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]. Introduction and notations 

Let R ~ be the real n-dimensional Euclidean space with coordinates x =  (x 1, 

x~ . . . . .  Xn), Ix [ = Vx~ .4- x~ .4-... -4- x~. C denotes the set of all complex-valued infi- 
nitely differentiable functions on R n with compact supports and L2(~) is the 
Hilbert space of all complex-valued square integrable functions on the set ~.  

In  R 1 let D be the domain {x I x >~a} where a is arbitrary and let L be the 
differential operator 

- ~ +L ~>0- 

The solutions of L u  = 0 arc 

u(x) = Cl e ~  + C2e- Y ~x, 

where C 1 and C 2 are arbitrary constants. From this we conclude that  if a so- 
lution is bounded in the domain D or if it belongs to L2(D) then it decreases 
like e - r ~  when x tends to infinity and the same holds for its derivative. In  

particular, ud  '~: and (du/dx)d 'z belong to L~(D) if ~u< l/~. 
In  this paper we shall extend this result to second-order elliptic differential 

operators in R n, 

L =  - ~ a,k(x)D,~ .4. ~ bk(x)Dk §  
t, k = l  k = l  

where D~k=~2/~x~xk, Dk=O/axk and aik(x)=ak~(x) (for simplicity we confine our- 
selves to the real domain). 

Giving the result of the general case at  the end of the paper we start with 
the operator L = -  A + a(x), where A is the Laplace operator in R n and where 
a is positive and continuous or, more generally, locally bounded and Borel 
measurable. Then we can prove tha t  if u is a solution of L u  = 0 outside some 
compact set K and if u belongs to L2(R n - K ) t h e n ,  in the same sense as above, 
u and its first derivatives decrease exponentially like e -v(x) when Ix[ tends to 
infinity. ~(x) is the geodetic distance from the origin to the point x in the 
metric ds 2 = a(x) (dx~ -I- dx~ §  dx~n). 
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2. The special case 

Let  D be the domain {x I1 x I~> R}, where R is a positive number and let B 
be the boundary of D. L is the operator - A + a  where the function a is 
strictly positive in R n. Let  ~(x) be the geodetic distance from the origin to the 
point x in the metric ds 2 = a(x) (dx~ + dx~ + ... + dx2n) tha t  is, ~(x) is the greatest 
lower bound of 

] frVa~)Vdy~ +dy~ +... +dy~ , Y=(Yt,  Y, . . . . .  y,), 

where F is a piecewise continuously differentiable curve starting at  the origin 
and ending at x. Putt ing further conditions on a ~ will be continuously differ- 
entiable. 

Lemma 1. ]grad ~(x) I,.< ] / a ~ .  

Proo[. I t  is evident from the definition of ~ that  

where F 0 is the straight line segment joining x and x +  Ax. This gives the in- 
equality. 

Lemma 2. (Carleman [1].) I[ u belongs to L2(D) and is a solution o / L u  = 0 then 
]/au and ]grad u I belong to L2(D). 

Proo[. Let  ~ be a positive function in C. Then we have 

o=fou(x) (x)Lu(x)dx=fa(x)w(x)u2(x)dx-fo lU, (x)u(x) (x)dx, 
O2u 

where u~k = Ox~Oxk" 

By partial integration we get 

L f" o= M(u)~ + ~ u~ (xho(x)dx + 
J D 1  

fo + ui(x)y~i(x)u(x)dx+ a(x)y~(x)u2(x)dx, (1) 

where M(u) contains u and first derivatives of u and where d8 denotes the 
surface element. In the third integral we can integrate by par t  once more and get 

~u~(x)y~t(x)u(x)dx= M'(u)ds - �89 vAi(x)u2(x)dx, (2) 

where M'  is an analogue of M. 
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From (1) and (2) we get the following estimates 

f y'(x)grad~u(x)dx+fa(x)y,(x)u~(x)dx<~ 

<~ I ~ (M(u) + M'(u))d8 + �89 ~ ~'y~,,(x)'u2(x)dx. 

Lett ing yJ tend to 1 in such a way tha t  ~0ii is bounded we conclude tha t  the 
lemma is true. 

We are now going to prove Theorem 1 below. As before, let uEL~(D) be a 
solution of Lu = 0 and let v be a function with locally square  integrable first 
derivatives such tha t  ~aav and ]grad v[ belong to L~(D). An integration by  
parts  gives 

f + 

where M(u, v) contains u, grad u and v. In  fact, this identi ty is true if we re- 
place v by  yrv, where yJs C. Lett ing y; tend to 1 in such a way tha t  {grad ~0{ 
tends to zero, we get the general case. 

Now let 0 < e < l  and put  

�9 = min (e 2(i-e)~(x), -~), 

where N is a positive number  and where ~ is the function in Lemma 1. I t  
follows from Lemma 1 and Lemma 2 tha t  ~aa/Nu and {grad (/~u)] belong to 
L2(D). Thus we can substitute /Nu for v in the formula (3) and get 

o= fBM(u, /~u)ds+ f /N(x)grad2u(x)dx+ 

+ fDU(x)gradu(x).grad/N(x)dx + fva(X)/N(x)u2(x)dx. (4) 

From Lemma 1 it  follows 

I grad/~(x){ <~ 2(a - e) ]grad r l/~(x ) <~ 2(1 - -  e) ] / a ~ / N ( x ) .  

From (4) and (5) we get 

f /N(x) grad2 u(x)dx + f Da(x) /~(x)u2(x)dx <<- 

~< 

(5) 
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Usiiig Schwarz ' s  inequal i ty  we get  

f M(u,/ u)ds 
For  large N the r ight  member  is a cons tant  and thus,  letting N tend  to in- 
finity,  we have proved the following 

Theorem 1. I /  u belongs to L2(D) and is a solution o/ Lu = 0, then/or every posi- 
tive number e 

~aa(x)u(x)e (1-e)~(z) and [grad u(x) [ e (1-~)~(z) 

belong to L2(D). 

Consider the opera tor  

3. The general  case 

n 

L =  - ~ aik(x)D,~ + ~bk(x)Dk + a(x), 
t ,  k f f i l  1 

aik(x) = ak~(x). We suppose t h a t  a, besides the conditions in Theorem 1, satisfies 
a(x) ~ d  > 0  outside some compac t  set. 

The operator  L is supposed to  be uniformly elliptic in D, t h a t  is 

n 

aik (x )~k  >1 0 ~  for all x in D, 
L k = l  1 

where ~ is a positive number .  Fur the r  we suppose t h a t  ~a~k(x)/Ox~ and  bk(x), i, 
/c= 1, 2 . . . .  , n, t end  to zero when Ix] tends to  infinity. 

Wi th  the  same technique as in the proof of Theorem 1 we can prove 

Theorem 2. I / u  belongs to L2(D) and is a solution o / L u  = O, -then/or every positive e 

ue 0-~)~ and I g r a d u l e  O-')~ belong to L2(D), 

where qD(x) is the geodetic distance/rom the origin to x in the metric 

ds2=a(x) ~ a[k(x)dx~dx~ 
i ,  k = l  

(d[k(x)) is the matrix which is inverse to (aik(x)). 

To show t h a t  our theorems in a certain sense are the best  possible we give 
the following 

Example. Let  b and  c be two positive numbers.  The funct ion 

u(x, y) = e-t(v~ ~'+~'~u ') 
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satisfies an equation -- A u  + a(x,  y) u = O, where a(x, y) /bx e + cy2--> l when ] / x ~  y2 
tends to infinity. If ~o(x, y) denotes the geodetic distance from (0, 0) to (x, y) 
in the metric ds 2= ( b x 2 + c y 2 ) ( d x ~ §  2) it is easy to see that  ~(x, y )=  �89 
+ V~y2). 
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