ARKIV FÖR MATEMATIK Band 5 nr 22

1.64033 Communicated 12 February 1964 by Lennart Carleson

On the probabilities that a random walk is negative

By Bengt Rosén

1. Introduction, notations and summary

Let X_{1}, X_{2}, \ldots be independent copies of a random variable X with distribution function $F(x)$. The successive partial sums are denoted $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$, $n=1,2, \ldots$ We define $a_{n}=P\left(S_{n}<0\right), n=1,2, \ldots$ To every distribution function we get an associated sequence $\left\{a_{n}\right\}_{1}^{\infty}$. We list two immediate relations between the existence of moments of X and the asymptotic behavior of $\left\{a_{n}\right\}_{1}^{\infty}$.
A. The law of large numbers implies that $\lim _{n \rightarrow \infty} a_{n}=0$ if $E X>0$ and that $\lim _{n \rightarrow \infty} a_{n}=1$ if $E X<0$.
B. From the central limit theorem follows that if $E X^{2}<\infty$ and $E X=0$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}=\frac{1}{2} \tag{1.1}
\end{equation*}
$$

The main aim of this paper is to answer the following question raised by F. Spitzer in [3], p. 337. Does there exist a distribution $F(x)$ for which the sequence $\left\{a_{n}\right\}_{1}^{\infty}$, fails to have a $(C, 1)$-limit?

In Theorem 1 we show that there is a distribution such that $E|X|^{2-\delta}<\infty$ for every $\delta>0$, for which $\left\{a_{n}\right\}_{1}^{\infty}$ does not possess a $(C, 1)$-limit. In Theorem 2 we discuss the limitability of $\left\{a_{n}\right\}_{1}^{\infty}$ for general limitation methods, and show that for any regular linear limitation method there exists a distribution for which $\left\{a_{n}\right\}_{1}^{\infty}$ cannot be limited.

According to A, B and the result in Theorem 1, the condition $E X^{2}<\infty$ and $E X=0$ is a weakest possible sufficient condition in terms of moments only for (1.1) to hold. In Theorem 3 we give a more general sufficient condition for (1.1). The essence of this theorem is that (1.1) holds if $F(x)$ does not deviate too much from a distribution which is symmetric around zero.

I wish to thank Professor L. Carleson for having suggested the theme of this paper and for valuable guidance.

2. Existence of distributions for which $\left\{a_{n}\right\}_{1}^{\infty}$ cannot be limited

Theorem 1. There exists a distribution $F(x)$ with $E|X|^{2-\delta}<\infty$ for every $\delta>0$ for which upper and lower $(C, 1)$-limits of $\left\{a_{n}\right\}_{1}^{\infty}$ are respectively 1 and 0.

b. rosén, On probabilities that a random walk is negative

Proof. We show the existence by an explicit exampel. We define a discrete distribution with mass points $\left\{c_{v}\right\}_{1}^{\infty}$ and corresponding probabilities

$$
p_{v}=P\left(X=c_{\nu}\right)=[(e-1) v!]^{-1}, \quad \nu=1,2, \ldots
$$

The essential feature of this choice of the probabilities is that $p_{v+1} / p_{\boldsymbol{v}} \rightarrow 0$ when $v \rightarrow \infty$. We first determine the c 's with odd indices. Let

$$
\begin{gather*}
c_{2 v-1}=(-1)^{v+1} p_{2 \nu-1}^{-\left(\frac{1}{2}+\lambda(2 v-1)\right)}, \quad v=1,2, \ldots, \\
\lambda(2 v-1)=\lambda(2 v)=(\log 2 v)^{-\frac{1}{2}} . \tag{2.1}
\end{gather*}
$$

The essential property of $\lambda(\nu)$ is that it tends to 0 , but not too fast, when $\nu \rightarrow \infty$. We observe that c_{v} is alternatively positive and negative when \boldsymbol{v} runs through odd indices. For even indices we define $c_{2 v}$ through the relation

$$
\begin{equation*}
p_{2 v-1} c_{2 v-1}+p_{2 \nu} c_{2 \nu}=0, \quad \nu=1,2, \ldots \tag{2.2}
\end{equation*}
$$

which yields

$$
\begin{equation*}
c_{2 v}=(-1)^{\nu} \cdot p_{2 \nu-1}^{\frac{1}{2}-\lambda(2 v)} p_{2 \nu}^{-1} . \tag{2.3}
\end{equation*}
$$

The distribution is now completely specified and we derive some of its properties. It is easily checked that

$$
\begin{equation*}
\sum_{N}^{\infty} p_{\nu} \sim p_{N} \quad \text { when } \quad N \rightarrow \infty \tag{2.4}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left|c_{2 \nu-1}\right|<\left|c_{2 \nu}\right|, \nu=1,2, \ldots \tag{2.5}
\end{equation*}
$$

Note. Throughout the paper the symbol \sim means that the ratio of the quantity to the right and to the left of \sim tends to 1 .

Next we show that $E|X|^{2-\delta}<\infty$ for every $\delta>0$. Let \boldsymbol{y} be even and $\delta>0$. As $\lambda(n) \rightarrow 0$ vhen $n \rightarrow \infty$ the following inequality holds when ν is sufficiently large

$$
p_{v}\left|c_{\nu}\right|^{2-\delta}=p_{\nu}^{\frac{1}{2} \delta-\lambda(\nu)(2-\delta)} \leqslant p_{\nu}^{\frac{1}{\delta} \delta}<(\nu!)^{-\frac{1}{1} \delta} .
$$

For v odd and sufficiently large we have

$$
p_{\nu}\left|c_{\nu}\right|^{2-\delta}=p_{v}^{\delta-1} p_{\nu-\frac{1}{1}}^{1-\frac{1}{2}-\lambda(\nu)(2-\delta)} \leqslant\left(\frac{p_{\nu-1}}{p_{v}}\right)^{1-\delta} \cdot p_{v-1}^{\frac{1}{\delta} \delta} \leqslant v[(\nu-1)!]^{-\frac{1}{1} \delta} .
$$

Thus

$$
\begin{equation*}
E|X|^{2-\delta}=\sum_{v=1}^{\infty} p_{\nu}\left|c_{\nu}\right|^{2-\delta}<\infty . \tag{2.6}
\end{equation*}
$$

In passing we make the following observations. We are going to show that for the distribution we have constructed it holds that $\left\{a_{n}\right\}_{1}^{\infty}$ has not a $(C, 1)$ limit and a fortiori that $\left\{a_{n}\right\}_{1}^{\infty}$ has not a limit. From A and B in $\S 1$, it follows that such a distribution must satisfy
(i) $E X^{2}=\infty$,
(ii) $E X=0$ if the mean of X exists.

For the above distribution (i) is easily verified and (ii) follows from (2.2). We shall need the following estimate later.

$$
\begin{equation*}
\sum_{1}^{N} p_{\nu} c_{\nu}^{2} \leqslant H p_{N} c_{N}^{2}, \quad N \text { even } \tag{2.7}
\end{equation*}
$$

where H is a constant independent of N. From (2.2) if follows that $p_{2 \nu}\left|c_{2 \nu}\right|=$ $p_{2 v-1}\left|c_{2 v-1}\right|$ and (2.5) gives $p_{2 \nu} c_{2 v}^{2}>p_{2 v-1} c_{2 v-1}^{2}$. Thus

$$
\sum_{\nu=1}^{N} p_{v} c_{\nu}^{2} \leqslant 2 \sum_{\nu=1}^{N / 2} p_{2 \nu} c_{2 v}^{2}=2 p_{N} c_{N}^{2} \sum_{\nu=1}^{N / 2} p_{2 \nu} c_{2 \nu}^{2} p_{N}^{-1} c_{N}^{-2} .
$$

Estimates with Stirling's formula yield

$$
\lim _{v \rightarrow \infty} p_{2(\nu-1)} c_{2(\nu-1)}^{2} p_{2 v}^{-1} c_{2 v}^{-2}=0
$$

and thus

$$
p_{2(v-1)} c_{2(v-1)}^{2} p_{2 v}^{-1} c_{2 v}^{-2} \leqslant \frac{1}{2} \quad \text { for } \quad v \geqslant v_{0} .
$$

This implies

$$
\sum_{1}^{N / 2} p_{2 \nu} c_{2 \nu}^{2} \leqslant 2 p_{N} c_{N}^{2}\left\{1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\ldots+p_{N}^{-1} c_{N}^{-2} \sum_{1}^{v_{0}} p_{2 \nu} c_{2 \nu}\right\}
$$

and now (2.7) follows as $p_{N} c_{N}^{2} \rightarrow \infty$ when $N \rightarrow \infty$.
We introduce the events
$A(n, N): S_{n}$ and c_{N} have the same sign.
$B(n, N): X_{1}, X_{2}, \ldots, X_{n}$ all attain their values among $\left(c_{1}, c_{2}, \ldots, c_{N}\right)$,
$C_{k}(n, N)$: Exactly k of $X_{1}, X_{2}, \ldots, X_{n}$ attain the value $c_{N}, k=1,2, \ldots, n$.
For simplicity, we shall sometimes suppress the indices n and N and we understand that they both are the same for A, B and C when these events occur simultaneously. The following inequalities are immediate

$$
\begin{aligned}
P(A) & \geqslant P\left(\bigcup_{k=0}^{n} A B C_{k}\right)=\sum_{k=0}^{n} P\left(A B C_{k}\right) \\
& \geqslant \sum_{k=K}^{n} P(B) \cdot P\left(C_{k} \mid B\right) \cdot P\left(A \mid B C_{k}\right),
\end{aligned}
$$

where K is a non-negative integer $\leqslant n . \quad P\left(A \mid B C_{k}\right)$ increases with k for $k \leqslant n$ and we get

$$
\begin{equation*}
P(A(n, N)) \geqslant P(B) \cdot \sum_{k=K}^{n} P\left(C_{k} \mid B\right) \cdot P\left(A \mid B C_{K}\right) \tag{2.8}
\end{equation*}
$$

b. rosén, On probabilities that a random walk is negative

We shall let N tend to infinity and we consider the following choices of n and K as functions of N.

$$
\begin{aligned}
& n(N)=N^{-\alpha \lambda(N)} p_{N+1}^{-1} \quad \text { for } \quad \frac{1}{2} \leqslant \alpha \leqslant 1, \\
& K(N)=\frac{1}{2} n(N) p_{N} .
\end{aligned}
$$

Our aim is to show that

$$
\begin{equation*}
P(A(n(N), N)) \rightarrow 1 \tag{2.9}
\end{equation*}
$$

uniformly in α for $\frac{1}{2} \leqslant \alpha \leqslant 1$, when $N \rightarrow \infty$ through odd values. We do this by showing that all three factors to the right in (2.8) tend to 1 uniformly in α for $\frac{1}{2} \leqslant \alpha \leqslant 1$. We start by showing

$$
\begin{equation*}
\lim _{N \rightarrow \infty} P(B(n(N), N))=1 \tag{2.10}
\end{equation*}
$$

and the convergence is uniform for $\frac{1}{2} \leqslant \alpha \leqslant 1$.

$$
P(B(n(N), N))=\left(\sum_{1}^{N} p_{\nu}\right)^{n(N)}=\left(1-\sum_{N+1}^{\infty} p_{\nu}\right)^{n(N)} \sim \exp \left(-n(N) p_{N+1}\right)
$$

according to (2.4). Thus

$$
P(B(n(N), N)) \sim \exp \left(-N^{-\alpha \lambda(N)}\right)
$$

and (2.10) follows. Next we prove

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sum_{k=K(N)}^{n(N)} P\left(C_{k}(n(N), N) \mid B\right)=1 \tag{2.11}
\end{equation*}
$$

and the convergence is uniform for $\frac{1}{2} \leqslant \alpha \leqslant 1$. We introduce the truncated random variable $X^{(N)}$ and the random variable $Y^{(N)}$.

$$
\begin{align*}
P\left(X^{(N)}\right. & \left.=c_{\nu}\right)=p_{\nu}\left(\sum_{1}^{N} p_{\nu}\right)^{-1}, \quad \nu=1,2, \ldots, N \tag{2.12}\\
Y^{(N)} & = \begin{cases}1 & \text { if } X^{(N)}=c_{N} \\
0 & \text { otherwise } .\end{cases}
\end{align*}
$$

Then

$$
P\left(C_{k} \mid B\right)=P\left(\sum_{1}^{n} Y_{v}^{(N)}=k\right)
$$

and

$$
\begin{equation*}
\sum_{k=K_{K}(N)}^{n(N)} P\left(C_{k}(n(N), N) \mid B\right)=P\left(\sum_{1}^{n(N)} \boldsymbol{Y}_{v}^{(N)} \geqslant K(N)\right), \tag{2.13}
\end{equation*}
$$

where the $Y_{v}^{(N)}$'s are independent. The random variable $\sum_{1}^{n} Y_{v}^{(N)}$ has a binomial distribution with mean $n(N) p_{N}\left(\sum_{1}^{N} p_{y}\right)^{-1}$. Estimates with Tchebycheff's inequality give that the right hand side in (2.13) tends to 1 uniformly for $\frac{1}{2} \leqslant \alpha \leqslant 1$. Thus (2.11) is proved. Finally we show

$$
\begin{equation*}
P\left(A(n(N), N) \mid B C_{K(N)}\right) \rightarrow 1 \tag{2.14}
\end{equation*}
$$

uniformly for $\frac{1}{2} \leqslant \alpha \leqslant 1$ when $N \rightarrow \infty$ through odd values.
The conditioned random variable $S_{n} \mid B C_{K(N)}$ is identical in distribution with the random variable

$$
K(N) \cdot c_{N}+\sum_{1}^{n(N)-K(N)} X_{\nu}^{(N-1)},
$$

where the $X_{v}^{\langle N-1\rangle}$ are independent copies of the random variable $X^{(N-1\rangle}$ defined in (2.12). Thus

$$
P\left(A \mid B C_{K(N)}\right) \geqslant P\left(\left|\sum_{1}^{n(N)-K(N)} X_{\nu}^{(N-1)}\right|<K(N) \cdot\left|c_{N}\right|\right) .
$$

As N is assumed to be odd it follows from (2.2) that $E X^{(N-1)}=0$. Tchebycheff's inequality now yields

$$
P\left(A \mid B C^{K(N)}\right) \geqslant 1-\frac{(n-K(N)) \sum_{1}^{N-1} p_{\nu} c_{\nu}^{2}}{K(N)^{2} c_{N}^{2} \sum_{1}^{N-1} p_{\nu}} \geqslant
$$

and in virtue of (2.7)

$$
\geqslant 1-H \cdot \frac{n(N) p_{N-1} c_{N-1}^{2}}{K(N)^{2} c_{N}^{2} \sum_{i}^{N-1} p_{v}}=1-R(N)
$$

By inserting the choices of $n(N)$ and $K(N)$ we get

$$
\begin{aligned}
R(N) & \sim 4 H \frac{p_{N+1} \cdot p_{N-2}}{p_{N} \cdot p_{N-1}} \frac{p_{N}^{2 \lambda(N)}}{p_{N-2}^{2 \lambda(N-2)}} \cdot N^{\alpha \lambda(N)} \\
& \sim 4 H N^{\alpha \lambda(N)}[N(N-1)]^{-2 \lambda(N)} \cdot p_{N-2}^{2 \lambda(N)-\lambda(N-2))}
\end{aligned}
$$

An estimate with Stirling's formula gives that $p_{N-2}^{2(\lambda(N)-\lambda(N-2))} \sim 1$ and we get

$$
R(N) \sim 4 H \exp \{(\alpha-4) \sqrt{\log \bar{N}}\} .
$$

Thus $P\left(A \mid B C_{K(N)}\right) \rightarrow 1$ uniformly for $\frac{1}{2} \leqslant \alpha \leqslant 1$ and (2.14) is proved. Now formulas (2.8), (2.10), (2.11), and (2.14) together imply (2.9).

For odd values of N, c_{N} is every second time positive and every second time negative. Thus we get as an immediate consequence of (2.9) that $\overline{\lim }_{n \rightarrow \infty} a_{n}=1$ and $\lim _{n \rightarrow \infty} a_{n}=0$. We want to sharpen this to the result that also upper and lower $(C, 1)$-limits of $\left\{a_{n}\right\}_{1}^{\infty}$ are respectively 1 and 0 . Choose $\varepsilon>0$. From (2.9) it follows that if N is odd and sufficiently large and $c_{N}<0$, then

$$
a_{n} \geqslant 1-\varepsilon \text { for } n_{1}(N) \leqslant n \leqslant n_{2}(N)
$$

where $n_{1}(N)=N^{-\lambda(N)} p_{N+1}^{-1}$ and $n_{2}(N)=N^{-\frac{1}{2} \lambda(N)} p_{N+1}^{-1}$. Thus
в. rosén, On probabilities that a random walk is negative

$$
\frac{1}{n_{2}(N)} \sum_{v=1}^{n_{2}(N)} a_{v} \geqslant \frac{1}{n_{2}(N)} \sum_{n_{1}(N)}^{n_{2}(N)} a_{v} \geqslant(1-\varepsilon)\left(1-\frac{n_{1}(N)}{n_{2}(N)}\right) .
$$

Now $n_{1}(N) / n_{2}(N) \rightarrow 0$ when $N \rightarrow \infty$. Thus

$$
\varlimsup_{n \rightarrow \infty} \frac{1}{n} \sum_{v=1}^{n} a_{v}=1
$$

In the same manner, it follows that

$$
\frac{\lim _{n \rightarrow \infty}}{} \frac{1}{n} \sum_{v=1}^{n} a_{v}=0
$$

and Theorem 1 is proved.
Concluding remark. As the a_{n} 's are probabilities, they lie between 0 and 1 . It is well known that Abel and ($C, 1$)-limitability are equivalent for bounded sequences (see e.g. [1] Theorem 92). Thus for the distribution constructed above it holds that $\left\{a_{n}\right\}_{1}^{\infty}$ cannot be Abel limited. In fact, it is not hard to show directly that $\left\{a_{n}\right\}_{1}^{\infty}$ has upper and lower Abel limits respectively 1 and 0 .

The part of Theorem 1 which concerns non-limitability of $\left\{a_{n}\right\}_{1}^{\infty}$ holds for general linear limitation methods. We consider a regular limitation matrix $\left[\gamma_{m n}\right], m$, $n=1,2, \ldots$, i.e. we assume
(i) $\sum_{n}\left|\gamma_{m n}\right| \leqslant C$,
(ii) $\lim _{m \rightarrow \infty} \gamma_{m n}=0$ for all n,
(iii) $\sum_{n} \gamma_{m n} \rightarrow 1$ when $m \rightarrow \infty$.

Theorem 2. For every regular limitation matrix $\left[\gamma_{m n}\right]$ there exists a distribution $F(x)$ for which the sequence $\left\{a_{n}\right\}_{1}^{\infty}$ satisfies
and

$$
\left.\begin{array}{r}
\varlimsup_{m \rightarrow \infty} \sum_{n} \gamma_{m n} a_{n}=1 \tag{2.15}\\
\lim _{m \rightarrow \infty} \\
\sum_{n} \gamma_{m n} a_{n}=0 .
\end{array}\right\}
$$

Remark. We do not know any general relation between [$\gamma_{m n}$] and the order of the moments that $F(x)$ can possess when (2.15) holds.

Proof. The main idea in the proof is the same as in the proof of Theorem 1 and therefore we make the proof somewhat brief. We construct a discrete distribution with points of mass $\left\{c_{v}\right\}_{1}^{\infty}$ and corresponding probabilities $\left\{p_{v}\right\}_{1}^{\infty}$. The successive signs of $c_{1}, c_{2} \ldots$ are chosen $+-+-+-\ldots$ Let $\left\{\varepsilon_{\nu}\right\} 1$ be a sequence of positive numbers which tend to 0 . We determine $\left\{p_{v}\right\}_{1}^{\infty},\left\{c_{v}\right\}_{1}^{\infty}$ a sequence $\left\{m_{\nu}\right\}_{1}^{\infty}$ of integers and a sequence $\left\{I_{v}\right\}_{1}^{\infty}$ of intervals of integers $I_{v}=\left[i_{v}, j_{v}\right]$ recursively. We assume that p_{ν}, c_{v}, m_{v}, and I_{v} are determined for $\nu=1,2, \ldots$, $N-1$. We consider p_{N} as a function of the parameter λ_{N} given by the relation

$$
p_{N}=\lambda_{N}\left(1-\sum_{1}^{N-1} p_{v}\right)
$$

and we shall determine p_{N} by determining $\lambda_{N}, \frac{1}{2} \leqslant \lambda_{N}<1$. First ${ }^{\circ}$ we choose c_{N} so that $\left|c_{N}\right|>\left|c_{N-1}\right|$ and $\operatorname{sgn}\left(\sum_{1}^{N} p_{v} c_{\nu}\right)=\operatorname{sgn}\left(c_{N}\right)$ when $\lambda_{N}=\frac{1}{2}$. Let $X_{v}^{(N)}\left(\lambda_{N}\right), v=1,2, \ldots$, be independent random variables with distribution

$$
P\left(X_{v}^{(N)}\left(\lambda_{N}\right)=c_{k}\right)=p_{k}\left(\sum_{1}^{N} p_{v}\right)^{-1}, \quad k=1,2, \ldots, N
$$

Tchebycheff's inequality implies the existence of a number $i_{N}=i\left(\varepsilon_{N}\right)$ such that $i_{N}>j_{N-1}$ and

$$
\begin{equation*}
P\left(\sum_{\nu=1}^{n} X_{v}^{(N)}\left(\lambda_{N}\right) \text { and } c_{N} \text { have the same sign }\right) \geqslant 1-\varepsilon_{N} \tag{2.16}
\end{equation*}
$$

when $n \geqslant i_{N}$ and $\frac{1}{2} \leqslant \lambda_{N}<1$. Now choose $m_{N}>m_{N-1}$ so large that $\sum_{n-1}^{i_{N}}\left|\gamma_{m_{N} n}\right| \leqslant \varepsilon_{N}$ and j_{N} large enough for $\sum_{n-j_{n}+1}^{\infty}\left|\gamma_{m_{N} n}\right| \leqslant \varepsilon_{N}$ to hold. These choices are clearly possible. Finally, we fix λ_{N} and thus p_{N} by the condition

$$
\begin{equation*}
\left(\sum_{1}^{N} p_{\nu}\right)^{j_{N}} \geqslant 1-\varepsilon_{N} \tag{2.17}
\end{equation*}
$$

The distribution is now completely determined. Let X_{1}, X_{2}, \ldots be independent random variables with this distribution and $\varrho(n, N)=P\left(S_{n}\right.$ and c_{N} have the same sign). Then

$$
\varrho(n, N)=P\left(S_{n} \text { and } c_{N} \text { have the same sign }\left|\operatorname{Max}_{1 \leqslant v \leqslant n}\right| X_{\nu} \mid \leqslant c_{N}\right) P\left(\underset{1 \leqslant v \leqslant n}{\operatorname{Max}}\left|X_{\nu}\right| \leqslant c_{N}\right)
$$

In virtue of (2.16) and (2.17) we get

$$
\varrho(n, N) \geqslant\left(1-\varepsilon_{N}\right)^{2} \quad \text { when } \quad n \in I_{N}
$$

and thus $a_{n} \geqslant\left(1-\varepsilon_{N}\right)^{2}$ when $n \in I_{N}$ and N is even, while $a_{n} \leqslant 1-\left(1-\varepsilon_{N}\right)^{2}$ when $n \in I_{N}$ and N is odd. The theorem now follows.

3. A sufficient condition for $\lim a_{n}=\frac{1}{2}$

According to B in $\S 1 E X^{2}<\infty$ and $E X=0$ is a sufficient condition for $\lim a_{n}=\frac{1}{2}$. However, this condition is not necessary. This follows immediately from the fact that if $F(x)$ is continuous and symmetric around 0 then $a_{n}=\frac{1}{2}$ for all n and thus $\lim a_{n}=\frac{1}{2}$. In the next theorem we show that the assumptions about symmetry and the existence of a finite second moment and zero mean can be combined to get a more general sufficient condition.

B. Rosén, On probabilities that a random walk is negative

Theorem 3. If $F(x)$ is non-degenerate and can be decomposed $F(x)=H(x)+G(x)$, where H and G are of bounded variation and satisfy
(1) $H(x)$ is symmetric around 0 , i.e.
$H(-x)-H(-\infty)=H(\infty)-H(x)$ for all $x \geqslant 0$ which are continuity points of $H(x)$.
(2) $\int_{-\infty}^{\infty} x^{2}|d G(x)|<\infty$ and $\int_{-\infty}^{\infty} x d G(x)=0$,
hen $\lim _{n \rightarrow \infty} a_{n}=\frac{1}{2}$.
Proof. The proof will be based on the following formula from [2], p. 331.

$$
\begin{equation*}
\left|a_{n}-\frac{1}{2}\right| \leqslant \frac{n}{\pi} \int_{0}^{\delta} \frac{|\varphi(t)|^{n}}{t}|\arg \varphi(t)| d t+R(n, \delta), \tag{3.1}
\end{equation*}
$$

where $\varphi(t)$ is the characteristic function of $F(x)$ and where $R(n, \delta) \rightarrow 0$ when $n \rightarrow \infty$ for every $\delta>0$.

As $H(x)$ is symmetric around 0 , we have

$$
\operatorname{Im}\{\varphi(t)\}=\int_{-\infty}^{\infty} \sin x t d F(x)=\int_{-\infty}^{\infty} \sin x t d G(x)
$$

and from (2) it follows that

$$
\lim _{t \rightarrow 0} t^{-2} \int_{-\infty}^{\infty} \sin x t d G(x)=0
$$

Thus

$$
\begin{equation*}
|\arg \varphi(t)| \leqslant t^{2} h(t) \tag{3.2}
\end{equation*}
$$

where $h(t) \rightarrow 0$ when $t \rightarrow 0$.
We shall also use the fact that there are positive numbers δ_{0} and C such that

$$
\begin{equation*}
|\varphi(t)| \leqslant 1-C t^{2} \quad \text { for } \quad|t| \leqslant \delta_{0} . \tag{3.3}
\end{equation*}
$$

For a proof of (3.3) see e.g. Lemma 1 in [2].
By inserting the estimates (3.2) and (3.3) into (3.1), we obtain, for $0<\delta \leqslant \delta_{0}$,

$$
\begin{aligned}
\left|a_{n}-\frac{1}{2}\right| & \leqslant \frac{1}{\pi} \sup _{0 \leqslant t \leqslant \delta} h(t) \int_{0}^{\delta} n t e^{-n C t^{2}} d t+R(n, \delta) \\
& \leqslant \frac{1}{2 \pi C} \sup _{0 \leqslant t \leqslant \delta} h(t)+R(n, \delta) .
\end{aligned}
$$

Thus

$$
\varlimsup_{n \rightarrow \infty}\left|a_{n}-\frac{1}{2}\right| \leqslant(2 \pi C)^{-1} \sup _{0 \leqslant t \leqslant \delta} h(t)
$$

and by letting $\delta \rightarrow 0$, we obtain the desired result.

REFERENCES

1. Hardy, G. H., Divergent Series, Oxford, 1949.
2. Rosén, B., On the asymptotic distribution of sums independent identically distributed random variables. Arkiv Matematik 4, 323-332 (1961).
3. Spitzer, F., A combinatorial lemma and ist application to probability theory. Trans. of the Amer. Math. Soc. 82, 323-339 (1956)
