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On the existence of  solutions of  differential equations 

with constant coefficients 

By MATS NEYMARK 

1. Introduction 

= (D ( -  Let P 

be a l inear part ia l  di f ferent ial  operator in R" w i th  constant complex coefficients a~ 
(~ is a mul t i index (~1 . . . . .  ~.) and I ~ I = Z~) .  Consider the equation 

pu=l (1.]) 
in an open subset ~ of Rn. Malgrange [3] has given a necessary and sufficient con- 
dition or ~ for the existence of solutions u of (1.1) for every distribution ] with 
finite order in ~ ,  if the solution u shall also be a distribution of finite order in ~ .  
H6rmander  [1] has found a corresponding condition for the general case, when ] 
and u m a y  be arbi t rary  distributions in ~.  This paper  deals with the problem of 
finding necessary or sufficient conditions for the existence of solutions of (1.1), 
when / and the solution u are supposed to be distributions in ~ with finite order 
on certain given subsets of ~ .  In  particular we should obtain H6rmander ' s  condi- 
tion, when these subsets are compact,  and Malgrange's condition, when they coin- 
cide with ~ .  However, the results are rather  incomplete, unless we also require 
tha t  the order of the solution u shall depend on the order of / in a certain sense. 
The main par t  of the paper  is therefore concerned with this restricted case. 

I wish to thank m y  teacher, Professor HSrmander,  for his valuable help and 
advice during m y  work on this problem. 

2. Preliminaries 

Ck(~) shall be the space of complex-valued functions in ~ with continuous deri- 
vatives of order ~<k ( k = 0 ,  1 . . . .  or + oo). I t  is a Fr~chet space, if the topology is 
defined by  all semi-norms/-->supK I D~/I, where I ~ I ~< b and K is an arbi t rary  eom- 

n pact  subset of ~ .  I f  S is a subset of R , then C~ (S) shall be the space of functions 
q~ E C~(R ~) with compact  support  contained in S. 

We shall consider distributions in ~ ,  which are continuous linear forms on the 
spaces in the following definition. 

433 



MATS NEYMARK, Solutions of differential equations with constant coefficients 

Definition 2.1. Suppose that A = (A~)~ is a non-decreasing sequence o/relatively 
dosed subsets o/ ~ such that every compact subset o/ f~ is contained in some A~. I[ 
M = (M~)~ is a non-decreasing sequence of integers >1 O, then I)M(f~, A) shall denote 
the space C~~ equipped with the topology that is de/ined by all semi-norms p o/the 
/orm 

p(~o) = sup sup e~(x)]D~q~(x)I, q e C~(~), (2.1) 

where every ~ is a non-negative/unction in ~,  bounded on every compact subset o / ~ ,  
and where ~ = 0 in A~, i / I  o~] > Mk. 

~)r(~,  A) shall denote the space C~~ with the topology that is defined by all semi. 
norms p, which satis/y the above conditions/or some sequence M. 

I f  [ E/)M (~,  A), t hen  [ is a d is t r ibut ion in ~ wi th  order  ~< M~ in A~ for  every  k. 
( '  denotes  the  topological  dual space.) The  converse of this impl icat ion is no t  a lways 
true,  b u t  we shah p rove  a somewha t  weaker  s t a tement :  

L e m m a  2.2. With A and M given as in De/inition 2.1 suppose that / is a distribu- 
tion in E2, which has order <~ Mk in an open neighbourhood E2k o /A~/or  every k. Then 
l ~ O'~(~, A). 

Proo]. We choose a sequence (Kj)~ of compac t  subsets  of E2 such t h a t  K j Z  SE2 
when  j ->oo .  [If  (Sk)~ is a sequence of subsets  of a set  S c R  n, we wri te  "S~,z  , z S  
when k--> co"  to  express  t h a t  ~k c Sk+l~ in the  relat ive topology  on S for every  k 
and  t h a t  U ~ Sk = S.] 

We  can find funct ions gjz E C~((Kj\Kj_2) N (E2z\Al-1)), j, 1 = 1, 2 . . . . .  such t h a t  
7.j.zZjz = 1 in E2 (par t i t ion of the  uni ty ,  see [4], Chap. I ,  Thdor~me I I ) .  Here  we 
have  set  K-1  = K 0 = Ao= ~. For  every  compac t  K c E2 we have  Zjz = 0 in K except  
for a finite n u m b e r  of indices. I t  follows t h a t  

I1(r I = I 7J.~/(ZJz~) I ~< ~zCjz  sup sup I D P ( X ~ ) ,  q0 6 C~r 
' i P l ~ <  ..v. ~ ~: 

with sui table  cons tants  Cjz, because gjz~ E C~(E2z) and  / has  order  ~< Ml in E2~. l~e- 
pea t ed  use of Leibniz '  fo rmula  for different ia t ion of a p roduc t  and  the  inequal i ty  
~.~ a, ~ sup, 2"a, for  a,  >/O then  gives the  es t imate  

I1( )1 < sup sup I I, e 
J. l .p.~ x 

where 9J,p~ is a cons tan t  t imes  I Da-~g~, l, if I fl I ~< M, and  a ~< fl, and  else identical ly 
zero. The  es t imate  can be wr i t t en  

I t( )l < sup sup e-ID~tP l, ~ e (2.2) 

where ~ = supj.~.p ~oj~p~ is a cont inuous non-nega t ive  funct ion in ~ for every  ~, be- 
cause on every  compac t  subset  of ~ the  s u p r e m u m  in the  definit ion of ~ need 
only be t aken  over  a finite n u m b e r  of indices. I f  I ~ ] > M~, I fl I ~< M~ and  ~ ~< fl, t h e n  
~ j ~  = 0 in A~, since k ~< 1 - 1 and  ~r = 0 in a ne ighbourhood  of A~_~. Hence  ~ = 0 
in A~, if I a] > M~, and  the  r igh t -hand  side of (2.2) defines a cont inuous semi-norm 
on /)M(~, A). This p roves  t h a t  / 6 ~O~(~, A).  

Ev iden t ly  O~(~ ,  A ) =  U M/)M(~,  A). We  Shall consider two par t icu lar  cases: 
I f  all A~ are compac t  subsets  of ~ ,  we shall wri te  ~0(f2) ins tead of O~(~,A).  (We 
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observe tha t  we obtain the same topology with every such A.) The dual space 
]0 '(~) is then the space of all distributions in ~ .  

When Ak----~ for all /c, we shall write ]OF(~) instead of ]OF(~, A). We observe 
tha t  ]0~(~) is the space of distributions of finite order in ~ .  

For u E ]0 '(~) the support  of u in ~ is denoted by  supp u. I f  S is a subset of R ~, 
the space of u E ]0'(R'),  which have compact  supports contained in S, shall be de- 
noted by  ~'(S). 

Similarly the singular support  of u E O ' (~ )  is writ ten sing supp u, tha t  is, sing supp u 
is the complement in ~ of the largest open subset ~ '  of ~ such tha t  u E C oo(~,). 

For every u E ~) (~)  the distribution Pu in ~ is defined by  (Pu)(q~)= u(/sqg), 
~v E C~(s where t5 is the adjoint operator of P,  tha t  i s /5  = ~l~l<m a~( -- 1)~ID~. 

When t is a real number,  ~(o shah be the space of temperate  distributions u in 
/ ~  such tha t  the Fourier transform ~ E L~~162 ~) and 

ilull,,)= ((2=)=f (1 + ,  ~[2)~]~(~),2d~)�89 < + o o  

~/(t) is a Hflbert  space with the norm u-> H u [[(t). We shah also use the space ~I~(G) 
of distributions u in ~ such tha t  ~0u E 7/(o for every q0 E Cff(~). See [2] Chapters I 
and I I .  Here we mention tha t  C~(R n) c ~/(p) for every non-negative integer p. 
Conversely we have 

Lemma 2.3 (Sobolev). I / u  E O'(~)  and D~u E ~t~~ (~) /or [~]<<.p, where p is an in- 
teger >>-0. then uECr(~)), when r is an integer such that O<<.r <t  + p - n / 2 .  

A proof of this lemma is implicitly contained in the proof of Lemma 3.6.1 in [2]. 

3. A sufficient condit ion 1 

A ~ In  this and the following sections let A = ( k)l be a sequence of relatively closed 
subsets of ~2 such tha t  A k f  Z~2 when k-->oo (for this notat ion see the proof of 
Lemma 2.2). Then the following theorem gives a sufficient condition for the exist- 
ence of a solution uETD'~(f2, A) of the eqation P u = / f o r  e v e r y / E ~ ) ~ ( ~ , A ) .  This 
condition, however, also implies tha t  u can be chosen in ~)~(~, A), if [ E/)M(f2, A) 
for some M, N depending only on M. 

Theorem 3.1. Suppose tha t  

(a) ~ is P-convex, that is, given a compact K c ~ there is a compact K '  c ~ such 
that 

I~ E ~' (~), supp Pl~ C K =~ supp l~ c K', 

(b) to every integer k > 0 there is an integer l > 0 such that to every integer j > 0 and 
to every integer r >10 there is an integer s >~ 0 such that 

q~ E C~ E Cs(C Ak) ~ r E Cr(C Az). 

1 After the manuscript was written I found that W. S|owikowski has obtained conditions for 
the solvability of linear equations in LF-spaees (Bull. Am. Math. Soc. 69: 6. 832~834 (1963)). 
They seem to be closely connected with the conditions obtained in this and the following sec- 
tion. However, his proofs have not been available to me and I have not been able to determine 
to which extent his results can be applied here. 
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(Here and in the sequel C denotes complement in ~.) Then given a non-decreasing se- 
M ~ quence M = ( ~)~ o/integers >10 there is another such sequence N = (N~)~, /or which 

the mapping P: t)M(~, A) - ->~(~ ,A)  has a continuous inverse, which implies that 
PD'~(~, A) ~ OM(~, A). 

First  we deduce a more convenient  condit ion f rom (b). 

Lemma 3.2. Suppose that (b) in Theorem 3.1 is satisfied. Then given a non-decreas- 
r ~ s ing sequence ( k)o of integers >I 0 there is another such sequence ( k)o , /or which 

/xE~'(~),P/aEC'~(CAk),k=O, 1 . . . . .  =~/aECr~(CAk),k=O, 1,..., (3.1) 

where A o = 4. 

Proo/. For  every k > 0  we choose l=lk according to  (b) and  set A'k =Az~. We 
can assume tha t  (Ik) is str ict ly increasing. Wi th  s o = r~,-1 + n + 1 we can then  suc- 
cessively choose integers s~ so t h a t  s o ~< s 1 ~< ... and 

~e~o(A'k+2),Pq~ECSk(CA~)=~qJECR~(CA'k), k =  1,2 . . . . .  (3.2) 

where Rk = max  (r~k+l-1, s~-i + m). 
Assume tha t  /~EE ' (~ )  and tha t  P/~EC~(CAk) for k=O, 1 . . . . .  Now / z = E ~ P ~ ,  

if E is a fundamenta l  solution of ~5 ( *  denotes  convolution).  E can be chosen as a 
distr ibution of order  ~<n+ 1 in R" ([2], Theorem 3.1.1). Hence it follows t h a t  
/~ fi C~k(R n) for k < ll ,  because rk + n + 1 ~< s o for these k (see the  remark  after  Th~o- 
r~me X I  in [4], Chap. VI).  Assume t h a t  IzEC~(~A'k) for some k > l  and  choose 
ZEC~(A'k+I) with Z =  1 in a ne ighbourhood of A~ fl supp u. I t  follows t h a t  ~P(Xg) E 
C~-~(~ Ak-1), because gg  E C'~-~+~(C Ak) and P(gu)  = P u  in a neighbourhood of A~. 
Hence (3.2) gives t h a t  Zg E CR~-~(CA~_I), which implies t h a t  g E CRk-I(CA'~_~), since 
p e Cn~-~(C A~) and g/z = p, in a neighbourhood of A~. I f  we observe t h a t  supp # ~ A~ 
and therefore /xeC~176 for some k, we can now use induct ion on decreasing k 
to conclude t h a t  /~eCn~(~A'D for k = l , 2  . . . . .  The proof is complete,  because 
r~ <r~+~_l <<.R~ and  CAt~CA'~, if l~ <~l <l~+l. 

Proo/ o/ Theorem 3.1. ~ is one-to-one on ~ ' (R  ~) so the mapping  P :  OM(~, A)--> 
~ ( ~ ,  A) has always an inverse. Cont inui ty  of the inverse means t h a t  for every  
continuous semi-norm p on OM(~, A) there is a continuous semi-norm q on ~ ( ~ ,  A) 
such t h a t  

p(q~)<<.q(Pq~), q~C~~ (3.3) 

I f  we have proved this and if / e  OM(~, A), we can use the  H a h n - B a n a e h  theo- 
rem to extend the  linear form Pq-+ / (q ) ,  ~ fi C~(~), to  a continuous linear form u 
on ~ ( ~ ,  A), t h a t  is, u ~ O~(~ ,  A) and (Pu) (q) = u(15~) = / (~) ,  q fi C~(~) .  Therefore 
it remains to  prove the cont inui ty  of the inverse of P :  OM(~, A) -+O~(~ ,  A) with a 
suitable choice of N. 

Given M we set r~ = M~+~, k = 0, 1 . . . . .  and  we choose a non-decreasing sequence 
8 o o  ( ~)0 of integers ~>0 so tha t  (3.1) is valid, which is possible according to Lemma 

3.2. We now define N by  N~ = s~_~ + 1, k = 1, 2, . . . .  
Le t  p be a cont inuous semi-norm on OM(~, A). We assume t h a t  p is given as in 

Definition 2.1, which is sufficient when we want  to  prove an est imate of the  fo rm 
(3.3). To obtain  q in (3.3) we shall use a me thod  of successive extensions (el. the  
proof of Theorem 4.5 in [1]). 
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(~ shall be the set of semi-norms q on ~0~(~, A), which have the form 

q(q0) = sup sup ~= ] D ~  I, ~0 E C~(s (3.4) 

where every q= is a continuous function in s satisfying 

a=>0 in s if [~]~N~, (3.5) 

whereas, if N~< I:~l ~< N~+~, we have 

~==0 in A~ and a=>O in C A~, (3.6) 

~=(x) <~ l + o (  [ X - Y '  ) a=(y) ~ , if [ x - y ] < d ( x , A ~ ) / 2  and x, y E K N ~ A ~ ,  (3.7) 

a=(x)=O(d(x,A~)l=l+~), if x E K ,  (3.8) and 

when K is a compact subset of s 
Q is not empty. To see this it  is sufficient to observe that  q=(x) = e=(x)d (x, A~) I=1+1 

satisfies (3.6)-(3.8), if c= is an arbitrary positive continuous function in s 
According to (a) we can choose sequences (Ks)~ and (K~)o ~r of compact subsets 

of s so that  K0 = Kx = Ko-- K~ = ~b, Kj /z  7 ~ and K~ S 7 ~ when }--> ~ and 

/~ E g'(s supp ~5/~ c Kj ~ supp/z c K~, j = 0, 1 . . . . .  (3.9) 

The main step in the proof is the following lemma (cf. Lemma 4.1 in [1]). 

Lemma 3.3. With the previous notations let q be a semi-norm E Q such that for some 
integer ~ > 0 

p(~) < q(P~), ~ e C~(K;). (3.10) 

Then given e > 0 one can find a semi-norm q' E Q such that 

p(9) < q ' ( /~) ,  9 E C~(K;+I) 

and q' = (1 + e) q on C~(Ki-x). 

Proof of Theorem 3.1, continued. Suppose for a moment tha t  Lemma 3.3 is proved. 
We then choose numbers e j>0,  j =  1, 2, ..., such that  1-[~~ +ej) < + ~o. For any 

oo t �9 ql E Q we have p ( 9 ) <  ql( /~),  when 9 E Co (K1), since K1 = ~b. Using Lemma 3.3 we 
can therefore successively find semi-norms qjEQ such tha t  (3.10)is fulfilled with 
q=qj and qj+l = (l+ej)q~ on C~(Kj-1) for every ] > 0 .  I t  follows that  q(q~)= 
lims_~qj(~) exists for every 9EC~(s because q~(q~)=l-I{+~(l+e~)qt+l(9), if 
supp ~ c Ki and j > i + 1. I t  is obvious that  q is a continuous semi-norm on Ou(s A), 
satisfying (3.3). Thus it  only remains to prove Lemma 3.3. 

Proof o/ .Lemma 3.3. Let  ~ be the space of/~E~'(K~+I) such that/~/z EC'~(CA~) 
for every k/> 0. ~ is a Fr6ehet space, if the topology is defined by all semi-norms 
#-->supK ]D~/~ F ], where g is an arbitrary compact subset of s such that  g ~ C A~ 
for some k with ]~]<sk. From (3.1) it  follows that  #EC~k(CAk ) for every k~>0, if 
/~ E :~. In  this way natural  mappings :~-->C'k(C A~) are defined, and they are conti- 
nuous for every/r ~> 0 in virtue of the closed graph theorem. 

Now assume that  the lemma is not true. This means that  we can find a sequence 
oo �9 (~)[o in Co (K~+a) such tha t  
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p ( ~ , ) > l §  and ~( /5~)<1 ,  ~,=1,2 . . . .  , (3.11) 

and i5q~,--->0 in C~ when v-->c~. (3.12) 

For to every compact  K c C Kj-1 and every constant C we can find a semi-norm 
q'EO such tha t  q ' > ~ ( l + e ) q  with equality on C~(Kj-1) and q ' (~)~>Csup~[~[,  
~ e c ~ ( ~ ) .  

q has the form (3.4), where every a~ is continuous and satisfies (3.5)-(3.8). Using 
the continuity of a~ and (3.5) or (3.6) we conclude from the second inequality in 
(3.11) tha t  ( / ~ )  is a bounded sequence in G~+~(~A~) for every k ~> 0. Hence Asco- 
li's theorem gives a subsequence (~ )~  from (~)  such tha t  (tSy)~) converges in 
C~*+x-~(~A~) for every k>~0 when v-->oo. But  N~+l- l=sg  so this means tha t  
(~)  is a Cauchy sequence in :~, hence tha t  it converges to an element ~ in :~. Then 
the continuity of the natural  mappings :~-->C~(C As) shows tha t  %-->~ in Cr*(~ As) 
for every k>~0 when v-->~.  Now ~Sv/=l im15%=0 in ~K1_~ in view of (3.12), so 
(3.9) gives tha t  supp ~2 ~ K;_~. 

With a non-negative function Z ~ C~(R n) such tha t  Z(x)= 0, when [x[>~ 1, and 
S z d x = l  we set X~(x)=~-nx(x/e~) for ~ > 0 .  We have vj~eZ~C~~ and ~ - x - ~  ~ 
C~(K'~+~) for all ~, when ~ is sufficiently small. Furthermore v2-x-:Z6--> ~ in C~t(CA~), 
k=O, 1 . . . . .  when ~--> §  Since supp ~ fiK~+~ (with @~ given in Definition 2.1) is 
a compact  subset of g2, when I z [ ~< Mz = %, and of CA~, when M~+~ < l u ]~< M~+~. = r~, 
we obtain therefore 

lim = lim sup sup @~ [D% 2 ~e Z~ I = sup sup ~(x)ID~yJ(x) I 
~--,+o p(~-x-Z~) ~+o  ~ �9 ~ Q~(~>o 

= ,-,~lim sup sup @~ I D ~ ,  [ >/1 + (3.13) 

because we need only take the suprema over those finitely many  ~ for which 
supp @~ N K~+1=~r The last inequality in (3.13) follows from (3.11). 

We shall also prove tha t  

lira sup q(P~o ~- Zo) < 1, 
6-~+0 

(3.14) 

which together with (3.13) contradicts (3.10), since ~eq~,~EC~(K~) for all suffi- 
ciently small ~ > 0. This will complete the proof of the lemma. 

To prove (3.14) we observe tha t  D~PyJ~-->D~P~ in the weak topology of ~)'(R 'z) 
for every ~ when v--> oo. This implies tha t  for fixed x E 

a.(x) I D'(P~ ~e z,)  (x) l = lim a~(x) I (D~P% ~- X~) (x) I 

~< l iminf  a~,(x) f ] D~P~,(y) X~(x - y) l dy 

. . . .  a~(x) a~(x) 
a m  mt sup - -  sup a~(y)[D~P%(y)l <~ v-yl<~a~(y) , - ~  I~-~l<~a~(y) sup - -  , (3.15) 

because S ]X~[dy = S Z~ dy = 1 and q(js~) ~< I. If Nk < ]~ I < Nk+1, then (3.15) is valid 
only when d(x, As) > ~. 

If [ ~] ~< N,, it follows from the continuity of ~ and from (3.5) that 
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sun a~(x)-->l uniformly for xEK] when 8-> +0 .  (3.16) 

When hrk <[~]~< N~+I, we obtain from (3.7) an estimate 

a~(x) 6 
tx-~<~a~(y)SU - - - - ~ < 1 + - / ,  if xEK~,d(x, Ak)>t~ and t > 2 ,  (3.17) 

for sufficiently small (5 > 0 with C independent of 8 and t, whereas (3.8) gives (with 
C' independent of ~ and t) 

a~(x) I (n 'Pv  2 ~e Z~) (x) I <. a~(x) ( I P~p(x - y) D%(y) I dy 
! 

if x e K ;  and d(x, Ak)<~t~. (3.18) 

We now take the supremum of a~(x)[D~(PyJ ~e go)(x)[ over all x e K~ and over 
those finitely many g for which suppg~ N K~ ~=r Then (3.14) follows, if we use 
(3.15)-(3.18). The proof is complete. 

Corollary 3.4. If  (a) and (b) in Theorem 3.1 are satisfied, then the mapping 
P~)~(~, A )--> ~)~(~, A) has a continuous inverse and PD'~(~, A) = ~)'~(~, A ). 

Applying this corollary to the case when A~= ~ for every k we obtain Mal- 
grange's existence theorem, if we observe that  condition (b) is always satisfied in 
this case: 

Corollary 3.~. (Malgrange [ 3 ] . ) / / ~  is P-convex, then PO'~(~) = ~)'~(~). 

We observe that  in this case the proof of Theorem 3.1 is essentially the proof 
of Theorem 5.4 in [1]. 

4. Some necessary conditions 

In this section we shall show that  the sufficient conditions in Theorem 3.1 are 
also necessary for the conclusions to be true. 

Theorem 4.1. Suppose that /or every non-decreasing sequence M o/ integers >t 0 
there is another such sequence AV /or which P ~ ( ~ ,  A) ~ ~'~(g], A). Then (a) and (b) 
in Theorem 3.1 are true. 

Proof. (a) follows from Theorem 3.5.4 in [2], since the hypothesis implies tha t  
PD'(~2) D C~176 

M ~ To prove (b) we observe that  given a non-decreasing sequence M = ( 1)1 of in- 
tegers >/0 we can define a distribution / E Du(f2, A) by/(~0) = D~q)(x), 9~ E C8~(~), if 
z E C A  l a n d  [r ~Ml+l for some l. From the hypothesis it  follows that  D~(x)= 
(Pu) (~0) = u(P~v), ~0 E C~(f2), for some distribution u E D~(f], A), where ~Y = (Nz)T is 
a non-decreasing sequence of integers t> O, depending only on M. Hence we obtain 

]D~'cp(x)l<~q(Pq~), qDEU~~ (4.1) 
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if xECAz and  [~[ ~<Mt+l, with a continuous semi-norm q on ON(~, A), possibly 
depending on x and  g. 

Assume t h a t  (b) is no t  true. This means t h a t  there is an  integer k > 0 such t h a t  
for every  integer l > 0 there are integers jl > 0 and  rt ~> 0 such t h a t  for every  integer 
s >/0 we can find functions ~zs satisfying 

qz, EC~0(As~) and  iaq~tsEC'(CAk) bu t  q~sECU(~At), 

l = 1, 2 . . . . .  s = 0, 1 . . . . .  (4.2) 

We choose functions gz, E C~(A~+ 1) with gt~ = 1 in a neighbourhood of A~ N supp ~ ,  
and  open balls eoz, with centers a t  the origin such t h a t  

supp  Zz~ + oJl~ c A ~ + 1 (4.3) 

and  supp ~u + oJls c A jr + t. (4.4) 

We observe t h a t  ~zs ~- ~ E C~(Ait+ 1), if ~ E C~(o)ls), according to  (4.4). Hence (4.1) 
gives an  est imate 

< c;.: sup sup I + 0;:: sup sup I D%;.; e (4.5) 
iBl<ZCk+ ~ �9 ifll<Nh+ 1 

where ~o;: = ;~l, iS~l: and  ~o~; =/5+l ,  - ~o;: and where we have used t h a t  ~o;: +<- ~o E C~ (A~+I) 
in view of (4.3). Now v2,8 E ~00(Rn) c~(0 , ,  so we have D~yJ;: ~ ~ ( - = - ~ , +  :), if I Pl ~< ~ + : .  
Fur thermore  ~ ;  E C~(R') ~ ~<~>, which implies t h a t / ~  ~ ~(,-~+~+~) c ~(-m-~,+~), if 
Iflt~<N+~+~ and  s>~N~+~-m-N~+~. For  such s we can therefore obta in  the fol- 
lowing est imate f rom (4.5) 

because ~/<t> and  ~/<_t) are dual  spaces. Now we can use the same a rgument  as in 
the proof of Theorem 3.6.3 in [2] to prove t h a t  (4.6) implies 

Since this is valid for x ~ C A~ and  I gl~< M~+I, Lemma 2.3 shows t h a t  

cf~,~CU(x+w~s) for x ~ A ~ ,  (4.7) 

if r ~ < M ~ + l - m - ~ + l - n / 2 ,  which is fulfilled for sufficiently large l, if we have 
chosen M so t h a t  M ~ + I - r r >  + ~o. Bu t  (4.7) contradicts  (4.2), so the assumpt ion 
is false and  (b) is true. 

By  the  same a rgumen t  we can also prove 

T h e o r e m  4.2. Suppose that 15: OF(~, A)--> Ov(~, A) has a continuous inverse. Then 
(a) and (b) in Theorem 3.1 are satisfied. 

Pros/. (a) follows in the same wa y  as in Theorem 4.1, if we observe t h a t  the 
hypothesis  implies t ha t  P~)~(~,  A ) =  ~0~(~, A) (el. the proof of Theorem 3.1). 

M ~ To prove (b) we shall show t h a t  given a non-decreasing sequence M = ( ~)1 of 
integers />0 there is another  such sequence N for which (4.1)is  valid, if xE~A~ 
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and I 1< M~+~, with some continuous semi-norm q on 0~ (~ ,  A). Therefore we de- 
fine a continuous semi-norm p on OM(~, A) by  

where Q~ = 1 in ~ ,  if [ a [ ~< M1, and where ~ = 0 in A, and = 1 in C A. if M, < l a [ ~< 
Ml+l. By the hypothesis we can find a continuous semi-norm q on OF(~, A) such 
tha t  p(cp)<.q(Pef) for ~EC~~ Hence (4.1) follows with this q, if x E ~ A z  and 
l al ~< Ml+l for some 1. But  q is also continuous on :0~(~, A) for some non-decreasing 
sequence N of integers ~>0. Thus we can use the rest of the proof of Theorem 4.1 
to prove (b) here too. 

I t  has not  been possible for me to decide whether (b) in Theorem 3.1 is necessary 
also for PO~(~ ,  A ) =  O~(~,  A) to be valid. We only have the following weaker 
theorem. I t  is a simple extension of Theorem 3.6.3 in [2] and it  can be proved by  
the same argument  as in [2] with only slight modifications and re-arrangements. 

Theorem 4.3. Suppose that P'D~(f2, A) = ~O.~(f2, A): Then 

(a) ~ is P-convex, 
(b) to every integer k > 0 there is an integer l > 0 such that 

e E '(~) ,  sing supp/~/~ c Ak ~ sing supp ju c Al. 

On the other hand, I have not  been able to see if (a) and (b) in the last theorem 
are also sufficient for PO~(~ ,  A) = ]0~(~, A). In  particular cases, however, a some- 
what  stronger form of these conditions is in fact  sufficient because they imply the 
conditions of Theorem 3.1. This will be studied in the next  section. 

5. Existence theorems in the spaces ~ ( ~ ;  (,J) 

With a relatively open subset co of the boundary ~ of ~ we make the following 

Definition 5.1. OF(~; CO) shaU be the space ~)F(~, A), i / A  = (Ak)~ is a sequence o/ 
relatively closed subsets o/ ~ such that Ak is compact/or every k and -~k7 S ~ U co 
when k--> ~ . 

We observe tha t  every such sequence A gives the same topology on Op(~; co), so 
the definition has a sense. We also see tha t  ~ ( ~ ;  co) is the space of distributions 
in ~ with finite order in ~ N K for every compact  K c ~ Um. 

With the notations of Definition 5.1 we obtain the following particular case of 
Theorem 4.3: 

Theorem 5.2. Suppose that P]0~(~; co) = O~(~; co). Then 

(a) ~ is P-convex, 
(b) to every compact K c ~ U co there is a compact K '  ~ ~ U co such that 

~u E E'(~) ,  sing supp P p  c K ~ sing supp p c K ' .  

To obtain sufficient conditions we strengthen condition (b): 
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Theorem 5.3. S u ~ o s e  that 
(a) ~ is P-conxez, 
(b) to every compact K ~ ~ U to there is a compact K'  c ~ U to such that 

p fi E'(f~ U to), sing supp P #  c K ~ sing supp/x c K' .  (5.1) 

Then P ~ ( ~ ;  to) = D~(~/; to). 

Proo]. ~F(s to) = ~F(~,  A), if A is chosen as in Definition 5.1. We shall show 
tha t  (b) in Theorem 3.1 is satisfied with this sequence .4. Hence the theorem follows 
from Corollary 3.4. 

G i v e n  b we choose a compact  K '  c ~ / c  to such tha t  (5.1) is fulfilled with K = / I k  
and after tha t  l so tha t  K '  is contained in the interior of ~ t  in the relative topology 
on f /U to. 

Now let ~ be a positive integer and let :~ be the space of functions ~ s C~ 
for which sing supp i5~ c K. :~ is a Frfchet  space with the topology defined by the 
semi.norm ~-->sup ]y~] and the semi-norms ~-->supr. ] D~P~2], where L is an arbi t rary  
compact subset of R " \ K .  Now (5.1) implies tha t  ~fiC~C(R~\K'), if y~fi:~, and the 
closed graph theorem shows tha t  this natural  mapping of :~ into C~(R=\K ') is con- 
tinuous. Hence given an integer r >~ 0 and a compact L ' c  R ~ \ K'  we can find an 
integer s >~ 0, a compact L c R " \  K and a constant C so tha t  

sup sup I C(suv sup + sup I 1), w e (5.2) 
Ial~<r L" I~l<~s L 

Assume tha t  q~ fi 6~o(A~) and ~ 0  q C~(~A~). With Za defined for ~ > 0 as in the 
proof of Lemma 3.3 we form the regularizations ~0+Z~. Now q0~_Z~-+~0 in C~ ") 
and P~0~-Z~--~Pq0 in C~(R"\K) when ~-+ +0 .  Since q~-~Z,~s for all suffi- 
ciently small ~ > 0, we can therefore use (5.2) with v,) = q ~- Z~ - ~v-x- Za, to prove tha t  
r in C~(L '~ when ~ - + +  oo. But  this shows tha t  ~f icr (~At) ,  if we have 
chosen L '  so tha t  Ar c L  '~ Hence (b) in Theorem 3.1 is satisfied and the proof is" 
complete. 

Remark. I n  the proof we have only used tha t  (5.1) is valid fo r / t  6 Co~ U to). 
We shall eonsider two particular eases of these theorems. 
First  we observe that /gr( f~;  ~b)=/9(fl). Therefore we obtain the following corol- 

lary from Theorem 5.2 and Theorem 5.3. 

Corollary 5.4 (HSrmander [1]). A necessary and su//icient condition/or P O ' ( ~ ) =  
[)'(~) is that ~ is strongly P-convex, that is, 

(a) ~ is P-convex, 
(b) to every compact K c f~ there is another compact K" c ~ such that 

it 6 g ' ( ~ )  sing supp ~tt  c K ~ sing supp/x c K ' .  

Our proofs, however, give somewhat more. For if A = (A~)F is a sequence of 
compact subsets of ~ such tha t  A ~ / / ~  when k-+ oo, we have proved tha t  (a) and 
(b) in Corollary 5.4 imply tha t  PD'N(~, A ) ~ D M ( ~ ,  A), where M is an arbi t rary 
non-decreasing sequence of integers >/0 and N another such sequence, depending 
only on M. But  the proofs do not  show any exact dependence. 

Another particular ease is obtained with to = ~ .  Then (b) in Theorem 5.3 is al- 
ways satisfied, for the convex hulls of sing supp tt and sing supp Ptt  are identical 
for every tt 6 ~'(R") ([2], Theorem 3.6.1). Hence we get 
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Corollary 5.5. A necessary and su//icient condition for P~)~(f2; ~f2) = ~ ( f ~ ;  ~f2) is 
that f2 is P-convex. 

Here we observe tha t  ~ ( f 2 ;  ~f2) is the space of distributions in ~ ,  which have 
finite order in every bounded subset of ~ (cf. the remark after  Lemma 4.2 in [1]). 

Finally we give some geometric conditions corresponding to conditions in [2], 
section 3.7. 

We suppose tha t  f2 has a CLboundary, tha t  is, to every x~ ~f2 there is an open 
neighbourhood U of x ~ and a real-valued function ~p E C~(U) such tha t  U N f2 = 
{x E U; yJ(x) < 0) and grad v 2 # 0 in U. Then ~f2 is said to be strictly pseudo.convex 
a t  x ~ with respect to P,  if 

~j~.k ~1 (x ~ P~) (~)~P~> (~) > 0, 

~ J  0 (i) 
when O#~ER",Pm(~)=O and ~ - ~ x ( X  )P~  (~)=0,  

I 

where Pm(~)=~l~l=ma~. . .~nn  and P~>(~)=OP,n(~)/O~j (m is the order of P). In  
particular this condition implies tha t  P has no multiple real characteristics, and if 
Pm(~) has real coefficients, i t  means tha t  a ~  has a positive outer normal curvature 
a t  x ~ in every tangential direction, which is bicharacteristie with respect to P.  

Using the same arguments as in the proofs of Theorems 3.7.6 and 3.7.5 in [2] 
one can then prove 

Theorem 5.6. I f  af2 is strictly pseudo.convex at x ~ with respect to P /or every 
x ~ E ~f2 \ co, then (b) in Theorem 5.3 is saris/led. 

And conversely 

Theorem 5.7. I f  Pm /ms real coeHicients and to every compact K c f2 there is a 
compact K" ~ ~ U r such that 

# q E ' (~) ,  sing supp/5# c K ~ sing supp # c K ' ,  

then ~ has non-negative outer normal curvature at x~ E a~ \ r in every tangential di- 
rection, which is bicharacteristic with respect to P. 

Theorem 5.6 together with Theorem 3.7.4 in [2] gives a sufficient geometrical 
condition for P ~ ( f 2 ;  co) = ~ ( ~ ;  co) a t  least when Pm has real coefficients. 

A final observation: When n = 2 and P has no multiple real characteristics, every 
P-convex open set f2 in R 2 also satisfies (b) in Theorem 5.3. In  particular it is 
strongly P-convex. This follows, if we use Theorem 3.7.2 in [2] and observe tha t  in 
this case every non-characteristic C2-surface is strongly pseudo-convex, so tha t  
Theorem 8.8.1 in [2] can be used in a similar way as Holmgren 's  uniqueness theorem. 
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