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S U M M A R Y  

We s tudy  a Markovian process, the  s tate  space of which is the  product  of a set of n points 

and  the  real x-axis. Under  certain regulari ty conditions this s tudy  is equivalent  to invest igat ing 
the  solution of a set of coupled diffusion equations,  generalization of the  Fokker-Planck (or 

second Kolmogorov) equation.  Assuming  the  process homogeneous in x, b u t  in general t ime- 

inhomogeneous,  this  set  of equat ions is s tudied with the  help of the  Fourier t ransformat ion.  

The marginal  distr ibution in the  n discrete s tates  corresponds to a t ime-inhomogeneous n-s ta te  

Markov chain in continuous time. The properties of such a Markov chain are studied, especially 
the  asymptot ic  behaviour  in the  time-periodic case. We obtain a na tura l  generalization of the  

well-known asymptot ic  behaviour  in the  t ime-homogeneous case, finding a subdivision of the  

s tates  into groups of essential states,  the  distr ibution inside each group being asymptot ical ly  

periodic and  independent  of the  s tar t ing distribution, Next ,  still assuming  time-periodicity, we 

s tudy  the  asymptot ic  behaviour  of the  complete Markovian process, showing t ha t  inside each 

of the  groups ment ioned above the  distr ibution approaches a common normal  distr ibution in 

x-space, with  m ean  value and  variance proportional to t. Explicit  expressions for the  proportion- 
ality factors are derived. 

The general theory is applied to the  electrodiffusion equations,  corresponding to n = 2. 
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B. NAGEL, Solutions of coupled diffusion equations 

I. Introduction and statement of problem. Survey of sections II to V 

With "electrodiffusion" in the wide sense one can understand the combined effect 
of a dynamic chemical equilibrium, a t ransport  process effected e.g. by  an external 
electric field, and ordinary diffusion. One of the interesting features here is tha t  if 
the different substances in equilibrium have different mobilities in the external 
field, the effective diffusion, superposed on the transport  process, can get a con- 
siderable contribution from the combined effect of the chemical transition and the 
t ransport  mechanisms. 

The simplest case, the only one treated so far, is where we have a solution of a 
substance A, which can exist in two ionic forms, A 1 and A~, forming a system in 
chemical equilibrium A I ~ A 2 ,  determined by  transition constants k 1 and k~. A 1 and 
A2 have diffusion constants D 1 and D 2 and mobilities u 1 and u2 in an external elec- 
tric field g(t), which we shall assume to be constant in space but  possibly time-de- 
pendent. 

This process, in one space dimension, has been studied (Bak, Kauman  [1] Ljung- 
gren [2]), starting from the intuitively natural  combination of chemical equilibrium 
and diffusion equations 

c~2c 1 
~cl~t - kl cl + k2 c2 - ul g(t) ~ + 1) 1 ~x~, 

~c2- k lc 1 - k2% ~c2 D ~2c2 ~ -  - % g ( t ) ~  + 2 ~x ~. 

(1) 

c 1 and c 2 are the concentrations of A 1 and A 2. 
Assuming g(t) constant or periodic, and also making some further simplifying 

assumptions, the authors quoted above s tudy the behaviour of c 1 and c 2 for large t, 
especially the mean values and variances (giving the effective transport  and diffusion 
rates) of these distributions. Although many  interesting results are obtained, the 
solutions are not entirely complete and general. 

The electrodiffusion problem has also been at tacked by several authors using more 
direct statistical methods. Starting from a two-state random walk model and assum- 
ing g(t) periodic, Thed~en [3] has given a complete description of the asymptot ic  
behaviour for large t, including a proof of the asymptotic  normality of the position 
variable and explicit expressions for the mean value and the variance. Thedden's 
results agree with the results obtained from (1), when restricted to the special cases 
t reated with the help of (1). 

Considering the well-known close connection between ordinary random walk and 
the usual diffusion equation, it is natural  to expect an analogous connection to hold 
also in this more general case. 

Making an obvious generalization from 2 to n, we s tudy in the following a not  
necessarily time-homogeneous Markovian process, where the state space is the (set- 
theoretical) product of a set of n points and the real axis. Assuming for simplicity 
tha t  the probabil i ty densities exist (this is actually not a restriction, as they always 
exist as positive measures, and all equations remain true in this case as they stand 
if they are taken in the distribution [generalized function] sense), the distribution 
a t  a t ime t is given by  a column vector p(x , t )~  {pl(x,t) . . . .  p,(x,t)}, where p~(x,t) 
are non-negative and 
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~ fp~(x, t)dx = 1. 

(All integrations are from - ~  to ~ ,  if not otherwise indicated.) Introducing the 
column vector a =  {1,1,. 1} and denoting transposition by  T, we can write the last 
condition as 

ar fp(x,  t)dx = 1. 

The process is governed by  the transition function, in our case an n • n matr ix  

Q(x,t; y,~)=(q~k(x,t; y,~)), defined for t>T,  

giving the distribution a t  t ime t from the distribution at  an earlier t ime T through 
the Chapman-Kolmogorov equation 

p(x, t) = f Q(x, t; y, ~)p(y, T)dy. (2) 

As p(x, t) should be a probabil i ty density if p(y, v) is one, Q must  have the properties 

qik(x,t;y,'~)>~O and aT~Q(x,t;y,'~)dx=a T. (3) 
J 

(2) is essentially equivalent to 

Q(x,t;Z, to)= fQ(x,t;y, 7:)Q(y,v;Z, to)dy, t 0 < ~ <  t. (4) 

(2) or (4) expresses the Markovian character of the process: the probabil i ty distri- 
bution a t  a t ime t is completely determined from a knowledge of the distribution 
at  any  one earlier time. 

I f  the process is homogeneous in x-space (space translation invariant), homoge- 
neous in time, or periodic in t ime with period co, we have 

Q(x,t; y,T)=Ql(x-y,t,v) (5a) 

Q2(x, y, t-z) (5 b) 

Q(x, t + ~o; y, T + co), respectively. (5 c) 

I f  Q fulfills certain regularity requirements as t ~ v ,  one can derive from (2) a 
differential equation for p(x, t), which is the generalization to n states of the ordinary 
one-state Fokker-1)lanck (or second Kolmogorov) equation. We refer e.g. to [4], 
Ch.X, for the derivation in the case n = 1. The generalization to n > 1 is obvious: 
instead of multiplying with an arbi t rary function R(x) we use an arbi t rary row 
vector RT(x), multiplied from the left. We only state the requirements on Q, which 
are used in the derivation of the differential equation. Of these only (1%2), describing 
the transition between the discrete states, is peculiar for the case n > 1. 
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B. NAGEL, Solutions of coupled diffusion equations 

For every (~ >0  we should have (lim means limA,-~+0) 

1. Continuity: lim~-- ~ Q(x,-c+AT:;y,v)dx=O. 
T J I x - y I > 6  

(l~ 1) 

2. Existence of a local instantaneous transition probability between the discrete 
states: 

lim-~[fjx_~,l<Q(x,v+ Av;y,~)dx-E] = Q(y, ~). (R2) 

Here E is the nxn unit matrix. From (1~ 1), (R2) and (3) follows 

q~k(Y, ~) >I O, ~ =k k and aTQ(y, ~) = O. (6) 

(3) and (4) require, loosely speaking, the existence of first and second mo- 
ments: 

3. l i m ~ -  ( (x-y)Q(x,'c+AT;y,~)dx=A(y,v), (R3) 
"e' J i x _ y  I<,~ 

4. lim 1 f (x - y)~ Q(x, lr + Av; y, v)dx = B(y, T). (It 4) 

Furthermore the convergence in (R I)-(R4) should be uniform in y. This condi- 
tion is automatically fulfilled if the process is homogeneous in space. 

Combining (R3) and (R4) with (R2), observing that  (~ can be chosen arbitrarily 
small, we find that  A and B are diagonal matrices. B is evidently non-negative. 
We assume Q, A and B continuous in T, and sufficiently regular in y for the final 
equation (7) to have a meaning. 

Using (R1)-(R4) and generalizing the ordinary derivation in the indicated way, 
we get the equation 

= + (7 )  

Assuming from now on that  the process is homogeneous in x, we find from (5a) 
and (R2)-(R4) that  Q, A and B are independent of y. 

The electrodiffusion equation (1) is evidently the special case of (7) where n=2, 
and Q and B are independent also of t. 

For  simplicity we shall in general study a process starting at t =0,  which is not 
an essential specialization. Furthermore, to get rid of the special starting distribution 
for t=0 ,  we introduce the fundamental solution of (7), belonging to t=0 ,  i.e. an 
n • n matrix G(x, t), satisfying 

~ G(x, t)= [Q(t) - A( t )~ + ~B(t)~x2] G(x, t }, (8) 

lira G(x, t) = ~(x). E, where (~(x) is the delta function. (8 a) 
t--~+O 
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With the help of G(x, t) we can express the solution of (7)wi th  initial values 
p(x, 0) a t  t = 0 as 

p(x, t)= ~G(x - y ,  t)p(y, O)dy. (9) 
J 

Comparing (9) and (2) we find 

G(x - y, t) = Q(x, t; y, 0). (10) 

(8), (8a) is the fundamental  equation. We are interested in the properties of the 
solution G(x, t), especially in the asymptot ic  behaviour for large t. 

We recall the conditions on Q(t), A(t), and B(t): 

They are continuous; Q(t) has non-negative off-diagonal elements, and 
aTQ(t) =0;  A(t) and B(t) are diagonal, and B(t) is non-negative. (11) 

As the coefficients in (8) are independent of x, the obvious thing is to make a 
Fourier transformation and go over to the characteristic function 

P(t, p) = fe~XG(x, t) dx. (12) 

Then (8), (8 a) go over into 

~t P(t, p) = [Q(t) + ipA(t) - �89 P(t, p), (13) 

P(0, p) = E. (13 a) 

For  a process, homogeneous in x, the right hand side of (4) is easily seen to be a 
convolution integral. As convolution in x-space corresponds to multiplication in 
p-space, (4) is in this ease equivalent to 

P(t, to,p) =P(t, T,p) P(v, t 0, p), t o < T < t, (14) 

where P(t,%p) is the characteristic function corresponding to Q(x, t; y,3) = Ql(x-y, t,3) 
[cf. (5a), (10), and (12)]. 

Equation (13), being a system of ordinary first order linear differential equations 
with a simple dependence on the parameter  p, is in general simpler to s tudy than  
the coupled second order partial  differential equations (8). Of course, as G(x,t) is 
the quant i ty  of most  direct physical interest, we have to translate the properties of 
P(t,p) into the corresponding properties of G(x,t). 

In  Sect. I I  we prove tha t  the solution of (13) really gives a unique Markovian 
process with the properties (R1)-(R4).  We also derive some properties of P(t,p), 
useful in the following. In  Sect. I I I  we s tudy more in detail the behaviour of P(t) = 
P(t, 0), giving the t ime behaviour of the distribution in the n states, integrated 
over x, cf. (12). This is a time-continuous, but  in general time-inhomogeneous, n-state 
Markov chain. In  particular we s tudy the behaviour for large t when the transition 
function Q(t) is periodic. I t  turns out, as a natural  generalization of the wellknown 
case where Q(t) is constant, that  we get a certain number  of "non-interacting" 
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groups of final states. Inside each of these groups the distribution is asymptotical ly 
periodic and independent of the distribution for t = 0. The probabil i ty division be- 
tween the different groups depends on the initial distribution, however. 

In  IV, using the results obtained in I I I ,  we s tudy P(t,p) for large t and small p, 
assuming also A(t) and B(t) periodic. From this s tudy follows tha t  inside each of 
the above-mentioned groups we approach for large t a common normal distribution 
in x-space with mean value and variance proportional to t. Asymptotical ly the whole 
group diffuses as a homogeneous substance, and at  the same t ime we have a periodic 
transition between the states of the group (if Q(t) is constant, this periodic transition 
is absent, of course). The effective diffusion constant is a sum of two terms, one 
involving B(t) and Q(t), and the other one, which could be called the electrodiffuslon 
component, depending on Q(t) and A(t). As should be expected, the last term is zero 
if the section of A(t) which corresponds to the group of states in question has all 
elements in the diagonal equal. 

Finally, in V we apply the formulas obtained in IV to the original electrodiffusion 
problem (1). The results are in complete agreement with those given by  Thedden [3]. 

I t  should be pointed out tha t  this electrodiffusion process is the simplest non- 
trivial application of the theory studied in this paper  (the case n = 1 being trivial, 
of course, as we can in this case give an explicit form for the solution of (8), valid 
for all t; cf. [4], Ch.X). As n=2 and Q(t) is constant, most  of the work in Sect. I I I  
concerning the behaviour of P(t) can be bypassed. 

At the end of V we indicate some possible generalizations. 

II. Existence, uniqueness, and some properties of  the Markovian 
process related to eq. (13) 

I t  is known from the theory of linear differential equations tha t  the system of 
equations (13) with initial conditions (13a) and continuous coefficients has for every 
p (even complex) a unique solution, with a continuous first derivative in t. Moreover, 
as the coefficients are integral functions of p and the initial conditions are indepen- 
dent of p, P(t,p) is for every t an integral function of p. I t  is also easy to see tha t  
every derivative (~np/~pn)(t,p) is continuous and has a continuous first derivative 
as function of t. These functions as well as P(t,p) are simultaneously continuous in 
t and p; hence we may  interchange the order of differentiation between ~/~t and 

From the work in I leading to (13) follows that  if there exists a Markovian process 
(i.e. a function or, more precisely, a measure Q(x,t; y,v) satisfying (3) and (4)) with 
the properties (Sa) and (R 1)-(R4), where Q, A, and B are now assumed independent 
of y, it must  be given by  the inverse Fourier transform of the unique solution P(t,T,p) 
of (13), fulfilling the condition (13a) at  t ime t = v  instead of t =0.  Hence uniqueness 
is ensured. 

The proof of existence is not quite as simple. What  we have to prove is that  if 
Q, A, and B are functions fulfilling conditions (11), the solution P(t,T,p) of (13) 
really defines a Markovian process with the desired properties, i.e. tha t  the inverse 
Fourier transform Ql(x-y,t,v)=Q(x,t; y,'~) exists as a measure satisfying (3), (4), 
and (R1)-(R4).  The verification of the second par t  of (3), (4), and (R1)-(R4) is 
rather  simple. The crucial point is to prove tha t  the matr ix  elements of Ql(x-y,t,v) 
are (bounded) positive measures. 
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According to Bochner's theorem (see. e.g. [4] Ch. VII) this is equivalent to proving 
that  the matr ix elements of P(t,%p) are, for t >% positive definite functions of p. 
(For shortness we shall in the following often omit the phrase "the matrix elements 
of" and simply write "P(t,%p) is positive definite", though, strictly speaking, this 
statement when applied to a matr ix may  have another meaning; the same remark 
also applies to the concepts "positive" and "non-negative".) 

We recall that  a funct ion/(p) ,  defined on the real axis, is called positive definite 
if it is continuous and if for any set of real points (Pl . . . .  Pro) and corresponding 
arbi t rary complex numbers (~1 . . . .  ~m) we always have 

Y~ l(p, --Pk)~,~k/> o. (15) 

As we shall have no reason to introduce more general positive definite functions 
than continuous ones, we include for shortness of .expression the continuity condition 
in the definition of positive definiteness. 

One of the simplest properties of a positive definite function, which follows directly 
from (15), is that  it is uniformly bounded on the real axis, more precisely 

I/(p)l /(o) real a n d  >~0. (16) 

The theorem of Bochner states that  the Fourier transformation 

/(p)= (e~'=d#(x) (17) 

establishes a one-to-one correspondence between the set of bounded positive measures 
on the real axis and the set of positive definite functions. 

For simplicity we prove the positive definiteness of P(t,p), solution of (13), (13a), 
but  it is evident tha t  the proof carries over directly to the general case P(t,z,p). 

In the proof we need some simple properties (see e.g. [5], Ch. XIV) of the solution 
R(t) of the matrix equation 

d ~tR(t)=S(t)R(t), R(0) = E. (18) 

Here S(t) is assumed to be continuous and in general complex. 
First we state a result which will be used in Sect. III .  The determinant ]R(t) l 

is given by  the Jacobian identity 

]R(t)l=exp os,~(z)d JR(0) 1, (19) 

which shows that  R(t) is non-singular. If S(t) has real diagonal elements IR(t) l is 
real and positive. 

(18) is equivalent to the integral equation 

R(t)=E+ftoS(T)R(T)d% (20) 
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which can be solved by  iteration, and we then obtain the solution in the form of 
an infinite series 

R(t) = E + (~1) + d~ 1S(T 1 dr2 S(~2) + .... (21) 
0 0 

which is absolutely convergent for all t. 
The explicit solution (21) will be used in the proof. 
Besides we need some simple facts about  positive definite functions: 

a. 1 is pos. def.; i f / (p)  is pos. def., then so is ]c./(p), k~>0. 
b. A linear combination (a finite sum or, with some obvious precautions, an inte- 

gral), with non-negative coefficients, of pos. def. functions is again pos. def. 
c. I f / ( p )  is pos. def., then so is e~/(p),  o~ real. 

(a) and (c) imply tha t  e ~p is pos. def. 
d. cxp( - f ip2) ,  fl~>0, is pos. def. 
e. I f  {/n(P)} is a sequence of pos. def. functions, converging in every point to a 

continuous funct ion/(p) ,  t hen / (p )  is pos. def. 

(a), (b), (c), and (e) are easily proved directly from the defining condition (15). 
(c) also follows, with the help of Bochner 's theorem, from the fact  tha t  a translat ion 
a distance :r of the measure in x-space corresponds to a multiplication with exp(i~p) 
in p-space. Finally, (d) is a consequence of the fact  tha t  exp(- t ipS) ,  f l>0 ,  is (apart  
from a positive factor) the Fourier transform of exp(-x2/g~).  

We can now prove 

Theorem 1. I/Q(t), A(t), and B(t) satis/y the conditions (11), then the matrix element s 
o/P(t,p), solution o/ (13) and (13a), are/or every t >~ 0 positive de/inite /unctions o/p. 

Remark. The condition aTQ(t) = 0 is not used in the proof. 
Proo/. The continuity requirement is evidently fulfilled. 
Before using formula (21) we make a t ransformation in (13), putt ing 

Here m is chosen so tha t  mE +Q(t) has non-negative diagonal elements in the whole 
interval (0, t) tha t  we study. One should notice tha t  all three terms in exp are diagonal 
and hence commuting matrices, so that  the usual law exp(a + b) = exp a.  expb is valid. 
For shortness we use the notation 

D(t)=exp [ -  �89 ftoB(~)d~] , (23) 

where the diagonal elements of D(t) are 

(24) 

We shall prove tha t  D(t).P'(t,p) is positive definite. Then properties (a) and (c) 
above imply tha t  P(t,p) is positive definite. 
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The transformation (22) in (13) leads to a similar equation for P'(t,p), with the 
first factor on the right hand side of (13) substituted by 

[ ;  ] rr' ] Q'(t) = D-I(t) exp - ip oA(~)d~ [Q(t) + mE] exp /p A(~)d~ D(t). 
L J O  _1 

(25) 

Applying the solution formula (21) and multiplying by  D(t) we get 

f l  pt /'~, D(t). P'(t, p) = D(t) + dvlD(t) Q'(vl) A- jo|dVl J|o dyeD(t) Q'(vl)" Q'(v2) +...  (26) 

If  we study a certain matrix element of a term on the right hand side of (26), 
we obtain from the repeated matrix multiplication a sum of terms, where each term 
is a product of the non-negative elements of Q(t) + mE, purely imaginary exponentials 
exp[ipot(t)] coming from the factors exp [ _  ipStoA(T)dT] in (25), and factors of the 
form di and d~ 1 from D(t) in (25) and (26). From (a) and (c) follows that  it is the 
last type of factors which is of importance. A moment 's  reflection shows that  they 
contribute to each term of a matrix element ~/~ a factor of the form 

d~(t)d~l(vl)d~,@l)d~,l(v2) ... d~(vv). (27) 

Except for the last factor d~, the factors in (27) can be paired together in the form 

di(~) d~l(~'), ~>~ ' .  (28) 

From (24) and the non-negativity of b~(~) follows that  every such pair, and hence 
the whole product (27), is.of the form exp(_p2fl) ,  where ~ is a function of t,31, v~ . . . . .  
non-negative in the integration region. In  every term in (26) the integrand is thus 
positive definite, and as the integration evidently gives a continuous function of 
p, {b) shows that  every term on the right hand side of (26) is positive definite, thus 
also the partial sums, and from the convergence for every p of the series (26) and 
property (e) we conclude that  D(t).P'(t,p) is positive definite, and then so is P(t,p). 
The proof is complete. 

I t  could be remarked that  although P(t,p) is of course uniquely defined and an 
integral function of p also for t < 0, it is then in general no longer positive definite. 

Generalizing to P(t,%p) and applying Bochner's theorem we find that  P(t,%p)is, 
for every t>~% the Fourier transform of a bounded positive measure Qx(x-y,t,T). 
Hence the first property in (3) is established. (4) is equivalent to (14), which is a 
trivial consequence of (13). (14) only means that  we can perform the integration of 
(13) from t o to t in two steps, going first from t o to T and then from ~ to t: There 
only remains to prove the second relation in (3) and (R1)-(R4). Again we put  ~ = 0  
without losing generality. 

(12) shows that  the second condition (3), expressed in P(t,p), takes the form 

aTp(t,O) =a r. (29) 

But  (29) follows directly from (13) and arQ(t) =0.  
As P(t,p) is analytic for all p, it is infinitely differentiable for p =0,  and (12) then 

shows that  all moments of G(x,t) exist for t >/0 and are given by 
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(13a) gives 
f xnG(x, t)dx i-'~(~'~P/~p n) (t, 0), 

P(O, O) = E; (~,~p/~pn) (0,0) = O, 

n = 0 , 1 ,  2 . . . . .  (30) 

n = l , 2  . . . . .  (31) 

(30), (31) and the remark at the beginning of this section about  the existence of the 
first time derivative of ~np/~p,~ shows that  

lim .l [/xnG(x, AT)dx- ~o~E] = i-~(an + lP/~t ~ pn) (O, O). 
A ~ 0 / k T  

(32) 

(~o~ is Kronecker's delta). 

The right hand side of (32) is easily evaluated with the help of (13), remembering 
that  we may interchange ~/~t and ~/~p~. In this way one easily establishes (R2)-  
(1%4), except for the fact that  one should integrate over Ix/<($ only and not over 
all x, as indicated on the left hand side of (32). However, applying (32) to the case 
n = 4, we find 

l i m ~  f x4a(x, Av)dx=O, (33) 

and this implies 

l im.  1 f x~G(x, Av)dx=O, v = 0 , 1 , 2 , 3 , 4  (34) 

for every ~ > 0. 
v = 0  gives (R1), and v=0,1 ,  and 2 show that  the extension of the integrals in 

(R2)-(R4) to the whole axis does not change the values. 
Altogether, we have proved the following theorem: 

T h e o r e m  2. (Existence and uniqueness.) 

For every set Q(t), A(t), and B(t) satis/ying conditions (11), there exists one and 
only one Markovian process (i.e. a measure-valued transition /unction Q(x,t; y,T) = 
Ql(x-y,t,T), t>T, satis/ying (3) and (4)) /ul/illing (R1)-(R4) with the given Q, A, 
and B. Ql(X-y,t,v) has the characteristic /unction P(t,%p), de/ined as the solution 
o/(13) with initial value P(~,T,p)= E. 

We shall now study some further properties of G(x,t), related to the behaviour 
for x--~ +_ ~ and to the local regularity. 

(30) shows that  for every t >~ 0 moments of all orders exist. As P(t,p) is an integral 
function, it is well-known that  the Fourier transformation formula (12) can be 
extended to arbitrary complex values of p. In fact, as the series expansion around 
p =0  of P(t,p) is absolutely convergent for all p, this implies the convergence of 

o o  

~mnR' ,  for any positive R, arbitrarily large. (35) 
0 n 

Here mn represents the absolute value of some matrix element of the moment of 
order n. I t  is then easy to see that  the right hand side of (12) converges and defines 

372 



.'.aKIV FSa MATEMATIK. Bd 5 nr 27 

an integral function (which must  be equal to P)  even if we use complex values, say 
p+iq, p and q real. I f  we put  p=O, P(t, iq) then being real and positive, we find 

e-qXG(x, t)dx < ~ ,  all real q, (36) 

i.e. G(x, t) vanishes faster than any  exponential as x--> + c~. 
Later  on we shall sharpen (36), showing tha t  G(x, t)-in fact vanishes faster than 

some Gaussian exp(-bx~).  
I f  the initial distribution p(y,0) has finite moments  including order m, say, relation 

(9), or bet ter  the Fourier transformed relation (~ denotes Fourier transformation) 

p(t, p) =p(t, p) p(0,p) (37) 

shows that  p(x, t) has also finite moments  including order m. Namely, if ~(0,p) has 
derivatives in p a t  p = 0  including order m, then so has ~(t,p), as P(t,p) is analytic. 

We have thus found tha t  as a consequence of P(t,p) being, as function of p,  very 
regular locally, G(x, t) is well-behaved (decreases rapidly) at  infinity. 

Conversely, the behaviour of P(t,p) as p-->+ c~ is in a similar way related to the 
local regularity of G(x, t). 

Without  any  further conditions on Q, A, and B we can say nothing more than  
tha t  G(x,t) is a positive measure, as is shown by  the trivial case B(t)=0, A(t) =a(t)E, 
which has the solution 

P(t ,p)=exp[ip  f:a(v)d~]P(t), P(t)=P(t,O) 

However, if we add the assumption, reasonable in physical applications, tha t  the 
diagonal elements of B(t) are positive (or positive simultaneously at  least at  one 
time), it is not difficult to show tha t  G(x,t) is very regular, indeed an integral func- 
tion of x. 

To show this we can use the following simple comparison theorem for systems of 
linear differential equations: 

T h e o r e m  3. Given a continuous real matrix S(t) with non-negative elements outside 
the diagonal. Then R(t), solution o/ 

dR(t) = S(t)R(t), R(O) =E, (39) 

is/or t >~ 0 non-negative and has positive diagonal elements. 
I /S'( t)  is another continuous matrix, which may be complex, and i/ 

Re s;,(t) < s,i(t), I s;k(t) I <~ s,k(t), i ~=/c, 

then/or R'(t), solution o/ 

(40, 
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we have 

d R'(t) =S'(t)R'(t), R'(0) = I', (41) 

Ir~(t) l<r,k(t) for t ~>0. (42) 

Proo[. Pu t  R(t) = e-m~Rl(t) (43) 

in (39), where m is chosen so tha t  S( t )+mE is non-negative. Applying (21) to Rl(t ) 
we find tha t  all terms on the right hand side of (21) are non-negative, while the first 
term E ensures posit ivity of the diagonal elements. The s ta tement  of thevfirst par t  
of the theorem is then true for Rx(t), and thus also for R(t). 

For the second par t  of the theorem we may  imagine tha t  we have already per- 
formed a transformation of type (43), with the same m in both cases, on /~(t) and 
R'(t), so tha t  Resin(t)>~0. This transformation evidently leaves invariant  the rela- 
tion (42) which is to be proved. Next,  we transform away the imaginary parts  of 
the diagonal elements of S'(t) by  putt ing 

R'(t) = D(t) R"(t), (44) 

where D(t) is diagonal with elements 

d~(t) = e x p  ~ m s~(~  . (45) 

As Id~(t) J = 1, we have ] r2~(t) ] = ] r2~(t)] and for R"(t) we get 

dtR"(t)=S'(t)R"(t), R"(O)=E, (46) 

where S"(t) has real diagonal elements fulfilling 

0 <~ s~;(t) <~ s,,(t), (47) 

a n d  I sgL(t)[ < s~(t) ,  i * / c .  (48) 

Expressing the solution of (46) with the help of the series (21), it is easily realized, 
considering (47) and (48), tha t  we get upper  bounds of the absolute values of the 
matr ix  elements of R"(t) by  substituting s~k(t) for s[~(t) everywhere in the series. 
This proves the second par t  of the theorem. 

Applying the first par t  of Theorem 3 to P(t)=P(t,O), solution of 

d 
~tP(t) = Q(t) P(t), P(O) = E, (49) 

we find tha t  P(t) is non-negative (this is also a consequence of Theorem 1, cf. (16)) 
and has positive diagonal elements. Fur thermore  we found in (29) tha t  

aTp(t) =a T. (50) 

A non-negative matr ix  having the proper ty  (50), i.e. such that  the sum of the 
elements in a column is 1 for every column, is called a stochastic matrix,  as it can 
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be used as transition matr ix  of an n-state Markov chain in discrete time. P(t) is 
thus, for every t >~ 0, a stochastic matr ix  with positive diagonal elements and positive 
determinant,  of. (19). We shall return to a s tudy of P(t) in Section I I I .  

An application of the second par t  of Theorem 3 gives 

T h e o r e m  4. I/ac(t)=max { l a l ( t ) [  . . . .  lan(t) l}, b(t)=min {bl(t ) . . . .  bn(t)}, and fl(t)= 
max {bl(t) . . . .  bn(t) }, where {a~(t)} and {b~(t)} are the diagonal elements o/A(t) and B(t), 
respectively, we have the/oUowing majorization o/the elements o/P(t,p + iq) (p, q real): 

I p,k(t, p + iq) l < p~k(t) exp [- �89 f l b(z) dv + �89 f i fl(~)dv + l q l ; a(v)dv ] . (51) 

Proo/. Substituting p + / q  for p in the first factor on the right hand side of (13) 
we get the expression 

Q(t) - q A (t) - �89 B(t) + �89 B(t) + lip A (t) -pq  B(t)]. (52) 

The substitution 

P(t,p+ iq)=exp [-- �89 ftob(~)d~ + �89 fifl(z)d~ + lq, fi~(v)d~l P'(t,p+iq) (53) 

then leads to an equation for P ' ,  which together with (49) forms a set of equations 
fulfilling the conditions of Theorem 3. Thus we have Ip(k(t,p +iq)[ <~p~k(t), and the 
theorem is proved. 

I f  we put  q=O in (51) and assume tha t  

b=�89 f~ob(V)dv (54) 

is positive, i.e. tha t  at  some point in (0,t) all b~(v) are positive simultaneously, we 
see tha t  P(t,p) decreases faster than some Gaussian function as p-->_+ ~ .  Taking 
the inverse of (12) we then find tha t  G(x,t) is very regular, in fact one can extend the 
inverse Fourier transform to all complex values z=x+iy,  and G(z,t) is then an 
integral function. 

In  the same way as for G(x,t) it follows from (37) tha t  for any  initial distribution 
p(x,O), p(x,t) is an integral function of x if b >0.  ~(0,p) is positive definite and hence 
bounded, cf. (16). 

So far we have used the inequality (51) only for q=O. I f  we exploit (51) also for 
q=#0, we obtain an improved estimate of the decrease of G(x,t) as x-->___ ~ .  (51) 
evidently implies tha t  for any  number  

c>}f:fl( )dt>.o (55) 
we can find a number  M~k (depending, in general, on c) so that  

[p~k(t,p + iq) [ ~M,ke -b''+cq'. (56) 
b is given by  (54). 

Let  us first assume b >0.  Then we have seen tha t  G(z, t) is an integral function, 
and (56) implies the inequality 

I gAx + iy, t)] ~< Mik(47eb )- �89 exp ( - x2/4c + y2/4b). (57) 
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(57) follows from (56) and the Fourier integral expressing gfk in Pik, if we integrate 
along the line p - i x/2c, - ~ <p  < oo. 

In  the case b = 0, where G(x, t) may  be just a positive measure, we have the weaker 
result 

f e x p  (x2/4c) G(x, t) < dx (58) 

for every c > �89 fl(t)d~. 
0 

(58) is an immediate consequence of the following simple theorem. 

Theorem 5. I / / ( p )  is a positive definite integral/unction,/ul/il l ing on the imaginary 
axi8 

[ ( iq)<Ae b'q~, /orsome A > O  and b'>~O, (59) 

then /or the positive measure la(x) associated with [(p) by Bochner's theorem we have 

f e x p  oo b >b ' .  (60) (x~/4b) dl~(X)< lot every 

Proo/. Follows from 

f exp ( - bq~) �9 /(iq)dq < ~ , (61) 

if we introduce /(iq) expressed in #(x) and interchange the order of integration, 
which is easily seen to be allowed. 

We have shown tha t  b =�89 is a sufficient condition for G(x,t) to be an 
integral function. I t  is probable tha t  this proper ty  of G(x,t) holds also under weaker 
conditions on B(t); in this case one must  instead impose some extra condition on 
Q(t). The following conjecture seems reasonable: 

I f  for some t at  least one Stbi(T)dv and all elements of Q(t) are different from zero, 
then G(x,t') is an integral function of x for t' >~t. 

Added in proof: Dr  E.  Asp lund  has  k indly  po in ted  ou t  to  t h e  au tho r  t h a t  if we  assume B(t) =- 0, 
t he  major iza t ion  (51) implies t h a t  t he  suppor t  of 6/(x, t) on the  x-axis  is compac t ,  as follows 
di rec t ly  f rom the  P a l e y - W i e n c r  t h e o r e m  (in t he  general ized fo rm val id  for d is t r ibut ions;  s e e  

L. Schwartz ,  Th~orie des dis t r ibut ions ,  Tome II) .  More precisely,  one can show t h a t  G(x, t) is 
zero outs ide  the  in te rva l  w i th  cndpoin t s  

; f: rain a~(T) dv a n d  m a x  a~ (~) dr ,  

a resul t  wlaieh is physical ly  a lmos t  self-evident .  

HI. Properties of P( t ) ,  especially the asymptotic behaviour in 
the time-periodic case 

In  this section we shall s tudy the matr ix  P(t) =P(t, 0), solution of 

dtp(t)  = Q(t)P(t), P(O) = E ,  (62) 
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which gives the probability distribution between the n discrete states of the Markovian 
process at  time t. As we saw in Sect. I I  (cf. (50)), P(t) is a stochastic matr ix with 
positive diagonal elements and a positive determinant. 

Concerning the properties of stochastic matrices see e.g. [5], Ch. XII I ;  cf. also [6]. 
The terminology in this field is not quite uniform; we shall use a mixture of the 
terminologies of the books mentioned above. Observe that  what we call a stochastic 
matrix is the transposed of a stochastic matrix as defined in [5]. 

A stochastic matrix P always has one eigenvalue equal to 1; this is a direct con- 
sequence of 

aTp =a r. (63) 

Furthermore all eigenvalues ~ satisfy ]~t I ~< 1; especially if P has positive diagonal 
elements, ~ = 1 is the only eigenvalue (possibly multiple) with I~tl =1.  These two 
properties follow easily from the following simple result, which is sometimes called 
the theorem of Frdchet: 

If p ~  is the smallest of the diagonal elements of a stochastic matrix P,  then all 
eigenvalues of P satisfy 

I ~t -P=~ I < 1 - p = .  (64) 

As the proof is short we repeat it here: 
Assume ~ an eigenvalue, @1 . . . .  xn) the corresponding eigenvector from the left, i.e. 

x~pik  = , ' l xk ,  k = 1 . . . .  n .  
l 

Assume [xm] = m a x  {Ixll; ... Ixnl}; evidently I*=l >0 .  Putt ing k = m ,  we find 

[]t--:Prom]IX,hi = ~.,nXip~ml<~lX,~li.'fT Ptm=[X.,l(1--P.,.,), 

But it is easy to see that  if 2 satisfies this inequality, 2 also satisfies (64): the circle 
in the complex 2-plane defined by  (64) contains all the circles obtained in the same 
way by  using the other diagonal elements instead of the smallest one. 

I t  is obvious that  a slight modification of the proof gives the result tha t  if P' is 
an arbitrary (complex) matrix, such that  the sums of the absolute values of the 
elements in every column is bounded above by  1, then every eigenvalue of P' satisfies 
]~] ~<1. Using (51) this shows that  all eigenvalues of P(t,p) (p real) fulfil 121 <1. 

Our P(t) thus has ~ = 1 as only eigenvalue with modulus one. If  this is true for a 
stochastic matrix P,  the Markov chain determined by  Pn, n = 1,2, is called weakly 
regular (we shall also apply this term to the corresponding P). In  this case 

P ~  = lim pn ( 65 )  
n - ~ o o  

exists, i.e. the Markov chain converges towards an asymptotic distribution. This 
distribution p~,  determined from the starting distribution Po by  

P~ = PC~Po, (66) 

377 



B. NAGEL, Solutions of coupled diffusion equations 

in general depends on Po. P~ is independent  of P0 if and  only if ~ = 1 is a simple 
eigenvalue. This means tha t  P ~  has all columns =p~r which is also the  unique r ight  
eigenvector belonging to the eigenvalue 2 = 1 of P .  We are then in the regular case. 
A special case here is the positively regular chain, where p~  has all elements positive. 

Given a weakly regular stochastic mat r ix  P ,  with mult ipl ici ty g(/> 1) of the eigen- 
value 1, we can by  a s imultaneous permuta t ion  of row and  column indices (corres- 
ponding to a renumber ing of the states of the Markov chain) pu t  it in the following 
normal  form 

/el 0 P1R~ 

Here  P1 . . . .  Pg are positively regular stochastic matrices, corresponding to the g 
groups of essential states, whereas PR is not  stochastic. As P l . - . t )o  exhaus t  all eigen- 
values 1 of P ,  and  P is weakly regular, PR has all eigenvalues smaller t han  one in 
modulus,  and hence 

lim P "  = 0. R 
The states corresponding to PR will be called unessential. 
As we know tha t  lim P~ exists, the relation l i m P  n+l = ( l imP~)P shows tha t  

p ~  = 

IP~' , 

~ ~ 

0 

pg~ 

P[r P1/~ (E - PR)- 1 ~  

P7 P.R(_~-PR)-I/" (68) 

The criterion for a stochastic mat r ix  P to be pos i t ive ly  regular is t ha t  for some m, 
pm is positive; then also all pro,, m' > m ,  are positive. If, as in our  case, P has positive 
diagonal elements, one can always take m = n - 1  (P is an n • n matrix),  as follows 
from the following proper ty :  

I f  A is a non-negat ive n • n mat r ix  with positive diagonal elements, then  A m, m >~ n, 
has zero elements in exact ly  the same places as A n-1. 

Proof. Evident ly  (A~)~k > 0 implies (A~+l)~ k > 0 etc., so tha t  A m has no t  more zeros 
than  A n-1. 

Assume now (A m) ik > 0, i :~ k, some m ~> n. This means tha t  at  least one term a~ ~1 aa ~.-. 
a~m_ lk > 0. I t  is now evident  tha t  if two of the indices in the chain i, i l , . . ,  k are equal 
(as they  mus t  be ff m ~> n) we can short-cut  the elements between these indices (divide 
them away) and still have  a positive term of a matr ix  produc t  Am', m' <m. I n  this 
way  we can go on till there are at  mos t  n -  1 factors left, thus  proving t h a t  (A~)~k > 0  
for some ~ ~< n - 1. F rom the first s ta tement  in the proof we conclude tha t  (A n-l) ~k > 0. 

We shall now re turn  to our s tudy  of Pit). To obtain the s tructure of the normal  
form (67) of P(t) we need no t  solve the equat ion (62) for P(t) explicitly. I t  is sufficient 
to s tudy  the corresponding normal  form of 
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Q1 0 

Qt= Q(T) d~= ?IQ/ (69) 

Here Q1..-Qs are square matrices such tha t  (Q~ + mi E) m-1 have all elements positive; 
m~ > 0 is chosen so tha t  the matr ix  Q~ § m~ E, where E is the unit matr ix  of the right 
dimension (n~ • n~), has positive diagonal elements. This condition ensures tha t  the 
reduction in the normal form in (69) is carried as far as possible. Q1--. Qg have every 
"column sum" (sum of all elements in a column) equal to zero, whereas in every 
one of Qo+l...Qs at least one column sum is negative; this means tha t  for every 
v, g +  1 ~<u ~<s, at  least one of the matrices Q1 . . . .  Qv-l,,~ standing above Q~ is non-zero. 
To perform the reduction to normal form in an actual case, with not too large n, 
it might be useful to form (Qt+mE) '~-1, which, if we chose m properly, has no re- 
dundant  zeros. 

We now assert that  P(t) has the same normal form as Q~, with Pn(t) corresponding 
to Qg+l-- -Qs. 

The proof follows rather directly from the series solution (21). We first make a 
transformation P(v)=e-'n~p'(v), where m is chosen so tha t  Q ' (T)=Q(T)+mE has 
positive diagonal elements in (0,t). This transformation evidently does not change 
the normal forms (67) or (69). Applying (2I) to the equation determining P'(t),  and 
observing tha t  for 0 ~< v ~< t Q'(v) has at  least as many  zero elements as Q~, one realizes 
tha t  P'(t) has no more ~ero elements than Q~, but  is certainly zero in the places 
denoted by  0 in (69). This proves the assertion. 

A consequence of this relation between the normal forms of P(t) and Q~ is that  if 
0 < ~ < t, then the normal form of P(T) is the same as or a refinement of the normal 
form of P(t): a group of essential states of P(t) may  split into several groups in P(v), 
or some of the unessential states in P(t) may  form a group of essential states in P(~). 
I t  is also seen tha t  if Q(t) is periodic with period 1, say, then P(t) has for t > 1 the 
same normal form as P(1). 

We now assume Q(t) periodic, Q(t + 1)=Q(t). The normal form of 

determines the normal fo rm of P(t) for t ~> 1. The equation (62) then decomposes into 

d 
~tP~(t)=Q~(t)P~(t), i =  1 ... g; P~(0)=E.  (70) 

d pR(t) = Qn(t)PR(t); PRO) =E. (7I) 

dtPm(t)=Q,(t)Pm(ti+Qm(t)PR(t), i = l . . . g ;  Pm(O)=O. (72) 
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We first study equations (70) and (71). P~(t) are for t >~ 1 positively regular, which 
implies tha t  one is a simple eigenvalue, and all other eigenvalues are smaller than 
one in modulus. PR(t) has for t ~> 1 all eigenvalues smaller than one in modulus. 

As Q(t) is periodic it is known (see e.g. [7]) that  the solutions P(t) have the form 

Pt(t) = St(t) exp R~t, Pn(t) = SR(t) exp RRt, (73) 

where Si(t ) and Sn(t ) are periodic, period l ,  and equal to E for t =0. S an d /~  are 
not uniquely determined: we have, putting t = 1, expR =P(1),  which means that  R 
is the logarithm of P(1) (the logarithm of a matrix can be defined for a non-singular 
matrix), which is not uniquely defined, due to the many-valuedness of the logarithm. 
In particular the eigenvalues of R are the logarithms of the eigenvalues of P(1), 
and hence determined up to multiples of 2~ri. 

:For the general definition of the function of a matrix, applicable also in cases 
where the series expansion definition fails, see for instance [5], Ch. V. We shall here 
write down only the fundamental formula expressing the function ](A) of a matr ix 
A in terms of the scalar function/(2) on the spectrum of A and certain fixed poly- 
nomials of A, Zk~, which are independent of the funct ion/ :  

/ (A)= kffix ~ [/(2k)Zkl+/'(2k) Zk~+ ... +/(~--1)(2k) Z~.mk] �9 (74) 

21...2s are the eigenvalues of A, with multiplicities m~ in the minimal equation of A; 
thus m~ is not larger than the ordinary multiplicity of the eigenvalue 2~. 

From the connection between the eigenvalues of R and P(1)follows that  every 
R~ has a simple eigenvalue 0 (we choose the principal value of the logarithm), and 
all other eigenvalues have negative real parts. In  the same way all eigenvalues of 
/t  R have negative real parts. (74) then shows that  we can write for large t 

exp R , t = P ~  +O(e-'t), some a >0 ,  (75) 

and exp Rat=O(e-~t),  some f l>0 .  (76) 

Evidently Pff  = lim [P~(1)] n. (77) 
n-q.~o 

As Pt(1) is positively regular, P~  has all colums equal and positive, e.g. can be 
written in the form 

p?o =pio~a r, pioo positive. (78) 

(73), (75), and (78) give 

P~(t) = ptoo(t)a T -t- O(e-~t), (79) 

where we have put  s = St( t )pi , .  (80) 

As P, (N  + v) = P,(v) [P,(1)] u, (81) 

and hence pt,c(z)a T = lim P~(N + "r) = Pt(T) P~ ~ (82) 
N--~oo 

the periodic distribution pie(t) is positive for all t. 



ARKIV FOR MATEMATIK. B d  5 nr 27 

In  a similar way one finds 

exp (R t t ) p~  =pt:r all t. (83) 

I t  should be pointed out tha t  except in the case when Q(t) is constant, exp Rt is 
in general not a stochastic matr ix  for t # 0,1,2 . . . .  We shall add some remarks rela- 
ted to this question at  the end of the section. 

(76) shows tha t  the probabil i ty of an unessential state goes to zero for large t. 
Asymptotical ly only the essential states are populated, and inside each of these 
groups we approach a positive periodic distribution ptcc(t), which is independent of 
the distribution for t = 0. However, the distribution between the g groups of essential 
states depends on the initial distribution. To see how the initial probabil i ty distribu- 
tion of the unessential states is divided between the groups of essential states we 
have to solve eq. (72). 

Substituting Pro(t) =P~(t) Cm(t) (84) 
we find from (72) 

d 
dt C~R(t) = Pi-l(O Q,R(t) PR(t); (85) C~(0) = O, 

fo or P~(t)  = Pt(t) p -  1@) Q~R(T) PR(~)dv- (86) 

Introducing (73) and (75) we can write (86) in the form 

P,,(t)  = St(t)P~' f l  S ;  l(r) Qtn(r)P,(r) dv 

f t - Pt ] St (7:) Qm(r) Pn(r) + Si(t) [exp Rt(t - r) oo - 1  dr. 
0 

(87) 

As PR(r) and exp R~(t - v) -P~* decrease exponentially for large r and t - v, respectively, 
whereas the other factors in the integrals are periodic and hence bounded, one 
finds tha t  the second integral in (87) tends exponentially to zero for large t, and the 
first one approaches a constant value P ~ .  This gives, with (78) and (80), 

P t r - ~  iR( )=pi.o(t)a P~R +O(e-~t), some 7 > 0 .  (88) 

We put  b T= T--~ a PiR. (89) 

b t is then a column vector with nR elements (nR is the number  of unessential states), 
which are non-negative: as a submatr ix  of the stochastic matr ix  P(t), Pro(t) must  
be non-negative for all t. 

Collecting the results (79), (88) and (89) we have shown that  P(t) goes exponentially 
towards the asymptot ic  form 

P~(t)  = I~ 
loo(t) a r 0 

pgoo(t)a T 

0 

(90) 
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(90) gives the asymptot ic  distr ibution p:c(t) from the distr ibution P0 at  t = 0  through 

p=(t) =P~C(t)p o. (91) 

(90) and (91) can also be rewri t ten in the following way. We express the initial 
distr ibution in terms of the component  vectors belonging to the groups of essential 
states and the group of unessential states: 

P o =  {=1P01 .... =~P0~,aRP0R}, (92) 

where P01 .... P0n are the normalized distributions inside each group, and cq, .~. :oR are 
non-negat ive numbers,  whose sum is one. 

Then we can write the asymptot ic  distr ibution in the form 

p~r (t) = {(al + ~n bT P0n )pl ~r (t) . . . .  (ag + ~R by p0n)Pg:r (t), 0}. (93) 

Final ly we make some comments  on the following problem, related to the question 
whether  expRi t  in (73) can be chosen to be a stochastic matr ix  for a rb i t ra ry  t even 
for non-constant  Q(t): 

W h a t  are the conditions on a stochastic matr ix  P in order t ha t  it can be taken as 
the transi t ion matr ix  (over a t ime interval  1, say) of a homogeneous Markov chain 
in continuous t, i.e. can be pu t  in the form 

P =expQ,  (94) 

where Q is real, has non-negat ive elements outside the diagonal  and fulfills arQ = 07 
Eviden t ly  P mus t  have a positive de terminant  and  positive diagonal elements. 

For  n = 2 these conditions are also sufficient. Namely,  if 

:)a~ (95) 

I a -a-b b 1 1-h%-~(1-e ) ~ ( 1 - e  -~ 
we , (96) 

a -a-b b 

and  it is no t  difficult to  verify tha t  every stochastic 2 • 2 matr ix  wi th  posit ive dia- 
gonal elements and positive de terminant  can be represented in this way  for some 
non-negat ive a, b. 

Bu t  for n > 2 these conditions are no t  sufficient. F rom (94) follows, with m chosen 
so tha t  Q + m E  has positive diagonal elements, t ha t  

P = e-"[E + (Q + mE) + �89 + mE) ~ +...] (97) 

This relation implies t ha t  in the normal  form of P corresponding to (69) (where we 
thus also, if necessary, subdivide PR in (67)) all submatrices in the diagonal mus t  
be positive. I n  particular,  if P is posit ively regular, it mus t  be positive. But  for 
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n > 2 it is easy to find a positively regular stochastic matr ix  with positive deter- 
minant  and positive diagonal and having an element equal to zero. Take n =3 ,  
Psi =0, and all other elements >0,  with the diagonal elements near to 1 to ensure 
]P[ >0.  Such a matr ix  can also be taken to be generated by  an inhomogeneous 
Markov chain in continuous time by  choosing 

-b(t) x a!t> 
Q(t )  = o x ) 

b(t) x 

(98) 

where a ( t )>0  for 0 < t < T ;  b(t)>0 for t>T; 
a(t)b(t) =0,  all t~>0 (these relations imply 

a(t)b(t')=O, t>~t'>~O). 
x denote non-zero elements. 

(99) 

P(t) is then evidently positively regular for t > T, but  a closer investigation of the 
series expression for P(t) obtained from (21) shows tha t  p~l(t) =0, all t >/0. 

IV. Asymptotic behaviour of  the Markovian process for large t 
in the time-perlodic case 

We shall now derive the asymptot ic  behaviour of G(x,t) for large t in the case 
where Q(t), A(t), and B(t). are periodic with period 1. As for the ordinary diffusion 
equation we expect tha t  the probabili ty diffuses towards infinity in x-space. This 
means tha t  we should s tudy P(t,p) for smaU p as t-->cr 

As A(t) and B(t) are diagonal matrices, P(t,p) decomposes in the same way as 
P(t), and we get equations analogous to (70)-(72). We first s tudy the equation cor- 
responding to (70), describing the behaviour inside a group of essential states. For 
simplicity we omit the index i: 

~p B(t)]P(t,p), P(O, p) = E. (100) ~P(t,p) = [Q(t) § ipA(t) - 1 2 

As for (70) we can write the solution in  the form 

P(t, p) = S(t,p) exp[R(p) t], (101) 

where S(t,p) is periodic and S(O,p)= E. 
We denote by  2(p) the eigenvalue of P(1,p) which takes the value one for p =0,  

and by  2~(p) the remaining eigenvalues. From continuity follows that  2(p) is well- 
defined and a simple eigenvalue for p small enough, as 2(0) = 1 is a simple eigenvalue. 
As an algebraic function of the matr ix  elements of P(1,p),  which are integral functions 
of p,2(p) is even an analytic function in a neighbourhood of p = 0  (cf. e.g. [8], Ch. 5, 
p. 125; this reference studies the case where the coefficients of the characteristic 
equation determining 2(p) are polynomials in  p, but  the proof applies also to the 
case where the coefficients are analytic functions in a neighbourhood of p =0).  Then 
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also ju(p)=ln2(p) (principal value) is analytic in a neighbourhood of p =0, and we 
have the expansion 

ln2(p) =/~(p) =/~'p + �89 + .... (102) 

convergent for p small enough. 
In analogy with (75) we get from (74), using A =P(1,p) and/(~t) =)J 

exp[R(p) t] - exp[/~(p) t].PCr (p) = 0(e-~t), small p. (lO3) 

If one looks a little closer at the way the polynomials Zkl of A in (74) are defined 
(see [5]), it is seen that  the matrix elements of Zkl are bounded if p varies in a bounded 
region of the p-plane. Since I)li(0) I < 1, we can always find a (~ > 0 such that  

Then the expression 

Re/~(p)>Reln)l~(p) for ]p[ ~<(~. (104) 

exp[ -/~(p)t] exp[R(p)t] - P ~  (p) (105) 

converges to zero as t - - ~ ,  uniformly in p for ]p] ~<(~. 
Exp[R(p)N] =[P(1,p)] N, N positive integer, is an integral function of p. P~C(p) 

must then be analytic for ]p] ~<5, because (105) shows that  it is the uniform limit 
of a sequence of analytic functions. I t  is also well known from the theory of functions 
that  in this case also all derivatives of the sequence of analytic functions converge 
uniformly to the corresponding derivatives of the limit function. Applied to (103), 
with t =N ,  this shows that  all derivatives of the left hand side with respect to p 
converge to 0 as t-->~, for p small enough. This fact will be used later on when we 
derive expressions for/~' and #". 

If  we put  p=iq, purely imaginary, in (100), it is seen that  P(t, iq) is real. Then 
2(iq) must stay real for small real q, as non-real eigenvalues of real matrices occur 
in complex conjugate pairs, and ~t(0) is a simple eigenvalue. This means that  in the 
expansion (102) # '  must be imaginary (or zero), and ~" real. We found in the be- 
ginning of Section I I I  that  the eigenvalues of P(t,p), p real, are bounded by 1 in 
modulus. Then/~" must be non-positive. We thus put  

/~'=im, /~" = - 2 D .  (106) 

Expressions for m and D in terms of P(t),.A(t), and B(t) will be derived below. We 
shall assume 

D >0; (107) 

this is true, e.g. if B(t) is not identically zero. 

We put  Pl =P]/2-~, (108) 

t = N + %  0 < ~ < 1 ,  ~fixed, Ninteger ,  (109) 

and study the limit as N--->cr of 
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PN(v, pl) = e-'m~'tP(t,p) = exp [ - �89 + 0(1/Vt)] S(v, pl[~) P~176 + 0(e-~t), 

which is obtained from (I01) and (103). 
Then for any Pl 

(110) 

lim PN(r, P0 = exp ( -  ~p~)p=(~)a ~, (111) 
N--~- ao 

where we have used (78) and (80). The convergence is even uniform in every bounded 
set in the p~-plane, especially in any finite interval of the real pl-axis. 

The probability density corresponding to-PN(~,PO, 

GN(Xl, Ty)= ~ fPN('g', pl) exp( -ipzxl)dpl, (112) 

where x 1 ~ ( x - mt) /[/ 2Dt, (113) 

is related to G(x, t) by (114) 

We now assume that  the quan t i tyb  defined in (54) (el. Theorem 4) is positive. 
As B(t) is periodic, b increases asz-mptotically proportional to t, and introducing Pl 
from (108) into (56) we find that  P~(v, Pz) are bounded uniformly in N on the entire 
real pi-axis by some Gaussian: 

I{P~(~,Pl)},kI<A exp (-:tp~), A and g > 0  independent of N. (115) 

Dividing the region of integration in (112) into two parts, Ipll < L  and [p,l>~L, 
respectively, and using (111) (which holds uniformly in ]Pll <L) and (115) (which 
shows that  the contribution from ]Pl] >~L is negligible, uniformly in N, for L large 
enough), combined with 

[ ! ~ 1 
exp ( - 21Ol- =J ~= exp ( - �89 iJalXi) dPl= (116) 

1 
we find ~-,oolim G N ( X l ,  "t') = ~-~exp ( - -  �89 r, (117) 

where the convergence is mfiform in x I. As all Gy(x~,r) are integral functions of x 1 
(el. Sect. II), this uniform convergence implies the uniform convergence of all deriva- 
tives to the derivatives of the right hand side of (117). 

Introducing G(x,t) with the help of (114), (117) can be written in a somewhat 
unpreeise way as 

G(x, exp ( - (x -  mO X V47tDt ~ -)p=(r)a , large t. (118) 
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In  a similar way the generalization of (72) to the case p 4 0 leads to 

lim PiR~(~, P I )  = exp ( 1 2 T - ~pl)pl~(~) bi, (119) 
N--~ oo 

1 ~ )pi~r ~, large t. (120) or Gia(x, t) ,,~ ~ t  exp ( - (x - mr)2\ bT 

Here we have kept  the index i to avoid confusion with FR(t,p) etc. Hence p~(v) in 
(118) and Pi~r in (119) are the same. 

(118) and (120) mean tha t  inside each group of essential states the distribution 
in x-space is asymptotical ly the same for all states and normal with mean value 
mt and variance 2Dt. 

The assumpt ion .b>0  enabled us to deduce the strong convergence (117) to the 
normal distribution, using elementary methods. I f  we drop this assumption, (117) 
is still valid in a weaker sense, as follows from a fundamental  theorem for sequences 
of characteristic functions (see e.g. [4] Ch. VII):  

I f  a sequence of characteristic functions {/~(p)} converges for all real p to a con- 
tinuous /(p) (which is then also a characteristic function), then the corresponding 
distribution functions {F,(x)} converge weakly to F(x), the distribution function 
corresponding to /(p). Weak convergence can be taken to mean tha t  F~(x)->F(x) 
in all continuity points of F(x). 

Applied to our case this theorem implies tha t  (117) is true if we take the limit 
after integrating both sides over some fixed interval in x 1. (118) and (120) should 
be interpreted correspondingly. 

Wha t  we have found concerning the asymptotic  convergence (in a strong or weak 
sense) of G(x,t) to a normal distribution carries over directly to the distribution 
p(x,t) corresponding to an arbi t rary initial distribution p(x,O), as one easily sees 
from (37). :No assumptions concerning the existence of moments  of order >~ 1 for 
p(x,0) are necessary. 

I t  remains to derive explicit expressions for m and D. We star t  from (103) for 
t = N ,  differentiate two times with respect to p, and put  p =0.  This gives 

(~P/~p) (N,O) = N # ' P  :r + (~P~C/~p)(0) +s, (121) 

(~*P/~p2)(N, O) = N # " P  r + N*/~'2P ~ + 2N#'(~P~C/~p)(O) + 0(1). (122) 

: and 0(1) denote quantities which vanish, or s tay bounded, respectively, as N--> ~ .  

As aTpr = 1, (cf. (78)). 

we find # , =  1 r lim ~ a (~P/~p)(N, 0)pr162 (123) 
N--C.C~Au 

1 T 2 2 /~" =limN_~ ~[a  (~ P/~p )(N, O)p:r - {ar(~P/~p)(N, 0)p~r (124) 

Equations for the derivatives of P occurring in (123) and (124)are obtained from 
(100) by  differentiating both sides with respect to p, cf. the remark a t  the begin- 
ning of Sect. I I :  
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~ [ar(~p/Sp)(t, 0)p~] = ~aTA($) S(t)poo, (125) 

~[aT(~2P/~p2)(t, 0)p~r = 2iaTA(t)(SP/~p)(t, O)p~ - aTB(t)S(t)p~. (126) 

Here we have used 

P(t)pcr = S(t) e~tp~ = S(t)poo = pr162 (t), 

of. eq. (83), and 

(127) 

(135) 
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aTQ(t) = 0. (128) 

Furthermore, as aT(~p]Sp)(t, O)p~ is a number, (125) shows that  

~[ar(SP/Sp)(t, 0)p~r ~ = 2iaTA(t) S(t)p:r ar(sP/~p)(t, O)p~. (129) 

As p ~ a r = P  ~, (126) and (129) give 

~[aT(~aP/~p2)(t, O)p~ -- {aT(OP/Sp)(t, 0)p~} ~] 

= -aTB(t)S(t)p~-2iaTA(t)[S(t)P~C-E](SP/~p)(t ,O)p~. (130) 

For (SP/~p)(t, O)p~ we have the equation 

~[(~P/@)(t, O)pr = Q(t)(~P/@(t, 0)pr162 + (t) P(t)por ( ) iA 1 3 1 

which is solved in the same way as (72), see (84)-(86): 

(SP/~p)(t, O)pr = iP(t) f t  ~ e-aTS-I(T) A(T) S(v)por dr. ( 132] 

Introducing (132) into (130), integrating (125) and (130) from 0 to N, and observ- 
ing that  

P~ = p:r aTp(t) = P ~  (133) 

we find the following expressions for m and D: 

m= arA(t)p~(t)dt, (134) 
0 

2D = aTB(t)p~(t) dt + 2 lim dtarA(t) S(t) 
N--.~ N 0 

• ftodT[en(t-v) - p~c]S-l(T) A(v)p~(T ). 
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In  (134) and the first term of (135) we have used the fact that  A(t), B(t), and 
poo(t) are periodic. These terms are the mean values of the diagonal elements of 
A(t) and B(t) over a period of the asymptot ic  distribution p:c(t). The second term 
in (135), which is the te rm we called the electrodiffusion component in Sect. I ,  is 
non-negative, because even if we put  B(t) =0,  D is non-negative, as we have shown. 

I f  A(t)=a(t)E, i.e. A(t) has all diagonal elements equal, we get in (130) 

aTA(t) [ S(t) P ~ -- E] = a(t) [ar S(t) P :r - a n] = O, (136) 

i.e. the second term in (135) gives no contribution to D in this case. 
We shall also give the somewhat simplified forms of m and D tha t  are'Vobtained 

if Q(t)=Q is constant,  and hence S(t)=E,  R=Q.  A(t) and B(t) have the Fourier 
expansions 

A(t) ~ ~ A,e i2~'t, 

B(t) ~ ~ B~e t2:t~t, (137) -co 
and for e ot we can write, according to (74), 

s m/:-I 
e ~  + ~ ~ t~e-~ktZk.~+l. (138) 

k=l g~O 
Here ack, which are equal to minus the non-zero eigenvalues of Q, have positive real 
parts.  

Using (137) and (138) in (134) and (135) we get after some straightforward calcula- 
tions 

m = aTAoP~o, (139) 

2 D = a r B o p ~ + 2  ~ ~ar(A-~Zkg+IA,)P~ . . . .  k,, (~k+ i2~v) "+1" (140) 

V. A p p l i c a t i o n  to  e l e c t r o d i f f u s i o n .  G e n e r a l i z a t i o n s  

We now apply our general theory to the electrodiffusion equations (1), where 

Q=(--]~I]r -- ]r ']r ] A(~)=g(t)(;1 ~2), .B(~): 2 (0n I 0D2). 

We assume k 1 and k S positive, and put  

k = k 1 + k S. 

As Q(t) is constant, P(t) is easy to compute, cf. (96): 
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p( t )=eo t= l ( k2  + kl e-kt k2(1 -  e-kt)t, 

k\kl(1 - e-kt) k 1 + k2e TM ] 

(141) 

(142) 

(143)  
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which gives p~ =k (k2 k2t, p~= {k2/k, kJk }. (144) 

\kl kl/ 

Given initial normalized concentrations {c~(x, 0)}, we saw in Sect. I I  tha t  {c~(x, t)} 
are for t > 0 integral functions of x, provided D 1 and D 2 are positive. {el(x, t)} have 
moments  up to the same order as {c~(x, 0)). 

We now assume g(t) periodic, period 2zt/w, with the Fourier expansion 

g(t),,~ ~ g~e ~ ,  g_~=g*. (145)  

As we assumed, for simplicity, a period 1 in Sect. IV, we must  normalize the t ime 
variable in (1), putt ing t ' =  r before we apply the formulas derived in Sect. IV. 

Asymptotical ly we have the behaviour 

{~l(x, t), ~(x, ~)) ~ , ~  exp( (x-  .~t) ~] {~/k, kl/k), (146) 
V4~D~ \ YD~ ] 

1 
where m = ]c (ul k2 + u2 kl) 90, (147) 

1 2klk2[ 2 ~r levi 2 ] 
D = ~ (D 1 k 2 A- D~ kl) 2[_ (u I _ us ) _~_  [g0 ~- 2v=~ 11 + (wv)2/k 2 " 

(148) 

The results (146)-(148) are equivalent to those obtained by  Thedden, using a two- 
state random walk model [3]. I t  should be remarked tha t  our continuity requirement 
on the function g(t) is stronger than the condition of integrability assumed by  Thedden. 

Finally we would like to mention some possible, generalizations of the problem 
studied in this paper. 

The generalization to the case where the x-space is m-dimensional, x = @1 ..... xm), 
is almost trivial, Instead of (8) we obtain 

~G(x, t)= [Q(t)- A~(t)~ + �89 G(x,t), (149) 

(summation from 1 to m over repeated indices) where e.g., cf. (R 4), 

t~ 1 / .  
B (3) =limT- [x~xkQ(x, ~+A~;  0, T)dx 1 .... dxm. 

I .XT  J 

(150) 

All Ai(t) and B~k(t) are diagonal matrices: ~l~ositiv~ty (or non-negativity) of the 
diagonal elements of B(t) is generalized to positive.definiteness (or positive semi- 
definiteness) of the diagonal elements of pip~Bik(t) as quadratic forms in Pt. The 
analysis in Sect. I I  is modified in an obvious way, whereas I I I  is of course unchanged. 
Corresponding to the results of IV we find inside each group of essential states an-  
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asymptot ic  approach to a m-dimensional normal distribution, determined by  m 
first order moments  m~t and �89 + 1) second order central moments  2D~kt(Di~ = Dki ). 
m~ and D~k are determined by  formulas obtained from (134) and (135) by  proper 
indexing of m, D, A(t), and B(t) in these formulas. In  the last term in (135) we have 
to form half the sum of the expressions with A t(t)... Ak(T) and Ak(t)... A~(T). 

Probably  less trivial is the generalization to the case n - c o ,  i.e. when we have a 
countably infinite number  of discrete states. We shall not consider this case here. 
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