A characteristic property of Euclidean spaces

By Sten Olof Carlsson

Let B be a real normed linear space. The well-known Jordan-von Neumann characterization of Euclidean spaces states that if B satisfies

$$
\begin{equation*}
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) \quad \text { for all } \quad u, v \in B \tag{1}
\end{equation*}
$$

then B must be Euclidean. An improvement of this result is due to Schoenberg [3], who proved that in (1) the sign of equality may be replaced by either \geqslant or \leqslant, the same throughout B. In a previous paper [1] the author proved the following generalization of the Jordan-von Neumann result: If B satisfies

$$
\begin{equation*}
\sum_{v=1}^{m} a_{v}\left\|b_{v} u+c_{v} v\right\|^{2}=0 \quad \text { for all } \quad u, v \in B \tag{2}
\end{equation*}
$$

where $a_{\nu} \neq 0, b_{v}, c_{v}, \nu=1, \ldots, m$, are real numbers such that $\left(b_{v}, c_{v}\right)$ and $\left(b_{\mu}, c_{\mu}\right)$ are linearly independent for $\nu \neq \mu$, then B is a Euclidean space. The proof of this depended on the theory of F-series. The purpose of the present note is to give a quite elementary proof of the fact that condition (2) remains characteristic for Euclidean spaces if the sign of equality is replaced by \geqslant (and then also if it is replaced by \leqslant). However, we now have to assume explicitly that

$$
\begin{equation*}
\sum_{v=1}^{m} a_{v} b_{v}^{2}=\sum_{v=1}^{m} a_{v} b_{v} c_{v}=\sum_{v=1}^{m} a_{v} c_{v}^{2}=0 . \tag{3}
\end{equation*}
$$

More precisely, we are going to prove the following theorem:
Theorem: Let $a_{v} \neq 0, b_{v}, c_{v}, v=1, \ldots, m$, be a fixed collection of real numbers satis. fying (3) and such that (b_{ν}, c_{ν}) and (b_{μ}, c_{μ}) are linearly independent for $\nu \neq \mu$. If B is a real normed linear space satisfying the condition

$$
\begin{equation*}
\sum_{\nu=1}^{m} a_{\nu}\left\|b_{\nu} u+c_{\nu} v\right\|^{2} \geqslant 0 \quad \text { for all } \quad u, v \in B \tag{4}
\end{equation*}
$$

then B is a Euclidean space.
The proof of the theorem depends on two lemmas.

s. o. carlsson, Characteristic property of Euclidean spaces

Lemma 1. If B satisfies (4) then B also satisfies a condition of the form

$$
\begin{equation*}
\sum_{v=1}^{m} p_{v}\left\|u+q_{v} v\right\|^{2} \geqslant 0 \quad \text { for all } \quad u, v \in B \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{\nu} \neq 0 \quad \text { for } \quad \nu=1, \ldots, m, \quad q_{\nu} \neq q_{\mu} \quad \text { for } \quad \nu \neq \mu, \sum_{\nu=1}^{m} p_{\nu}=\sum_{\nu=1}^{m} p_{\nu} q_{\nu}=\sum_{\nu=1}^{m} p_{\nu} q_{v}^{2}=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{q_{\nu}>0} p_{\nu} q_{v}>0 \tag{7}
\end{equation*}
$$

Proof of Lemma 1. Replace v in (4) by $\lambda u+v$, where λ is so chosen that $b_{v}^{\prime}=b_{v}+c_{\nu} \lambda \neq 0$ for $v=1, \ldots, m$. Then we see that (4) is equivalent to the condition

$$
\begin{equation*}
\sum_{\nu=1}^{m} a_{\nu}\left\|b_{\nu}^{\prime} u+c_{\nu} v\right\|^{2} \geqslant 0 \quad \text { for all } \quad u, v \in B \tag{8}
\end{equation*}
$$

where $b_{v}^{\prime} \neq 0$ for $\nu=1, \ldots, m$. We now write condition (8) in the form

$$
\begin{equation*}
\sum_{v=1}^{m} r_{v}\left\|u+s_{v} v\right\|^{2} \geqslant 0 \quad \text { for all } \quad u, v \in B \tag{9}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
r_{v}=a_{v} b_{v}^{\prime 2}, s_{v}=c_{v} / b_{v}^{\prime} \quad \text { for } \quad \nu=1, \ldots, m . \tag{10}
\end{equation*}
$$

From the properties of a_{v}, b_{v}, c_{v} and the choice of λ it follows that

$$
\begin{equation*}
r_{\nu} \neq 0 \quad \text { for } \quad \nu=1, \ldots, m, \quad s_{\nu} \neq s_{\mu} \quad \text { for } \quad \nu \neq \mu, \sum_{\nu=1}^{m} r_{\nu}=\sum_{\nu=1}^{m} r_{\nu} s_{\nu}=\sum_{\nu=1}^{m} r_{\nu} s_{\nu}^{2}=0 . \tag{11}
\end{equation*}
$$

For some $\tau, l \leqslant \tau \leqslant m$, we have $r_{\tau}>0$. Choose $\varepsilon>0$ so that $\left|s_{\tau}-s_{\nu}\right|>\varepsilon$ for $\nu \neq \tau$. Now replace u and v in (9) by $\left(\varepsilon-s_{\tau}\right) u+\left(\varepsilon+s_{\tau}\right) v$ and $u-v$ respectively. Then (9) gives

$$
\begin{gathered}
\sum_{v=1}^{m} r_{v}\left\|\left(\varepsilon-s_{\tau}\right) u+\left(\varepsilon+s_{\tau}\right) v+s_{v}(u-v)\right\|^{2} \geqslant 0 \text { for all } u, v \in B \\
\sum_{=-1}^{m} p_{v}\left\|u+q_{v} v\right\|^{2} \geqslant 0 \text { for all } u, v \in B
\end{gathered}
$$

or
where

$$
p_{\nu}=r_{\nu}\left(\varepsilon-s_{\tau}+s_{\nu}\right)^{2}, \quad q_{\nu}=\left(\varepsilon+s_{\tau}-s_{\nu}\right)\left(\varepsilon-s_{\tau}+s_{\nu}\right)^{-1}, \quad \nu=1, \ldots, m .
$$

If we use (11) it is easy to verify that the numbers p_{v}, q_{ν} satisfy relations (6). Moreover, we have by the choice of ε that

$$
q_{v}<0 \quad \text { for } \quad v \neq \tau, \quad q_{\tau}>0 .
$$

Hence we have

$$
\sum_{q_{v}>0} p_{v} q_{v}=p_{\tau} q_{\tau}=r_{\tau} \varepsilon^{2}>0
$$

so that the inequality (7) is fulfilled. This completes the proof of Lemma 1.
Now suppose that B is two-dimensional and put $C=\{u \mid u \in B,\|u\|=1\}$. Then C is a closed convex curve, symmetrical about the origin. It is a well-known fact that there exists a unique ellipse E (with its center at the origin) of maximal area inside C and that this ellipse touches C in at least four different points (see for instance Day [2], pp. 117-118). Let u_{0} and v_{0} be two of these points such that $u_{0} \neq \pm v_{0}$. We denote by $\|\cdot\|_{1}$ the norm in B for which E is the unit circle, that is $E=\left\{u \mid u \in B,\|u\|_{1}=1\right\}$. Because E is inside C we have $\|u\| \leqslant\|u\|_{1}$ for all $u \in B$, and because E is an ellipse $\left\|\lambda u_{0}+\mu v_{0}\right\|_{1}^{2}=\lambda^{2}+2 a \lambda \mu+\mu^{2}$ for all λ, μ (a is a constant).

Lemma 2. Put $\varphi(x)=\left\|u_{0}+x v_{0}\right\|^{2}-\left\|u_{0}+x v_{0}\right\|_{1}^{2}$. Then

$$
\begin{gather*}
\varphi(x)=O\left(x^{2}\right), \quad \text { when } \quad x \rightarrow 0 \tag{12}\\
\varphi(x)=O(1), \quad \text { when } \quad x \rightarrow \pm \infty \tag{13}
\end{gather*}
$$

Proof of Lemma 2. Let w be a vector lying along the common tangent line to C and E at u_{0}. Then we have

$$
1 \leqslant\left\|u_{0}+x w\right\|^{2} \leqslant\left\|u_{0}+x w\right\|_{1}^{2}=1+x^{2}\|w\|_{1}^{2}
$$

from which it follows that

$$
\begin{equation*}
\left\|u_{0}+x w\right\|^{2}-\left\|u_{0}+x w\right\|_{1}^{2}=O\left(x^{2}\right), \quad \text { when } \quad x \rightarrow 0 \tag{14}
\end{equation*}
$$

Writing $v_{0}=\lambda u_{0}+\mu w$ and using (14) we get

$$
\begin{gathered}
\left\|u_{0}+x v_{0}\right\|^{2}-\left\|u_{0}+x v_{0}\right\|_{1}^{2}=\left\|u_{0}+x\left(\lambda u_{0}+\mu w\right)\right\|^{2}-\left\|u_{0}+x\left(\lambda u_{0}+\lambda w\right)\right\|_{1}^{2} \\
=(1+\lambda x)^{2}\left[\left\|u_{0}+\mu x(1+\lambda x)^{-1} w\right\|^{2}-\left\|u_{0}+\mu x(1+\lambda x)^{-1} w\right\|_{1}^{2}\right]=O\left(x^{2}\right), \quad \text { when } \quad x \rightarrow 0
\end{gathered}
$$

so that (12) is proved. For symmetry reasons we also have

$$
\left\|v_{0}+x u_{0}\right\|^{2}-\left\|v_{0}+x u_{0}\right\|_{1}^{2}=O\left(x^{2}\right), \quad \text { when } \quad x \rightarrow 0
$$

Hence it follows that

$$
\begin{aligned}
\left\|u_{0}+x v_{0}\right\|^{2}-\left\|u_{0}+x v_{0}\right\|_{1}^{2} & =x^{2}\left(\left\|v_{0}+x^{-1} u_{0}\right\|^{2}-\left\|v_{0}+x^{-1} u_{0}\right\|_{1}^{2}\right) \\
& =x^{2} O\left(x^{-2}\right)=O(1), \quad \text { when } \quad x \rightarrow \pm \infty
\end{aligned}
$$

and Lemma 2 is proved.

s. o. carlsson, Characteristic property of Euclidean spaces

Proof of the theorem. It is sufficient to prove the theorem in the case that B is two-dimensional. Let u_{0} and v_{0} be the elements introduced above. According to Lemma 1 we have

$$
\sum_{\nu=1}^{m} p_{v}\left\|u_{0}+q_{v} x v_{0}\right\|^{2} \geqslant 0 \quad \text { for } \quad-\infty<x<+\infty
$$

From relations (6) it follows that

$$
\sum_{v=1}^{m} p_{v}\left\|u_{0}+q_{v} x v_{0}\right\|_{i}^{2}=0 \quad \text { for } \quad-\infty<x<+\infty
$$

Hence the function $\varphi(x)$ satisfies

$$
\begin{equation*}
\sum_{v=1}^{m} p_{v} \varphi\left(q_{v} x\right) \geqslant 0 \quad \text { for } \quad-\infty<x<+\infty \tag{15}
\end{equation*}
$$

If we use Lemma 2 we see that $x^{-2} \varphi(x)$ is integrable over the interval $(-\infty$, $+\infty$). Thus we may divide the inequality (15) by x^{2} and integrate from $-\infty$ to $+\infty$. Then we get

$$
\begin{aligned}
0 \leqslant \int_{-\infty}^{\infty} \sum_{\nu=1}^{m} p_{\nu} \varphi\left(q_{\nu} x\right) x^{-2} d x & =\left(\sum_{q_{\nu}>0} p_{\nu} q_{\nu}-\sum_{q_{\nu}<0} p_{\nu} q_{\nu}\right) \cdot \int_{-\infty}^{\infty} x^{-2} \varphi(x) d x \\
& =2 \sum_{Q_{\nu}>0} p_{\nu} q_{\nu} \int_{-\infty}^{\infty} x^{-2} \varphi(x) d x
\end{aligned}
$$

But since $\sum_{q_{v}>0} p_{v} q_{v}>0$ and $\varphi(x) \leqslant 0$ for all x it follows that
or

$$
\begin{gathered}
\varphi(x)=0 \quad \text { for } \quad-\infty<x<+\infty \\
\left\|u_{0}+x v_{0}\right\|=\left\|u_{0}+x v_{0}\right\|_{1} \quad \text { for } \quad-\infty<x<+\infty .
\end{gathered}
$$

This means that C and E coincide or that B is a Euclidean space, which was to be proved.

REFERENCES

1. Carlsson, S. O., Orthogonality in normed linear spaces. Arkiv Mat. 4, 297-318 (1961).
2. Day, M. M., Normed linear spaces. Ergebn. d. Math. Springer-Verlag, 1958.
3. Schoenberg, I. J., A remark on M. M. Day's characterization of inner-product spaces and a conjecture of L. M. Blumenthal. Proc. Amer. Math. Soc. 3, 961-964 (1952).
