Communicated 9 October 1963 by OTTO FROSTMAN

On the intersection of classes of infinitely differentiable functions

By JAN BOMAN

1. Introduction

It is well known that the intersection of all non-quasianalytic classes of functions is equal to the class of all real analytic functions (see e.g. Bang [1]). In the present paper we shall describe the intersection of more restricted families of non-quasianalytic classes of functions.

If $L: k \to L(k), k = 0, 1, 2, ...$ is a sequence of positive numbers, and Ω is an open subset of \mathbb{R}^n , we define $\mathbb{C}^L = \mathbb{C}^L(\Omega)$ as the set of infinitely differentiable functions u such that to every compact set $F \subset \Omega$ there exists a constant C such that

$$|D^{k}u| \leq C^{k+1}L(k)^{k}$$
, if $x \in F$ $(k=0, 1, 2, ...)$.

Here D^k denotes an arbitrary partial derivative of order k. If L(k) = k when $k \ge 1$, then C^L is equal to the class of all real analytic functions on Ω .

Put C_0^L = the set of all functions in C^L whose supports are compact subsets of Ω .

Definition 1. The class C^L is said to be quasianalytic, if C_0^L contains no function except the zero-function.

A complete characterisation of the sequences L such that the class C^{L} is quasianalytic was given in 1926 by the following theorem.

Denjoy–Carleman Theorem. (Carleman [3].) The class C^L is quasianalytic if and only if $\sum_{k=0}^{\infty} L(k)^{-1}$ is divergent, where \overline{L} denotes the largest increasing minorant sequence of L.

Theorem 1. Let *M* and *N* be two positive sequences such that $\Sigma M(k)^{-1} = \infty$, $\Sigma N(k)^{-1} < \infty$ and *N*/*M* is increasing. Denote by $\mathcal{K}(M, N)$ the following set of sequences *L*: $\mathcal{K}(M, N) = \{L; L/M \text{ is increasing, } L/N \text{ is decreasing, } \Sigma L(k)^{-1} < \infty \}.$

Then
$$\bigcap_{L \in \mathfrak{X}(M, N)} C^{L} = C^{\sup(\hat{M}, \check{N})}, \qquad (1)$$

where
$$\hat{M}(k) = M(k) \sum_{0}^{k} M(j)^{-1} \quad (k \ge 0).$$

and
$$\check{N}(k) = N(k) \sum_{k}^{\infty} N(j)^{-1} \quad (k \ge 0),$$

Note that if M is increasing the Denjoy-Carleman theorem shows that the condition $\Sigma L(k)^{-1} < \infty$ in the definition of $\mathcal{K}(M, N)$ is equivalent to the condition that C^{L} is non-quasianalytic.

From Theorem 1 we formally obtain Theorem 2 and Theorem 3 by deleting the condition that L/N is decreasing and that L/M is increasing respectively.

Theorem 2. Let *M* be a positive sequence such that $\sum M(k)^{-1} = \infty$. Put $\mathcal{K}^+(M) = \{L; L/M \text{ is increasing}, \sum L(k)^{-1} < \infty\}.$

Then
$$\bigcap_{L \in \mathcal{X}^+(M)} C^L = C^{\hat{M}}.$$

Theorem 3. Let N be a positive sequence such that $\Sigma N(k)^{-1} < \infty$. Put $\mathcal{K}^{-}(N) = \{L; L/N \text{ is decreasing, } \Sigma L(k)^{-1} < \infty\}.$

Then
$$\bigcap_{L \in \mathbf{X}^{-}(N)} C^{L} = C^{\check{N}}.$$

Taking M(k) = 1 for every k gives $\hat{M}(k) = k+1$, and the class in the right-hand side of (1) becomes $C^{\sup((k+1), \tilde{N})}$. In some applications it is useful to know conditions on N in order that this class be equal to the analytic class. It is obvious that this is the case if $\tilde{N}(k) < C(k+1)$ for some C. However, this condition turns out to be also necessary, as is expressed by the following theorem (see the remark after Theorem 1).

Theorem 4. Let N be a positive increasing sequence such that $\Sigma N(k)^{-1} < \infty$. Then the intersection of all non-quasianalytic classes C^L , where L is increasing and L/N is decreasing, is equal to the analytic class if and only if $\tilde{N}(k) < C(k+1)$ for some constant C, or, which is equivalent

$$\sum_{k=1}^{\infty} N(j)^{-1} < Ck/N(k) \quad (k = 1, 2, ...).$$
(2)

Theorem 5. Under the conditions of Theorem 1 the classes $C^{\hat{M}}$, $C^{\check{N}}$ and $C^{\sup(\hat{M},\check{N})}$ are quasianalytic.

Note that the quasianalyticity of two classes C^{4} and C^{B} does not imply the quasianalyticity of the class $C^{\sup(\hat{M}, \tilde{N})}$ follows from the quasianalyticity of the classes $C^{\hat{M}}$ and $C^{\hat{N}}$ and the fact that the sequences \hat{M} and \tilde{N} are related by the condition that N/M is increasing.

In the next section we give proofs of the theorems. In section 3 we discuss a number of special cases and applications.

I wish to express my gratitude to professor Lars Hörmander for his stimulating instruction and valuable criticism.

2. Proofs of the theorems

We first deduce some formulas which connect the sequences M and N with their respective transforms \hat{M} and \check{N} . From the definition of M we obtain

$$1 - \hat{M}(k)^{-1} = 1 - \left(M(k)^{-1} \middle/ \sum_{0}^{k} M(j)^{-1} \right) = \sum_{0}^{k-1} M(j)^{-1} \middle/ \sum_{0}^{k} M(j)^{-1}, \quad \text{if} \quad k \ge 1.$$

ARKIV FÖR MATEMATIK. Bd 5 nr 20

Hence
$$\prod_{1}^{k} (1 - \hat{M}(j)^{-1}) = (M(0) \sum_{0}^{k} M(j)^{-1})^{-1}.$$
 (3)

Similarly we obtain

$$\prod_{0}^{k-1} (1 - \breve{N}(j)^{-1}) = \sum_{k}^{\infty} N(j)^{-1} / \sum_{0}^{\infty} N(j)^{-1}, \quad k \ge 1.$$
(4)

(Note that $\hat{M}(k) > 1$ when $k \ge 1$ and $\check{N}(k) > 1$ for every k.) From these formulas it follows immediately that $\Sigma \hat{M}(k)^{-1}$ and $\Sigma \check{N}(k)^{-1}$ are divergent. In fact, since $\Sigma M(k)^{-1}$ is divergent by assumption, (3) proves that $\Pi(1 - \hat{M}(k)^{-1})$ is divergent to zero and hence that $\Sigma \hat{M}(k)^{-1}$ is divergent. Similarly (4) shows that $\Sigma \check{N}(k)^{-1}$ is divergent, since $\Sigma N(k)^{-1}$ is convergent.

Using (3) and the definition of \hat{M} we can express M(k) when $k \ge 1$ in terms of M(0) and \hat{M} :

$$M(k) = M(0) \,\hat{M}(k) \prod_{1}^{k} (1 - \hat{M}(j)^{-1}).$$
⁽⁵⁾

Similarly we obtain from (4)

$$N(k) = \left(\sum_{0}^{\infty} N(j)^{-1}\right)^{-1} \breve{N}(k) / \prod_{0}^{k-1} (1 - \breve{N}(j)^{-1}).$$
(6)

Formulas (5) and (6) show that to any given sequence A_k such that $A_k > 1$ and $\Sigma A_k^{-1} = \infty$ there exist positive sequences M and N (not uniquely determined), such that $\hat{M}(k) = \check{N}(k) = A_k$ when $k \ge 1$, $\Sigma M(k)^{-1} = \infty$ and $\Sigma N(k)^{-1} < \infty$.

Proof of Theorem 1. First we prove that if $L \in \mathcal{K}(M, N)$, then $C^L \supset C^{\sup(\hat{M}, \check{N})}$. Since $\Sigma L(k)^{-1} = C < \infty$ and L/M is increasing, we have

$$C > \sum_{0}^{k} L(j)^{-1} = \sum_{0}^{k} (M(j)/L(j)) M(j)^{-1} \ge (M(k)/L(k)) \sum_{0}^{k} M(j)^{-1} = L(k)^{-1} \hat{M}(k).$$
(7)

Similarly, since L/N is decreasing

$$C > \sum_{k}^{\infty} L(j)^{-1} = \sum_{k}^{\infty} (N(j)/L(j)) N(j)^{-1} \ge (N(k)/L(k)) \sum_{k}^{\infty} N(j)^{-1} = L(k)^{-1} \check{N}(k).$$
(8)

Thus $CL(k) > \max(\hat{M}(k), \check{N}(k))$, which proves that $C^L \supset C^{\sup(\hat{M}, \check{N})}$ and hence that $\cap C^L \supset C^{\sup(\hat{M}, \check{N})}$.

To prove that $\cap C^L \subset C^{\sup(\hat{M},\check{N})}$ we shall prove that to an arbitrary function $g \notin C^{\sup(\hat{M},\check{N})}$ there exists a sequence L such that $L \in \mathcal{K}(M,N)$ and $g \notin C^L$. If $g \notin C^{\sup(\hat{M},\check{N})}$, there exists a compact set $F \subset \Omega$, such that $G(k) = (\sup_{x \in F} |D^k g(x)|)^{1/k}$ satisfies

$$\overline{\lim_{k\to\infty}} \left(G(k) / \max\left(\hat{M}(k), \check{N}(k) \right) \right) = \infty.$$
(9)

We have to find a sequence $L \in \mathcal{K}(M, N)$ such that

$$\lim_{k \to \infty} \left(G(k) / L(k) \right) = \infty \,. \tag{10}$$

We may assume that G/N is bounded, since otherwise (10) is satisfied with L=N, and clearly $N \in \mathcal{K}(M, N)$. Let a_j and b_j be sequences of positive numbers, such that $a_j \to \infty$ and $b_j \to 0$ when $j \to \infty$, and $\Sigma(a_j b_j)^{-1} < \infty$. In view of (9) we can find an increasing sequence of indices k_j such that

$$G(k_j)/\max(M(k_j), \check{N}(k_j)) \ge a_j \quad (j=1, 2, \ldots).$$
 (11)

Then $b_j G(k_j)/M(k_j) \to \infty$ by virtue of (11) and the fact that \hat{M}/M is increasing. Also, $b_j G(k_j)/N(k_j) \to 0$, since G/N is bounded. Thus by taking a subsequence if necessary we can always obtain that

$$\tilde{b}_j G(k_j) / M(k_j)$$
 is increasing, (12)

 $b_j G(k_j) / N(k_j)$ is decreasing, and (13)

$$G(k_j)/\max(\hat{M}(k_j), \ \check{N}(k_j)) \ge \bar{a}_j, \tag{14}$$

where \bar{a}_j and \bar{b}_j are subsequences of the sequences a_j and b_j respectively and hence satisfy $\bar{b}_j \rightarrow 0$ and $\Sigma(\bar{a}_j \bar{b}_j)^{-1} < \infty$.

Assume that $k_1 = 0$ and put

$$L'(k) = \delta_{j}G(k_{j})N(k)/N(k_{j}), k_{j} \leq k < k_{j+1} \quad (j = 1, 2, ...),$$

$$L''(k) = \delta_{j+1}G(k_{j+1})M(k)/M(k_{j+1}), k_{j} < k \leq k_{j+1} \quad (j = 1, 2, ...),$$

$$L''(0) = \delta_{1}G(0), \text{ and}$$

$$L(k) = \min (L'(k), L''(k)) \quad (k = 0, 1, 2, ...). \quad (15)$$

Then it is obvious that (10) is fulfilled, since $L(k_j) = \bar{b}_j G(k_j)$ for every j and $\bar{b}_j \rightarrow 0$.

Next we prove that L/M is increasing if L is defined by (15). In view of (12) L''/M is increasing in every interval $k_j \leq k < k_{j+1}$, since L'/N is constant in that interval and N/M is increasing according to the assumption. Noting that $L'(k_j) = L''(k_j)$ for every j we conclude that L/M is increasing in the whole interval $k \geq 0$. Using (13) we can prove in an exactly analogous way that L/N is decreasing.

Finally we prove that $\Sigma L(k)^{-1}$ is convergent. From the definition of L we obtain $L(k)^{-1} \leq L'(k)^{-1} + L''(k)^{-1}$ and since $L'(k_i) = L''(k_i)$

$$\begin{split} \sum_{k_j \leqslant k < k_j+1} L(k)^{-1} \leqslant \sum_{k_j \leqslant k < k_j+1} L'(k)^{-1} + \sum_{k_j < k < k_j+1} L''(k)^{-1} \\ &= \tilde{b}_j^{-1} G(k_j)^{-1} N(k_j) \sum_{k_j \leqslant k < k_j+1} N(k)^{-1} + \tilde{b}_{j+1}^{-1} G(k_{j+1})^{-1} M(k_{j+1}) \sum_{k_j < k < k_j+1} M(k)^{-1} \\ &< \tilde{b}_j^{-1} G(k_j)^{-1} \check{N}(k_j) + \tilde{b}_{j+1}^{-1} G(k_{j+1})^{-1} \hat{M}(k_{j+1}). \end{split}$$

This together with (14) gives

$$\sum_{k_j \leq k < k_{j+1}} L(k)^{-1} \leq (\tilde{a}_j \tilde{b}_j)^{-1} + (\tilde{a}_{j+1} \tilde{b}_{j+1})^{-1},$$

which proves that $\Sigma L(k)^{-1}$ is convergent, since $\Sigma(\bar{a}_j\bar{b}_j)^{-1}$ is convergent. This completes the proof of Theorem 1.

Proof of Theorem 2. Formula (7) proves that

$$\bigcap_{\mathbf{x}^+(\mathbf{M})} C^L \supset C^{\hat{\mathbf{M}}}.$$

On the other hand, if we can find a sequence N such that N/M is increasing, $\check{N} \leq \hat{M}$ and $\Sigma N(k)^{-1} < \infty$, we obtain from Theorem 1

$$\bigcap_{\mathbf{X}^+(\underline{M})} C^L \subset \bigcap_{\mathbf{X}(\underline{M},N)} C^L = C^{\sup(\hat{M},\tilde{N})} = C^{\hat{M}}.$$

Put $A_k = \min(\hat{M}(k), (M(k) + M(k+1))/M(k+1))$. Since $\sum A_k^{-1} \ge \sum \hat{M}(k)^{-1} = \infty$, the remark following formula (6) shows that there exists a sequence N such that

$$\tilde{N}(k) = A_k \quad (k = 1, 2, ...)$$
 (16)

and $\Sigma N(k)^{-1} < \infty$. It is obvious that $\check{N}(k) \leq \hat{M}(k)$ for every k, so it only remains to prove that N/M is increasing. In fact, from (6) we obtain

$$\frac{N(k+1)}{M(k+1)} : \frac{N(k)}{M(k)} = \frac{M(k)}{M(k+1)} \cdot \frac{\tilde{N}(k+1)}{\tilde{N}(k)} \cdot \frac{1}{(1-\tilde{N}(k)^{-1})} > \frac{M(k)}{M(k+1)(\tilde{N}(k)-1)} \ge 1.$$

The last inequality follows from (16). The proof is complete.

Proof of Theorem 3. Formula (8) shows that

$$\bigcap_{\mathbf{X}^{-}(N)} C^{L} \supset C^{\check{N}}.$$

The opposite inclusion will follow in exactly the same way as in the proof of Theorem 2 if we can find, for a given sequence N, a sequence M such that $\hat{M} \leq \check{N}, \Sigma M(k)^{-1} = \infty$ and N/M is increasing. By the remark following formula (6) we can find a sequence M such that $\Sigma M(k)^{-1} = \infty$ and

$$M(k) = \min((N(k-1) + N(k))/N(k-1), \check{N}(k)).$$
(17)

Then we obtain from (5):

$$\frac{N(k+1)}{M(k+1)} : \frac{N(k)}{M(k)} = \frac{N(k+1)}{N(k)} \cdot \frac{\hat{M}(k)}{\hat{M}(k+1)} \cdot \frac{1}{1 - \hat{M}(k+1)^{-1}} > \frac{N(k+1)}{N(k)(\hat{M}(k+1) - 1)} \ge 1,$$

where the last inequality follows from (17). This proves Theorem 3.

Proof of Theorem 4. As we have already mentioned it follows from Theorem 1 and the Denjoy-Carleman theorem that the intersection studied in Theorem 4 is equal to $C^{\sup((k+1),\check{N})}$. Clearly this class always contains the analytic class. Hence what we have to prove is that $C^{\sup((k+1),\check{N})}$ is contained in the analytic class if and only if (2) holds. The sufficiency of (2) is trivial. In proving the necessity we shall use the following lemma.

Lemma 1. Assume that $B(k) \ge k$ and that B is almost increasing in the sense that

$$B(k+1) \ge B(k) - a \tag{18}$$

with some constant a independent of k. Then C^B is contained in the analytic class if and only if $B(k) \leq Ck$ for some C and all $k \geq 1$.

To simplify some formulas we shall consider the sequence $\{k\}$, although it does not take a positive value when k=0; thus in a number of formulas k should take the values $k \ge 1$ instead of $k \ge 0$.

To deduce Theorem 4 from Lemma 1 it is sufficient to show that \check{N} is almost increasing in the sense of (18), and hence that the same is true of the sequence $B = \sup(\{k+1\}, \check{N})$. And this follows from (6) and the fact that N is increasing:

$$rac{N(k+1)}{N(k)} = rac{ec{N}(k+1)}{ec{N}(k) \left(1 - ec{N}(k)^{-1}
ight)} = rac{ec{N}(k+1)}{ec{N}(k) - 1} \ge 1.$$

For the proof of Lemma 1 we need this well-known result (see e.g. Bang [1]).

Lemma 2. If $E(k)^k$ and $F(k)^k$ are logarithmically convex, then C^E is contained in C^F if and only if $E(k) \leq CF(k)$ for some C.

If $B(k)^k$ had been assumed to be logarithmically convex, then Lemma 1 would have followed immediately from Lemma 2, since k^k is logarithmically convex.

We have to make a simple computation, the result of which can be expressed as follows.

Lemma 3. Let m and n be positive integers, such that n/m > e, and let G(k) be defined for $m \le k \le n$, in such a way that $G(m) \ge m$, $G(n) \ge n$, and $k \log G(k)$ is linear. Then

$$\max_{k} (G(k)/k) > (2e)^{-1} \frac{n/m}{\log (n/m)}.$$
(19)

We now prove Lemma 1 using Lemma 2 and Lemma 3. We need of course only prove the necessity of the condition $B(k) \leq Ck$. Given the sequence B, define B^0 as the largest sequence such that $B^0(k) \leq B(k)$ and $k \log B^0(k)$ is convex. In other words $B^0(k)^k$ is the largest logarithmically convex minorant of $B(k)^k$. Let k_j , j=1, 2, ...,be the increasing sequence of all $k \geq 1$ such that $B(k) = B^0(k)$. Assume that C^B is contained in the analytic class A, that $B(k) \geq k$ and that B satisfies (18). Then obviously $C^{B^0} \subset A$ and by Lemma 2 there is a constant C such that $B^0(k) \leq Ck$. Further, since $B(k_j) = B^0(k_j)$ for every j, we have

$$egin{aligned} & \frac{B(k)}{k} \leqslant rac{B(k_{j+1}) + (k_{j+1} - k_j) \max{(a, 0)}}{k_j} \ & \leqslant (C + \max{(a, 0)}) \, (k_{j+1}/k_j), \quad ext{if} \quad k_j \leqslant k \leqslant k_{j+1}. \end{aligned}$$

To prove Lemma 1 it thus only remains to show that k_{j+1}/k_j must be bounded if $B^0(k)/k$ is bounded. But this is immediately seen from Lemma 3, if we take $m = k_j$, $n = k_{j+1}$ and $B^0(k) = G(k)$. (Note that $B^0(k) \ge k$ for every k, since $B(k) \ge k$ and k^k is logarithmically convex.)

It remains to prove Lemma 3. First note that the inequality

$$k\log G(k) \ge k \log n - m\log(n/m), \tag{20}$$

holds for each k, since it obviously holds for k=m and k=n, and both sides are linear in k. Taking $k_0 = [m \log(n/m)] + 1$, where [x] denotes the integral part of x, we have $m < k_0 < n$, and we obtain from (20)

$$\max_{k} \log (G(k)/k) > \log n - 1 - \log k_0 > \log (n/m) - 1 - \log 2 - \log \log (n/m),$$

which is the same as (19).

Proof of Theorem 5. In view of the Denjoy-Carleman theorem it is enough to prove that the series $\Sigma \hat{M}(k)^{-1}$, $\Sigma \check{N}(k)^{-1}$ and $\Sigma (\max(\hat{M}(k), \check{N}(k)))^{-1}$ are divergent. We have already proved that $\Sigma \hat{M}(k)^{-1}$ and $\Sigma \check{N}(k)^{-1}$ are divergent, so it only remains to prove that $\Sigma (\max(\hat{M}(k), \check{N}(k)))^{-1}$ is divergent.

Set $\hat{M}(k)^{-1} = a_k$, $\check{N}(k)^{-1} = b_k$ and $d_k = \min(a_k, b_k)$. The condition that N/M is increasing can be formulated in terms of a_k and b_k by means of the formulas (5) and (6):

$$\frac{N(k+1)}{M(k+1)} \cdot \frac{N(k)}{M(k)} = \frac{a_{k+1}}{b_{k+1}} \cdot \frac{b_k}{a_k} \cdot \frac{1}{(1-a_{k+1})(1-b_k)} \ge 1, \ k \ge 1.$$
(21)

We first prove that if (21) is valid, then the following inequality holds

$$\frac{d_{k+1}}{b_{k+1}} \cdot \frac{b_k}{d_k} \ge (1 - d_{k+1}) (1 - b_k), \tag{22}$$

i.e. (21) is valid with $d_k = \min(a_k, b_k)$ instead of a_k . To see this, put $c_j = d_j/b_j$, and note that (22) must hold if

$$c_{k+1}/c_k \ge 1. \tag{23}$$

Since $c_j \leq 1$ for each j, it is clear that (23) holds if $a_{k+1} \geq b_{k+1}$, because then $c_{k+1} = 1$. On the other hand, if $a_{k+1} < b_{k+1}$, then $d_{k+1} = a_{k+1}$, and by applying (21) and the fact that $d_k \leq a_k$ we obtain (22), which proves the assertion.

Now, if a_k were $> b_k$ only for a finite number of k, it would be trivial that Σd_k is divergent, since Σa_k is divergent. Hence we can assume that $d_k = b_k$ for infinitely many k. It is obvious that we can also assume that $d_k = b_k < \frac{1}{2}$ for infinitely many k. Let m denote any of those indices k. Let n be the smallest integer such that $\sum_{m=1}^{n} b_k \ge \frac{1}{2}$. Then $n \ge m$ and we have $\sum_{m=1}^{n-1} d_k \le \sum_{m=1}^{n-1} b_k < \frac{1}{2}$. Since $\Pi(1-c_k) \ge 1 - \Sigma c_k$ for arbitrary c_k such that $0 < c_k < 1$, we obtain

$$\prod_{m}^{j} (1-b_{k}) \prod_{m}^{j} (1-d_{k}) \geq \frac{1}{4}, \quad \text{if} \quad m \leq j < n.$$
(24)

By multiplying the inequalities (22) for k = m, m+1, ..., j-1 and using (24) and the fact that $b_m = d_m$ we obtain

$$\frac{d_j}{b_j} \ge \prod_{m=1}^{j-1} (1-b_k) \prod_{m+1}^{j} (1-d_k) \ge \frac{1}{4}, \quad \text{if} \quad m < j < n$$
(25)

and

$$\frac{d_n}{b_n} \ge \prod_{m=1}^{n-1} (1-b_k) \prod_{m+1}^{n-1} (1-d_k) (1-d_n) \ge \frac{1}{4} (1-d_n),$$
$$d_n \ge \frac{1}{8} \min (1, b_n).$$

which gives

Now recall that n was chosen so that $\sum_{m}^{n} b_k \ge \frac{1}{2}$. Together with (25) and (26) this gives

$$\sum_{m}^{n} d_{k} > \frac{1}{4} \sum_{m}^{n-1} b_{k} + \frac{1}{8} \min(1, b_{n}) > \frac{1}{16}.$$
(27)

(26)

Since (27) can be proved for an infinite number of indices m, it follows that $\sum d_k$ is divergent. This completes the proof of Theorem 5.

3. Applications

We will now study a number of special cases of our theorems.

I. Taking M(k) = 1 for every k gives M(k) = k + 1. Taking into account the Denjoy-Carleman theorem (see the remark after Theorem 1) we can express the corresponding special case of Theorem 2 as follows.

Theorem 6 (see e.g. Bang [1]). The intersection of all non-quasianalytic classes C^L , where L is increasing, is equal to the class of all real analytic functions.

II. Taking M(0) = 1 and M(k) = k when $k \ge 1$ gives $\hat{M}(k) = k(1 + \sum_{i=1}^{k} (1/j))$ if $k \ge 1$. Since there are constants C_1 and C_2 such that $C_1 \log k \le \sum_{i=1}^{k} (1/j) \le C_2 \log k$, Theorem 2 gives

Theorem 7. The intersection of all non-quasianalytic classes C^L , where L(k)/k is increasing, is equal to the class $C^{\{k \log k\}}$.

The class C^L is said to be inverse closed, if $u \in C^L$ and $u \neq 0$ implies that $1/u \in C^L$. Rudin [5] proved that if $L(k)^k$ is logarithmically convex and C^L is non-quasianalytic, then C^L is inverse closed if and only if L(k)/k is almost increasing in the following sense: there exists a constant C such that $L(j)/j \leq CL(k)/k$ when $j \leq k$. Using this result Rudin proved the following theorem, which is closely related to Theorem 7.

Theorem 8. The intersection of all inverse closed non-quasianalytic classes C^L , where $L(k)^k$ is logarithmically convex, is equal to the class $C^{(k \log k)}$.

III. We indicate two applications of Theorem 4. First, take $N(k) = k^a$, $(k \ge 1)$, where a > 1. This gives $\check{N}(k) < 2k/(a-1)$, so that (2) is satisfied. This special case of Theorem 4 can be used in the study of the propagation of analyticity of solutions of linear partial differential equations of general type (see Boman [2]).

Ehrenpreis uses another special case of Theorem 4 in studying the range of convolution operators [4]. He considers the intersection of all non-quasianalytic classes C^{L} , where L is increasing and satisfies L(k+1) < CL(k) for some constant C. This case one can obtain from Theorem 4 by taking $N(k) = C^{k}$ where C > 1, which gives $\check{N}(k) = C/(C-1)$ for every k.

REFERENCES

- 1. BANG, TH., Om quasi-analytiske funktioner. Copenhagen, 1946.
- BOMAN, J., On the propagation of analyticity of solutions of differential equations with constant coefficients. Ark. Mat. 5, 271-279 (1964).
- 3. CARLEMAN, T., Fonctions quasi analytiques. Paris, 1926.
- 4. EHRENPREIS, L., Solution of some problems of division. IV. Invertible and elliptic operators. Amer. J. Math. 82, 522-588 (1960).
- 5. RUDIN, W., Division in algebras of C^{∞} -functions. MRC Techn. Rep., Nov. 1961.

Tryckt den 10 april 1964

Uppsala 1964. Almqvist & Wiksells Boktryckeri AB