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The Frobenius-Nirenberg theorem 

By LARS HORMANDER 

The extension of the classical Frobenius theorem given by :Nirenberg [5], 
combined with the Poincard lemma for the operators d and 0, gives conditions 
on a first order system of differential equations 

.Pju=ls, j = ] ,  ...,~v, (1) 

for one unknown, which guarantee the existence of local solutions when [ =  
(/1 . . . .  , [N) satisfies the obvious integrability conditions. In fact, using the classical 
Frobenius theorem and the theorem of Newlander and Nirenberg [4], Nirenberg 
determined when it is possible to reduce (1) by  a change of variables to a 
system of equations where each Pj is either O/Ox j or a/OxJ+iO/Ox j+l for some j. 
Now Kohn [3] has given a proof of the Newlander-Nirenberg theorem which 
is based on L ~ estimates. We shah show here that  a modified form of his 
approach leads to a direct proof of existence theorems for the system of equa- 
tions (1). These results are global and they require only very light smoothness 
assumptions on the coefficients. 

Le Pj, j =  1 . . . . .  N, be first order differential operators in an open set ~ c R  n, 

n 

P~= y. a~ ~/~x~ + a?, i = a, ..., N.  
k = l  

(No additional difficulty arises if ~ is a manifold and instead of the operators 
(P1 . . . .  , PN) we have  a first order differential operator P between two complex 
vector bundles over ~,  with fibers of dimension 1 and N respectively. However, 
this more general framework would make the notations somewhat heavier.) We 
denote the principal parts by Ps, 

n 

ps=~a~O/Oxk, 
k = l  

and we write ~j for the operator obtained by  complex conjugation of the coef- 
ficients. 

Since equations of the form (1) allow us to obtain additional first order 
equations by  forming brackets, 

[P. P~]u= (PjP~- P~Pj)u= P , s  P~/, 
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it  is natural  to assume tha t  this procedure has already been exhausted. 
precisely, we require tha t  

(i) a~ECl(~-~) i/ k=#O, and a~EO(~); 

(ii) For all ~ and k there exist /unction~ c~,EC(~) such that 

N 

[P,,P~l=P,p~-P~P~=yd, P, ( i . ~ = 1  . . . . .  N). 
5=1 

More 

If u,/1 . . . . .  [ivEL~oc(~) and (1) is satisfied, we must have 

N 

P,l,-P,b-~Z,d,t, ( j , k = ~  . . . . .  ~v). (2) 

(Note tha t  the product  of a C 1 function and the derivative of a function in L 9 
is well defined in the distribution sense.) In  fact, (2) is obvious if u EC ~ and 
follows in general by  regularization and application of Friedrichs' lemma (see 
e.g. HSrmander [2]). 

Following Nirenberg [5] we also introduce the hypothesis 

(iii) There exist /unctions d]~ and e~ in C l ( ~ )  ~Ch tha~ 

N iv 

I=1 I=1 

The coefficients d~k and e~ need not  be uniquely determined. In  fact, ma- 
trices ( ~ )  and (e~) may  be added to them provided tha t  

iv iv 

where the last equality is a definition. Both Pm and Pm are then in the linear 
space spanned by  the operators Pl . . . . .  10N. Hence the operators with real coef- 
ficients (pj~+ ~jk)/2 and (pj~-~j~)/2 i are also in the span of these operators. 
Thus p~ is in the space spanned by  the real operators which are linear com- 
binations of Pl . . . . .  PN, which proves that  if ~ E C ~ (~) then p j ~  = 0 at  every 
point in ~ where 

iv iv N 

Also note tha t  since 

[pj, ~ ]  + [p~, ~j] = o, 

N N 

we have ~ (d]~- ~i,)p, = ~ ( e k -  ~,)~,, 
l= l  l ~ l  

N N 

d ! -! so that  z~l J~ P~q)=~l ekjpzq) 
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if (3) is valid. In the following definition no ambiguity is therefore caused by 
the indeterminacy of the coefficients d]k and  e~k, and the form (4) introduced 
there is hermitian symmetric. 

Definition. A real valued /unction q~ E C ~ (~) is said to be convex with respect 
to a system (1) satis/ying (i) and (iii), provided that at every point in s where (3) 
is /ulfiUed we have 

N N N N 

Re ~ (pj~kq~+~ e z 
J ,  k ~ l  / = 1  " =  = 

Here c shall have a positive lower bound on every compact subset o/ ~.  

Example 1. If  Pj=~/~xj,  j =  1 . . . . .  n, the convexity condition means that  the 
only critical points of ~ are non-degenerate minimum points. (Theorem 1 below 
therefore gives an existence theorem for this system in s if and only if every 
component of s is homeomorphie to an open ball.) 

Example 2. If n = 2v and R = is identified with C', the operators Pj can be 
chosen as ~ / ~ j  where zj are the complex coordinates. Then the convexity means 
tha t  ~0 is strictly plurisubharmonic at  the critical points and that  the level sur- 
faces of ~ are strictly pseudoeonvex elsewhere. (Theorem 1 below therefore gives 
an existence theorem for this system in s if and only if s is a domain of 
holomorphy.) 

To state our global existence theorem we need a final hypothesis: 

(iv) In  a neighborhood o/ any point in the complement with respect to s o/ the 
closure o/ the set where (3) is valid one can choose /unctions b z . . . . .  bN E C 1 so that 

N b ~f=z bjpj is real and ~j=l jpsq~#-O in the whole neighborhood. 

Note that  (iv) is valid if the dimension of the space of (b 1 . . . . .  b~) E C N such 
that  ~l~bjpj has real coefficients at  the point x Es is independent of x. 

Theorem 1. Let the hypotheses (i), (ii), (iii) be /ul/illed, and assume that there 
is a real valued /unction q~ E C~(s satisfying (iv) such that q~ is convex with 
respect to the system (1) and 

s = (x; x e s ~(x) < r }  

is relatively compact in ~ /or every 7 < supa q. For all /j E I~o~ (s j = 1 . . . . .  N, 
which satis/y the compatibility conditions (2), the equations (1) then have a solu- 
tion u e L2or (s 

The hypotheses concerning q can be stated in a seemingly stronger form. 

L e m m a  1. The /unction q~ in Theorem 1 and the coe//icients in ( i i i )can be 
modified so that the inequality (4) is valid /or all / at all points in ~,  with a 
positive continuous /unction c, and the set s is relatively compact in s /or every 
real number ~. 
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Proo/. First  note tha t  a function ~0 which is convex with respect to (1) can- 
not have a local max imum in ~ .  Hence ~(x)<  F = supa ~0 for every x ~ ~ .  Now 
replace ~0 by  ~(~0) where 2: is a convex, increasing function ~ C ~ ( -  0% F). Then 
the form (4) is replaced by  

~ , k = l  /=1 = 

From this and an obvious compactness argument  we conclude tha t  if X" ( r  (~) 
is larger than  a certain increasing function of ~ on [min ~, F), then (4) holds 
for all ~ a t  all points in a neighborhood ~o of the closure in ~ of the set where 
(3) is valid, if ~ is replaced by  g(r We can choose Z so tha t  g(~)-->r when 

--> r .  Now we can use a part i t ion of uni ty  to construct functions b I . . . . .  bN E C1(~) 
such tha t  ~.~bjp~ has real coefficients and ~b~p~q~>~O with strict inequality 
in ~ N ~ m. In  fact, the local existence of such functions b 1 . . . . .  bN is guaranteed 
by  condition (iv). We can add to d]~ and ej~ matrices 2bl0~ and ~ $ ~  re- 
spectively, where 0~ is the Kronecker 0 and 0 ~ < ~ C  ~. I f  2 is chosen larger 
than  some continuous function of r and ~ is replaced by  g(~0), the inequality 
(4) will be valid without  restriction. 

Remark. I t  may  seem tha t  we could as well have required from the beginning 
tha t  (4) shall hold in ~ for a l l / .  However,  such an assumption would not  have 
been independent of the choice of e~k and would not  have been invar iant  under 
non-singular linear transformations of the operators Pl . . . . .  PN whereas the as- 
sumptions we have made are invariant  under such operations. This is of course 
particularly important  if the theorem is extended to bundles as indicated above. 

The proof of Theorem 1 will a t  the same t ime give a local existence theorem. 

Theorem 2. Let (i), (ii), (iii) be satisfied in a neigborhood o[ 0 and assume tha~ 
the vectors 

(a41(0) . . . . .  a•(0)), i = 1 . . . . .  N, 

are linearly independent, that is, that the operators pj, ~ = 1 . . . . .  N, are linearly in- 
dependent at O. I /  ~ is the batl {x; Ix I< O} and O is su//iciently small, the equa- 
tions (1) have a solution u e L~oc (~) /or all /j e L[oo (~) satis/ying (2). 

Lemma 2. The hypotheses o/ Theorem 2 imply that /or small O there is a/unc- 
tion q~ e C ~ (~) with the properties listed in Lemma 1. 

Proo/. The form (4) with c#(x)=lx] ~ reduces to 

i at gg~O~ 
y = l  L k = l  u = l  ]ffil 

which is positive definite since by  h y p o t h e s i s / = 0  if ~.f=la~/~=O, ~= 1 . . . .  , n, at 
x = 0. I f  0 is sufficiently small, the form (4) is therefore uniformly positive definite 
in ~ when ~ ( x ) = l x l  z. Hence the function ~ ( x ) = l / ( O Z - l x l  2) has all required 
properties, for ~ ( t )= (0 z -  t) -1 is convex and increasing when t < 0 z, and ~(t)--> co 
when t --> O z. 
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In  proving both Theorem 1 and Theorem 2 we now have available a func- 
tion 9~ with the properties listed in Lemma 1, and i t  remains to prove tha t  
the existence of such a function together with conditions (i), (ii), (iii) leads to 
the existence theorems we want.  In  the proof we use the following elementary 
fact  from functional analysis. 

Lemma 3. Let T be a linear closed densely defined operator /rom one Hilbert 
space H 1 to another 112, and let F be a closed subspace o/ H 2 containing the range 
t~r o/ T. Then F = R r  i/ and only i/ 

11111.,<ti lT*Il l . , ,  1 6 n (5) 

We shall apply this lemma with H 1 = L ~ (~, O"1) , the space of functions which 
are square integrable in ~ with respect to the measure (rtdx, where dx denotes 
the Lebesgue measure and the density o" 1 will be chosen later. We take H~ as 
the direct sum of N copies of L ~ (~, ~ )  and set 

�9 T u  -~ ( P 1  u . . . . .  P N  u ) .  

Thus u E Dr  if u E L2(~, if1) and Pju  defined in the distribution sense belongs 
to Lz(~ ,a , )  for j = l  . . . . .  N.  For  suitable densities a 1 and as we shall prove 
tha t  Rr  consists of all [ E H z such tha t  (2) is fulfilled. We therefore introduce 

a third Halbert space H a which is the direct sum of ( 2  N )  copies of L2(~,aa)  

and define an operator S from H z to H a by  

N 

8I= {PJl. - P lJ - 
l=1 

the precise definition being analogous to tha t  of T. Then we have ST  = 0 so 
Rr  is contained in the null space Ns of S. We wish to prove tha t  RT = Ns, 
tha t  is, tha t  (5) is valid with F = N z .  To do so it  is sufficient to prove t ha t  

II I II , <-- V (II T* I IIi, + II SIll"-.), 16 n Dr., (6) 

and this we shall do when the densities are conveniently chosen. Moreover, we 
shall prove tha t  the densities can be chosen so tha t  (6) is valid and any given 
/ with components in L~oo (~) belongs to H~. This will prove the theorems. 

The operators T and S have been defined as maximal  differential operators, 
so Ds fl Dr.  is the intersection of the minimal domain of one differential operator 
with the maximal  domain of another. However, we prefer to prove estimates 
involving only elements /EH~ with components in C~ (~). This will suffice if 
al, q2, as are chosen so tha t  the distinction between minimal and maximal  dif- 
ferential operators disappears�9 

Let  us therefore choose a sequence ~ E C~(~)  so tha t  0 ~<~, ~ 1 for every 
and ~ = 1 on any  compact  subset of ~ when v is large. We can choose aj E C ~ (~) 
so tha t  at > 0 and 

N 

~ a j + l ] p ~ , [ 2 < a j ( j = l , 2 ;  v - l , 2  . . . .  ). (7) 
k = l  
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I n  fact ,  on a n y  compac t  subset  of ~ this means  only  a f ini te  n u m b e r  of po- 
sit ive bounds  for the  quot ient  0.t+1/0.r Since 

T ( r  b, u) - ~/~, T, tt = (Pl ~} . . . . . .  Pu rlv) u, 

N 

we have  v/,T* 1 - T* (~/,/) = 0.z 0.i-1 ~ / k  Pk v/,, 
1 

and  Cauchy-Sehwarz '  inequal i ty  gives in view of (7) 

N 

I~, T* I -  T* 01, /) I2 0.1< 0.2 ~ I /~ I ~. 

Hence  we ob ta in  b y  domina t ed  convergence t h a t  

II~.T*I-T*(,7./)II.,~O when v--->oo. (8) 

Similar ly  we can p rove  t h a t  

IIs(,7,/)-,7,s/11,,.~0 when v - > o o .  (9) 

I f  / E Dr .  N Ds, i t  follows t h a t  ~/,{ --> [, S(~?,/) -+ S / a n d  T* (~/,/) --> T* f when  v -+ c~, 
t h a t  is, ~, f - -> /  in the  g raph  norm.  B u t  Fr iedr ichs '  l e m m a  (see e.g. H 6 r m a n d e r  
[2]) shows t h a t  ~ , /  can be a p p r o x i m a t e d  in the  g raph  no rm b y  e lements  wi th  
components  in C~ (~).  Hence  we have  p roved  

Lemma 4. I /  {7) holds, it ]oUows that elements in H 2 with components belonging 
to C~ (~) are dense in Dr. N Ds in the graph norm 

1-+ lllll,,, + II T*III.~+ II ~111.,. 

Proo/ o/ Theorems 1 and 2. Le t  0.0, ~. = 1, 2, 3, be some fixed posi t ive C a func- 
t ions sat isfying (7), and  let  ~0EC~(~) have  the  proper t ies  l isted in L e m m a  1. 
I f  we set  

0. t = 0.~ e-x(q ') ,  

where g is a convex  increasing funct ion in C 2 (R), i t  is clear t h a t  (7) i s  fulfilled, 
and  we shall show t h a t  (6) is va l id  if Z is sufficiently rap id ly  increasing. We 
m a y  assume t h a t  0.0 0.0= (0.~)z, which implies t h a t  0.10.3 = 0.~- The  adjo in t  of P j  
wi th  respect  to  the  usual  L z n o r m  can be wr i t t en  - ~ j +  cj where c t is a con- 
t inuous function.  I f  ]t fi C~ (~),  which we assume f rom now on, we ob ta in  

N 

T* t= 0.; 1 Y (-~j+ cj)(b0.# 
1=1 

I f  we int roduce the  definit ion of 0.j and  write ~ = g ( ~ ) ,  i t  follows t h a t  

Yl I A1 = ~ ~,(be-') e'0.~ 
1 
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where the left-hand side is a definition. Here and in what follows iV(f)denotes 
an error term for which there is an estimate of the form 

iV(/) .< fl/l ,C(x) e,d , 

where C is continuous in ~ and independent of / and of ~. I t  is also clear tha t  

A,= 5 ~'lP,s176 II,~/lik+iV(/). 
l~ I<k~N d 

With the notation 

N ff =,, p,/ l 2 e-" 

we have 

We shall integrate by  parts here, moving all differentiations to the left. This 
gives if we use obvious estimates for all but  the main terms 

N 

Re 

~< A, + A, + (A,N(/)) �89 + (B, N(/)) t. 

The paranthesis on the left can be simplified to 

e- ,  (~,pj s  ~ / ,  + (pj ~ ~o)s 

= e - "  4~ ~/~ - dI~ p~ s + (p, N V,) s �9 
I I = 1  

By another integration by  parts in the terms involving ~,[~, it  follows that  

I f  we introduce tha t  ~�89 ;~(~), use the fact tha t  g is convex, and make obvious 
estimates like (B~N(t)) <~B~ + iV(I), we obtain 

t , k - 1  i 
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in view of the estimates initially given for A 1 and .4 2. But  the quadratic form 
in the integrand can be estimated from below by c I]12 where c is positive and 
continuous in ~.  If  we choose % so rapidly increasing tha t  

~(' (~)c4>~ 3(4 + C), (1o) 

which is possible since ~ r  is relatively compact in ~ for every 7, it  follows tha t  

IIII1#,< l IT*I l l#,+ IIslll#,, leD,,, n #~. 

Here we have also used Lemma 4. Since any given / with components in 
/~oc(~) belongs to H 2 for some choice of %(~) satisfying (10), the proof of the 
theorem is complete. 

Remark. The smoothness assumptions made above are slightly more restric- 
tive than necessary. In  fact, i t  is everywhere sufficient to require measurabil- 
i ty  and local boundedness instead of continuity, and local Lipschitz continuity 
instead of continuous differentiability. In the definition one must only strengthen 
the requirement then by  assuming (4) in a neighborhood of the closure of the 
set of points where (3) is valid. 

The convexity conditions considered here agree in the case N = 1 with the 
first order case of those introduced in HSrmander [1], Chapter VIII .  At the 
International Colloquium on Differential Analysis in Bombay, January  1964, 
J.  Kohn has also indicated some convexity conditions for systems which seem 
close to the one used here. 
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