The functional equation $f^{n}(x)=g(x)$

By James C. Lillo

1. Introduction and notation

We are interested in studying the real functional equation $f^{n}(x)=g(x)$ on an interval $[a, b]$ of the real line. In particular we wish to obtain conditions on g which will assure one that solutions f of the given equation possess certain properties. If one insists only that f be a pointwise solution, then the problem for $n=2$ has been solved [3]. If one insists that f be continuous, only very limited results are known [1], [2], [5]. In Theorem 2.1 we obtain results which suggest studying the problem in a certain subclass $M[a, b]$ of the class of continuous functions. In example 1 we show that there exists a continuous function g defined on a closed interval $[a, b]$ for which the equation $f^{2}(x)=g(x)$ does not possess any continuous solutions f but does have a solution f which possesses the Darboux property. Theorem 2.4 gives sufficient conditions to insure that if g is continuous then any solution f of the equation $f^{n}(x)=$ $g(x)$, which possesses the Darboux property, will also be continuous. In Theorem 2.5 we consider the special equation $f^{n}(x)=f^{n+p}(x)$.

To facilitate matters we introduce the following notation. Let $[a, b]$ denote any closed interval of the real line where the endpoints $+\infty$ and $-\infty$ are allowed. The set of all functions defined on $[a, b]$ with values in $[a, b]$ will be denoted by $R[a, b]$. A function is said to possess the Darboux property if it takes connected sets into connected sets. $D[a, b]$ will denote those functions of $R[a, b]$ which possess the Darboux property. $C[a, b]$ will denote those functions of $R[a, b]$ which are continuous on $[a, b]$. We denote by $M[a, b]$ those functions of $C[a, b]$ which are piecewise monotone (written p.m.) on $[a, b]$. Here, f is said to be piecewise monotone on $[a, b]$ if there exists a finite partition $P=\left[p_{0}, \ldots p_{n}\right]$ of $[a, b]$ such that on each subinterval $\left[p_{i}, p_{i+1}\right]$ the function f is strictly monotone (written s.m.). If every partition P^{*} which possesses this property with respect to f is a refinement of P, then P is said to be the partition asssociated with f and will be denoted by $P(f)$. We define $f^{\circ}(x)=x$ and $f^{n+1}(x)=f\left(f^{n}(x)\right)$ for $n \geqslant 0$. Finally, we define the set $S(n, g)=\left\{f \in R[a, b] \mid f^{n}(x)=g(x)\right.$ for all $x \in[a, b]\}$.

2. The general equation $f^{n}(x)=\boldsymbol{g}(\boldsymbol{x})$

It is clear that if $f \in M[a, b]$ then $f^{i} \in M[a, b]$ for any i. We now establish the converse. If $f \in D[a, b]$ and $f^{i} \in M[a, b]$ then $f \in M[a, b]$.

Theorem 2.1. If $g \in M[a, b]$ then $S(n, g) \cap D[a, b] \subset M[a, b]$ and $P(g)$ is a refinement of $P(f)$ for every $f \in S(n, g) \cap D[a, b]$.

J. c. Lillo, The functional equation $f^{n}(x)=g(x)$

Proof. We first note that if $f \in D[a, b]$ is s.m. on each subinterval $\left[p_{i}, p_{i+1}\right]$ of $P(g)$ then $f \in C[a, b]$ and so $f \in M[a, b]$. Thus, it suffices to show that any $f \in S(n, g) \cap D[a, b]$ is s.m. on every subinterval $\left[p_{i}, p_{i+1}\right]$ of $P(g)$. Assume f is not s.m. on $\left[p_{i}, p_{i+1}\right]$, then since $f \in D[a, b]$ it follows easily that there are at least two points $x, y \in\left[p_{i}, p_{i+1}\right]$ for which $f(x)=f(y)$. But then $g(x)=f^{n}(x)=f^{n}(y)=g(y)$ which contradicts the fact that g is s.m. on $\left[p_{i}, p_{i+1}\right]$. This completes the proof of Theorem 2.1.

We shall see later that there are $g \in M[a, b]$ such that $D[a, b] \cap S(2, g)$ is empty while $R[a, b] \cap S(2, g)$ is not empty. We shall also see, by means of an example, that there are $g \in C[a, b]$ for which $S(2, g) \cap C[a, b]$ is empty but $S(2, g) \cap D[a, b]$ is not empty. To facilitate the construction of this example we now obtain several results which are needed here and later in the development. The first result is closely related [2] to the case $g(x)=f(x)=f^{n}(x)$.

Theorem 2.2. If $f \in D[a, b], f(p)=p$ and S is a nondegenerate maximal connected set containing p, such that $f^{n}(x)=x$ for $x \in S$, then $S=[c, d]$ and (a) $f \mid S$ is a homeomorphism of S onto $S,(b) f(x)=x$ on S or $f(c)=d, f(d)=c$ and $f[c, d]$ is a reflection of $[c, d]$ about $p \in(c, d)$.

Proof. Since $f^{n}=g$ is s.m. on S and $f \in D[a, b]$, it follows, as in Theorem 2.1, that f^{i} is s.m. on $S, i=1,2, \ldots, n-1$. It then follows that f^{i} is continuous and s.m. on the closure $\bar{S}=[c, d]$ of $S, i=1, \ldots, n-1$. Consider first the case where f is increasing on $[c, d]$. If $p \neq d$ then there exists $q \in(p, d)$ such that $f^{i}(q) \in(p, d)$ for $i=0, \ldots, n$. Either $f^{i+1}(q)>f^{i}(q), f(q)=q$ or $f^{i+1}(q)<f^{i}(q)$ for $i=0, \ldots, n$ since f is s.m. in $[p, d]$. But $f^{n}(q)=q$ and so $f(q)=q$. It now follows that $f(x) \equiv x$ on $[p, d]$. If $p \neq c$ a similar treatment shows that $f(x) \equiv x$ on $[c, p]$. Thus, if f is increasing on $[c, d]$ then $f(x) \equiv x$ on $[c, d]$. Let f be decreasing on $[c, d]$ and assume that $p \neq c$. Then f is s.m. on $[p, f(c)]$. If f is increasing on $[p, f(c)]$ there is a point $w \in(p, f(c))$ such that $f^{i}(w) \in(p, f(c))$ for $i=1,2, \ldots, n$. Let $q \in(c, p)$ be such that $f(q)=w$, then $f^{n}(q) \neq q$. Thus, f is decreasing in $[p, f(c)] \cup[c, p]$. If $f^{2}(c) \neq c$ then either $f^{2}(c) \in(c, f(c))$ or there is a $\mu \in(c, p)$ such that $f^{n-j}(\mu) \in[p, f(c)] \cup$ $[p, c) j=1, \ldots, n-1$ and $f^{n}(\mu)=c$. In the first case, $f^{i}(c) \in(c, f(c))$ for all $i \geqslant 2$ and so $f^{n}(c) \neq c$. In the second case, we have $\mu \in S$ for which $f^{n}(\mu) \neq \mu$ which is impossible. Thus, $f^{2}(c)=c, n$ is even, and f^{2} is an increasing function on [$\left.c, p\right]$. Thus, f is a reflection of $[c, f(c)]$ about p. In the same way one may show that f is a reflection of $[f(d), d]$ about p. Since S is maximal $f(d)=c$ and $f(c)=d$. This completes the proof of Theorem 2.2.

Corollary 2.1. If f satisfies the hypothesis of Theorem 2.2, $t \in C[a, b]$ and $S=[c, d] \neq$ $[a, b]$ is a ray, then $f \equiv x$ on S.

Proof. Either $c \in(a, b)$ and $d=b=+\infty$ or $d \in(a, b)$ and $c=a=-\infty$. Since $f \in C[a, b]$ it is clear that in both cases we may not have $f(c)=d$ and $f(d)=c$ and the result follows.

If $g \in R[a, b]$ we define $\gamma(g)=\{x \mid x \in[a, b]$ and $g(x)=x\} . \gamma(g)$ is called the set of fixed points of g. If $f \in S(n, g)$ then one may say a great deal about $f \mid \gamma(g)$. One of these results is contained in the following theorem.

Theorem 2.3. If $g \in R[a, b]$ and $f \in S(n, g)$ then $f \mid \gamma(g)$ defines a one to one map of $\gamma(g)$ onto $\gamma(g)$.

Proof. Assume $x \in \gamma(g)$, but that $y=f(x) \notin \gamma(g)$. Then $g(y) \neq y$ and $f^{n+1}(x)=f\left(f^{n}(x)\right)=$ $f(x)=y=f\left(f^{n}(x)\right)=g(y) \neq y$. Thus, $f^{i}(\gamma(g)) \subset \gamma(g)$ for any i. Let $x \in \gamma(g)$, then $x=g(x)=$
$f\left(f^{n-1}(x)\right) \subset f(\gamma(g))$ and so $\gamma(g) \subset f(\gamma(g))$. Thus, f defines a map of $\gamma(g)$ onto itself. Since for any $x, y \in \gamma(g) x \neq y$ implies $f^{n}(x) \neq f^{n}(y)$, it follows that the map is one to one.

Corollary 2.2. If $g \in R[-\infty, \infty], \gamma(g)$ is a ray, and $f \in S(n, g) \cap C[-\infty, \infty]$, then $f(x) \equiv x$ for $x \in \gamma(g)$.

Proof. Since $g \in C[-\infty, \infty], \gamma(g)$ is a closed interval and f defines a homeomorphism of $\gamma(g)$ onto itself. Because $f \in C[-\infty, \infty]$ the finite endpoint of $\gamma(g)$ must be mapped onto a finite point so it must be mapped onto itself since $f \mid \gamma(g)$ is a homeomorphism. Our result now follows from Corollary 2.1.

It is possible to obtain information concerning the existence of solutions $f \in R[a, b]$ for $f^{n}(x)=g(x)$ by studying the sets $\gamma\left(g^{i}\right)$. Thus, for example, the fact that the function $g(x)=-x, x \in[0,-1]$, and $g(x)=-x^{2}, x \in[0,1]$, possesses only one cycle of order 2, namely [$1,-1$], implies that $S(2, g)$ is empty. In fact, Isaacs [5] has stated necessary and sufficient conditions for $S(2, g)$ to be non empty in terms of the cycles of g. Unfortunately, these results give no information about $S(2, g) \cap D[a, b]$ except, of course, in the case where $S(2, g)$ is empty.

We now display a function $g \in C[-\infty, \infty]$ for which $S(2, g) \cap C[-\infty, \infty]$ is empty but $S(2, g) \cap D[-\infty, \infty]$ is not empty.

Example 1. We first define the functions h, f, g.
We define h on $[0,1]: h(1 / n)=(-1)^{n} n=1,2, \ldots$;

$$
h^{\prime}(x)=(-1)^{n} 2 n(n+1) x \in(1 / n+1,1 / n), n=1,2 \ldots
$$

We define f on $[-\infty, \infty]: f(x)=x, x \leqslant 0 ; f(x)=0, x \geqslant 2$ and $0 \leqslant x \leqslant 1$;

$$
\begin{gathered}
f(x)=x-1,1<x \leqslant \frac{5}{4} ; f(x)=\left(x-\frac{1}{4}\right) h(4 x-5) / 2+\frac{1}{2}, \frac{5}{4}<x \leqslant \frac{3}{2} ; \\
f(x)=-\frac{1}{8}+\frac{1}{4}\left(x-\frac{3}{2}\right), \frac{3}{2} \leqslant x \leqslant 2 .
\end{gathered}
$$

We define $g(x)=f^{2}(x)$ for $x \in[-\infty, \infty]$. Clearly $f \in D[-\infty, \infty], g \in C[-\infty, \infty]$, and it remains only to prove that $S(2, g) \cap C[-\infty, \infty]$ is empty. Assume $f \in S(2, g) \cap$ $C[-\infty, \infty]$. Then by Corollary $2.2 f(x) \equiv x$ for $-\infty \leqslant x \leqslant 0$. Then for all x, such that $f(x) \leqslant 0$, we have $g(x)=f(f(x))=f(x)$. Thus, $f(x) \geqslant 0$ in $[0,1]$. We assert that there exists $\delta>0$ such that $f(x) \equiv 0$ for $x \in[0, \delta]$. Assume $f(x) \equiv 0$ on $[0,1]$ and define $\sigma=$ $\max _{[0,1]} f(x)$. Since $g(x)=f^{2}(x)=0$ for $x \in[0,1]$ it is clear that $f(x)=0$ for $x \in[0, \sigma]$. Thus, if $g(x)=f(f(x))>0$ then $f(x)>\delta$. Since $f(\delta)=0$ and $g(x)<x$ for ail $x>0$, it is clear that $f(x)<x$ for all $x>0$.

We define $\sigma(n)=1+\frac{1}{4}+\frac{1}{4}(1 / n)$. Then if n is odd we have $g(x)>g(\sigma(n))$ for all $0 \leqslant x<\sigma(n)$. Thus, for n odd $f(\sigma(n))=g(\sigma(n))$, and it follows that $f(x) \equiv g(x)$ whenever $f(x)$ or $g(x)$ is negative. Thus, $f\left(\sigma(n)<0\right.$ for n odd. But for n even $\left.f(f(\sigma(n)))=g^{\prime} \sigma(n)\right)>0$ and so $f(\sigma(n))>\delta$. Since $\lim _{n \rightarrow \infty} \sigma(n)=1+\frac{1}{4}$ it follows that f is discontinuous at $x=1+\frac{1}{4}$. This completes Example 1.

Consideration of the above example suggests the restrictions on $g \in C[a, b]$ which will insure that the solutions of $f^{n}(x)=g(x)$ also belong to $C[a, b]$. This result is contained in the following theorem.

Theorem 2.4. If $g \in C[a, b]$ and if either (a) or (b) below are satisfied then $S[n, g] \cap$ $D[a, b]=S[n, g] \cap C[a, b]$.
(a) Range of $g=[a, b]$.
(b) g is not constant on any non degenerate interval.

J. c. Lillo, The functional equation $f^{n}(x)=g\left(x_{n}\right)$

Proof. Assume (a) is satisfied and $f \in S(n, g) \cap D[a, b]$. Then the range of $f=[a, b]$. Let $h(x)$ denote $f^{n-1}(x)$. Then range $h=[a, b]$ and $h \in D[a, b]$. Let f be discontinuous at z. Thus, there exists a sequence $\left\{x_{1}\right\}$ tending to z such that no subsequence of $\left\{f\left(x_{i}\right)\right\}$ converges to $f(z)$. One may also assume that $\left|x_{i}-z\right|>\left|x_{i+1}-z\right|$ for all i and that the sign of $\left(x_{i}-z\right)$ is independent of i, say negative. We now define a sequence $\left\{y_{j}\right\}$ converging to a point y such that $h\left(y_{j}\right)=z$ for j odd, and for j even $\left\{h\left(y_{j}\right)\right\}$ is a subsequence of $\left\{x_{i}\right\}$. Since $[a, b]=$ range of h there exist y_{1} and y_{2} such that $h\left(y_{1}\right)=z$ and $h\left(y_{2}\right)=x_{1}$. If y_{1} and y_{2} are both finite define $\sigma=\left(y_{1}+y_{2}\right) / 2$. If either y_{1} or y_{2} is infinite, let σ be any point in $\left(y_{1}, y_{2}\right)$ for which $\left|y_{1}-\sigma\right| \geqslant 1$ and $\left|y_{2}-\sigma\right| \geqslant 1$. If $h(\sigma)=z$ set $y_{3}=\sigma$ and let y_{4} be any point in $\left[y_{3}, y_{2}\right]$ for which $h\left(y_{4}\right)=x_{2}$. If $h(\sigma)>z$ det y_{3} be any point in $\left[\sigma, y_{2}\right]$ for which $h\left(y_{3}\right)=z$, and y_{4} be any point in $\left[y_{3}, y_{2}\right]$ for which $h\left(y_{4}\right)=x_{2}$. If $h(\sigma)<z$ let $y_{3}=y_{1}$. Since $h(\sigma)<x_{k}$ for some $k \geqslant 2$ let $y_{4} \in\left[y_{3}, \sigma\right]$ be any point for which $h\left(y_{4}\right)=x_{k}$. Using y_{3}, y_{4} in place of y_{1}, y_{2} and x_{2} or x_{k} in place of x_{1} we repeat the procedure. In this way we obtain a sequence $\left\{y_{j}\right\}$ with the stated properties. But then $f(z)=\lim _{k \rightarrow \infty} f\left(h\left(y_{2 k+1}\right)\right)=g(y)=\lim _{k \rightarrow \infty} g\left(y_{2 k}\right) \neq f(z)$. Thus $f(x) \in C[a, b]$.

Assume now that (b) is satisfied. Since g is not constant on any interval and $f^{n}(x)=g(x)$ we have that $f^{i}(x), i=1, \ldots, n$ is not constant on any interval. Let f be discontinuous at z and set $r=f(z)$. Thus, there exists a $\sigma>0$ such that either for any $w \in[r, r+\sigma]$ or for any $w \in[r, r-\sigma]$ there is a sequence $\left\{x_{i}\right\} \rightarrow z$ such that $f\left(x_{i}\right)=w$. Since h is not constant in any interval we may choose in $[r, r+\sigma]$ or in $[r, r-\sigma]$, whichever is necessary, a w such that $h(w) \neq h(r)$. But then $h(w)=\lim g\left(x_{i}\right)=g(z)=h(r)$ which is not possible. Thus, f is continuous.

Corollary 2.3. Let $g(x)$ be a real analytic function in $(-\infty, \infty)$ which is not the constant function. Let f be defined on $(-\infty, \infty)$ into $(-\infty, \infty)$, possess the Darboux property there, and satisfy $f^{n}(x)=g(x)$. Then f is continuous in $(-\infty, \infty)$.

Proof. Clearly g satisfies condition (b). However, g need not belong to $C[-\infty, \infty]$ nor f to $D[-\infty, \infty]$. It is, however, easily verified that Theorem 2.4 is valid for the open interval ($-\infty, \infty$).

We now consider the equation $f^{n}(x)=f^{m}(x), m=n+p$, for $f \in D[a, b]$. Let R^{i} denote the range of f^{i} and $R^{0}=[a, b] . R^{i}$ is connected and so is an interval. Also $R^{i+1} \subset R^{i}$ for all i, and since $f^{n}(x)=f^{m}(x)$, it is clear that $R^{n}=R^{n+1}=R^{n+i}$ for $i=1,2, \ldots$. If R^{n} is a point c then $f^{n}(x)=f^{n+1}(x)=C$ and we have one of the exceptional cases of Theorem 2.4. If $n=1$, we have the case studied by Ewing and Utz [2]. The following theorem extends their results.

Theorem 2.5. A necessary and sufficient condition that $f \in D[a, b]$ satisfy $f^{n}(x)=f^{n+p}(x)$ for all $x \in[a, b]$, where p and n are minimal, is that either (a) or (b) is satisfied:
(a) $p=1$, there exists a sequence of intervals $R^{i}, i=1, \ldots, n$ such that $f \mid R^{i}=R^{i+1}$, $f \mid R^{n}=R^{n}, f(x)=x$ for $x \in R^{n}, R^{i} \neq R^{i+1}$ for $i=0, \ldots, n-1$ and $R^{0}=[a, b]$.
(b) $p=2$, the sequence R^{i} is as above except that $f \mid R^{n}$ is a reflection.

Proof. Assume $f \in D[a, b]$ and satisfies the equation $f^{n}(x)=f^{n+p}(x)$ for all $x \in[a, b]$. Set $R^{\circ}=[a, b]$ and $R^{i}=$ range of f^{i}. Then if in Theorem 2.2 we set $S=R^{n}$, and assume S non-degenerate our result follows. Conversely, if f satisfies either (a) or (b) it is clear that $f^{n+p}(x)=f^{n}(x)$ for all $x \in[a, b]$.

ACKNOWLEDGEMENT

This research was sponsored by National Science Foundation Grant G18915.
Mathematics Dept., Purdue University, Lafayette, Indiana, U.S.A.

REFERENCES

1. Bodewadt, U. T., Zur Iteration reeller Funktionen. Math. Z. 49, 497-516 (1944).
2. Ewing, G. M., and Utz, W. R., Continuous solutions of $f^{n}(x)-f(x)$. Can. J. Math. 5, 101-3 (1953).
3. Isaccs, R., Iterates of fractional order. Can. J. Math. 2, 409-16 (1950).
4. Lojasiewics, S., Solution générale de l'équation fonctionelle $f(f(\ldots f(x) \ldots))=g(x)$. Ann. Soc. Polon. Math. 24, 88-91 (1952).
5. Massera, J. L., and Petracca, A., On the functional equation $f(f(x))=1 / x$. Revista Union Mat, Argentina 11, 206-211 (1946).
