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Problems of  reconstruction in connection with addition of  

independent stochastic processes 

By 0VE FRANK 

1. Introduction 

Consider two independent stochastic processes X = {Xt : t E T} and r = { Yt : t E T} 
where the index set T is a subset of real numbers and the components Xt  and Yt 
take their values in a locally compact topological group G. Suppose tha t  a new 
stochastic process Z= (Zt=X~+ Yt:tET} is obtained by  composition of the com- 
ponents of X and Y according to the group operation which we will name addition 
and denote by  a plus sign. With knowledge of the probabilistic structures of the 
processes X and Y and with a realization available of the process Z it is desired to 
reconstruct the belonging realizations of the processes X and Y. 

This type of problem is fundamental  in  information theory where it  is desired to 
reconstruct a message which has been received as an additively disturbed signal. 
The method of reconstruction which is given in the literature is based upon the work 
of Wiener [11]. The realization of X is supposed to be a realvalued function which 
loosely speaking is approximated by linear combinations of the components of the 
realization of Z. 

In  this paper  we will mostly take G as a countable group. The set of possible re- 
constructions will be characterized by  a central value, the reconstruction, and a 
measure of dispersion, the entropy. The choise of central value is made according to 
the principles of decision theory as given in Wald [10] or Lehman [7] chapter 1. 
The central value which maximizes the probabil i ty of correct reconstruction, i.e. 
the mode, will be dealt  with in most  cases but  when T is discrete the central value 
which maximizes the expected number  of correctly reconstructed components of X 
will be considered too. 

The paper  is arranged in the following way. In  section 2 the problem of reconstruc- 
tion is given a formulation according to decision theory. In  section 3 the entropy is 
defined and some properties of ent ropy are reported. In  section 4 the problem of 
reconstruction is considered for Markov chains. A reeursive method to get the mode 
is given and the possibilities to use the theory of optimal trajectories (Bellman and 
Dreyfus [2]) in this connection is shown. The entropy is given. When G is com- 
mutat ive  and the Markov chains have independent increments the mode and the 
entropy are given in more explieite forms. A number  of examples are given too. 
In  section 5 is discussed addition of independent jump processes which are generated 
by  renewal processes and independent jumps in a commutat ive countable group G. 
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The problem of reconstruction is considered for exponentially and geometrically 
distributed waiting times of renewal points. In  the first case the entropy is calculated 
in general and in the second case under the assumption of identically distr ibuted 
jumps. At  last  section 6 is devoted to Gaussian processes and to comparisons be- 
tween the mode and the reconstruction of Wiener. 

2.  F o r m u l a t i o n  o f  t h e  p r o b l e m  a c c o r d i n g  to  d e c i s i o n  t h e o r y  

Denote by  x*(z) the reconstruction of the X-realization when the Z-realization is 
z. Introduce a real valued loss function L(x, x*(z)) which measures the "loss" when 
the X-realization is x and the reconstruction is x*(z). I f  needed conditions of measur- 
ability and integrability are assumed the risk is R(x,x*)=E(L(x, x*(Z))lX=x) 
and the Bayes '  risk is B(x*)=EL(X, x*(Z)). The Bayes '  risk is minimized for x* 
satisfying E(L(X, x*(z))[Z=z)=minuEar  E(L(X, u)]Z=z), i.e. x*(z) is an element of 
G r which minimizes the expected loss according to the a posteriori distribution of 
X. I f  x*(z) exists it is not necessarily unique and in tha t  case we will consider x*(z) 
as a m a n y  valued function. This is completely analogous to point estimation of a 
parameter  with given a priori distribution. 

With discrete distribution of (XIZ = z) 

{10 if x # u  
and L(x, u) = 1 - ~ .  u = i f  x = u 

the reconstruction will be the mode, x*(z)=mode (X I Z =z), which we m a y  consider 
as a many  valued function too. 

I f  G is countable, the index set T = {1,2 ..... n} and L(x, u) =~.~1 (1-6z, .~) for 
x = (x I .... , x~) and u = (u 1 ..... u,) the reconstruction will be x*(z) = (mode (X 1 I Z = z) .... , 
mode (Xn I Z =z)). This is the reconstruction which maximizes the expected number  
of correctly reconstructed components of the X-realization. 

If q r is a metrical space with distance d and L(x, u)=d(x, u) k for some positive 
natural  number  k the reconstruction will be the generalised Fr~chet-meanvalue of 
the distr ibution of (X]Z=z). Fr~chet [5] defines the meanvalue m of a stochastic 
element X in a metrical space D with distance d by  minuGD Ed(X, u)~=Ed(X, m) 2 
and generalised meanvalues are obtained by  changing the exponent 2 to some posi- 
t ive natural  number  k. For questions of existence and uniqueness we refer to the 
mentioned work by  Fr6ehet. I f  G r is an n-dimensional Euclidean space with Euclidean 
distance the Fr~chet-meanvalue coincides with ordinary expectation; i.e. x*(z)= 
E(X IZ =z) = (E(X 11Z =z) ..... E ( X ,  IZ =z)). 

Ins tead of using a single value in (7 T as the reconstruction we m a y  give some subset 
K of G T as a region of reconstruction. I f  we suppose tha t  the Haar  measure exist~ 
and if we impose the condition tha t  the YIaar measure of the region of reconstruction 
has a fixed value e > 0 and if we use the loss function 

L(x'K)=tlo ifif x$.KxEK 

we will get the region of reconstruction x*(z) as the subset K of G T which has H a a r  
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measure ju(K)=e and maximizes P(XEKIZ=z)=~K~(xIz)/~(dx). Here we have 
denoted by  ~(xlz ) the Radon-Nikodym derivative with regard to Haar  measure of 
P ( X E K I Z = z  ) considered as a measure of K. This is possible if and only if the 
distributions of X and Y are absolutely continuous with regard to Haar  measure. 
According to the Neyman-Pearson  fundamental  lemma the region of reconstruction 
will be x*(z)= {x:ze(xlz ) >c} where the constant c depends on e which ought to be 
carefully chosen to avoid unessential complications. For details we refer to Lehman 
[7] p. 63. In  more suggestive words we m a y  say tha t  the region of reconstruction 
consists of the elements of G r which are most  probable according to the a posteriori 
distribution of X. 

3. The entropy 

I f  X is a discrete stochastic variable taking the value x~ with probabil i ty p~>0  
(i = 1,2 .... ; ~ 1  P, = 1) the ent ropy of X is defined as H(X)= - ~ 1  p, logpt.  Then 
0 <~ H(X) <. + c~ and H(X) = 0 if and only if X has a one point  distribution. I f  X 
takes on only finitely m a n y  values, say n, the max imum entropy is log n and cor- 
responds to the uniform distribution. I f  X and Y are discrete stochastic variables 

+ r162 Y]X=x~)=H(X)+EH(YIX)  and more generally with H(X, Y) = H ( X )  ~t=lp~H(  
three discrete stochastic variables X, Y, Z EH(X, Y [Z) = EH(X I z) + EH( Y] X, z). 
(Pinsker [8] p. 36)�9 Another relation is 0 ~< EH( Y I X) <~H(Y) where there is equality 
to the left if and only if Y is a univalent function of X and equality to the right if 
X and Y are stochastically independent. I f  there is equality to the right and if 
H(Y) < + c~ then X and Y are stochastically independent. 

Let  Y1, Y~ .. . .  be discrete stochastic variables and define a stochastic variable Y 
as the niixing of Y1, Y~ . . . .  with weights Pl, P~, :,,',; i.e. Y =  Y~ with probabil i ty 
p~>0;  i= l ,  2 . . . . .  

Then if we suppose all entropies finite ~ p~H(Y~)<~H(Y) < ~ - ~  p~logp~ +~.~ p~. 
H(Y~) with equality to the left if and only if YI, Y2 . . . .  are identically distributed and 
equali ty to the right if and only if the ranges of values of different Y~ are disjoint. 
By  introducing a stochastic variable X independent of Y1, Y2 .. . .  and taking the 
value x~ with probabil i ty  p~ for i = 1, 2, and by noticing tha t  Y~ = (Y]X  =x~) the 

�9 . * * "  

given inequalities m a y  be writ ten ElI( Y I X) <~ H(Y) <~ H(X) + EH( Y [ X) = H(X, Y) = 
H(Y) + EH(X [ Y). Here if we suppose all entropies finite i t  is equality to the left 
if and only if X and Y are independent; i.e. if and only if Y1, Y~ .. . .  are identically 
distributed. I t  is equality to the right if and only if X is a univalent function of Y; 
i.e. if and only if the ranges of values of different Y~ are disjoint. 

I f  X and Y are stochastic elements in a discrete group G it is known (Grenander 
[6]) tha t  X +  Y has a distribution which is more fiat  than  the distributions of X 
or Y. A simple way to state this which does not seem to have been stressed in the 
li terature is 

max  {min, p~, min~ q~} ~< min~ r~ < max~ r~ < min (max  Pi max  q~}. 

Here Pi, q,, r, are the point masses of X, Y, X + Y and the minima are supposed to 
exist. Then if G is infinite m i n t p , = m i n  i q i=0  and the left bound is trivial. I f  G 
is finite and X or Y has probabil i ty mass over all G the left bound is non-trivial. 
F rom 
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rj=~Pj-iqi<<,(maxp,)~q~=maxp, 

and r~=~p,q_~+j<<.(maxq,)~p,=maxqi 

is obtained rj ~< min {max p~ maxi qi} 

and as this is valid for all ~ E G the right-hand inequality is proved. The left-hand 
inequality may  be derived in an analogous manner.  

Tha t  the distribution of X + Y is more flat  than  the distributions of X or Y m a y  
also be expressed in terms of entropy by  the relation H(X + Y) >~ max (H(X), H(Y) }. 
This relation follows from H ( X + Y ) > ~ E H ( X + Y I Y ) = H ( X )  and H ( X + Y ) ~  
EH(X + Y IX) =H( ]% 

4. Addition of  independent Markov chains 

Let (X.)n=l and ( ~)~=1 be independent Markov chains with a countable group 
G as the state space. Introduce the notations 

P(XI=i)=T~ lEG 

P(X~+I=~]X.=i)=P~j(n ) lEG, ]6G, n = l ,  2 . . . .  

P(Yl=i)=qi  lEG 

P(Y~+l=jlY~=i)=Q~j(n) lEG, iEG, n = l ,  2 .... 

Let (z,),~r 1 be a realization of ( Z , = X , +  Y,)n~=t and define on G the sequence of 
M ~r functions ( ~)~=1 by  the reeursive formula 

M l(i)=piq_t+~, l E G  

Mn+l (i) = sup Mn (i) P,j (n) Q_~+~.._j+%+~ (n) 

~6G n = l , 2  . . . .  

Theorem 1. The supremum in the reeursive /ormula above is a maximum which 
occurs/or say i=~,(i), n = l  ... . .  N - 1 .  Moreover, maxi~G MN(?) exists and occurs /or 

. . . .  x .  = ~ . ( x . + l )  i=x*N say. Then mode(X 1 . . . . .  X N I Z I = Z  1 . . . . .  ZN=2:N)=  (X~, x*) with * * 
/or n = l  ... . .  N - 1 .  

Pros]: Mn(i) is bounded by  0 and 1 and 0 is the only limit point when i varies in 
G. Thus maxima M~(i) exists. That  0 is the only limit point of Ml(i ), i E G, is im- 
mediately clear. Suppose it holds for n. Then take a finite C c  G such tha t  M~(i)<e 
for i~C. To every iEC choose a finite CicG such tha t  P i j (n )<e  for j~C~. Then 
M~+l(j)<e for ?'~ U i~c Ci, i.e. 0 is the only limit point of M=+I(]), ?'fiG. From this 
it  also follows tha t  the supremum in the recursive formula is a maximum. 
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m a x  P(Xn = x~, Y. = - x,  + z.;  n = 1 . . . . .  N) = max  MN (xN) = MN (x*) 
x3re G 

= max  M ~ - I  (xN_,) P**_, ,?v(N- 1) Q_,x_I+,~_I._~+,~(N- 1), 
x~r-1 E G 

33* * where the max imum occurs for x~_l = N_I=~N_I(XS). By iteration * * 
for n = 1 ... . .  N - 1 and the proof is complete. 

By theorem 1 the problem to determine a max imum over G ~ is reduced to a series 
of determinations of maxima over G. When a digital computer  is used for the cal- 
culations this method is very advantageous.  A systematic account of recursive meth- 
ods for determinations of maxima is given in Bellman [1] and Bellman and Dreyfus 
[2]. In  the last book it is also shown how to arrange the calculations for the computer. 

In  principle it  is possible to determine the max imum with the graphical method 
which is known as the optimal  t rajectory technique and on which there exists an 
extensive literature. In  a few words this technique as applied to the present problem 

Z N m a y  be described as follows. The given realization of ( n)n =1 is plotted in a (n, zn)- 
X N plane together with all the possible realizations of ( n),=x. These possible realiza- 

tions are associated numbers. The segment from (n, i) to ( n + l ,  j) is given the 
number  P~j(n)Q_t+z,,._l+z,,+x(n ). The point ( n + l ,  j) is given the number  Mn+l(j) 
and an arrow is put  on the segment (or segments) f rom (n, ~,(j)) to (n~-l ,  j). When 
X~v is determined the optimal  t ra jectory (or trajectories) is obtained by  following 
the arrows backwards from (N, x*). A detailed accounts of the method is given in 
chapter VI  of Bellman and Dreyfus [2]. The method is demonstrated in example 1 
below. 

Theorem 2. Provided all eutropies are finite 

E H ( X l  . . . . .  X N I Z l  . . . . .  Z~) 

= H(X1)  + 
N - 1  

y~ EH(X~+I IX.) 
n = l  

N - 1  

+ H(Y1) + ~ E H ( Y .  +11Y.) - H (Z 1 . . . . .  ZN) 
n = l  

Proo]: E H ( X  1 . . . . .  XN]Z x .. . . .  Z~) 

= H ( X1 . . . . .  XN, Z l  . . . .  Z,~) - H ( Z l  . . . . .  Z,~) 

= H ( X 1  . . . . .  X , , ,  Y1 . . . .  , Y , , ) - H ( Z l  . . . .  , Z,,) 

= H ( X 1  . . . . .  X ~ ) + H ( Y 1  . . . . .  Y ~ ) - H ( Z l  . . . . .  ZN) 

and H ( X  1 ..... XN) 

= H ( X  1 . . . . .  XN_I) -~ j~H(XN] X 1 . . . . .  XN_I) 

= H ( X 1  . . . . .  X N - - 1 )  + EH(XNI XN--I) 

and an analogous expression for H(Y1 .. . .  , YN) will give the desired formula by  
iteration. 
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The sum of two Markov chains is generally not Markovian as:is shown in the fol- 
lowing example. (Another example is given in example 1 below.) Take G =  (0, 1} 
with addition modulo 2 and let (Xn)n=l and ( n)-=l be stationary Markov chains 
with matrixes of transition probabilities 

1/3 2/3] and \1/4 3/4] respectively. 

Then for instance 

~611108 if i = o  
P ( Z ~ + 2 = O ] Z ' + I = O ' Z ' = i ) = [ 4 7 / 8 4  if i = 1  

Z co and consequently ( n)nffil is not  Markovian. 

A special case giving Markovian sum process is mentioned in the following theorem 
the proof of which is obvious. 

T h e o r e m  3. I] G is commutative under addition and i/  ( X , ) ~ I  and (Yn)n~i are 
processes with independent increments, i . e . X . = ~ I + . . . + ~  and Y ~=~I+ . . .+~ . ,  

Z r162 where ~1, ~ ..... 71, ~2 . . . .  are independent stochastic elements o/G,  then ( ~)n=i will be a 
process o/independent increments and it is possible to write Zn =~1 + ... +~n with ~ = 
~ , + ~ , / o r  n = l ,  2 . . . . .  

Thus when G is commutative a sufficient condition for the sum process to be Mar- 
kovian is that  the added Markov processes have independent increments. That  
this condition is not necessary follows from the following example. Take G finite. 

X ~ ~)~=1 Let ( . ) ,  ~l be a Markov process but  not with independent increments and let ( Y or 
be a degenerate Markov process consisting of independent components which are 

Z ~ uniformly distributed over G. Then also ( n)n=l becomes a degenerate Markov 
process with independent components which are uniformly distributed over G. 

T h e o r e m  4. With the assumptions and notations o/Theorem 3 

. .  = (x~ . . . . .  xN)  m o d e  (X 1 . . . . .  XNI Z 1 = z 1, , ,  Z N  = ZN) * * 

with x*  = ~ m o d e  (~v [ .~v = z ,  - z , - 1 )  n = 1 . . . . .  N; 
V = I  

z o = 0 (zero-element) and provided all entropies are finite 

N N 

EH(X1, . . . ,  XN [ Z 1 . . . . .  ZN) = ~ EH(~n [ ~n) = Y. [H(~n) + H0/n) - H(~n)]. 
n = l  n=l  

Morover, /or n = l  .. . . .  N the distribution o/ ( X n I Z l = Z l  . . . . .  Z N = Z N )  is the convolu- 
tion o/the distributions o/(~v ]$v =z ,  -zv-1) /or  v = 1, ..., n. 
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Proo/: P ( X n  = x,~; n = 1 . . . . .  N [ g .  = z.; n = 1 . . . . .  N) 

= P ( ~ , ~ = x . - x . - 1 ,  ~a  = Z n - - X a - - Z a - 1  + X n - 1 ;  7~ = 1, r.., N) 
P(r = z .  - z . - 1  ; n = 1 . . . . .  N )  

N 

=I-I  P ( ~ . = x . - x . - I  lr 

where x o = z  o = 0  and the max imum occurs for x . - x . _ l - x . -  * -X.-l* =mode(~ .  [~. = 
z. - z ._ : )  which proves the first pa r t  of the theorem. From Theorem 2, the Markovian 
structure of (Z.)~ffil ~and the relation E H ( X . + I [ X . )  = E H ( X .  § =H(~.+I) 
and analogous expressions for E l i (  Yn+t[ Yn) and E H ( Z . +  1 [Zn) it follows tha t  

~H(X~ . . . . .  XNI z l  . . . .  , z~,) 
1~ N 

= ~ [H(~ . )  + H ( ~ . )  - H ( r  = ~ [H(~., ~.) - H ( r  
n = l  n = l  

N N 
= Z [ H ( ~ . ,  $ . )  - H ( ~ . ) ]  = ~ EH(~.  [ ~.). 

n = l  n = l  

The last par t  of the theorem is a consequence of the relation 

(X ,  [ Zl = zl . . . . .  ZN = zN) 

= ~ ( ~ V [ r  r  1 . . . . .  C N = Z N - - Z N - 1 )  
Vffil 

= ~" (~V [ CV = ZV --  Zv-1)" 
Vffil 

Example  1. Let  (7 be the integers with addition and put  

P ( X . + l = i + l ] X . = i ) = p s ;  i = O , •  . . . .  ; n = l ,  2 . . . .  

P ( X . + l = i - l l X , ~ = i ) = l - p x = q l ;  i=0 ,_+1 .. . .  ; n = l , 2  . . . .  

P ( X  1 = 1) =Pl ,  P ( X 1  = -- 1) =ql  

P ( Y . + I = I ] Y . = i ) = p 2 ;  i=_+1;  n = 0 , 1  . . . .  ; Y0=0 

P ( Y . + I = - I [ Y . = i ) = I - p 2 = q ~ ;  i = + 1 ;  n = 0 , 1  . . . .  ; Yo=0. 

Thus the process ( X n ) ~  =1 is a random walk process and the process ( Y.) .~I consists of 
identically distributed independent components. To a given realization (zn)~=l of 

X N the sum process the possible realizations (x.)~=l of ( n)n=l are given by the 

Xl = l if Zl = 2 

x 1 = - 1  if z 1 = - 2  

x n = z n + l  and Xn+l=Z.+l-1  if Zn+l -Z .=3;  n = l  . . . .  , N - 1  

x . = z . - 1  and x.+ l = z . +  1 +1  if z.+ 1 - z . = - 3 ;  n = l , . . . , N - 1  

[ x , - z . [ = l ;  n = l  . . . .  , N .  

I X n + I - - X . ]  = I ;  n = l  . . . . .  _N'-I .  

conditions 
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Z ~  

~ - - - -  •  

/ e \  / e  

. 

0 5 'tO 
Fig. 1. 

iDn 

If  the possible realizations are represented i n a trajectory diagram of the type 
mentioned after Theorem 1 it is seen that  the sections of the optimal trajectory 

Z N which are not uniquely determined are situated above or below ( ~)n=l as p2<~q~ 
or Pz >~ q2. If x N is not uniquely determined by (zn)~t one may compare the disjoint 
sections of the two optimal trajectories ending with XN=ZN+I and XN=ZN--1 in 
order to decide which one is the optimal trajectory. In the case represented in Fig. 1 
this comparison gives 

1) when 

2) when 

~zN + 1 if Pl q~ ~> P~ ql i.e. if ql ~< q2 
Pz X~V qz / 

( zN-  1 if p l q 2 ~ p ~ q l  i.e. if ql>~q~ 

zN+ 1 if p l q g . p l q 2 ~ p ~ q l p l p 2  i.e. if P l ~  (P~I ~ 
ql \ q~/ 

P2 ) q2 x * = [ zN --1 if p l  q2 p l  q2 ~ pz ql p i  p2 i.e. iI Pl  <--. (P-2-21~ 
ql \ q2/ " 

i Example  2. Take G={0,  1, 2} with addition modulo 3 and take ( n)n=l and 
(Y.)~:I as identically distributed independent stationary Markov chains with the 
common matrix of transition probabilities 

0 1/2 1/2) 
1/2 0 1/2 . 
1/2 1/2 0 

As the matrix is cyclical, i.e. of the form 

Po Pl P~) 
P2 Po Pl 
Pl P2 Po 

the processes have independent increments and according to Theorem 3 the sum 
process  ( Z ~ = X n +  Yn)~~ 1 is Markovian with the easily found matr ix of transition 
probabilities 
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( 1/2 1/4 l/a) 
114 1/2 1/4 
1/4 ]/2 

The entropy calculations are straightforward according to Theorem 4 

EH(X~ . . . . .  XN[ Zx . . . . .  ZN) = 2 [log 3 + (N - 1) log 2] 

- 4 - -  N - 1  - l o g 3 - N - - 1 2  l o g � 8 9  2 l o g ~ = l o g 3 + ~  log 2. 

In  this simple example the logarithm of the number  of possible realizations of 

h r - 1  

(X1 . . . . .  XN]ZI=z 1 . . . . .  ZN=z~) is log 3 +  ~ ~,.~.+. log 2 
n f f i l  

which may  be realized from the following facts: 

1) There are three alternatives of x 1 

2) There is one or two alternatives of x~+ 1 for every choice of x~ depending on 
whether Zn+14Zn or Zn+l=Zn; n = l  ..... N - 1 .  

This is a consequence of the given probabil i ty structure according to which repeated 
components are not allowed. This implies x,~:Xn+l and z,,-x,~:~z,~+~-Xn+l for 
n = l  ..... . N -  1. 

The expected vatue of the logarithm of the number  of possible alternatives is 
then easily seen to be log 3 + ( N - 1 ) / 2  log 2, i.e. equal to the entropy. 

Example 3. This example is a discussion of the addition of two independent 
random walk processes. Let  G be the integers with addition and Xn=~l+...+~n 
with P(~.  = 1) =Pl ,  P(~.  = - 1) = 1 - P l  = ql and Y. =~1 +- ' -  + ~ -  with P(~.  = 1) =p~, 
P ( ~ . =  - 1 )  =1 - P 2  =q2. The variables ~1, ~2 .... .  ~1, ~h . . . .  are independent. Pu t  
~. =~ .  +y . .  Then 

2 with probabil i ty PIP2 

~ = 0 with probabil i ty Pl q~ +p~ ql 

- 2 with probabil i ty ql q2 

and (~,15.=2) =1,  ( ~ 1 ~ =  - 2 ) =  - 1  

I Pl qz and ( ~ ] $ , = 0 ) =  1 with probabil i ty  p :  p l q + p ~ q  1 

- 1 with probabil i ty  1 - p  = q 

i.e. ( ~  ] ~, - 0 )  = - 1 § 2 binomial (1,p).  Pu t  for abbreviation 

~ ~-~_~,,=a~n; i= - 2 ,  0 ,2;  n= 1 . . . .  ,N;  zo=O. 
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Now it follows tha t  there is 2 a~ possible realizations of (X 1 ... . .  X N [ Z I  =Zl ... . .  ZN = 
ZN). I f  PI =P2 they all have the same conditional probability. I f  Pl #P2 there is a 
unique mode and according to Theorem 4 

mode ( X 1 . . . .  , X N  ] Z 1 = z 1 . . . . . .  Z s  = zN) = (x~ . . . . .  x * ) 

[a2n --a-2,, -F ao,, if p l > p 2  
with 

* 

Xn - -  - -  ~ [ a 2 n  - -  a -  2rt - -  aort  if Pl <P2" 

Thus P ( X .  *" I pa~ 
if Pl 

= xrt , n = l . . . . .  N [ Z,, = z,, ; n = l  . . . . .  N )  = [ qao N 
if P1</~2. 

From Theorem 4 it  also follows tha t  

(xrt I z ,  . . . . .  z .  = = (r I = 

V=I 

= a z n  - -  a-2rt -- aort + 2 binomial (aort, p). 

This implies x**=mode  (X,,[Z l = z  1 . . . . .  Z N = Z N )  = a 2 , , - a _ 2 r t - a o r t + 2 [ ( 1  +a0,,)p]. I f  
the number  inside the whole number  par t  brackets is a whole number  the mode is 
two-valued. For  details we refer to Feller [4] chapter VI  Theorem 1. The reconstruc- 
tion (xt .. . . .  x*) maximizes the probabil i ty tha t  the reconstruction is correct and the 
reconstruction (x~* .. . . .  x**) maximizes the expected number  of correctly recon- 
structed components. I t  is interesting to observe tha t  when N increases the expected 
number  of correctly reconstructed components is bounded for (xr ... . .  x*) but  is 
increasing a t  least as fast  as VN for (x** .... .  x**). The boundedness may  be proved 
as follows for PI ~>P2 and analogously for ~1 ~ 0 2 "  P u t  A r t  = ~ n = l  8Zv- Z,-,,0 = binomial 
(n, Plq2 +P2ql)- Then 

N N N 

E ~ Ox.,~: = E ~ P(Xrt  = x* [ Z 1 . . . . .  Z N  ) = j~ ~ pan 
, ,=1 n=l n = l  

= ~ ~ P  k rt k ( n ) ( p x q g . + p ,  ql) ~ ( 1 - p x q 2 - p 2 q i )  " -~  
, ,=1 k=0  x / 

N 
= ~ (1 - -p ,q , )  rt= ( 1 - - p ,  ql) 1--  ( 1 - - p 2 q l ) N T l - - p 2 q ,  

n = 1 P 2  q l  P 2  ql 

when N ~ c~. 

The s ta tement  
1 N 

lim .-7----E ~. (~x. x** >~ c, 
N ~  V N  n=l ' 

where c is a positive constant independent of N m a y  be proved as follows. 

E ~ 8x,,*** = E ~ P ( X , ,  = x** I Z l . . . ,  ZN) = E ~ max ,, p ,  qA.-, 
n = l  n - 1  n=l O~v<~An 
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where An = binomial (n, Plq2 § By application of the inequality involving point 
masses of convolutions given in section 3 is obtained 

(-) max - pv qA~-~ i> max p . 
O~v~An " O ~ v ~ n  V 

Moreover, for arbitrary small ~ > 0 and sufficiently large n, say n ~> N 0, 

(:) 1 
max p~ q"-~/> (1 - ~) V2~nn:~npq 

(see Feller [4] Chapter VII,  Theorem 1). 

Thus 
N 

n=l 

N 1 - e  1 - e  ~r du 

= ( 1 - e ) ~  2--~?q(~-N-U.~o)for N>~N o 

and the statement follows. By  some very  tedious calculations i t  is possible to prove 
the stronger relation 

N--~oo V N  n=l 8x#,x~* : ~ P l  q2 P2 ql " 

Example 4. Again let G be the integers with addition. With the notation of Theorem 
3 let ~,=Poisson(p2n) and ~n=Poisson(qtn) where 0 < p < l  and p + q = l .  Then 
$,=Poisson(2,)  and (~ , [~=k)=Binomia l (b ;p )  and (X , [ZI=z  I ..... ZN=ZN) = 
~ - 1  (~v[$v=%--zt,_l)=Binomial(zn;p). Ignoring possible cases of non-uniqueness 
the reconstruction which maximizes the probability of correct reconstruction is 

mode (X~ . . . . .  X~[ Z I = z 1 . . . . .  Z~ = zN) = (x~, ..., x*) 

with x* = ~ [(z~ - z~_ 1 § 1) p] 
V=I 

and the reconstruction which maximizes the expected number of correctly re- 
constructed components is 

(x~* . . . . .  x**) with x** = mode (Xn ] Zx = Zl . . . . .  ZN = zN) = [(z, + 1) p]. 

5. Addition of independent jump processes 

Introduce two independent stochastic processes (Un)n~l and (~)~=i- Here U ~ -  
Un-1 for n = l ,  2 .. . .  and Uo=O are positive identically distributed independent 
stochastic variables, i.e. (Un)~=l is a renewal process. Further  ~1, ~ . . . .  are independent 
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stochastic elements in a discrete commutat ive  group G. Pu t  P(~=i )=P~(n)  for 
i ~ q  and n = l ,  2 . . . .  and suppose tha t  the zero element in G has probabil i ty zero 
for every n; i.e. Po(n)----O. Define the jump process (Xt :  t~>0} by  

X t =  ~ ~v where A t = m a x ~  and (At : t />0} 

is the counting process associated with the renewal process (U~)~%1 of jump times. 
Introduce another  jump process (Yt : t >~ 0} which is independent of (Xt:  t >/0} 

and is defined by  Y t = ~ < s ,  ~ with renewal process (Vn)~l ,  counting process 
(Bt : t  ~ 0~ and jump value process (~?~)F=I. Pu t  P ( ~  = i) = Qt (n), i e G; n = 1, 2 . . . .  
with Q0 (n) -- 0. 

For the sum process ( Z t = X t +  Yt:t>~0} we denote the jump t ime process by  
(W~)F~x, the counting process by  {Ct : t>~0} and the jump value process by  (~)~=1. 
With a realization of (Zt:0~<t~< T} available it is desired to reconstruct the cor- 
responding realization of ( X t : O < t ~ T  }. I f  the renewal processes (U~)~c=x and 
(V~)~_-I are deterministic with the same period (for instance U~ = V~ = n) the problem 
is in principle the same as tha t  discussed in the Theorems 3 and 4. Another special 
case is obtained with G as the integers with addition and ~ n = ~ = l .  Then X t = A t  
and Yt = Bt. The addition of counting processes is dealt with in Cox and Smith [3] 
where the probabil i ty structure of the  sum process is discussed when there is a 
great number  of added processes. In  general the jump times of the sum process are 
not constituting a renewal process but  in the cases discussed below it does happen. 

Case 1. I f  P ( U , -  U,_I <.t) = I - e  -at and P( V ~ -  Vn_x ~ t ) =  l - e  -or for n = l ,  2 . . . .  
then (W~)~=x is a renewal process with P(W~ - Wn-14 t) = 1 - e -(a+b) t; n = 1, 2, ...; 
Wo=O and (~,)~=1 is a process with components given by  

~ with probabi l i ty  k -  1 ~ - b  \ a - ~ ]  ; k = 1 . . . . .  n 

~ with probabil i ty k -  1 ~ \ ~ ]  , k =  1 ...... n. 

The first par t  of the s ta tement  is well known and the second par t  depends on tha t  
(X t :  t~>0} and (Yt,: t ~ 0 }  with probabil i ty 1 have no coincident t ime points of 
jumps. 

Define a sequence of functions (Mn)n~l by  the recursive formula 

M ~  (0) = bnk=rI 1Q~k (k); n = 1, 2 , . . .  

Mn (k) = max (Mn-1 (k) b Qc~ ( n -  k); Mn_l (k - 1) a Pc~ (k)}; 

k = l  . . . . .  n - l ;  n = 2 , 3  . . . .  
n 

M~ (n) = a "  FI__ P c .  (k) ; n = 1, 2 . . . .  

and put  /n(k) equal to 0 or 1 as in the recursive formula the first or the second 
quant i ty  in brackets is the greatest. I f  the two quantities are equal we take In(k) 
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two-valued. Pu t  I,(0) =0  and In(n) =1 for n = l ,  2, . . . .  Suppose that  {Z~ : 0~<t<T} 
has a realization (z~:O<~t<T} with the jumps ~ ,  ..., ~ a t  t ime points w~, ..., w~ 
respectively. 

Theorem 5. mode(X~ : O<~t<-<TIZ~=z~ : O<~t<<.T) has ]c* jump time points and wn 
is such a point with jump ~n i/ In(IOn)=l; n = l  ..... N. Here Ic* is (not necessarily 
uniquely) determined by maxo<k<N MN(k)=Mzr162 and l~ n is given recursively by 
]~n = k . + l  - -  Ia+l(kn+l)~ " n = 1 . . . .  , N - 1 with ]~ = Ic*. 

Proo/: Among the 2 ~ possible realizations of (X~ : 0 ~< t-<< T ]Z, = z~ : 0 ~< t < T) the 
mode is determined by  maximizing 

k N - k  

a~ l-I~l P~'. (v)b ~-~ ~-~l-I Q,~ (v), 

on one hand, in regard to k, the number of jumps, and, on the other hand, in regard to 
the choice of k jump points among the N possible points. Here (i 1 ..... i~, Jl . . . .  , ]~-~) 
is a permutation of (1 .. . . .  N) satisfying 1 ~< i l< i~< . . .< ik<N and l~<j l<j~<. . .  
<J~-k ~<N. By  fixing k and maximizing in regard to the permutations the maximal 

value becomes MN(k) and then MN(k) is maximized for ]c =/c*. From the definition 
of I .  i t  follows that  I,(A~,)=Aw,-Aw~_~; n = l  ..... N; wo=O. Thus with A~=]c~ 

I~(k~) = k ~ -  kn_~; n = 1 ..... N; ]c o = 0 

and the mode has a jump at  wn if I~(1r = 1. 
With the technique of trajectories the mode is determined in the following way. 

In  the (n, Aw,)-plane sections from ( n - l ,  k) to (n, k) are given the numbers b.Q~ 
(n~]c) and sections from ( n - l ,  ] c - l )  to (n, ]r are given the numbers a.Pr 
The points (n, k) are given the numbers Mn(]C) and arrows are given to sections from 
( n - l ,  k- I~(k ) )  to (n, k). By  following the arrows backwards from (n, k*) the 
optimal trajectory (or trajectories) is obtained which corresponds to the mode. 

If the jump value processes consist of identically distributed components, i.e. if 
P~(n) =P~ and Qi(n)=Q~, the determination of the mode is considerably simplified. 
Then the mode has a jump ~ at time w, if a.Pr162 but  has no jump if a.Pr 
b.Qr If  a.P~,=b.Qr the mode is not  unique. We omit the details. Notice that  
this type of processes is identical with the homogeneous processes on G. 

T h e o r e m  6. 
a b 

EH(Xt :O<t<T[Z t :O<t<-~T)< - a T  log ~ - b - b T  log a + b  

with equality i/ and only i/P~(n)=Q~(m)/or n = l ,  2, ...; re=l ,  2 .... ; lEG. 

Proo/: Putting X = ( X t  : 0-<t~<T), A-- (A t :0~<t~<T), ~=(~1 .. . .  , ~A~), Z = ( Z t :  
O~<t<~T), C=(C t : O<t<~T), ~=(~1 ... . .  ~cT) and using the properties of entropy we 
obtain E l I ( X  [Z) = EH (A, ~ ] C, ~) = E l i  (A I C, ~) + El t (~  I A, C, ~) = E l i  (A I C, ~) 
EH(A I C) with equality if and only if A and ~ are independent when conditioned by  
C, which means that  the jumps of the sum process are independent of knowledge 
about the component processes generating them. Thus ~1, ~ .. . . .  ~/1, ~/2 .. . .  are all 
identically distributed; i.e. Pt(n)=Ql(m). 
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The direct method to evaluate EH(A]C) is to observe that  in the conditional 
distribution the jumps are independent and belongs to A with probability a/(a +b) 

Thus 
fl, 

EH(AIO)=EC~ -X-~  log a+b 
b b "% 

a+b log l 
a b 

= - a T  log - -~-~-bT  log a+b" 

Another method would be to write EH(A ]C)=H(A)+H(B)-H(C) provided that  
we had defined entropy for such variables in a consistent way. I t  may be of some 
interest to notice tha t  

H(A) = H(U 1 . . . .  , UAr) = H(Ar) + EH(Ux,..., UAr [ AT) 

= -  E log [e -aT (aT)A~'] T'4r e ] + E  log ~ = a T  log a- 

is obtained if log (Tl'/k!) is taken as the entropy of (U1 ... . .  UAv]AT=k) which is 
distributed as an ordered k-sample from the uniform distribution over the interval 
(0, T). Compare Tac~cs [9] p. 39. Then 

e E H ( A ] C ) = a T  log _ e + b T l o g ~ _ ( a + b )  T log e 
a a+b 

a b 
= - a T l o g  ~ - b T l o g  

a+b" 

Case 2. When the renewal processes (U,)~= 1 and ( V,),% 1 have discrete distributions 
they may have coincident renewal points with positive probability. This makes the 
problem of reconstruction more complicated and here we will only discuss the case 
when the two renewal processes have geometrical distributions with P ( U = -  Un_ 1 = 
k) =plq~-~; px+ql  = 1; k = l ,  2 . . . .  ; n = l ,  2 .. . .  ,; Uo=0; P(V~-  V~_~=k) =p2q~-~; p2+ 
q2 = 1; k = 1, 2 .. . .  ; n = 1, 2 . . . .  ; V 0 -= 0. Then also (W=)~% 1 is such a process with P(Wn - 
W~_I =k) = i ~ - t ;  q=q~q~; p + q = l ;  k = l ,  2, ...; n = l ,  2 .. . .  ; Wo=0. 

Further  

~k with probabili ty ( ;  -- 11) ( ~ ) k - 1  (P-~ ql~n-~ivl q~; 'C7- /  k=1 ..... 

, ( -7 . ,  k= 

( . -  i) ! ( ~ -  j) ! (i + i -  ~ -  1) ! \ T /  

i = l  . . . . .  n j = l , . . . , n  

with probability 

C p - /  
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and we assume P ( ~  = 0 ) = 0  which is satisfied for  instance if G is the integers with 
addition and ~, and ~ are positiv e variables. 

M Define the sequence of functions ( ~),=1 by the recursive formula 

Mn(O,n)=(p2q~)n  f i  Qr n = l , 2  . . . .  
k = l  

Mn (n, 0) = (p, qz) n ~YI Pr (k); n = 1, 2 . . . .  

M~ (n, n) = (pip2) n I ]  max P~ (k) Q~k-~ (k); 
k=l ~ r  

n = l , 2  . . . .  

M~ (a, b) = max 

Mn-1 (a - 1, b) p 1 q2 Pr (a) 

Mn-1 (a, b - 1)p~. q~ Qr (b) 

M n - i  (a - l ,  b - 1 )p ip  ~ max P~ (a) Qr (b) 

a = l , . . . , n ;  b = l , . . . , n ;  

n < ~ a + b < 2 n ;  n = 2 , 3 , . . . .  

Put  1'~ (a, b) equal to 1 ff the first or third quanti ty is the greatest among the three 
quantities in the maximum brackets above and put  I~(a, b) equal to 0 otherwise. 
Put  I~(a,  b) equal to 1 if the second or third quanti ty is the greatest among the 
three quantities in the maximum brackets above and put  In" (a, b) equal to 0 other- 
wise. 

Pu t  I~ (0, n) =0, I~ (n, 0) = 1, I~ (n, n) = 1, 

l t S  ~ i p  t t  , (0 ,  n ) = l ,  In (n ,  0)=0,  I n ( n , n ) = l .  

Suppose that  {Zt :0  ~<t ~< T} has a realization {zt :0  ~<t ~< T} with the jumps ~ ..... tN 
at  the time points w~, ...,wN. Then the following theorem may be proved in much the 
same way as Theorem 5. 

Theorem 7. mode (Xt  : 0 ~ t <~ T I z ,  = z, : o <<. t < T) ha~ a* jump time points and wn 
is such a point i / I ;  (an, bn) = 1 and then the jump is ~n i / I ;"  (an, bn) = 0 and the jump is 
equal to the element i E G which maximizes P~(a~)Qr (bn) i/I'~" (an, bn)= I. Here a*, a n 
and bn are 9iven by maxa, b MN(a, b) =MN(a*, b*) and 

t 
an =an+l --In+l (an+l, bn+l) 

bn : bn+l - I~'+1 (an+l, bn+l) 

n = l  . . . .  , N - I ;  a N : a * ;  b N " -  b * .  

If the jumps ~, are independent and identicallly distributed it is possible to 
write X~ = ~1 +---  + ~:A~ = ~r, + . . .  + ~u~ = ~:~ + . . .  + ~ where ~ are independent 
and identically distributed and 
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0 with probability 

~[ = ~ with probability 

i.e. 
f qt +Jo I P0 

P ( ~  = i) = | 
Lpt Pt for 

qt 

f i t  

for i = o  

i:~O. 

�9 �9 r 
In the same way Y n = ~ t + . . . + ~ n . = ~ l +  . . . + ~  where ~.  are independent and 
identically distributed and 

�9 [ 0 with probability q2 

71 = / ~Tt with probability P2 

i.e. 
�9 . [ qs + P2 Qo for i = 0 

P(~'t=~)=lpaQ~ for i~=0. 

Then Z,  = ~1 + . - .  + $~ with ~ = ~ + ~/~ and 

0 with probability ql q~ 

~1 with probability Pl q2 

~/t with probabili ty qi/a~ 

~1 + ~t with probability PlJ~ 

By application of Theorem 4 

mode (X 1 . . . . .  XNI Z 1  = z  1 . . . . .  Z N = z , v )  = ( x ~ ,  . . . ,  x ~ / )  

with x*=  ~ mode ( ~ ; I $ ~ = z v - z , _ l ) ;  n = l  . . . . .  N; zo=0.  
v = l  

Moreover, provided all entropies are finite 

EH(X1 . . . . .  XN I Z1 . . . . .  ZN) = N [H(~i) + H(~i) - H(~)]  

and by use of the inequalities for entropies of mixed distributions it  follows tha t  
this entropy is strictly smaller than 

I [ - P I  log P l - q t  log ql TPlH(~I) --J0~ log p~ 

--q~ log q2 +P2H(~I) -:PlqsH(~I) --qlp2H(~h) -Plp2H(~I +~1)] 

= N[PIP2 EH(e~I I~1 +~1) - P l  log Pl - ql log ql -P2  log p~ - q2 log qz]. 

Now if we impose the restrictions Po =Qo = ~ P~Q-i =0 we get for ?" # 0  
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mode (~  I ~ = i) = ode (~1 l~1 = J) 

according as plq2Ps or p~p~ max~ PiQj-~ or p2qlQj is the greatest of the three quanti- 
ties. If the greatest quanti ty is not uniquely determined the mode is not unique 
either. For the entropies we get 

H(~ 1) = --Pl log Pl --ql log ql +PlH(~) 

H(#~) = -p~  log P 2 -  q2 log q2+p2H(~h) 

H(~)  = - p  log p - q  log q +pH(U), 

where ~ " = :  

~1 with probability Pl q2 
P 

71 with probability P2 ql 
P 

~i + 71 with probability PlP~ 
P 

and H(~") ~ .Pl qz H(~I ) _l_~o2 qlH(r]l) +PIP2 H(~I _k~]l ) 
P P P 

with equality if and only if ~1'~I and ~1+?]1 are identically distributed, i.e. 
Pt = Qt = ~j Pj Pi- j  which can never hold together with P0 = Q0 = 0. I t  follows tha t  

. . . . .  Z N [ Z 1 . . . . .  ZN) < N [PIP2 EH(~I [ ~1 -~- 71) E H ( X  1 

- -PlP2 l o g ~ - - P l q ,  l o g ~ - - P ,  ql log ~ - ~ ]  �9 

6. Addition of  independent Gaussian processes 

Let  +~ I y  ~+~ (X.)n=-~ and ~ njn=-~ be independent Gaussian processes with EXn =0,  
Z N EXn.X.,=An.. EYn=O, EYnY.,=Bnm . A realization (~)~=1 of the sum process 

(Z n = X . +  Y.)~=I is available and it is required to reconstruct the corresponding 
realization of (X~)~=I. If we denote by A and B the eovarianee matrixes (assumed 
nonsingular) of X=(X~ .... , XN) and Y=(Y1 ..... YN) respectively we obtain for 
(X IZ =z) the frequency function 

k. exp - ~- [x' A L1 x "-~ (z - x)" B -1 (z - x)], 

where k is a constant independent of x = (x x ..... xN). The reconstruction mode (X [Z = z) 
defined as the element which maximizes the frequency function is determined by 
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maximizing z ' B - l x + x ' B - l z - x ' ( A - l + B - 1 ) x  in regard to x which after some cal- 
culations gives 

mode (X]Z = z) = (A -1 + B-1)-*B-lz = (I  + BA-1)- lz  = A(A  + B)-lz. 

The method of reconstruction of Wiener only works when the processes are sup- 
posed stat ionary and when the given realizations have infinitely many  components. 
Then x *-w:~176 - ~m =o CmZ.-m is taken as the reconstruction of x. if Co, (31, . . .  can be deter- 
mined so tha t  E I X . -  ~ o  CmZ.-m I ~ is minimized. A natural  formulation of this 
linear method in our case with finitly many  components and without demand for 

N st~tionarity is to reconstruct xn with x* = ~.m=l L.mzm where the Lnm are determined 
by  minimizing E ] X .  - ~.~ffil L.mZ., 12. I f  d is the ordinary Euclidean distance in the 
N-dimensional Euclidean space we m a y  say tha t  x =(x, ..... xN) is reconstructed by  
x*=Lz  where the matr ix  L is determined by  minimizing Ed(X ,  LZ) ~. From the 
relation 

EIX - 
N N N N N 

L, ,mZmla=A~+ ~ ~. Lk, ,Lk, , (A,m+B,,m)-  ~. L~,mAmk- ~ L~,,Akm 
m=l n=l m=l mffil m=l 

and straightforward calculations the optimal choise of L is seen to be L = A ( A  + B) -1, 
i.e. the linear reconstruction Lz is equal to the mode. 

A C K N O W L E D G E M E N T  

I am very grateful to my teacher Professor Ulf Grenander for his comments and encourage- 
ment.  Also I am deeply indebted to my colleague Per Martin-L6f who has critically read the 
manuscript and made some very valuable comments. 

University of Stockholm 

R E F E R E N C E S  

1. BELLMAN, R . ,  Dynamic Programming. Princeton University Press 1957. 
2. BELLMAN, R., and DREYFUS, S., Applied Dynamic Programming. Princeton University 

Press 1962. 
3. Cox, D. R., and SMITH, W. L., On the superposition of renewal processes. Biomctrika 1954, 

41, 91-99. 
4. FELLER, W., An Introduction to Probability Theory and its Applications. Wiley 1957. 
5. FR~CHET, M., Les 616ments al6atoires de nature quelconque clans un espace distanci6. Ann. 

Inst.  H. Poincar~ X, pp. 215-310. 
6. GRENANDER, U., Probabilities on Algebraic Structures. Wiley 1963. 
7. LEHMAN, E. L., Testing Statistical Hypotheses. Wiley 1959. 
8. PINSKER, M. S., Information und Informationsstabilitat  znf~lliger GrSssen und Prozesse. 

Arbeiten zur Informationstheorie V. VEB Deutscher Verlag der Wissenschaften. Berlin 
1963. 

9. TAC/[CS, L., Stochastic Processes. Methuen's Monographs. London 1960. 
10. W~LD, A., Statistical Decision Functions. Wiley 1950. 
11. WIENER, N., The extrapolation, interpolation and smoothing of stationary time series with 

engineering applications. Technology Press 1949. 

Tryckt den 10 november 1964 

Uppsala 1964. Almqvist & Wiksells Boktryckeri AB 

462 


