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differentiable functions 
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. 

Let x = (x 1 . . . . .  x m) be a point in the m-dimensional Euclidean space R m. The 
following measure was recently used by Serrin [6] for investigating removable 
singularities of a class of quasi-linear partial differential equations: 

Definition. Let E be a bounded set in R m. M,  (E), where 1 <~ s < oo, is defined by 

M, (E) = inf f Igrad 18 d~, (1.1) 

where the in/imum is taken over all continuously di//erentiable /unctions y~ which 
have compact supports and are >1 1 on E. I /  s >1 m we also require the support o/ 
v 2 to belong to a certain fixed sphere ix[ < R 0 <  oo which is independent o/ E. 

We intend to investigate the connection between Ms(E) and the potential 
theoretic ~-capacity of E. As M s ( E ) =  Ms(E), where E is the closure of E, the 
only case of interest is to consider compact sets. The investigation has a close 
connection with [7], to which we shall refer concerning some details of the proofs. 

Let us first introduce some notations. The support of a measure # and of a 
function / is denoted by S~ and S r respectively. S(r), r > 0, is the closed sphere 
J x I ~< r. The ~-potential, 0 ~< ~ <  m, of a measure ~u is denoted by u~, where 

u"~(x)- (d~(y) 
- 3 1 ~ . ,  if O<~<m, 

and u~ (x) = f log [ x l--_ y j d/x(Y) �9 

Here and elsewhere, the integration is to be extended over the whole space, if 
no limits of integration are indicated. If  # is absolutely continuous and has a 
density /, dlu = /dx ,  we also write u~ instead of u~. 

If  I~(~u) denotes the energy integral of lu, 

L(~) = f u"~ d~(x), 
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we define the ~-capaci ty of a bounded  Borel set E, C~(E), by  

C~(E) = {inf I~(/x)} -1, 

where the inf imum is taken  over all positive measures /x with tota l  mass 1 
and  S~ c E. W h e n  ~ = 0 we make this definition only if the diameter  of E is 
less t han  1. For  an  a rb i t ra ry  Borel set E we pu t  Co(E )=0  if and only if 
Co(E f3 S ) = 0  for every sphere S with diameter  less t han  1. 

We shall use the well-known fact  t h a t  if F is a compact  set with C~,(F)>0 
- - w e  suppose the diameter  of F less than  1 if ~ = 0 - - t h e n  there exists a unique 
positive measure v with tota l  mass k, k > 0 ,  and S ~ c F  such t h a t  inf, I~(u) is 
a t ta ined  for v = v where v ranges over  the  class of all positive measures with 
to ta l  mass k and S~ ~ F.  ~ is called the capacitary distribution with tota l  mass k 
of order  ~ of F .  u~ has the following properties: 

u~(x)>~k{C~(F)} -1 for every x E F  except  when x belongs 
to a set Of ~-capaci ty zero. (1.2) 

u~(x) <~ k{C~(F)} -1 for every  x E S~. (1.3) 

u~(x) <~M.k{C~,(F)} -1 everywhere,  (1.4) 

where M is a constant  which m a y  be chosen only depending on m. I f  a >  0 we 
m a y  in fact  choose M = 2 ~ < 2  m. We shah also use the fact  t h a t  if F is the 
union of a finite number  of closed spheres, then  

u~(x) ~ k{C~(F)} -1 for every  x EF .  (1.5) 

The fl-dimensional measure, 0 < fl < m, of a bounded  set E, L~ (E), is defined as 

inf ~ r~, 
V 

where the inf imum is taken  over all the coverings of E b y  families of open 
spheres with radii {r,}. 

Le t  C r be the class of all infinitely differentiable functions in R z and  C~ 
those functions in C ~ t h a t  have compact  supports.  Lror p>~ 1, is the class of 
all Lebesgue measurable funct ions / in R ~ such tha t  j'y I/(x)[ p dr< ~ for every 
compac t  set F and  L ~, p >/1, is the  class of all measurable funct ions f such 
t h a t  ~ I/(x)l ~ dx < oo. We use the nota t ion  

and we write I l f l l -  instead of II/[ILp(R~). 

. 

Theorem. (A).  Let F be a compact set in R m with C~(F)=0, where 0 <~o~ < m. 
I /  o~=0 we suppose that F is a subset o/ the sphere I x l < R 0 ,  where R o is the 
constant occurring in the de/inition o/ Ms(F). The [ollowing conclusions are true: 
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I /  0 ~ < ~ < m - 2 ,  then M~_~(F)=0 .  (2.1) 

1/ O < ~ m - 2 < o ~ < m - 1 ,  then M~_~_~(F)=0 /or every s > 0  

such that m - cr ~ 7> 1. (2.2) 

(B). Let F be a compact set in R m with Mp(F)=O,  where l <.p<.m. The /ol- 
lowing conclusions are true: 

I[  l <~p~2, then Cm_~(F)=O. (2.3) 

I /  2<p<~m,  then C~_~+~(F)=0 ~or every e > 0 .  (2.4) 

For the proof we need the following ]emma. 

Lemma 1. Let 0 < or < fl < m. Let 1 a be a positive measure with i~(R m) < r Then 

II u~ II- < MI" {/~(Rm)} l/p" ( sup u~(z)} (p-1)/p, 
x E R m  

= ; (2 .5 )  provided 2<.p f l - a  

and /or every sphere S with radius r we have 

m - 6 r  
II u~ [I-<s, < Ms" {#(Rm)} ~/'" ( s u p  u~(x)} ('-a)/p, provided 1 ~<p < ~ < 2. (2.6) 

M 1 is a constant depending on m, p and cr and M 2 is a constant depending 
on m, p, cr fl and r. 

References to papers where this lemma is proved can be found in [7], p. 70. 

Proo/ o/ (A) o~ the theorem. We first t reat  the case cr Let  F~, for 
n = 1, 2, 3 . . . .  , be t h e  union of finitely many closed spheres such that  C~(F=)< n -1 
and F~ D F, where F is the given compact set with C~(F)= 0. Let  /~= be the 
capacitary distribution of order :r of Fn with total mass 

~. ( F . )  = 2 n .  C ~ ( F . ) .  

This means that  0< / tn (F~)<2 .  According to (1.5) and (1.4) we have 

and 

u~"(x)>~2n for every x E F ~ ,  (2.7) 

u~"(x) < 2Mn everywhere. /2.8) 

(2.7) and (1.3) give tha t  u~- is constant on St , ,  i.e. the restriction of u~" to 
St ,  is continuous and consequently u~" is continuous everywhere according to 
the continuity principle. 

We now form v2~ = r 0e/~., i.e. ~n (x) = S q- (x - y) d/~= (y), where ~= E C~ ~ is a 
non-negative function with S q~dx = 1. This means that  ~y~dx  <2.  By  choosing 
S% belonging to a sufficiently small neighborhood of the origin we can make 
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Sv, a subset  of a given neighborhood of F ,  and accordingly also of F .  As u~" is con- 

t inuous we can, in this way,  also make  the difference l u~"(x)- u~"(x)l less t han  
any  given positive number  everywhere (of. [7], p. 59). Due to (2.7) and  (2.8) we 
can consequently choose ~0, such t h a t  

u~.(x)>~n for every  x e F .  (2.9) 

and  u~"(x) < M - n  everywhere,  (2.10) 

where M is a new cons tant  which is independent  of n. We also observe t h a t  
u ~ - ~ C  ~ as ~ . e C ~ .  

~OW we choose r 0 such t h a t  F U S ~  ~ S ( r 0 / 2  ) for  every  n. [According to the  

above we can make  the construct ion of ~0, so tha t  this choice of r 0 is possible.] 
Le t  ~0 E Cff be a function,  independent  of n, which is identically equal to 1 in 
S(ro) and pu t  /n(X)= u~"(x) and  

gn (X) = Tb - 1 "  fn  (X)  " Cf(X) .  

We observe t h a t  

g ~ E C ~  and  gn(x)>~l for every  x E F .  (2.11) 

For  every p >/1 we obtain,  with constants  M which are independent  of n: 

f ' grad g. ,~' dx << M " n- P f , /. grad w ,~ dx + M " n- P f , cf grad L [~ dx = ln + I I .  . 

As ~0 is identically equal to 1 in S(ro) and 

[L(x)[<2. (r~  -~ if [ x l ~ r  0, 
\2 /  

we get 
f 

In ~< M -  n - P .  max [/n (x) l | J g r a d  ~ [" dx < const  �9 n-~. 
Ixl~>ro J 

Let  r 1 be independent  of n and chosen so t h a t  S(rl)D S~. As 

II~ < eons t ,  n-  ~ f s  [grad/n I ~ dx, 
(rl) 

we want  to est imate I grad/nl .  Due to  the properties of yJ~ we obta in  

]grad/n(x)[ < cons t ,  u~_ 1 (X) for every  x. (2.12) 

We now choose p :  

p = m - ~  if 0 < ~ < m - 2  

and  p = m - a - e  if m - 2 < ~ t < m - 1 .  

where e > 0 is chosen satisfying m - ~ -  e/> 1. 
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Due to  (2.12) and  this choice of p we can use (2.5) or (2.6) in L e m m a  1, 
wi th  fl equal  to  ~ + 1 ,  to  es t imate  / / ~ .  This  gives, as ~y)~dx<2, 

I In  < eons t -  n -p { sup u ~  (x)) ~-1, 
X E R  m 

and,  according t o  (2.10), 

II~ < const  �9 n -1, 

wi th  cons tan ts  t h a t  are  independen t  of n. 
The  es t imates  of I~ and  IIn show t h a t  

l im flgradg.l d =O 
with  our choice of p .  Combined  wi th  (2.11) this gives M~(F)=O,  which means  
t h a t  (A) of the  t heo rem is p roved  in the  case when  a >  0. 

We  now prove  (A) when  a = 0 .  We  can cover  F b y  f ini tely m a n y  closed 
spheres (S~}~ wi th  d iamete r s  less t h a n  1 such t h a t  (J ~ S~ is a subset  of I xl < Ro- 
I t  is clearly enough to p rove  t h a t  Mm(F ~ S 0 = 0  for  i = 1, 2, . . . ,  N ,  and  i t  is 
consequent ly  enough to consider the  case when  F itself has d iamete r  less t h a n  1. 
We can then  repea t  the  const ruct ion which we used when ~ > 0 bu t  wi th  ob- 
vious modificat ions.  For  instance,  the  choices of ~ and  ~ are made  so t h a t  
S~, and Sv are subsets  of Ix I <  R 0 and  we use the  following l e m m a  [el. Fuglede  3, 
p. 301] ins tead of L e m m a  1: 

L e m m a  2. Let 0 < f l < m  and 2<<.p=m/fl. Let It be a positive measure with 
compact support, S ,  ~ S ( r l i .  I /  S i8 a sphere o/ radius r 2 and o),n denotes the sur- 
/ace o/ the unit sphere in R m, then 

fs{ u~(x)}P dx <~ {it(Rm)} ~-2 "eomIo(/a ) + M "  {it(Rm)) p, 

where M is a constant depending on m, r I and r 2. 

Remark. The following resul t  and  its proof  has  been communica t ed  to  me b y  
Professor  L e n n a r t  Carleson: 

I /  F is a compact set with L~(E)=O, 0 < a ~ m - 1 ,  then M m _ ~ ( F ) = 0 .  

As C ~ ( F ) = 0  implies L ~ + ~ ( F ) = 0  for  every  e > 0 ,  this gives a be t t e r  result  
t han  (A) of the  theorem when 0 ~< m - 2 < ~ < m - 1. 

The  proof  t h a t  L~(F)=O implies M m - ~ ( F ) = 0  proceeds in the  following way.  
Le t  {x~)[ be given points  and  S~ (r), r > 0, the  open sphere Ix - x, I < r, v = 1, 2 , . . . ,  n, 
and  suppose t h a t  {r~)~ are chosen so t h a t  [J ~ S~(r,)~ F. 

We define l inear  funct ions  l~ b y  

2rv  - -  r 
l v ( r ) -  , r ~ < r ~ < 2 r ~  

r~ 
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and put  

1 when x ES,(r,), 

~ , (x)= I I~(Ix-x,[) when xeS,(2r~)-S~(r,), 
[ 0 when x belongs to the complement of S~(2r~). 

Then we have 

]grad~0~]=r; 1 in the interior of S,(2r,)-S~(r~). 

If  we put  ~(x)= m a x ~ ( x ) ,  
l ~ i ~ n  

then ~p(x)~> 1 on F and 

Igrad Vl m." ex ~< ~ J ~,,r.) r: ~m-~ ex < const. ~-~ r:. 

where the constant only depends on m. If L~ (F) = 0 we can make ~ r~ arbitrarily 
small, which means that  

f lgra d ~[m-~ dx 

will be arbitrarily small. By using standard methods to approximate v 2 it is 
possible to prove the existence of a continuously differentiable function / with 
compact support and /(x) 7> 1 on F so that  

f lgrad /['~-~dx 

is less than any given positive number. This means that  L , ( F ) = 0  implies 
i m - ~  (F)  = 0. 

. 

Proo/ o/ (B) o/ the theorem. Let  F be a compact set with Mv(F )=0 where 
l<~p<~m. We may assume m >  1 because if m = p = l ,  then My(F) > 0  for every F. 
We define ~ by 

g = m - p  if l <.p<~2, 

and g = m - p + e  if 2<p<~m, where e > 0 ,  (3.1) 

and we shall prove that  C~(F)= O. 
As M p ( F ) = 0  there exists a sequence {/,}F of continuously differentiable func- 

tions with compact supports and 
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/ = ( x ) > n  for  every x E F ,  

f I g rad/n  ]P dx < const., n = 1, 2 . . . . .  (3.2) and  
d 

I n  the  case when m = p  we suppose fur thermore,  as we may ,  t h a t  SI, is a subset 
of Ix l<Ro for every  n, where R 0 is the  cons tant  occurring in the definition of 
M , ( F ) .  

Considered as a distribution, /~ belongs to the  class BL~(L~oo)of distr ibutions 
in R ~ such t h a t  all the  part ial  derivatives (in the  dis t r ibut ion sense)of  the first 
order  are functions in LaPoc. This fact  and the  fact  t ha t  Sr~ is compact  mean  
[see for instance 7, p. 71] t ha t  there exist constants  b~ and  d~, no t  depending 
on n, such t h a t  

m 

51b,  -yl /n(y) dy a.e. 

and  

In(x) =,~d~ log[ -yl.U~y,/.(y)dy a.e. 

for n = l , 2 , . . . ,  if m > 2 ,  (3.3) 

for n = 1 , 2  . . . . .  if m = 2 .  (3.4) 

However ,  since all the partial derivatives of the first order  o f /~  are continuous,  
we conclude t h a t  also the  integrals in (3.3) and  (3.4) are continuous and, con- 
sequently,  t h a t  the relations (3.3) and  (3.4) are t rue everywhere in R m. 

To finish the proof of (B) of the theorem we need an  est imate  of the 
a -capac i ty  of the set H(~ n) where the r ight  members  of (3 .3 ) and  (3 .4)are  larger 
t han  a, a > 0. B y  majorizing the integrals in (3.3) and (3.4) we obta in  t h a t  there 
exists a sequence {g~} of non-negat ive continuous functions such t h a t  H(a n) is a 
subset of the  set G(a n) where 

u g. x f gn(Y) m-l( ):  JIx~m-idy 

is larger t han  a. We m a y  also assume t h a t  Sg~ c Ss. and, due to  (3.2), t ha t  

fg V dx < const, n = 1, 2 . . . . .  (3.5) 

where the  cons tant  is independent  of n. 
C~ (G(~ n)) is es t imated by  s tandard  methods.  The two eases p ~< 2 and p > 2 give 

different calculations. For  the sake of completeness we t rea t  one of them, the 
case p > 2, in detail. 

The est imate of C~,(G~ '~ is somewhat  facil i tated for certain values of m and  p 
if I.JnSr~ is a bounded  set. I.JnSr~ is bounded  if m = p  as Sis is a subset  of 
I x l < R  o, n = 1 , 2 , 3  . . . . .  in this case. Bu t  even when m > p > ~ l  we m a y  choose 
{/n} so t h a t  LIn Sf,, is a bounded  set. Because if I.Jn Sis is no t  bounded  for the 
sequence {]~} which was chosen originally, we replace {/n} by  a sequence {/*} 
defined by  /* (x)=/n (x)'~v(x), where ~p(x) is a funct ion in C~ which is identically 
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equal to 1 in a neighborhood of F.  Then /* is continuously differentiable, 
/*(x) > n on F and the set (J~ $I: is bounded. From the est imate 

f ,grad/*, 'dx<const  f , /~gradw,~dx+const f ,v/grad/.,~dx, (3.6) 

we may,  finally, prove tha t  (3.2) is true with fn replaced by  /*: according to  
(3.2) the second te rm of the right member  of (3.6) is less than  a constant which 
is independent on n. In  order to realize tha t  the whole expression (3.6) is less 
than a constant it is hence enough to prove tha t  

suplll=ll ( )<oo m>p l, 
n 

for every bounded set E. But  this is an immediate consequence of (3.2), (3.3) and 
(3.4) if p = l  and of (3.2) and the following inequality by  Sobolev if m > p > l .  

II/~ II~, ~ const II grad/~ I1--, r = mp , m - p  

where the constant is independent of n. 
In  the calculations below, we assume, as we accordingly may,  tha t  [J~ Sin is 

bounded. This means tha t  also (J~ So. is bounded. 
Now let m >~p > 2. Since U n Sgn is bounded, we can choose a finite number  

r 0 such tha t  (J,  Sg~ c S(ro) = So. Let  /x be a positive measure with S~ ~ G(a ~) and  
/x(R z) = 1. We obtain by  means of H61der's inequality, if p ' = p / ( p - 1 ) ,  

a < fu~_,(x)d/~(x) = fsU~m_I(X) gn(x)dx~H~nl]I2"HU~m_IlIL~'(S.). (3.7) 

To estimate the last  norm we use formula (2.6) of Lemma 1 with f l=  m -  1. 
An easy calculation shows tha t  the conditions of the lemma are satisfied if we 
choose e small enough in (3.1), a choice which we may  obviously make without  
limitation. (2.6) gives then 

II 4 const {sup u:(x)} (v'-l)'v'. 
~ E R m  

Remembering (3.5), we obtain, after simplification, from (3.7) and the est imate 
above, 

a v < const {sup u~(x)}. 

l~ow let ~t be the capacitary distribution with total  mass 1 of order a of an 
arbi t rar i ly  chosen closed subset F(~ n) of G(~ n). This and (1.4) give 

a ~ < const (C~ (F(~n))} -1. 

Hence the same inequality is true with F(~ ~) replaced by  G(~ ~) and we have proved 
the following inequality when m/> p > 2: 
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I f  m > p > ~ l  or r e = p > 2 ,  then there exists a positive constant M, not de- 
pending on a and n, such tha t  

C~(G~n)) < M a  -~, a > 0 ,  n =  l , 2  . . . . .  (3.8) 

The proof of (3.8) when 1 ~ p < 2 ,  m > p ~ w h i c h  m a y  be completed even without  
the  assumption tha t  U .  Sr~ is bounded-- is  first carried through when p = 2 or 1, 
af ter  which the case 1 < p  < 2 is reduced to the case p = 2 by  an application of 
HSlder 's  inequality. Compare for instance [7] formulas (8.11) and (8.15) where, 
however, the presence of a function q complicates the proof. 

When r e = p = 2  we have the following inequality instead of (3.8): I f  S is an 
arb i t ra ry  sphere with diameter  less than  1, then there exist constants M and %, 
such tha t  

Co(G(a~)nS)<M'a -~ if a > a 0 ,  r e = p = 2 ,  n = l , 2  . . . . .  (3.9) 

Remembering tha t  [ . ( x ) >  n on F, tha t  H(~)~ G(a ~), and tha t  (3.3) and (3.4) 
are true everywhere, we obtain 

c ~ ( F )  < c~(o(2') ,  n = 1, 2 , . . . .  (3.10) 

(When a = 0 ,  i.e. when r e = p = 2 ,  F is to be replaced by  F N S and G(~ ~) by 
G~ n~ N S where S is a sphere having diameter  less than 1.) (3.10) combined with 
(3.8) or (3.9) give tha t  C~(F)= O, and (B) of the theorem is proved. 

Remark 1. The same methods of proofs also give an analogous theorem if we 
introduce derivatives of higher orders in (1.1). 

Remark 2. Restricting ourselves to the case m > p  we observe tha t  the result 
(2.4) of (B) of the theorem is best possible in the following sense: 

I [ m  > p > 2 there exists a compact set F satis/yin 9 

M A F )  = O, Cm_~(F) > o. (3.11) 

To prove this we shall use the following result by  du Plessis [5, Theorem 4 
and p. 131ff.]: 

Let  ~ and q be given numbers, 0 < ~ < m ,  2 < q <  ~ .  There exists a compact 
set E with Cm_~(E)>0 and a function / E L  q with compact  support  such that ,  
if ~ = m - o c / q ,  then u~(x)= c~ everywhere on E.  

I t  should be noted tha t  the proof of this fact  which is illustrated for the 
case m =  2 in [5] is incomplete. The set E which is constructed in [5], p. 132, 
(where it  is denoted by  M) can not be used if l < a < 2 = m .  However, for E 
it  is possible to use the m-dimensional Cantor set which is the Cartesian product  
of m equal 1-dimensional Cantor sets, G, where G is the usual Cantor set which 
is obtained starting from an interval  of length 1 and a sequence (~n} such tha t  
0 < ~n < 1/2; i.e. G = N G~, where Gn consists of 2 n closed intervals each of length 
~l~z ... ~n. I t  is well known tha t  if 0 < fl < m, then C~(E)> 0 if and only if 
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oo 

2 . . . .  (}1~...#.)-~< ~ .  
n = l  

By using this it is possible to construct the function / and to carry through 
the proof by obvious modifications of the proof given by du Plessis for the case 
m = l  [4, p. 896ff.]. 

We now turn to the proof of the existence of a compact set F satisfying 
(3.11), where p is given, m > p > 2 .  According to the above there exists a com- 
pact set F with C~_~(F)>0  and a non-negative function g E L  ~ with compact 
support such that  u ~ _ l ( x ) =  c~ on F. We shall prove that  . M p ( F ) = 0 .  qLet, for 
n = 1, 2 . . . . .  ~n E C~ be a non-negative function with .~ cfn dx  = 1 such that  U ~ S~, 
is a bounded set. As u ~ _ l ( x ) > n  off an open set containing F we have 
u~_l-)eq) ,~(x)>n on F if we choose Sr in a sufficiently small neighborhood of  

g~ F since the origin. Putt ing g n = g ~ C f n  this means that  U,n_l(x ) > n  on 

1 1 
Um_ = r m-1 -~ gn = ~ -~ g -)S q) n = Ugm-1-)e qPn �9 

Furthermore, we have u g- E C ~. We now choose a function ~ E C~ which is m--1 

identically equal to 1 on a set, the interior of which contains F and U.Sgn, 
and put 

In (x) = n -1 u~% (x). ~(x). 

Hence In E C~ ,  In(x)/> 1 on F. (3.12) 

There exists a constant M such that  

f lgradLpdz<Mn -~ f N~ ~grad~l~dx+M- -~ f l~gradu~%l'dz. (3.13) 

In  the same way as in the proof of (A) of the theorem we realize that  the 
first term of the right member tends to zero when n - - > ~ .  The second term of 
the right member may, for instance, be estimated by means of the theory of 
singular integrals. We have [1, p. 129] 

~u~% l (x)__ _ ( x ~ _ y~ 
lira (1 - m )  Jl I 'm+lg'~(y)dy 

~ X  i ~-~o x -  yl>~e 
a . e . ~  

and from this we infer [1, p. 116], 

II grad u~-~ l l .  < const II g. Ik,, 

where the constant is independent of n. But an application of I-I61der's in- 
equality shows that  (see for instance [2, p. 192]), 
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and consequently we have proved that  also the second term of the right member 
of (3.13) tends to zero when n-->oo. Hence 

lira ~[grad  [,~ I ~' d x  = O. 
~- - -~o0  3 

This combined with (3.12) finally gives tha t  3 / p ( F ) = 0  and so we have proved 
the existence of a compact set $' satisfying (3.11) if r e > p > 2 .  
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