
A R K I V  F O R  M A T E M A T I K  B a n d  5 n r  19 

C o m m u n i c a t e d  9 October  1963 by  O. FROSTMII~ an d  L. CARLESON 

On the derivatives of bounded analytic functions 

B y  I K E  SAMUELSSON 

1. In troduct ion  

Let ] be analytic in the ,,nit disc, I 1< 1 and suppose tha t  < 1 for  
[ z[ < 1. Then / ( / #  0) admits a representation / = B- E, where 

B(z)=eiOzmii  5k (a~-z )  
k ]aLl (1-5~z)  

is the normalized Blasehke product of / and where 

~2zt eit+ 
E(z) = exp { - w(z)}, w(z) = ~ ~ d/~(t), 

~ 0  e - -  

(1.1) 

(1.2) 

with a bounded and non-decreasing function tt defined on the interval [0, 2 ~t]. 
If x is a point in the open interval (0, 2zr), such that  

I~(x + h) - /~ (x -  h) -->+ ~ as h-> + O, (1.3) 
h 

it  is well known (ef. [1], p. 108) that  

/(e~) = lim /(reiX)=O. 
r.--~ 1 -0  

However, condition (1.3) does not imply the existence of the radial limits of 
the derivatives of /. In  a previous paper [3] I proved that,  i/  

lim inf/~(x + h) -/~(x - h) 
h-~+0 - h  log h 

> 1  

and i/ / ( z ) # 0  in the unit disc, then 

1' (e-x) = lim /' (re f*) = O. 
r - ,>  1 - 0  

I t  is the primary object of the present paper to improve and generalize this 
result. We establish, i/ 
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Ao SAMUELSSON, On the derivatives o f  bounded analytic funct ions  

lira inf # ( x +  h ) - # ( x - h )  > n ,  
~--,.+o - h  log h 

where n is a natural  number,  then 

(e =,nmo/*) = 0 /or 0 < k < 

Moreover, local conditions on the function # and on the Blaschke product, 
implying the existence of [(n)(e~X)#0, will be given. 

Throughout this paper  we use the following notations and conventions. 
The class of analytic functions [ described above will be called ~. The class 

of analytic functions w defined in the u n i t  disc by  

f~ n e u + z 
w(z) = Hz (t) d#(t), H~ (t) = e -~-~ ,  (1.4) 

where # is a function of bounded variat ion on the interval .[0, 2~], is denoted 
by  7/q. I t  should be noted tha t  w E W implies tha t  I m  w(O)= 0. Moreover, ~/ 
will be the class of harmonic functions u, which are the Poisson integral of a 
finite real measure on the unit circle I zl = 1, i.e. 

u(reix) = Pr (x - t) d#(t) ,  (1.5) 

where PT (t) 
1 - -  r 2 

l + r 2 - 2 r  cos t 

is the Poisson kernel and where # is a function of bounded variat ion on [0, 2 ~]. 
I f  u E~ ,  fi is the conjugate harmonic function of u determined by ~(0)= 0. 

The classes • and ~ are related to each other as follows; if w E ~ ,  then u = 
Re w E ~  and if u E ~ ,  then w = u + i f i E ~ .  

The function # associated with the functions /, w and u in the representa- 
tion formulas (1.2), (1.4) and (1.5) has a periodic extension denoted by #* and 
defined as follows; put  #* ( t )=#( t )  for 0~<t< 2~r and extend this function to a 
periodic function with the period 2~z. 

I f  u E ~  is the Poisson integral of the finite measure induced by  #, we put, 
[#[(t)  = the total  variat ion of # on the interval [0, t], and ]u I is then defined 
as the Poisson integral of the positive measure induced by  ]ju [. 

The point x is always in the open interval (0, 2~r). 
For brevi ty 's  sake it is convenient to introduce the funtions ~0 and ~ defined by  

~o(u; x,t) - # ( x + t ) - # ( x - t )  t>O 
t 

la(x + t) + # ( x  " t) -- 2 #(x)  t > 0 .  
and ~(#;  x, t ) -  t 
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The function /~ is said to be smooth at  the point x if and only if 

lim ~(#;  x, t) = 0. 
t--~+0 

I f  g is any  function analytic in the unit  disc the point set C(e ~, g)is defined 
r oo as follows; ~ E C(d ~, g) if and only if there is a sequence { ~}k=0 with 0 < rk < 1, 

such tha t  
[r e ix~ lim r ~ = l  and lim 9 tk  j = ~ .  

k--~ oo k--~ oo 

2. Some properties o f  the classes ~ and 

The aim of this section is to connect the radial increase of the function w E 7~ 
and its derivatives with the increase of the associated function #. Of course, 
the results obtained can be formulated in terms of functions u E~ .  

First, let us construct an auxiliary function w~y E~q. Pu t  

w I (z) = - log (1 - ze -~) 

and  
l e  tx - z~ 

log I 1< 1, 

where log ~ is the principal branch of the logarithm function, defined in the  
region ~ +151 =k0 and uniquely determined by  log 1 = 0. The auxiliary function 
w~r is now defined by  

W~r (z) = a(w 1 (z) -- 1) + • -- ~ (wt (z) -- ~), 

and the measure associated with w~ ,  is induced by  # ~ r ,  given by  (cf. [2], p. 198) 

fl r' 2 ~ / ~ , ( t ) =  lira Re w~,(re~Y)dy=o~ lira Re wl(rd~)dg 
r -->1-0 r - ~ l - O  J 0 

2~._,l_ojoRew2(retY)dy- o~-fl-  ~ t. 

Obviously lilm0 ; R e  w l(re~)dy = -  ; log 12 sin (~2Y)  ldy 

and, observing tha t  Re w 2 (z) = 2 72 co(z, 0, x), where w(z, O, x) is the harmonic 
measure of the arc {eit; 0 <~t<~ x} (el. [2], p. 7), we have 

(2z~)-lr-~l-01im f~ Re w~ (re ~) dy = t + (x - t) e (t), 

where e ( t ) = 0  if 0 ~ < t < x  and s ( t ) = l  if x~<t~<2~. 
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I t  is now easy to verify tha t  the function /t,~r has the properties 

lira { ~ ( t t , p r ;  x, h) +o: log h} =/3 
h - ~ + 0  

and lim 2 ~(/t~v; x, h) = ~,. 
h - ~ + 0  

We now state and prove a theorem connecting the increase of the real par t  
of w with the increase of the associated function /t. 

T h e o r e m  2.1. Let u E ~ .  Then, i/  o~ is any real number, 

and 

lim inf {~ q0(/~; x, h) + o~ log h} ~< ~ + lim inf (u(re ~x) + o~ log (1 - r)} 
h--~+O r--~ 1 - 0  

lim sup {7~0(/~; x, h) + ~ log  h)  >~ a + lim sup {u(re  'x) + o~ log (1 - r)}. 
h- ->+0  r--~ 1 - 0  

Proo[. I f  a = 0 ,  Theorem 2.1 is nothing but  a re-writing of Fatou 's  theorem 
on Abel summabil i ty (Zygmund [4], p. 99). 

I f  a 4 0 ,  we put  u~ = Re w,0o. Since 

lim {z~0(ju,; x, h) + a log  h} = ~ + u~ (re ~) + o~ log  (1 - r) = 0, 
h- -~+0  

we may  apply Fatou 's  theorem to the function u - u ~  to obtain Theorem 2.1 
in the general case. 

Corollary 2.1.  I /  
lim {~ ~0(/t; x, h )+  ~ log h} =/3 

h - ~ + 0  

then lim {u(re '~) + ~ log (1 - r)} =/3 - ~. 
r - - ~ l - 0  

The following two inequalities 

lim inf g~v(/~; x, h) 
h-,+0 - log h 

u(re 'z) 
~< lim inf (2.1) 

r-~i-0 - l o g ( I - r )  

and lim sup g~( / t ;  x, h) u(re ix) 
n-.+o log h ~> lim sup 

- -  r--~l-O -- log ( l - - r )  

are immediate consequences of Theorem 2.1. I t  should be noted tha t  there are 
harmonic functions, such tha t  the sign of equality does not hold in these in- 
equalities. For instance the function u associated with the singular positive meas- 
ure induced by  
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eil  if x+e 2<t<~2~, 
#(t)= n n if x+e -n l<t<~xq-e-n, n>~2, 

if O<~t<~x 
is such a function 

Theorem 2.1 shows that  the radial increase of u depends on the behaviour 
of q~. Likewise, the increase of the conjugate harmonic function ~2 is connected 
with the behaviour of ~. This connection, however, is more intricate and the 
only thing we prove is the following analogue of Corollary 2.1. 

Theorem 2.2. Let u Ell and suppose that 

Then 
lim 2 ~(/z ; x, h) = y. 

h--> +O 

r-,~-o(lim I a ( r e ~ X ) - ~ l ~  ( ~ ( t z ' ; x ' t ) - ~ )  $ 2s in  2 t / 2 d t  

X 
= u (0) cot ~ - ~ log 2. 

In particular lim {~(re ~) - ~ log  (1 - r)} 
r---} 1 - 0  

exists i/ and only i/ the integral 

(/~*; x, t ) -  ~ dt 

converges. 

Proo[. If  y = 0, Theorem 2.2 is in Zygmund ([4], p. 102). Putting u,  = Re Woo, 
we see that  

lim {~r(re~)-~, log ( I - r ) } =  - ~ l o g  sin ~ [ - y  log 2. 
r - ~ l - O  

On the other hand, elementary calculations yield 

I ~  if 0 < t < m i n  (x, 2 ~ - x )  

~(/~; x, t ) =  if rain (x, 2 ~ - x ) < t < ~  

and thus, if 1 - r < rain (x, 2 ~z - x), 

-r "(~t*; x, t) - 2 sin 2 t /2 sin ~ t/2 - - - - - d t = u  r(0) c o t 2 + $ 1 o g  sin , 

and it follows that  the theorem is true for the special function ur. 
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T h e  proof is now completed applying the theorem in the special case when 
= 0 to the  funct ion u -  ue. 
Observing t h a t  

t 
sin 2 t /~ dt = 0 (log (1 - r)), as r --> 1 - 0 

we have the  following corollary. 

Corollary 2.2. I /  lim 2 ~ ( # ;  x, h ) = ? ,  
h- -~+0  

then lim ~t ( re tZ)  
~-,1-0 log ( l - - r )  ~" 

Before s tudying  the  increase of w (k), let us again re turn  to the auxil iary func- 
t ion w~y. I t  is easy to  verify t h a t  

lim (1 - ,j~k-~v(~) (ret~) = ( k _  1) T. (o:-i~)e -ik~, for k>~l.  
r--~ 1 - 0  

However ,  this is t rue for a ny  funct ion wE ~ ,  such t h a t  

lim {g~0 (/t; x, h) + ~ log h} = fl (2.2) 
h- -~+0  

and  Iim 2@(#;  x, h ) = y .  (2.3) 
h - -~+0  

Theorem 2.3. Let w E'llY and suppose that (2.2) and (2.3) hold. 
any natural number, 

]im (1 - r )  k w (k) ( r e  ix) = ( k  - 1)! (:r - i 7 )  e -~kx 
r - ~ l - 0  

Then, i ] k  is 

Proo/. Since the  theorem is t rue for w =  w~r  we m a y  assume t h a t  r162 = 
~ = 0 .  Der ivat ion of (1.4) yields 

(1 - r )  k e ~k~ w (k) ( r e  ~ )  = K r  (t  - x )  d t t  ( t ) ,  (2,4)  

where 
(1 - r) k e it 

Kr (t) = 2 k ! (e n _ r)kT i 

is a complex kernel with the  following propert ies;  

and  

Kr (t) = Kr ( - t), 

lira sup I tK~( - t ) l=O for O<(~<z~ 
r - -~ 1 - 0  ~ < t ~ < n  

f]l t K ; ( t ) l d t = O ( 1 )  as r - - > l - 0 .  
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The  first  two of these proper t ies  are trivial .  Observe  tha t ,  if 0 ~< t ~< z~, 0 < r <  1, 
we have  

[t g'~(t)[<~zcr-�89 k! (l + (l + k) Pr(t)), 

where P~ is the  Poisson kernel.  Hence  the  last  p rope r ty  follows b y  integrat ion.  
Using the  f irst  p r o p e r t y  of K~ the  integral  in (2.4) m a y  be wr i t t en  

f: " K r ( t - x )  dtt(t)= Kr ( - x )  w(O) 

-- f~ (p(#* ;  x, t ) t R e  K~ ( t ) d t - i  f ~  ~(#*;  x, t)t I m  K'~ (t)dt, 

whence,  if 0 < (~ < ~, 

If? I ; g r ( t - x )  dtz(t ) <~lw(O) l IKr(x) I+Cn [ tg '~( t )[dt+gC,  sup IrKS(t)[, 

where Ce = sup l~0(p*; x, t) l + sup I~(/z*; x, t) l. 
O<~t<~O O<~t<~O 

Since C~--->0 as ~--> + 0 we have ,  b y  the  proper t ies  of Kr ,  

f? l im K~ (t - x)  d,u (t) = O, 
r - - ~ l - 0  

establ ishing the  theorem.  

Remark .  I /  (2.2) and (2.3) are replaced by g~0(/z;x,  h ) + g  l o g h = O ( 1 ) a n d  
~ ( t t ; x , h ) = O ( 1 )  as h-->+O, we may conclude that w(k)(re~X)=O((1-r) -k) as 
r--> 1 - 0 .  

Wri t ing  w = u + i ~2 we have  

e e~ w ~) (re ~) - ~ u(reiX)~r k -I-i ~ u(re~X)ar ~ 

A closer e x a m i n a t i o n  of the  proof  of Theorem 2.3 shows t h a t  (2.2) alone implies 

lira Re  {(1 - r) k e ~z w (~) (reiX)} = ( k -  1)! ~, 
r - ~ l - O  

while (2.3) implies 

lira I m  {(1 - r) ~ e ~x w (k) (re'Z)} = - (k - 1) ! ~, 
r - - ~ l - 0  

and  thus  Theorem 2.3 m a y  be t r ans fo rmed  into  the  following two theorems 
concerning harmonic  funct ions  in the  class ~/. 

T h e o r e m  2.4. Let u E ~  and suppose that (2.2) holds. Then, i/ k is any natural 
number, 
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~ u(re '~) 
lim ( 1 -  r) k ( k -  1)v a. 

~-,1-o ~r ~ " 

Theorem 2.5. Let u E ~  and suppose that (2.3) holds. Then, i/ k is any natural 
number, 

~ ~(rd ~) 
lim ( l - r )  ~ - ( k - l ) !  7. 

,--,.1-o O~ 

The result of Theorem 2.5 in the case k =  1 is in Zygmund ([4], p. 108). 
We point out another  consequence of the representation formula (2.4). ~Since 

.< 2k! P~(t), 
IKr(t) l -~ l+  r 

we have, if w = u + ifi. 

2k! f [~  2k!  
(1 - - r ) k [w(k ' ( r e~Z) ]<~  r P ~ ( t - x ) d l g ] ( t ) = ~ - ~ r ] U l ( r d Z ) ,  

establishing the following theorem. 

Theorem 2.6. Let wE ~ .  Then, i~ k is any natural number, 

~<2k! 
(1--r)klw(k) (re'X)] l + r  lul (re'Z) �9 

Theorem 2.6, for k =  l, is in Zygmund ([4], p. 258) in the special case when 
# is absolutely continuous. 

3. Boundary hehaviour of f(,9 

In  this section we transfer the results of section 2 to the funct ions/E:~,  de- 
fined in section 1. We denote by  B, E and w the functions defined by  (1.1) 
and (1.2). Unless otherwise stated u = R e  w throughout this section. 

Theorem 3.1. Let /C ~ and suppose that 

lim inf ~tr x, h ) > n  ' 
h-.+0 - log h 

where n is a natural number. Then 

/(~) (e ix) = lim /(k)(re,Z) = 0 
r - -~  1 - 0  

/or O <~ k <~ n. 
The proof of this theorem is based on the following ]emma. 
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Lemma. Let u be a non-negative, harmonic/unction de/ined in the unit disc and 
let Cz be a circle with center z, I z l< 1, and radius f l ( 1 - I z l ) ,  0 < / 5 <  1. Then 

/or every ~ E C~. 

1-/5 
1+/5  

1+/5 
- -  u (~) < u (~) < i----~ u(~) 

Proo/. I f  ~eC~, H a r n a c k ' s  inequali t ies appl ied  to  the  funct ion u res t r ic ted to  
a disc concentr ic  to C, and  with  radius  ~ , ( 1 -  I z[), where  /5< 7 <  1, yields 

r+/5 ~ - - j  u (z) < u (~) < 7-r + ~ u (z). 

The  l e m m a  follows as 7 tends  to  1. 

Proo] o/ Theorem 3.1. Under  the  assumpt ion  of the  t heo rem we have,  b y  (2.1) 

l im inf u(retX) 
r-*l-O - -  log (1 - r) 

> n  

and  thus  there  is an  a >  1 such t h a t  

u(re ix) + an l o g  (1 - r)  - >  + oo  a s  r - ~  1 - 0 .  

Put ~o={~; 1~1<1, I z -e '~ l< l ,  larg (1-ze-'~)l<O}, 

where 0 = a r c s i n  /5 and  (1+/5)/(1-/5)=o:. 

Then  lim /(z) 0 (3.1) 
~_ ,~  (z - e~)" ' 

where the  approach  is uni form in 80. To p rove  this let  T be the  mapp ing  of 
So onto the  segment  0 < 1 5 1 <  1, arg  ~ =  x, def ined as follows. Given  z E So let  
Tz be the  point  closest to  e ~, such t h a t  arg (Tz)=x  and  [ z - Tz [ = / 5 ( 1 - ] Tz [ ) .  
Obvious ly  (1- /5) (1-]Tz[)<~]e~-z]  and  thus  Tz-->e ~ as z-->e ~, where the  ap- 
proach  is uni form in So. According to  our  l e m m a  we have  

I/(~)l ~ e -~'~, e x p { - ( 1 - f l ) u ( T z ) / ( l + f l ) }  
I z - e , ~ l ~ " ~ l ~  .< ( 1 - / 5 ) " ( 1 - l T z l )  ~ 

= (1 - fl)--" exp  { - a -1 (u(Tz) + an log (1 - I Tz I))} 

f rom which (3.1) follows un i formly  in So. 
We now take  z= re ix and  use Cauchy ' s  in tegral  fo rmula  

k t ~ c  1(~) /(~) (z) = ~ ~ ( ~ _  z)~+ 1 d~, 
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where Cz is the  circle def ined  in the  l emma.  Hence  we ob t a in  

I1 ̀ ~) (~)1< ~ sup I1(r .<< k, (1 -F~-I) k sup !/Ar 
~o~o G : - ; - - I  ~ " . ~  I~__ e,~ 

a n d  thus ,  b y  (3.1), we have  /(~)(ei~)=0 for O < k < n .  
W e  r e m a r k  t h a t  the  a s sumpt ion  of Theorem 3.1 is j u s t  a suff icient  condi t ion.  

To i l lus t ra te  th is  p u t  / = B .  E,  where  B is a Blaschke  v r o d u c t  w i th  t he  following 
p rope r t i e s ;  

B ( r e i Z ) = O ( 1 - r )  a n d  B'(re~X)=O(1) as r - - > l - 0 .  

F o r  ins tance  the  Blaschke  p r o d u c t  

~-I ( 1 - k - 2 ) - z e - ~ Z  
k~l 1 -- (1 -- k -2) ze -~* 

i n t roduced  b y  F r o s t m a n  ([1], p. 109) has  these  proper t ies .  Since E is bounded ,  
E(e i*) = 0 impl ies  E' (re *x) = o ((1 - r) -1) as  r --> 1 - 0 and  i t  follows t h a t  ] '  (e i~) = 0 
i n d e p e n d e n t  of t he  increase  of ~(/z; x, h). I n  th i s  case t he  b e h a v i o u r  o f / '  (re ~) 
depends  on the  zeros of / in  t he  ne igbourhood  of e **, b u t  even  if / has  no zeros 
i t  m a y  h a p p e n  t h a t  (cf. (2.1)) 

l im inf n ~ (/z; x, h) 
h-~+0 - log h 

< n  

while l im inf u(re~X) > n 
r-~l-o - - l o g  ( l - r )  

and  since the  proof  of Theorem 3.1 s t a r t s  f rom this  inequa l i ty ,  we st i l l  have  
l (k) (e ~x) = 0 for  0 ~< k ~< n. However ,  if 

l im sup n r (p  ; x, h) < n 
h-.+0 - log h 

the  conclusion of Theorem 3.1 is false, p rov ided  the  zeros o f / a r e  no t  too  close 
to  t he  po in t  e ix. 

Theorem 3.2. Let 1 = B .  E E :~. Suppose  t h a t  1(~) (e *x) = 0 /or 0 ~ k <~ n and 

l ira sup liB(re u) I > O. 
r - ~ l - O  

Then l im sup {~ ~ (/z; x, h ) +  n log h} = + ~ .  
h--~+0 

(3.2) 

Proo/. I f  0 < r < r 0 < 1 we have  

f: i i(k-1) (r oe,x)_/(k-1) (re,~)l < I/`~) (oe'~)l do 

whence we o b t a i n  as  r o --> 1 -  0 
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for  1 ~< k ~<n. R e p e a t e d  use of th is  i nequa l i t y  y ie lds  

n ! l / ( r e ' ~ )  I < (1 - r)n sup I/(~) (oe ~) [. 
r ~ 0 ~ l  

Hence ,  s ince /(n) (e~X) = O, 

l im inf l E(re '~) I/(1 - r) n = l im inf exp  { - u(re 'x) - n log (1 - r)} = 0 
r - ~  1 - 0  r - ~ l  O 

a n d  thus ,  us ing Theorem 2.1, (3.2) follows. 

L e t  us consider  / E  :~ such t h a t  

g ~ ( p ;  x, h ) + n l o g h = O ( 1 )  as h - - ~ + 0 .  (3.3) 

Zt follows f rom Theorems  3.1 a n d  3.2 t h a t  

lira sup ]/(n) (re,~)l > O, 
r - * l - O  

p r o v i d e d  B(e ix) 40 .  However ,  (3.3) does no t  i m p l y  t h a t  /<n)(ret:) is bounded .  
Fo r ,  if g is a n y  in tegrab le  funct ion ,  such t h a t  g(y)= 0 if 0 ~< y <  x, g(y)---> + oo 
as y-->x+O and  u is t h e  Poisson in teg ra l  of the  f ini te  measure  induced  by  

i~(t) = g(y) dy, 

i t  is easy  to  ver i fy  t h a t  

I~u(re'~) I 
( I - r )  ~ - -~§  o o a s  r - ~ l - 0  

and  of course we can choose g so t h a t  (3.3) w i th  n = 1 holds.  Then,  if w = u + i4  
and  E = exp  ( -  w}, we have  

rlE'(re':)l>~ (1 - r )  Ou(re~) exp { -u(re +z) - l o g  (1 - r ) }  

a n d  thus ,  b y  Theorem 2.1, IE" (re ~) I-* + oo as r--~ 1 - 0 .  However ,  if we assume 
in  a d d i t i o n  to  (3.3) t h a t  ~ (# ;  x, h ) = O ( 1 )  as  h - - > + 0  we m a y  conclude t h a t  
/(n)(re ~x) = 0 ( 1 )  as r--~ 1 - 0 .  

Before we p rove  th is  s t a t e m e n t  le t  us consider  a func t ion  E,  g iven  b y  (1.2). 
Since 

E<,)(z ) ~. n 1 = - w <n-k) (z) E (k) (z), n > 1, 
kffi0 

we m a y  wr i te  
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E (~) (z) = Qn (w' (z), w "  (z) . . . . .  w ('~) (z)) E(z)  for n i> 0 (3.4) 

where Q= are polynomials  of degree n defined b y  

.1(;) 
Q o = l ,  O n ( x . x ~ , - .  x~) ~ n 1 ., = - xn_~ Q~ (xl, x2 . . . . .  x~). 

k = 0  

The polynomials  Q= have  the  homogen i ty  p rope r ty  

Q~ (2x  1, 2~ x~ . . . . .  ~ x~) = ~ Q, @1, x~ . . . . .  x~), 

where ~t is any  complex number .  I t  is convenient  to  in t roduce ano the r  sequence 
of polynomials  P~ connected wi th  Q~ by  

P n ( z ) = Q n ( O !  z, l I z  . . . . .  ( n -  1)! z). 

I t  follows f rom the recurrence formula  of the  polynomials  Qn t h a t  the  polyno-  
mials  Pn are de te rmined  b y  

Po (z) = 1, Pn (z) + (z + 1 - n) P,~-I (z) = 0 
whence we see t h a t  

7t--1 

P .  (z) = ( -  1) ~ 1-I ( z -  k). 
k = 0  

The homogen i ty  p rope r ty  of Qk m a y  be used to rewri te  (3.4) as 

( 1 - r)k-~g (~) (re 'x) fi(~e% 

IE( re '* ) [  e -'k~, (3.5)  = Qk ((1 - r)e 'z w" (re 'x) . . . . .  (1 - r) ~ e ~kx w (k) (reiX)) �9 (1 - r) ~ 

where a is any  real number .  B y  Theorems  2.1 and  2.3, this  ident i ty  has  t he  
following two consequences;  

i /  Jrqo(/x; x, h ) + a  log h = O ( 1 )  and ~(/x; x,  h ) = O  (1) as h - ->+O,  

then /or k >~ 0 
E (k) (re ~) = 0  ((1 - r )  ~-k) as r--> 1 - 0 ,  (3.6) 

i /  l im {(zt~(/z ; x, h) + ~ log h} = fl and lim 2 ~(3t ; x, h) = ~, 
h--~+0 h--~+0 

then /or k >10 

l im (1 - r)*-~E (k) (re *x) e t~(~% = Pk (~ - i~,) e ~-p-ikx.  (3.7) 
r - ~ l - O  

We are now able to  prove  the  s t a t e m e n t  concerning the  boundedness  of/(n). 
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Theorem 3.3. Let /E :~ and suppose that 

x ~ ( # ; x , h ) + n l o g h = O ( 1 )  and ~ ( # ; x , h ) = O ( 1 )  a s h - - ~ + 0 .  

Then /(n) (re,X) = 0 (1) as r--> 1 - O. 

Proo/. Since ]B(z) l~<l  implies B(~-k)(reix)=O((1--r)  k-~) as r - - > l - - 0 ,  for 
0 ~< ]c ~ n, we obtain  f rom (3.6), with ~ = n 

E (~) (re ix) B (n-k) (re ix) = 0 (1) as r --> 1 - 0, for 0 ~< k ~< n 

and  thus ](n) (reiX) = 0 (1) as r -+ 1 -- 0. 

Theorem 3.4. Let E be given by  (1.2) and suppose that 

lim (z~(p; x, h ) + n  log h}=f l  and lim 2~(/~;  x, h)=~,. 
h- -~+0  h---)+0 

Then C(e ~x, E <n)) c C, where 

C:(z; # z[:lP~ (n-i~)le"-~). 

I /  ~=0 ,  the two sets C(e ix ,E (~)) and C are equal. I /  ~ ,=0  the set C(e ~x,E (n)) 
reduces to one point i/ and only i/ the integral 

converges. 
f0 ' t 

~(~*;x,t )  ~ dt (3.8) 

Proo/. I f  we pu t  k = a = n  in (3.7) we obtain  

lim I E(~) (re'X)[ = [P~ (n - i t )  ] e n - p *  0 
r--> 1 - 0  

and  thus  C (e ~x, E (~)) c C. I f  ~, ~ 0, Corollary 2.2 shows t h a t  [ fi (re ~x) [ --> + oo as 
r--> 1 - 0  and thus  C(e ix, E (n)) = C. I f  7 = 0, the conclusion of the theorem follows 
f rom Theorem 2.2. 

Le t  / =  B - E  E :~ and  suppose t h a t  the associated measure satisfies the condi- 
t ions of Theorem 3.3. Then the existence of B(e ~x) implies (cf. the proof of 
Theorem 3.3) 

C (e ~x/(~)) = B (e ~x) C (e ~, E (n)) 

and  thus  we have the following corollary of Theorem 3.4. 

Corollary. Let / E ~  and suppose that B(e ~) exists. I /  /a is smooth at the point 
x, the integral (3.8) converges and 

lim ( x ~  (~; x, h) + n log h} = fl 
h- -~+0  

then /(n) (e~Z) exists. 
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R6mark.  Under the assumptions o/ the corollary we have 

fn) (etX) = ( _ 1)= n ! B(e  ~) e ~-~-~(~(~%+~x) 

The  ident i ty  (3.5) m a y  also be used to p rove  Theorem 3.1. Using the assump-  
tion of Theorem 3.1 it  follows f rom Theorem 2.6 and  this iden t i ty  t h a t  

l im (1--r)k-mE(m)(re~)=O for O<m<<.k<~n 
r-~ 1-O 

and  thus  arguing as in the  proof  of Theorem 3.3 we m a y  conclude that/~r (e'~ = 0 
for  0 ~ k < ~ n .  This  me thod  was used in [3] in the  case n = l .  I n  bo th  proofs  
of Theorem 3.1 we real ly  use the  fact  t h a t  /x is non-decreasing,  while in Theo- 
rems 3.2, 3.3 and  3.4 it  is enough to suppose t h a t  /x is of bounded  var ia t ion.  
Actual ly,  if the  analyt ic  funct ion [ is "beschr/~nktar t ig"  Theorem 3.1 is false. 
To  see this pu t  

w(z) = - (1 + e) log (1 - ze -ix) + ie -1 (exp ( - e log (1 - ze -ix} - 1). 

I f  0 < e < 1, this funct ion belongs to  ~/9 and  some simple calculat ions yield 

lira {~t~0(/x; x, h ) + ( l + c )  log h } = l + e .  
h--~+O 

However ,  if / =  exp  { -  w} i t  is easy  to  ver i fy  t h a t  C(e ~x, /') is equal  to the  un i t  
circle [ z[ = 1. 
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