L^{2}(D)
$$

where $\varphi(x)$ is the geodetic distance from the origin to x in the metric

$$
d s^{2}=a(x) \sum_{i, k=1}^{n} a_{i k}^{\prime}(x) d x_{i} d x_{k}
$$

$\left(a_{i k}^{\prime}(x)\right)$ is the matrix which is inverse to $\left(a_{i k}(x)\right)$.
To show that our theorems in a certain sense are the best possible we give the following

Example. Let b and c be two positive numbers. The function

$$
u(x, y)=e^{-\frac{1}{2}\left(\sqrt{b} x^{2}+\sqrt{c} y^{2}\right)}
$$

satisfies an equation $-\Delta u+a(x, y) u=0$, where $a(x, y) / b x^{2}+c y^{2} \rightarrow 1$ when $\sqrt{x^{2}+y^{2}}$ tends to infinity. If $\varphi(x, y)$ denotes the geodetic distance from $(0,0)$ to (x, y) in the metric $d s^{2}=\left(b x^{2}+c y^{2}\right)\left(d x^{2}+d y^{2}\right)$ it is easy to see that $\varphi(x, y)=\frac{1}{2}\left(\sqrt{b} x^{2}+\right.$ $\left.+\sqrt{-} y^{2}\right)$.

REFERENCE

1. Carleman, T. Sur la théorie mathématique de l'équation de Schroedinger. Arkiv mat.; astr. och fysik 24, (1934).
