1.64033 Communicated 12 February 1964 by LENNART CARLESON

On the probabilities that a random walk is negative

By Bengt Rosén

1. Introduction, notations and summary

Let X_1, X_2, \ldots be independent copies of a random variable X with distribution function F(x). The successive partial sums are denoted $S_n = X_1 + X_2 + \ldots + X_n$, $n = 1, 2, \ldots$. We define $a_n = P(S_n < 0)$, $n = 1, 2, \ldots$. To every distribution function we get an associated sequence $\{a_n\}_1^{\infty}$. We list two immediate relations between the existence of moments of X and the asymptotic behavior of $\{a_n\}_1^{\infty}$.

A. The law of large numbers implies that $\lim_{n\to\infty} a_n = 0$ if EX > 0 and that $\lim_{n\to\infty} a_n = 1$ if EX < 0.

B. From the central limit theorem follows that if $EX^2 < \infty$ and EX = 0 then

$$\lim_{n \to \infty} a_n = \frac{1}{2}. \tag{1.1}$$

The main aim of this paper is to answer the following question raised by F. Spitzer in [3], p. 337. Does there exist a distribution F(x) for which the sequence $\{a_n\}_{1}^{\infty}$ fails to have a (C, 1)-limit?

In Theorem 1 we show that there is a distribution such that $E|X|^{2-\delta} < \infty$ for every $\delta > 0$, for which $\{a_n\}_1^{\infty}$ does not possess a (C, 1)-limit. In Theorem 2 we discuss the limitability of $\{a_n\}_1^{\infty}$ for general limitation methods, and show that for any regular linear limitation method there exists a distribution for which $\{a_n\}_1^{\infty}$ cannot be limited.

According to A, B and the result in Theorem 1, the condition $EX^2 < \infty$ and EX = 0 is a weakest possible sufficient condition in terms of moments only for (1.1) to hold. In Theorem 3 we give a more general sufficient condition for (1.1). The essence of this theorem is that (1.1) holds if F(x) does not deviate too much from a distribution which is symmetric around zero.

I wish to thank Professor L. Carleson for having suggested the theme of this paper and for valuable guidance.

2. Existence of distributions for which $\{a_n\}_1^\infty$ cannot be limited

Theorem 1. There exists a distribution F(x) with $E|X|^{2-\delta} < \infty$ for every $\delta > 0$ for which upper and lower (C, 1)-limits of $\{a_n\}_1^{\infty}$ are respectively 1 and 0.

Proof. We show the existence by an explicit example. We define a discrete distribution with mass points $\{c_{\nu}\}_{1}^{\infty}$ and corresponding probabilities

$$p_{\nu} = P(X = c_{\nu}) = [(e-1)\nu!]^{-1}, \quad \nu = 1, 2, \dots$$

The essential feature of this choice of the probabilities is that $p_{\nu+1}/p_{\nu} \to 0$ when $\nu \to \infty$. We first determine the c's with odd indices. Let

$$c_{2\nu-1} = (-1)^{\nu+1} p_{2\nu-1}^{-(\frac{1}{2}+\lambda(2\nu-1))}, \quad \nu = 1, 2, ...,$$
$$\lambda(2\nu-1) = \lambda(2\nu) = (\log 2\nu)^{-\frac{1}{2}}. \tag{2.1}$$

where

The essential property of $\lambda(\nu)$ is that it tends to 0, but not too fast, when $\nu \to \infty$. We observe that c_{ν} is alternatively positive and negative when ν runs through odd indices. For even indices we define $c_{2\nu}$ through the relation

$$p_{2\nu-1}c_{2\nu-1} + p_{2\nu}c_{2\nu} = 0, \quad \nu = 1, 2, \dots$$
(2.2)

and that

$$c_{2\nu} = (-1)^{\nu} \cdot p_{2\nu-1}^{\frac{1}{2} - \lambda(2\nu)} p_{2\nu}^{-1}.$$
(2.3)

The distribution is now completely specified and we derive some of its properties. It is easily checked that

$$\sum_{N}^{\infty} p_{\nu} \sim p_{N} \quad \text{when} \quad N \to \infty$$
(2.4)

$$|c_{2\nu-1}| < |c_{2\nu}|, \ \nu = 1, 2, \dots$$
 (2.5)

Note. Throughout the paper the symbol \sim means that the ratio of the quantity to the right and to the left of \sim tends to 1.

Next we show that $E |X|^{2-\delta} < \infty$ for every $\delta > 0$. Let v be even and $\delta > 0$. As $\lambda(n) \to 0$ when $n \to \infty$ the following inequality holds when v is sufficiently large

$$p_{\nu}|c_{\nu}|^{2-\delta}=p_{\nu}^{\frac{1}{2}\delta-\lambda(\nu)(2-\delta)}\leqslant p_{\nu}^{\frac{1}{2}\delta}<(\nu!)^{-\frac{1}{4}\delta}.$$

For ν odd and sufficiently large we have

$$p_{\nu} |c_{\nu}|^{2-\delta} = p_{\nu}^{\delta-1} p_{\nu-1}^{1-\frac{1}{2}\delta-\lambda(\nu)(2-\delta)} \leq \left(\frac{p_{\nu-1}}{p_{\nu}}\right)^{1-\delta} \cdot p_{\nu-1}^{\frac{1}{2}\delta} \leq \nu [(\nu-1)!]^{-\frac{1}{4}\delta}.$$

$$E |X|^{2-\delta} = \sum_{\nu=1}^{\infty} p_{\nu} |c_{\nu}|^{2-\delta} < \infty.$$
(2.6)

Thus

In passing we make the following observations. We are going to show that for the distribution we have constructed it holds that $\{a_n\}_1^{\infty}$ has not a (C, 1)limit and *a fortiori* that $\{a_n\}_1^{\infty}$ has not a limit. From A and B in § 1, it follows that such a distribution must satisfy

ARKIV FÖR MATEMATIK. Bd 5 nr 22

- (i) $EX^2 = \infty$,
- (ii) EX = 0 if the mean of X exists.

For the above distribution (i) is easily verified and (ii) follows from (2.2). We shall need the following estimate later.

$$\sum_{1}^{N} p_{\nu} c_{\nu}^{2} \leqslant H p_{N} c_{N}^{2}, \quad N \text{ even}, \qquad (2.7)$$

where *H* is a constant independent of *N*. From (2.2) if follows that $p_{2\nu}|c_{2\nu}| = p_{2\nu-1}|c_{2\nu-1}|$ and (2.5) gives $p_{2\nu}c_{2\nu}^2 > p_{2\nu-1}c_{2\nu-1}^2$. Thus

$$\sum_{\nu=1}^{N} p_{\nu} c_{\nu}^{2} \leq 2 \sum_{\nu=1}^{N/2} p_{2\nu} c_{2\nu}^{2} = 2 p_{N} c_{N}^{2} \sum_{\nu=1}^{N/2} p_{2\nu} c_{2\nu}^{2} p_{N}^{-1} c_{N}^{-2}.$$

Estimates with Stirling's formula yield

$$\lim_{\nu \to \infty} p_{2(\nu-1)} c_{2(\nu-1)}^2 p_{2\nu}^{-1} c_{2\nu}^{-2} = 0$$

and thus

$$p_{2(\nu-1)}c_{2(\nu-1)}^2 p_{2\nu}^{-1}c_{2\nu}^{-2} \leq \frac{1}{2}$$
 for $\nu \ge \nu_0$.

This implies

$$\sum_{1}^{N/2} p_{2\nu} c_{2\nu}^2 \leqslant 2 p_N c_N^2 \left\{ 1 + \frac{1}{2} + (\frac{1}{2})^2 + \ldots + p_N^{-1} c_N^{-2} \sum_{1}^{\nu_0} p_{2\nu} c_{2\nu} \right\}$$

and now (2.7) follows as $p_N c_N^2 \to \infty$ when $N \to \infty$.

We introduce the events

A(n, N): S_n and c_N have the same sign. B(n, N): $X_1, X_2, ..., X_n$ all attain their values among $(c_1, c_2, ..., c_N)$, $C_k(n, N)$: Exactly k of $X_1, X_2, ..., X_n$ attain the value $c_N, k = 1, 2, ..., n$.

For simplicity, we shall sometimes suppress the indices n and N and we understand that they both are the same for A, B and C when these events occur simultaneously. The following inequalities are immediate

$$P(A) \ge P(\bigcup_{k=0}^{n} ABC_{k}) = \sum_{k=0}^{n} P(ABC_{k})$$
$$\ge \sum_{k=K}^{n} P(B) \cdot P(C_{k} \mid B) \cdot P(A \mid BC_{k}),$$

where K is a non-negative integer $\leq n$. $P(A | BC_k)$ increases with k for $k \leq n$ and we get

$$P(A(n, N)) \ge P(B) \cdot \sum_{k=K}^{n} P(C_k \mid B) \cdot P(A \mid BC_K).$$

$$(2.8)$$

319

We shall let N tend to infinity and we consider the following choices of n and K as functions of N.

$$n(N) = N^{-lpha\lambda(N)} p_{N+1}^{-1}$$
 for $rac{1}{2} \leq lpha \leq 1$,
 $K(N) = rac{1}{2} n(N) p_N.$

Our aim is to show that

$$P(A(n(N), N)) \to 1 \tag{2.9}$$

uniformly in α for $\frac{1}{2} \leq \alpha \leq 1$, when $N \to \infty$ through odd values. We do this by showing that all three factors to the right in (2.8) tend to 1 uniformly in α for $\frac{1}{2} \leq \alpha \leq 1$. We start by showing

$$\lim_{N \to \infty} P(B(n(N), N)) = 1$$
(2.10)

and the convergence is uniform for $\frac{1}{2} \leq \alpha \leq 1$.

$$P(B(n(N), N)) = \left(\sum_{1}^{N} p_{\nu}\right)^{n(N)} = \left(1 - \sum_{N+1}^{\infty} p_{\nu}\right)^{n(N)} \sim \exp(-n(N) p_{N+1})$$

according to (2.4). Thus

$$P(B(n(N), N)) \sim \exp((-N^{-lpha\lambda(N)}))$$

and (2.10) follows. Next we prove

$$\lim_{N \to \infty} \sum_{k=K(N)}^{n(N)} P(C_k(n(N), N) \mid B) = 1$$
(2.11)

and the convergence is uniform for $\frac{1}{2} \le \alpha \le 1$. We introduce the truncated random variable $X^{(N)}$ and the random variable $Y^{(N)}$.

$$P(X^{(N)} = c_{\nu}) = p_{\nu} \left(\sum_{1}^{N} p_{\nu}\right)^{-1}, \quad \nu = 1, 2, ..., N$$

$$Y^{(N)} = \begin{cases} 1 & \text{if } X^{(N)} = c_{N} \\ 0 & \text{otherwise.} \end{cases}$$
(2.12)

Then

$$\sum_{k=K(N)}^{n(N)} P(C_k(n(N), N) \mid B) = P\left(\sum_{1}^{n(N)} Y_{\nu}^{(N)} \ge K(N)\right),$$
(2.13)

and

where the $Y_{\nu}^{(N)}$'s are independent. The random variable $\sum_{1}^{n} Y_{\nu}^{(N)}$ has a binomial distribution with mean $n(N) p_N (\sum_{1}^{N} p_{\nu})^{-1}$. Estimates with Tchebycheff's inequality give that the right hand side in (2.13) tends to 1 uniformly for $\frac{1}{2} \leq \alpha \leq 1$. Thus (2.11) is proved. Finally we show

 $P(C_k \mid B) = P\left(\sum_{1}^{n} Y_{\nu}^{(N)} = k\right)$

$$P(A(n(N), N) \mid BC_{K(N)}) \to 1$$
(2.14)

uniformly for $\frac{1}{2} \leq \alpha \leq 1$ when $N \rightarrow \infty$ through odd values.

The conditioned random variable $S_n | BC_{K(N)}$ is identical in distribution with the random variable

$$K(N) \cdot c_N + \sum_{1}^{n(N)-K(N)} X_{\nu}^{(N-1)},$$

where the $X_{\nu}^{(N-1)}$ are independent copies of the random variable $X^{(N-1)}$ defined in (2.12). Thus

$$P(A \mid BC_{K(N)}) \ge P\left(\left| \sum_{1}^{n(N)-K(N)} X_{\nu}^{(N-1)} \right| < K(N) \cdot |c_N| \right).$$

As N is assumed to be odd it follows from (2.2) that $EX^{(N-1)} = 0$. Tchebycheff's inequality now yields

$$P(A \mid BC^{K(N)}) \ge 1 - \frac{(n - K(N)) \sum_{1}^{N-1} p_{\nu} c_{\nu}^{2}}{K(N)^{2} c_{N}^{2} \sum_{1}^{N-1} p_{\nu}} \ge$$

and in virtue of (2.7)

$$\geq 1 - H \cdot \frac{n(N) p_{N-1} c_{N-1}^2}{K(N)^2 c_N^2 \sum_{j=1}^{N-1} p_{\nu}} = 1 - R(N).$$

By inserting the choices of n(N) and K(N) we get

$$R(N) \sim 4 H \frac{p_{N+1} \cdot p_{N-2}}{p_N \cdot p_{N-1}} \frac{p_{N}^{2\lambda(N)}}{p_{N-2}^{2\lambda(N-2)}} \cdot N^{\alpha\lambda(N)}$$

 $\sim 4 H N^{\alpha\lambda(N)} [N(N-1)]^{-2\lambda(N)} \cdot p_{N-2}^{2(\lambda(N)-\lambda(N-2))}$

An estimate with Stirling's formula gives that $p_{N-2}^{2(\lambda(N)-\lambda(N-2))} \sim 1$ and we get

$$R(N) \sim 4 H \exp \{ (\alpha - 4) / \log N \}.$$

Thus $P(A \mid BC_{K(N)}) \rightarrow 1$ uniformly for $\frac{1}{2} \leq \alpha \leq 1$ and (2.14) is proved. Now formulas (2.8), (2.10), (2.11), and (2.14) together imply (2.9).

For odd values of N, c_N is every second time positive and every second time negative. Thus we get as an immediate consequence of (2.9) that $\overline{\lim_{n\to\infty}} a_n = 1$ and $\underline{\lim_{n\to\infty}} a_n = 0$. We want to sharpen this to the result that also upper and lower (C, 1)-limits of $\{a_n\}_1^\infty$ are respectively 1 and 0. Choose $\varepsilon > 0$. From (2.9) it follows that if N is odd and sufficiently large and $c_N < 0$, then

$$a_n \ge 1 - \varepsilon$$
 for $n_1(N) \le n \le n_2(N)$,

where $n_1(N) = N^{-\lambda(N)} p_{N+1}^{-1}$ and $n_2(N) = N^{-\frac{1}{2}\lambda(N)} p_{N+1}^{-1}$. Thus

$$\frac{1}{n_2(N)} \sum_{\nu=1}^{n_2(N)} a_{\nu} \ge \frac{1}{n_2(N)} \sum_{n_1(N)}^{n_2(N)} a_{\nu} \ge (1-\varepsilon) \left(1 - \frac{n_1(N)}{n_2(N)}\right).$$

Now $n_1(N)/n_2(N) \to 0$ when $N \to \infty$. Thus

$$\overline{\lim_{n\to\infty}}\,\frac{1}{n}\sum_{\nu=1}^n a_{\nu}=1.$$

In the same manner, it follows that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{p=1}^n a_p = 0$$

and Theorem 1 is proved.

Concluding remark. As the a_n 's are probabilities, they lie between 0 and 1. It is well known that Abel and (C, 1)-limitability are equivalent for bounded sequences (see e.g. [1] Theorem 92). Thus for the distribution constructed above it holds that $\{a_n\}_1^{\infty}$ cannot be Abel limited. In fact, it is not hard to show directly that $\{a_n\}_1^{\infty}$ has upper and lower Abel limits respectively 1 and 0.

The part of Theorem 1 which concerns non-limitability of $\{a_n\}_1^\infty$ holds for general linear limitation methods. We consider a regular limitation matrix $[\gamma_{mn}], m, n = 1, 2, ...,$ i.e. we assume

(i) $\sum_{n} |\gamma_{mn}| \leq C$, (ii) $\lim_{m \to \infty} \gamma_{mn} = 0$ for all n, (iii) $\sum_{n} \gamma_{mn} \to 1$ when $m \to \infty$.

Theorem 2. For every regular limitation matrix $[\gamma_{mn}]$ there exists a distribution F(x) for which the sequence $\{a_n\}_{1}^{\infty}$ satisfies

$$\lim_{m \to \infty} \sum_{n} \gamma_{mn} a_{n} = 1$$

$$\lim_{m \to \infty} \sum_{n} \gamma_{mn} a_{n} = 0.$$
(2.15)

and

Remark. We do not know any general relation between $[\gamma_{mn}]$ and the order of the moments that F(x) can possess when (2.15) holds.

Proof. The main idea in the proof is the same as in the proof of Theorem 1 and therefore we make the proof somewhat brief. We construct a discrete distribution with points of mass $\{c_r\}_1^{\infty}$ and corresponding probabilities $\{p_r\}_1^{\infty}$. The successive signs of $c_1, c_2 \ldots$ are chosen $+ - + - + - \ldots$. Let $\{\varepsilon_r\}_1^{\infty}$ be a sequence of positive numbers which tend to 0. We determine $\{p_r\}_1^{\infty}$, $\{c_r\}_1^{\infty}$ a sequence $\{m_r\}_1^{\infty}$ of integers and a sequence $\{I_r\}_1^{\infty}$ of intervals of integers $I_r = [i_r, j_r]$ recursively. We assume that p_r, c_r, m_r , and I_r are determined for $\nu = 1, 2, \ldots,$ N-1. We consider p_N as a function of the parameter λ_N given by the relation

ARKIV FÖR MATEMATIK. Bd 5 nr 22

$$p_N = \lambda_N \left(1 - \sum_{1}^{N-1} p_\nu \right)$$

and we shall determine p_N by determining $\lambda_N, \frac{1}{2} \leq \lambda_N < 1$. First we choose c_N so that $|c_N| > |c_{N-1}|$ and sgn $(\sum_{i=1}^{N} p_{\nu} c_{\nu}) = \text{sgn}(c_N)$ when $\lambda_N = \frac{1}{2}$. Let $X_{\nu}^{(N)}(\lambda_N), \nu = 1, 2, ...,$ be independent random variables with distribution

$$P(X_{r}^{(N)}(\lambda_{N})=c_{k})=p_{k}\left(\sum_{1}^{N}p_{r}\right)^{-1}, \quad k=1, 2, ..., N.$$

Tchebycheff's inequality implies the existence of a number $i_N = i(\varepsilon_N)$ such that $i_N > j_{N-1}$ and

$$P\left(\sum_{\nu=1}^{n} X_{\nu}^{(N)}(\lambda_{N}) \text{ and } c_{N} \text{ have the same sign}\right) \ge 1 - \varepsilon_{N}$$
 (2.16)

when $n \ge i_N$ and $\frac{1}{2} \le \lambda_N < 1$. Now choose $m_N > m_{N-1}$ so large that $\sum_{n=1}^{i_N} |\gamma_{m_N n}| \le \varepsilon_N$ and j_N large enough for $\sum_{n=j_n+1}^{\infty} |\gamma_{m_N n}| \le \varepsilon_N$ to hold. These choices are clearly possible. Finally, we fix λ_N and thus p_N by the condition

$$\left(\sum_{1}^{N} p_{\nu}\right)^{t_{N}} \ge 1 - \varepsilon_{N}.$$
(2.17)

The distribution is now completely determined. Let X_1, X_2, \ldots be independent random variables with this distribution and $\varrho(n, N) = P(S_n \text{ and } c_N \text{ have the same} \text{ sign})$. Then

 $\varrho(n,N) = P(S_n \text{ and } c_N \text{ have the same sign } |\max_{1 \leqslant \nu \leqslant n} |X_\nu| \leqslant c_N) \ P(\max_{1 \leqslant \nu \leqslant n} |X_\nu| \leqslant c_N).$

In virtue of (2.16) and (2.17) we get

$$\rho(n, N) \ge (1 - \varepsilon_N)^2 \quad \text{when} \quad n \in I_N$$

and thus $a_n \ge (1 - \varepsilon_N)^2$ when $n \in I_N$ and N is even, while $a_n \le 1 - (1 - \varepsilon_N)^2$ when $n \in I_N$ and N is odd. The theorem now follows.

3. A sufficient condition for $\lim a_n = \frac{1}{2}$

According to B in §1 $EX^2 < \infty$ and EX = 0 is a sufficient condition for $\lim a_n = \frac{1}{2}$. However, this condition is not necessary. This follows immediately from the fact that if F(x) is continuous and symmetric around 0 then $a_n = \frac{1}{2}$ for all n and thus $\lim a_n = \frac{1}{2}$. In the next theorem we show that the assumptions about symmetry and the existence of a finite second moment and zero mean can be combined to get a more general sufficient condition.

Theorem 3. If F(x) is non-degenerate and can be decomposed F(x) = H(x) + G(x), where H and G are of bounded variation and satisfy

(1) H(x) is symmetric around 0, i.e.

 $H(-x) - H(-\infty) = H(\infty) - H(x)$ for all $x \ge 0$ which are continuity points of H(x).

(2) $\int_{-\infty}^{\infty} x^2 |dG(x)| < \infty$ and $\int_{-\infty}^{\infty} x dG(x) = 0$,

hen $\lim_{n\to\infty} a_n = \frac{1}{2}$.

Proof. The proof will be based on the following formula from [2], p. 331.

$$\left|a_{n}-\frac{1}{2}\right| \leq \frac{n}{\pi} \int_{0}^{\delta} \frac{\left|\varphi(t)\right|^{n}}{t} \left|\arg \varphi(t)\right| dt + R(n,\delta), \qquad (3.1)$$

where $\varphi(t)$ is the characteristic function of F(x) and where $R(n, \delta) \to 0$ when $n \to \infty$ for every $\delta > 0$.

As H(x) is symmetric around 0, we have

Im
$$\{\varphi(t)\} = \int_{-\infty}^{\infty} \sin xt \, dF(x) = \int_{-\infty}^{\infty} \sin xt \, dG(x)$$

and from (2) it follows that

$$\lim_{t \to 0} t^{-2} \int_{-\infty}^{\infty} \sin xt \, dG(x) = 0.$$

Thus

$$\left| \arg \varphi(t) \right| \leq t^2 h(t),$$
 (3.2)

where $h(t) \rightarrow 0$ when $t \rightarrow 0$.

We shall also use the fact that there are positive numbers δ_0 and C such that

$$|\varphi(t)| \leq 1 - Ct^2 \quad \text{for} \quad |t| \leq \delta_0.$$
 (3.3)

For a proof of (3.3) see e.g. Lemma 1 in [2]. By inserting the estimates (3.2) and (3.3) into (3.1), we obtain, for $0 < \delta \leq \delta_0$,

$$|a_n-\frac{1}{2}| \leq \frac{1}{\pi} \sup_{0 \leq t \leq \delta} h(t) \int_0^{\delta} nt \, e^{-nCt^*} \, dt + R(n,\delta)$$
$$\leq \frac{1}{2\pi C} \sup_{0 \leq t \leq \delta} h(t) + R(n,\delta).$$

Thus $\overline{\lim_{n \to \infty}} |a_n - \frac{1}{2}| \leq (2\pi C)^{-1} \sup_{0 \leq t \leq \delta} h(t)$

and by letting $\delta \rightarrow 0$, we obtain the desired result.

REFERENCES

- HARDY, G. H., Divergent Series, Oxford, 1949.
 ROSÉN, B., On the asymptotic distribution of sums independent identically distributed random variables. Arkiv Matematik 4, 323-332 (1961).
 SPITZER, F., A combinatorial lemma and ist application to probability theory. Trans. of the American Mathematican and the application of probability theory.
- the Amer. Math. Soc. 82, 323-339 (1956)

Tryckt den 9 juni 1964

Uppsala 1964. Almqvist & Wiksells Boktryckeri AB