1.64 04 4 Communicated 26 February 1964 Å. PLEIJEL and L. GÅRDING

Asymptotic estimates for spectral functions connected with hypoelliptic differential operators

By Nils Nilsson

1. Introduction

Let $x = (x_1, ..., x_n)$ be coordinates in \mathbb{R}^n and put $D_k = (2\pi i)^{-1} \partial/\partial x_k$ and $D^{\alpha} = D_1^{\alpha_1} ... D_n^{\alpha_n}$. We shall consider a hypoelliptic differential operator $M(D) = \sum M_{\alpha} D^{\alpha}$ with constant coefficients. Let us assume that the coefficients M_{α} are real, so that M(D) is formally self-adjoint. Moreover, we suppose that $M(\xi) \to +\infty$ when $|\xi| \to \infty, \xi \in \mathbb{R}^n$.

If S is an open subset of \mathbb{R}^n and we define M(D) on $C_0^{\infty}(S)$, we get a symmetric linear operator a_0 in the Hilbert space $L^2(S)$. We let A be a self-adjoint extension of a_0 . Then by the spectral theorem A has a spectral resolution $E(\lambda)$ of commuting projection operators increasing with λ (Nagy [7]). The operator $E(\lambda)$ is given by a kernel $e_{\lambda}(x,y)$, the spectral function of A: $E(\lambda)u(x) = \int_S e_{\lambda}(x,y)u(y) dy$, where e_{λ} is infinitely differentiable in $S \times S$. This is proved in Hörmander [5] in the case where A is semi-bounded and in this paper in the general case.

If in particular $S = R^n$, there is a unique self-adjoint extension A_0 of a_0 with a corresponding spectral function $e_{0,\lambda}$ which is easily computed by a Fourier transformation:

$$e_{0,\lambda}(x,y) = \int_{M(\xi) \leqslant \lambda} \exp\left(2\pi i \langle x-y,\xi \rangle\right) d\xi.$$

We are going to give a result on the behaviour of $e(\lambda) = e_{0,\lambda}(x,x)$ when $\lambda \to +\infty$. We shall show (Theorem 1) that there are real numbers a and t, a > 0 and t an integer ≥ 0 such that for some number k > 0

$$k^{-1}\lambda^a(\log \lambda)^t \leq e(\lambda) \leq k\lambda^a(\log \lambda)^t \quad (\lambda ext{ large})$$

 $e'(\lambda) = 0(1) \lambda^{a-1}(\log \lambda)^t \quad (\lambda \to +\infty).$

and

An analogous result holds for the derivatives of $e_{0,\lambda}$ with respect to x, y:

.

$$e^{(lpha,lpha)}_{0,\lambda}(x,x)=\int_{M(\xi)\,\leqslant\,\lambda}\xi^{2lpha}d\xi.$$

If n=2, we shall prove a sharper result, namely $e(\lambda) = k(1+o(1)) \lambda^a (\log \lambda)^t$ for a positive number k, and where t=0 or t=1.

The proof of Theorem 1 uses analytic continuation properties of the function

 $e(\lambda)$, which follow from results in the author's paper [8]. In particular cases the asymptotic behaviour of $e(\lambda)$ has been investigated by Gortjakov [3], who then also computed the numbers a and t. Further we prove an asymptotic result for $e_{\lambda}(x,y)$ when S is arbitrary. For this we show an estimate for a fundamental solution of $(\mathcal{M}(D) - \lambda)$ when $\lambda \rightarrow -\infty$, and apply a Tauberian theorem of Ganelius for the Stieltjes transformation. We get the following result (Theorem 2), valid also in the not semi-bounded case,

$$|e_{\lambda}(x,x)-e_{0,\lambda}(x,x)|=O(1)\,\lambda^{a-b}(\log\lambda)^t\quad (\lambda\to+\infty),$$

where a, t correspond to the polynomial $M(\xi)$ as above and b > 0 is the largest number such that

$$||\operatorname{grad} M(\xi)|| \leq C(|M(\xi)|+1)^{1-b} \quad (\forall \xi \in R^n)$$

for some number C. When $\lambda \rightarrow -\infty$, we have with some c > 0

$$e_{\lambda}(x,y) = O(1) \exp\left(-c \left|\lambda\right|^{b}\right)$$

2. Notations. The spectral function

We introduce the following customary notations. If α is a multi-index $(\alpha_1, ..., \alpha_n)$, where the α_i are non-negative integers, we put $|\alpha| = \alpha_1 + ... + \alpha_n$ and $\xi^{\alpha} = \xi_1^{\alpha_1} \cdot ... \cdot \xi_n^{\alpha_n}$ with $\xi = (\xi_1, ..., \xi_n)$. We write $D_j = (2\pi i)^{-1} \partial/\partial x_j (j = 1, ..., n)$ and $D = (D_1, ..., D_n)$. Let $M(\xi) = \sum M_{\alpha} \xi^{\alpha}$ be a complex polynomial in $\xi_1, ..., \xi_n, n \ge 2$. Then it corresponds to a differential operator $M(D) = \sum M_{\alpha} D^{\alpha}$ with constant coefficients. We shall assume that it is hypoelliptic, i.e. (Hörmander [5]) that

$$M^{(\alpha)}(\xi)/M(\xi) \rightarrow 0 \quad (|\xi| \rightarrow \infty, \xi \text{ real}),$$
 (1)

where $M^{(\infty)}(\xi) = D^{\alpha}M(\xi)$, and the relation (1) holds for all α with $|\alpha| > 0$. Moreover, we suppose that M is real. Then it follows from (1) that either $M(\xi) \to +\infty$ or $M(\xi) \to -\infty$ when $|\xi| \to \infty$ (ξ real). Let us choose the sign of M so that $M(\xi) \to +\infty$. Let S be an open subset of \mathbb{R}^n . We shall then work in the Hilbert space $L^2(S)$ with inner product $(u,v) = \int_S u(x)\overline{v(x)}dx$ and norm $||u|| = (u,u)^{\frac{1}{2}}$. If we define M(D) on the set $C_0^{\infty}(S)$ of all infinitely differentiable functions, which vanish outside compact subsets of S, we get a linear operator a_0 in $L^2(S)$, which is also symmetric, since M is real so that M(D) is formally self-adjoint. Let us assume that A is a self-adjoint extension of a_0 and that A is bounded from below, $A \ge \lambda_0 I$, say, where I is the identity operator in $L^2(S)$. In the sense of Nagy [7], to A there corresponds a spectral resolution $E(\lambda)$, which is a projection-valued, non-decreasing function on the real line. We have $E(\lambda) = 0$ for $\lambda < \lambda_0$. Since M is hypoelliptic, the following statement holds (Hörmander [5]).

To every multi-index α there is a positive integer r such that $D^{\alpha}u$ is continuous (i.e. there is a continuous function v such that $D^{\alpha}u = v$ in the distributional sense) for every distribution u such that $M(D)^{r}u$ is locally square integrable, and we have an inequality

$$\sup_{x \in K} |D^{\alpha} u(x)| \leq C(||M(D)^{r} u|| + ||u||),$$
(2)

where K is any compact subset of S, and C is independent of u but may depend on

ARKIV FÖR MATEMATIK. Bd 5 nr 35

 α , r, K, and S. Of course, $\sup_{x \in K} |D^{\alpha}u(x)|$ means $\sup_{x \in K} |v(x)|$, where v is the continuous function equivalent to $D^{\alpha}u$. By (2) it may be shown (Hörmander [5]) that $E(\lambda)$ is given by a kernel $e_{\lambda}(x, y)$, the spectral function of A, such that

$$E(\lambda) u(x) = \int_{S} e_{\lambda}(x, y) u(y) dy \quad (u \in L^{2}(S)),$$

where e_{λ} is defined and infinitely differentiable in $S \times S$. Further $e_{\lambda}(x, y) = \overline{e_{\lambda}(y, x)}$ for all $x, y \in S$. We also have an estimate

$$e_{\lambda}^{(\alpha,\beta)}(x,y) \equiv i^{|\alpha+\beta|} D_x^{\alpha} D_y^{\beta} e_{\lambda}(x,y) = 0 (1) \lambda^{p+k(|\alpha+\beta|)}$$
(3)

when $\lambda \to +\infty$, uniformly on compact subsets of $S \times S$, with some positive numbers p and k and all α, β . For e_{λ} we also have the following lemma.

Lemma 1. For any α and any $x \in S$, $e_{\lambda}^{(\alpha,\alpha)}(x,x)$ is an increasing function of λ , and the variation with respect to λ on any real interval Λ satisfies the inequality

$$\operatorname{var}_{\Lambda} e_{\lambda}^{(\alpha,\beta)}(x,y) \leq (\operatorname{var}_{\lambda} e_{\lambda}^{(\alpha,\alpha)}(x,x) \cdot \operatorname{var}_{\Lambda} e_{\lambda}^{(\beta,\beta)}(y,y))^{\frac{1}{2}}$$

for all $x, y \in S$ and all α, β .

Proof. For the proof we refer to Bergendal [1], the Lemmas 1.2.2 and 1.2.1. There the lemma is proved for the spectral function of an elliptic operator, but the proof only uses that $(e_{\lambda}-e_{\mu})$ is the kernel of an orthogonal projection if $\lambda > \mu$, and so it works as well in our case.

In particular it follows from the lemma that for any x, y, α, β the function $e_{\lambda}^{(\alpha,\beta)}(x,y)$ is locally of bounded variation. If $\lambda < \lambda_0$, then $G(\lambda) = (A - \lambda I)^{-1}$ exists as a bounded operator in $L^2(S)$, and $||(A - \lambda I)^{-1}|| \leq (\lambda_0 - \lambda)^{-1}$. If the integral of a real function with respect to a spectral measure is defined as in Nagy [7], then $G(\lambda) = \int_{\lambda_0}^{+\infty} (\mu - \lambda)^{-1} dE(\mu)$. If in (3) the number p is smaller than 1, then

$$G_{\lambda}(x,y) = \int_{\lambda_0}^{+\infty} (\mu - \lambda)^{-1} de_{\mu}(x,y)$$
(4)

is defined as a continuous function in $S \times S$ (this is seen e.g. by an integration by parts). From the definition of the integral with respect to a spectral measure (Nagy [7]) it follows that on $C_0^{\infty}(S)$ (and also on $L^2(S)$), G_{λ} is the kernel of $(A - \lambda)^{-1}$. We shall call G_{λ} Green's function corresponding to A. We see that for $\varphi \in C_0^{\infty}(S)$ the function $\psi(x) = (G_{\lambda}(x, \cdot), \varphi)$ is continuous (no correction is needed). If in (3) also $(p+k|\alpha+\beta|) < 1$, we get from (3) that $G_{\lambda}^{(\alpha,\beta)}$ is continuous in $S \times S$, and

$$G_{\lambda}^{(\alpha,\beta)}(x,y) = \int_{\lambda_0}^{+\infty} (\mu - \lambda)^{-1} de_{\mu}^{(\alpha,\beta)}(x,y).$$
(5)

If instead of A we consider the operator $B = A^r$ with a positive integer r, then B is self-adjoint and bounded from below, and B is further an extension of $M(D)^r$, defined on $C_0^{\infty}(S)$. Since $M(D)^r$ is hypoelliptic, B has a spectral function $e_{r,\lambda}(x,y)$, and for large λ we have $e_{r,\lambda} = e_{\lambda}^{1/r}$. Hence, taking r large enough, we may make the exponent in (3) smaller than 1, if we have $e_{r,\lambda}$ instead of e_{λ} . Hence, for any M, α and β , (5) holds for the Green's function and the spectral function of A^r if we take r large enough.

We have a particularly simple case when the set S is the whole of \mathbb{R}^n . Then the Fourier transform

$$\mathcal{F}_{f}(\xi) = \int \exp(-2\pi i \langle x, \xi \rangle) f(x) dx$$

taken in the sense of Schwartz [11] is a unitary mapping of $L^2(S)$ into $L^2(\mathbb{R}^n)$, and $\mathcal{F}_{a_0}\mathcal{F}^{-1}$ is multiplication by $M(\xi)$. Hence a_0 has a unique self-adjoint extension A_0 , and since the spectral resolution $\hat{E}_r(\lambda)$ of $\hat{A}_0^r = \mathcal{F} A_0^r \mathcal{F}^{-1}$ is multiplication by the characteristic function of the set $\{\xi \mid M(\xi)^r \leq \lambda\}$ and the operator $(\hat{A}^r - \lambda)^{-1}$ is multiplication by $(M(\xi)^r - \lambda)^{-1}$, we have

$$e_{0,r,\lambda}(x,y) = \int_{M(\xi)^r \leqslant \lambda} \exp\left(2\pi i \langle x-y,\xi \rangle\right) d\xi$$

and
$$G_{0,r,\lambda}(x,y) = \int (M(\xi)^r - \lambda)^{-1} \exp\left(2\pi i \langle x-y,\xi \rangle\right) d\xi.$$
 (6)

The integral is absolutely convergent for large negative λ if r is large enough, since for a hypoelliptic polynomial $M(\xi)$ we have $|M(\xi)| \ge C |\xi|^c$ for all large real ξ with some positive constants c and C (Hörmander [5]).

We now give a result on the asymptotic behaviour of $e_{0,\lambda}(x, x)$, when λ tends to $+\infty$.

Theorem 1. Let $P(\xi_1, ..., \xi_n)$ be a real polynomial such that $P(\xi_1, ..., \xi_n) \rightarrow +\infty$ when $|\xi| \rightarrow \infty$ (ξ real) and let α be a multi-index. If

$$e(\lambda) = \int_{P(\xi)\leqslant\lambda} \xi^{2lpha} d\xi,$$

then there are positive numbers c, C, and a, and a non-negative integer t such that

$$C^{-1}\lambda^a (\log \lambda)^t \leq e(\lambda) \leq C\lambda^a (\log \lambda)^t \quad (\lambda > c)$$

 $e'(\lambda) = 0(1)\lambda^{a-1} (\log \lambda)^t \quad (\lambda \rightarrow +\infty).$

and

If n=2, then t=0 or t=1 and

$$e(\lambda) = (k + o(1))\lambda^a (\log \lambda)^t \quad (\lambda \rightarrow +\infty)$$

with some positive constant k.

Remark. It is clear that the numbers a and t are uniquely determined by P and α . We shall call $a = a(P, \alpha)$ and $t = t(P, \alpha)$ the E-numbers of the pair (P, α) .

The proof of Theorem 1 depends on the following lemma which is a particular case of results in the author's paper [8] (Theorems 1 and 2 and Lemma 2).

Lemma 2. Consider a real algebraic manifold $V(\lambda)$: $p(\lambda,\xi) = 0$ in \mathbb{R}^n depending on $\lambda \in \mathbb{R}$. Here $p(\lambda,\xi)$ is a real polynomial in $\lambda \in \mathbb{R}$ and $\xi \in \mathbb{R}^n$. Suppose that, for some λ_0 , $V(\lambda_0)$ is not empty and that $\operatorname{grad}_{\xi} p(\lambda_0,\xi) \neq 0$ for all $\xi \in V(\lambda_0)$. Further assume that there is a bounded subset Ω of \mathbb{R}^n such that $V(\lambda) \subset \Omega$ for all λ in a neighbourhood of λ_0 . For λ in a neighbourhood of λ_0 , let $\omega_{\lambda}(\xi)$ be a differential (n-1)-form on $V(\lambda)$ such

ARKIV FÖR MATEMATIK. Bd 5 nr 35

that in any local coordinate system on $V(\lambda_0)$ with coordinates ξ' picked among the ξ_i (also defining a local coordinate system on $V(\lambda)$ for λ in a neighbourhood of λ_0) the coefficients of $\omega_{\lambda}(\xi)$ are regular analytic algebraic functions of (λ, ξ') . Define the function

$$g(\lambda) = \int_{V(\lambda)} \omega_{\lambda}(\xi)$$

in a (sufficiently small) neighbourhood of λ_0 . Let $G(\lambda)$ be a primitive function of $g(\lambda)$. Then there is a finite set W of points $\xi_1, \ldots, \xi_r \in C$ such that $G(\lambda)$ may be continued analytically along any path in C not passing through any point of W. Moreover, all the determinations of $G(\lambda)$ in the neighbourhood of any $\lambda \in (C-W)$ span a finite dimensional linear space over C. Put $\varrho = 2 \cdot \max_j |\xi_j|$. Then, if $\lambda_1 > \varrho$ and if $G_1(\lambda)$ is a function element of $G(\lambda)$ at λ_1 , there is a real number c and to every positive integer N a number K such that

$$|G(\lambda)| \leq K |\lambda|^c$$

for all λ with $|\lambda| > \varrho$ and for all determinations of $G(\lambda)$ that may be obtained from $G_1(\lambda)$ by analytic continuation at most N rounds in the region $|\lambda| > \varrho$. These properties hold also for the function $g(\lambda)$ itself. If n=2, then there is a positive integer N such that for $|\lambda| > \varrho$

$$T^N g(\lambda) = g(\lambda) + h(\lambda), \quad T^N h(\lambda) = h(\lambda),$$

where T is analytic continuation one round in the positive sense along circles $|\lambda| = \text{constant}$.

For the proof of Theorem 1 we shall also need the following lemma.

Lemma 3. Let $q(\xi_1, ..., \xi_n)$ be a complex polynomial. Then there is a number σ such that when $|\lambda| > \sigma$ we have grad $q(\xi) \neq 0$ for all $\xi \in V(\lambda)$: $q(\xi) = \lambda$.

Proof. Consider the algebraic manifold $\operatorname{grad}(q(\xi)) = 0$. It consists of a finite number of connected components F_1, \ldots, F_s , and $q(\xi)$ is $\operatorname{constant} = \lambda_j$ on every F_j . Then for $|\lambda| > \max(|\lambda_j|)$ we have that $\operatorname{grad} q(\xi)$ is different from zero for all $\xi \in V(\lambda)$. The lemma is proved.

Now let us turn to the proof of Theorem 1. It follows from lemma 3 that $e(\lambda)$ is real analytic for λ greater than some σ . Consider the derivative $f(\lambda) = e'(\lambda)$. We may write $f(\lambda)$ as an integral over $V(\lambda)$: $P(\xi_1, ..., \xi_n) = \lambda$,

$$f(\lambda) = \int_{V(\lambda)} \xi^{2lpha} (d\xi/dP(\xi)).$$

It is clear that the differential (n-1)-form $\omega_{\lambda}(\xi) = (d\xi/dP(\xi))_{V(\lambda)}$ on $V(\lambda)$ has regular algebraic coefficients in any local coordinate system with coordinates among the ξ_i . Hence $e(\lambda)$ has the properties stated in Lemma 2.

From the fact that all the determinations of $e(\lambda)$ span a finite dimensional linear space over the complex numbers it follows (see e.g. Goursat [4], p. 447-460) that in a neighbourhood of infinity $e(\lambda)$ is a finite sum of terms of the type $\lambda^{\beta}(\log \lambda)^{\nu}H(\lambda)$, where β is a complex number, ν a non-negative integer, and $H(\lambda)$ is analytic and singlevalued in a neighbourhood of ∞ . Hence every such function $H(\lambda)$ may be developed into a Laurent series $\sum_{k=-\infty}^{+\infty} a_k \lambda^k$, convergent in a neighbourhood of ∞ . Further all the

functions $H(\lambda)$ are linear combinations of functions of the form $\lambda^{\gamma}(\log \lambda)^{\mu}h(\lambda)$, where γ is a complex number, μ an integer, and $h(\lambda)$ some branch of $e(\lambda)$. Because of the estimate of $e(\lambda)$ obtained in lemma 2 the Laurent series of any $H(\lambda)$ contains only a finite number of non-zero terms with a positive exponent.

Let us write every term $\lambda^{\beta}(\log \lambda)^{\nu} H(\lambda)$ so that $\hat{H}(\lambda) = \sum_{k=-\infty}^{0} a_k \lambda^k$ with $a_0 \neq 0$, which we can always do, choosing β conveniently. Then among the terms of e we select the 'largest' ones, first taking those having $\operatorname{Re}(\beta)$ maximal, =a, say, and among these keep those who have ν maximal, =t, say. Then, in every such 'maximal' term we replace $H(\lambda)$ by the constant term in the Laurent expansion. The sum of the selected terms is then a function

$$\varphi(\lambda) = \lambda^a (\log \lambda)^t (c_1 \lambda^{ik_1} + \ldots + c_1 \lambda^{ik_1}) = \lambda^a (\log \lambda)^t \cdot \Phi(\log \lambda),$$

where the c_i and k_i are constants and the k_i real, and we may suppose that Φ is not identically zero. By our method of picking the terms in φ we have

$$e(\lambda) - \varphi(\lambda) = o(1) \lambda^{a} (\log \lambda)^{t} \quad (\lambda \to +\infty).$$
(7)

We have $\Phi(\mu) = \Phi_1(\mu) + i\Phi_2(\mu)$, where Φ_1 and Φ_2 are functions of the type

$$g(\mu) = A_1 \sin(d_1 \mu + e_1) + \dots + A_q \sin(d_q \mu + e_q), \tag{8}$$

where the A_j , d_j and e_j are real constants and q some positive integer. It is well known (see e.g. Besicovitch [2], p. 5, Th. 12) that a function g of the type (8) has the following property. If ω_0 is in the range of g, then there is to every $\varepsilon > 0$ an increasing sequence μ_1, μ_2, \ldots of real numbers and a positive number K, such that $\mu_j \to +\infty$ when $j \to +\infty, \mu_{j+1} - \mu_j < K$ for all j and

$$|g(\mu_j)-\omega_0|<\varepsilon,j=1,2,\ldots$$

By this property we get that $\Phi_2 \equiv 0$. For, if there were a number $y_0 \neq 0$ in the range of Φ_2 , then there would be a sequence (λ_i) , tending to $+\infty$, such that

$$|\mathrm{Im}(\varphi(\lambda_j))| > |y_0| \lambda_j^a (\log \lambda_j)^t / 2$$

and from (7) it would then follow that $e(\lambda_j)$ is non-real, if j is sufficiently large, which is a contradiction, since e is real. Hence $\Phi_2 \equiv 0$, and $\Phi = \Phi_1$. An analogous argument shows that $\Phi \ge 0$, as a consequence of the inequality $e(\lambda) \ge 0$. Now let us consider $e'(\lambda)$.

From the way of picking the terms in φ we find

$$e'(\lambda) = a\lambda^{a-1}(\log \lambda)^{t} \Phi(\log \lambda) + \lambda^{a-1}(\log \lambda)^{t} \Phi'(\log \lambda) + o(1)\lambda^{a-1}(\log \lambda)^{t} \quad (\lambda \to +\infty).$$

$$(9)$$

By the same type of arguments as above for Φ and Φ_2 we get from (9) and $e'(\lambda) \ge 0$ ($e(\lambda)$ is evidently increasing)

$$\Phi'(\mu) \ge -a\Phi(\mu). \tag{10}$$

Since Φ is not identically zero, and $\Phi \ge 0$, there is an increasing sequence μ_1, μ_2, \dots such that $\mu_j \rightarrow +\infty$ when $j \rightarrow +\infty$, and with two positive numbers C and K

$$(\mu_{j+1}-\mu_j) \! < \! K, \quad \Phi(\mu_j) \! > \! C, \quad ext{for all } j.$$

Let μ be an arbitrary number $>\mu_1$, and let μ_l be the largest μ_j which is $\leq \mu$. The solution of the differential equation u' = -au which passes through the point $(\mu_l, \Phi(\mu_l))$ is

$$u(x) = \Phi(\mu_l) \exp\left(-a(x-\mu_l)\right).$$

From (10) it then follows $\Phi(x) \ge u(x)$ for $x \ge \mu_l$, and so a must be non-negative, since otherwise Φ would grow exponentially, but we know that it is bounded. Further $x = \mu$ gives

$$\Phi(\mu) \geq C \exp(-aK) \geq 0.$$

By (7) we now get the statement about $e(\lambda)$ in the theorem. That about $e'(\lambda)$ follows from (9).

It remains to show the stronger assertions in the case n=2. By Lemma 2 there is an integer N>0 such that in a neighbourhood of ∞ we have $T^N e' = e' + h$, $T^N h = h$. Hence $h(\lambda)$ is in a neighbourhood of ∞ a single-valued function of $\lambda^{1/N}$, and so is $F(\lambda) = e'(\lambda) - (2N\pi i)^{-1}h(\lambda)\log \lambda$. Thus h and F may be developed into Puiseux series in a neighbourhood of ∞ . From the estimate by Lemma 2 holding for $e'(\lambda)$ it follows that h and F are of polynomial growth, and so their Puiseux expansions contain only a finite number of non-zero terms with a positive exponent. Hence in a neighbourhood of ∞ we have

$$e'(\lambda) = \sum_{k=-\infty}^{k_0} a_k \lambda^{k/N} + (\log \lambda) \sum_{k=-\infty}^{k_0'} b_k \lambda^{k/N}$$

By integration we find

$$F_{1}(\lambda) = F_{1}(\lambda) + (\log \lambda) F_{2}(\lambda) + b_{-N} (\log \lambda)^{2}/2,$$

where F_1 and F_2 are Puiseux series, convergent in a neighbourhood of ∞ and containing only a finite number of terms with a positive exponent. Since $e(\lambda)$ grows faster than some positive power of λ , the term $b_{-N}(\log \lambda)^2/2$ is not the leading one, and the particular statement for n=2 follows. (It may be shown that actually $b_{-N}=0$.) The theorem is proved.

Now we return to our hypoelliptic polynomial $M(\xi)$ and the unique self-adjoint extension A_0 in $L^2(\mathbb{R}^n)$ of M(D), defined on $C_0^{\infty}(\mathbb{R}^n)$, and the spectral function $e_{0,\lambda}(x,y) = \int_{M(\xi) \leq \lambda} \exp(2\pi i \langle x-y,\xi \rangle) d\xi$. For an arbitrary multi-index α we have

$$e_{0,1}^{(lpha,\,lpha)}(x,x)=\int_{M(\xi)\leqslant\lambda}\xi^{2lpha}darkappa$$

Hence Theorem 1 gives a result on the behaviour of $e_{\lambda}^{(\alpha,\alpha)}(x,x)$ when $x \to +\infty$, and to the pair (M, α) we have a pair of *E*-numbers $a(M, \alpha)$ and $t(M, \alpha)$.

3. An estimate for a certain fundamental solution

We consider $(M(\xi)^r - \lambda)$ with a positive integer r and λ large and negative. The operator $(M(D)^r - \lambda)$ has a temperate fundamental solution with pole zero which is the inverse Fourier transform of $(M(\xi)^r - \lambda)^{-1}$. Hence the fundamental solution with pole x is

$$h_{r,\lambda}(x,y) = \int \left(M(\xi)^r - \lambda
ight)^{-1} \exp\left(2\pi i \langle y - x, \xi \rangle \right) d\xi$$

where the integral is absolutely convergent if r is large enough. It is clear that $h_{r,\lambda}$ is the complex conjugate of the Green's function of A_0^r given by (6). We are going to show that outside the pole the fundamental solution tends exponentially to zero, when $\lambda \to -\infty$. For that we shall need the following lemma.

Lemma 4. If $M(\xi)$ is a hypoelliptic polynomial of degree *m*, then there is a largest number b=b(M) such that $0 < b \leq 1/m$ and

$$|M^{(\alpha)}(\xi)| \leq C(|M(\xi)| + 1)^{1-b|\alpha|}$$
(11)

for some number C and all real ξ and all α . If r is a positive integer, then $b(M^r) = b(M)/r$.

Proof. For a proof we refer to Hörmander [6], Theorem 3.2, except for the last statement, but this is easily checked using that it is proved in Hörmander [6] that if b is the largest number such that (11) holds for all α with $|\alpha| = 1$, then (11) holds for all α with the same b.

We also have

Lemma 5. Let N be a hypoelliptic polynomial and put b = b(N). Then

$$|N^{(\alpha)}(\xi + \tau z \xi_0) - N^{(\alpha)}(\xi)| \leq C |z| (|\xi| + 1)^{-c|\alpha|} (|N(\xi)| + \tau^{1/b})$$

for some constant C, all α , all real ξ and $\tau \ge 1$ and all complex z with $|z| \le 1$. Here ξ_0 is arbitrary in \mathbb{R}^n and C and c are positive and independent of ξ , z, and τ .

Proof. By Taylor's formula

$$N^{(lpha)}(\xi+ au z {\xi}_0) - N^{(lpha)}(\xi) = \sum\limits_{j=1}^m (au z)^j N_j(\xi),$$

where m is the degree of N and N_j is a linear combination of derivatives of N of order $(|\alpha|+j)$. By Lemma 4 we have

$$|\tau^{j} z^{j} N_{j}(\xi)| \leq C \tau^{j} |z|^{j} (|N(\xi)| + 1)^{1 - b(|\alpha| + j)}$$
(12)

with some constant C. From the well-known inequality $x^a y^{1-a} \leq x+y$ for x, y > 0 and $0 \leq a \leq 1$, then, from (12), putting $x = \tau_{a}^{1/b}$, $y = (|N(\xi)| + 1)$ and a = jb, we get

$$|\tau^j z^j N_j(\xi)| \leq C |z|^j (|N(\xi)|+1)^{-b|\alpha|} (|N(\xi)|+1+\tau^{1/b}).$$

Since $|N(\xi)| \ge |\xi|^k$ with some positive k for large $|\xi|$ the proof is complete.

From Lemma 4 we also get

Lemma 6. If $N(\xi)$ is hypoelliptic, then

$$\left|N^{(lpha)}(\xi)
ight| \leqslant C(\left|\xi
ight|+1)^{-c\left|lpha
ight|}(\left|N(\xi)
ight|+1)$$

for all α and all real ξ , where c and C are positive constants. We may now give an estimate for the fundamental solution considered.

Lemma 7. Let $N(\xi)$ be real and hypoelliptic and let $N(\xi) \rightarrow +\infty$ when $|\xi| \rightarrow \infty$. Put b = b(N). Then

$$h_{\lambda}(x,y) = \int \exp\left(2\pi i \langle y-x,\xi \rangle\right) (N(\xi)-\lambda)^{-1} d\xi$$

is (with respect to y) a temperate fundamental solution with pole x of $(N(D) - \lambda)$ when λ is large and negative, and

$$D_y^{\alpha} h_{\lambda}(x, y) = O(1) \exp(-c|\lambda|^b) \quad (\lambda \to -\infty)$$

for $x \neq y$, all α and some c > 0. The estimate is uniform on compact subsets of the region $x \neq y$.

Proof. Take an arbitrary $\xi_0 \in \mathbb{R}^n$, let z be a complex number and put $H_{\lambda}(\xi, z) =$ $N(\xi + |\lambda|^{b} z \xi_{0}) - \lambda$. By Lemma 5 it follows, taking $\tau = |\lambda|^{b}$, that there are positive numbers C', C and $(-\lambda_1)$ such that

$$C^{-1}(|N(\xi)| + |\lambda|) \leq |H_{\lambda}(\xi, z)| \leq C(|N(\xi)| + |\lambda|) \quad (\lambda < \lambda_1)$$
(13)

for all real ξ and all z with $|z| \leq C'$.

Now, for $|\operatorname{Im}(z)| \leq c'$ the inverse Fourier transform of $1/H_{\lambda}(\xi,z)$ (with respect to ξ) is equal to exp $(2\pi i z |\lambda|^b \langle y, \xi_0 \rangle) h_{\lambda}(0, y)$. In fact, a translation by $z |\lambda|^b \xi_0$ corresponds by the Fourier transformation to multiplication by $\exp(2\pi i z |\lambda|^b \langle y, \xi_0 \rangle)$, since $H_{\lambda}(\xi,z)$ keeps away from zero when $|z| \leq c'$ (see Nilsson [8], p. 114).

Let B(y) be a positive definite homogeneous polynomial of degree f. Then $B(y) \exp(2\pi i |\lambda|^{b} \langle y, \xi_{0} \rangle) h_{\lambda}(0, y)$ is (as a function of y) the inverse Fourier transform of $B(D_{\xi})(1/H_{\lambda}(\xi,z))$. From the rules of differentiation we see that $B(D_{\xi})(1/H_{\lambda}(\xi,z))$ is a linear combination of terms $(H_{\lambda}^{(\alpha_1)}(\xi,z)\cdot\ldots\cdot H_{\lambda}^{(\alpha_f)}(\xi,z))/H_{\lambda}(\xi,z)^{f+1}$, where $\sum |\alpha_i| = f$.

Now it follows from (13) and Lemma 5 that

$$\left|H^{(lpha_i)}(\xi,z)/H_\lambda(\xi,z)
ight|\leqslant C(|\xi|+1)^{-c|lpha_i|}$$

for all real ξ , all $\lambda < \lambda_1$ and all z with $|z| \leq c'$, and where C is a constant. So we may conclude that if f is sufficiently large we have

$$|B(D_{\xi})(1/\mathbf{H}_{\lambda}(\xi,z))| \leq C(|\xi|+1)^{-n-1}$$

with some number C, independent of ξ , λ and z for $|z| \leq c'$ and $\lambda < \lambda_1$. But then we get, putting z = ic':

$$|B(y) \exp(2\pi c'|\lambda|^b \langle y, \xi_0 \rangle) h_{\lambda}(0, y)| \leq C \quad (\lambda < \lambda_1)$$

for all y, where C is some number, independent of λ and y.

Since ξ_0 is arbitrary, the lemma follows in the case $\alpha = 0$. To get it for arbitrary α we need only notice that for $y \neq 0$ we have $N(D_y)^{s}h_{\lambda}(0,y) = \lambda^{s}h_{\lambda}(0,y)$ and then use (2).

4. Asymptotic estimates for the spectral function when the domain S is arbitrary

First we are going to establish a relation between the Green's functions of A^r and A_0^r , $G_{r,\lambda}(x,y)$ and $G_{0,r,\lambda}(x,y) = h_{r,\lambda}(x,y)$, respectively.

Lemma 8 (see Odhnoff [10]). In $L^2(S)$ one has the following identity.

$$\overline{G_{r,\lambda}(x,\cdot)} = \psi h_{r,\lambda}(x,\cdot) + (B-\lambda)^{-1} k_{r,\lambda}(x,\cdot), \qquad (14)$$

where x is arbitrary in S, $\psi \in C_0^{\infty}(S)$, ψ real and $\psi(y) = 1$ in a neighbourhood of x. Further $B = A^r$, and

$$k_{\tau,\lambda}(x,y) = (\psi(y) B_y - B_y \psi(y)) h_{\tau,\lambda}(x,y).$$

(In particular $k_{r,\lambda}(x,\cdot) \in C_0^{\infty}(S)$.)

Proof. Let us denote the right side of (14) by $f_{r,\lambda}(x,\cdot)$ and prove that

$$((B - \lambda) u, f_{r,\lambda}(x, \cdot)) = u(x)$$
(15)

when $u \in \mathcal{D}(B^{\infty}) = \bigcap_{j}^{\infty} \mathcal{D}(B^{j}) \subset C^{\infty}(S)$ (the last relation by (2)). In fact, we have seen that $((B-\lambda)u, \overline{G_{r,\lambda}(x,\cdot)}) = u(x)$ for all u such that $(B-\lambda)u \in C_{0}^{\infty}(S)$, and, $(B-\lambda)^{-1}$ being bounded, we should then have $(v, f_{r,\lambda}(x, \cdot) - \overline{G_{r,\lambda}(x, \cdot)}) = 0$ for all $v \in C_{0}^{\infty}(S)$, and the lemma would follow. To verify (15) we first consider (with $u \in \mathcal{D}(B^{\infty})$)

$$((B-\lambda)u,\psi h_{\tau,\lambda}(x,\cdot)) = (\psi(B-\lambda)u,h_{\tau,\lambda}(x,\cdot))$$
$$= ((B-\lambda)\psi u,h_{\tau,\lambda}(x,\cdot)) + ((\psi B - B\psi)u,h_{\tau,\lambda}(x,\cdot))$$
$$= u(x) + ((\psi B - B\psi)u,h_{\tau,\lambda}(x,\cdot)),$$
(16)

where in the last step we have used that $h_{r,\lambda}(x,\cdot)$ is a fundamental solution of $(M(D)^r - \lambda)$ with pole x. Now we consider

$$((B-\lambda)u,(B-\lambda)^{-1}k_{r,\lambda}(x,\cdot)) = (u,k_{r,\lambda}(x,\cdot))$$
$$= (u,(\psi B - B\psi)h_{r,\lambda}(x,\cdot)) = ((B\psi - \psi B)u,h_{r,\lambda}(x,\cdot)), \quad (17)$$

where the last step is permitted since the differential operator $(B\psi - \psi B)$ vanishes outside a compact subset of $S - \{x\}$. The lemma now follows from (16) and (17).

Next we are going to estimate the term $(B-\lambda)^{-1}k_{r,\lambda}(x,\cdot)$ in (14). By Lemma 7 we have

$$||k_{r,\lambda}(x\cdot)|| = O(1)\exp(-c|\lambda|^{b/r}) \quad (\lambda \to -\infty),$$

where c is a positive constant and b corresponds to M by Lemma 2 and the estimate is uniform in the neighbourhood of any point in S. It follows that

$$\left\| (B-\lambda)^{-1}k_{r,\lambda}(x,\cdot) \right\| = O(1)\exp\left(-c\left|\lambda\right|^{b/r}\right) \quad (\lambda \to -\infty).$$

Let α be an arbitrary multi-index, and let us consider $D^{\alpha}(B-\lambda)^{-1}k_{r,\lambda}(x,\cdot)$. By (2) we then get, if r is large enough,

$$D_y^{\alpha}(B_y-\lambda)^{-1}k_{r,\lambda}(x,y) = O(1)\exp\left(-c'\left|\lambda\right|^{b/r}\right) \quad (\lambda \to -\infty)$$

with a positive constant c', and the estimate is uniform on compact subsets of $\omega \times S$, where ω is a neighbourhood of an arbitrary point in S. By Lemma 8 it is then easy to see that

$$D_{\mathcal{Y}}^{\alpha}(G_{r,\lambda}(x,y)-G_{0,r,\lambda}(x,y))=O(1)\exp\left(-k\left|\lambda\right|^{b/r}\right) \quad (\lambda \to -\infty)$$

uniformly on compact subsets of $S \times S$, where k is a positive constant.

Since $(G_{r,\lambda}(y,x) - G_{0,r,\lambda}(y,x)) = \overline{(G_{r,\lambda}(x,y) - G_{0,r,\lambda}(x,y))}$, it also follows that

$$D_x^{\alpha}(G_{r,\lambda}(x,y) - G_{0,r,\lambda}(x,y)) = O(1) \exp\left(-k|\lambda|^{b/r}\right) \quad (\lambda \to -\infty)$$

uniformly on compact subsets of $S \times S$. Hence, with an arbitrary positive integer s, if r is large enough

$$(\Delta_x^s + \Delta_y^s) \left(G_{r,\lambda}(x,y) - G_{0,r,\lambda}(x,y) \right) = O(1) \exp\left(-k |\lambda|^{b/r} \right) \quad (\lambda \to -\infty)$$

uniformly on compact subsets of $S \times S$. By well-known estimates for elliptic operators (of the type (2)) it then follows that for any pair (α, β) of multi-indices

$$(G_{r,\lambda}^{(\alpha,\beta)}(x,y) - G_{0,r,\lambda}^{(\alpha,\beta)}(x,y)) = O(1) \exp\left(-k|\lambda|^{b/r}\right) \quad (\lambda \to -\infty), \tag{18}$$

if r is large enough.

If we assume A > 0, $A_0 > 0$, we have by (6) and (18)

$$\int_{0}^{+\infty} (\mu - \lambda)^{-1} d(e_{r,\mu}^{(\alpha,\beta)}(x,y) - e_{0,r,\mu}^{(\alpha,\beta)}(x,y)) = O(1) \exp((-k|\lambda|^{b/r})$$

when $\lambda \to -\infty$. To get information for $(e_{r,\lambda} - e_{0,r,\lambda})$ from this estimate we shall use a Tauberian theorem by Ganelius. The theorem to be quoted is unpublished but will appear in the Mathematica Scandinavica; the corresponding theorem for the Laplace transformation has been announced in [12]. (If we are content with the result $e_{\lambda}(x,x) = (1+o(1))e_{0,\lambda}(x,x)$ we can use a Tauberian theorem by Keldish [13], where the Tauberian condition is

$$O \leq \left(\frac{\partial}{\partial \lambda} e_{r,\lambda}(x,x)\right) / e_{r,\lambda}(x,x) \leq 1.$$

It follows from Theorem 1 that this condition is satisfied, if r is large enough.)

First we define a slowly oscillating function as a positive, continuous function L on the positive real line such that $L(c\omega)/L(\omega) \rightarrow 1$ when $\omega \rightarrow +\infty$ for every c > 0. Then we have

Lemma 9. Let the function $\sigma(\mu)$ be locally of bounded variation for $\mu > 0$. Suppose that $\int_0^{+\infty} (\mu + \omega)^{-1} d\sigma(\mu)$ is convergent for $\omega = \text{some } x_0 > 0$. (and hence for every ω not on the negative real axis). Let c, \varkappa , and ν be real numbers, $c > 0, 0 < \varkappa \leq \frac{1}{2}$ and $\nu < 1$. Let $L(\omega)$ be a slowly oscillating function. Then, if

$$\int_{0}^{-\infty} (\mu + \omega)^{-1} d\sigma(\mu) = O(1) \exp\left(-c|\omega|^{\varkappa}\right) \quad (\omega \to +\infty)$$
(19)

and

$$\sup\left(\int_{\substack{\omega\\\omega\leqslant\Omega\leqslant\omega+\omega^{1-\varkappa}}}^{\Omega}d\sigma(\mu)\right)\leqslant O(1)\,\omega^{\nu-\varkappa}L(\omega)\quad(\omega\to+\infty),\tag{20}$$

then

 $\sigma(\omega) = O(1) \, \omega^{\flat - \varkappa} L(\omega) \quad (\omega \to +\infty).$

Now we are going to apply this Tauberian theorem to the function

$$\sigma(\mu) = (e_{0,r,\mu}^{(\alpha,\alpha)}(x,x) - e_{r,\mu}^{(\alpha,\alpha)}(x,x))$$

with α arbitrary and $x \in S$. We let (a,t) be the *E*-numbers of (M,α) . With c = the number k of $(18), \varkappa = b/r, \ \nu = a/r$ and $L(\omega) = (\log \omega)^t$ we have that c, \varkappa, ν , and L satisfy the conditions of the lemma, if r is large enough, and also the other conditions are satisfied, (19) because of (18) and (20) because of the estimate for $(\partial/\partial\lambda) e_{0,r,\lambda}^{(\alpha,\alpha)}(x,x)$ in Theorem 1 and the fact that $e_{r,\lambda}^{(\alpha,\alpha)}(x,x)$ is a non-decreasing function of λ , which was stated in Lemma 1. Hence we get the conclusion of Lemma 9:

$$(e_{0,r,\lambda}^{(\alpha,\alpha)}(x,x) - e_{r,\lambda}^{(\alpha,\alpha)}(x,x)) = O(1) \lambda^{(a-b)/r} (\log \lambda)^t \quad (\lambda \to +\infty).$$
⁽²¹⁾

By (21) and Lemma 1 we now get

$$\operatorname{var}_{\substack{(\lambda,\lambda+\lambda^{1}-b/r)\\ (\lambda,\lambda+\lambda^{1}-b/r)}} e_{r,\lambda}^{(\alpha,\beta)}(x,y) = O(1) \, \lambda^{(a_{\alpha}+a_{\beta}-2b)/2r} (\log \lambda)^{(t_{\alpha}+t_{\beta})/2}$$

when $\lambda \to +\infty$. Here (a_2, t_1) and (a_2, t_2) are the *E*-numbers of (M, α) and (M, β) , respectively, and α and β are arbitrary multi-indices, x and y belong to S, and r is sufficiently large. The same estimate holds for $e_{0,r,\lambda}^{\alpha,\alpha}(x, y)$, and so, taking

$$\sigma(\mu) = (e_{0,r,\mu}^{(\alpha,\beta)}(x,y) - e_{r,\mu}^{(\alpha,\beta)}(x,y)),$$

we get by the Tauberian theorem

$$(e_{0,r,\lambda}^{(\alpha,\beta)}(x,y) - e_{r,\lambda}^{(\alpha,\beta)}(x,y)) = O(1) \,\lambda^{(a_1 + a_2 - 2b)/2r} \,(\log \,\lambda)^{(t_1 + t_2)/2} \tag{22}$$

when $\lambda \to +\infty$. However, we want the results for $e_{\lambda} = e_{1,\lambda}$ and not for $e_{r,\lambda}$. From the relation $e_{r,\lambda} = e_{\lambda}^{1/r}$ we immediately find that (22) is valid not only for r sufficiently large but also for r=1. Our restriction that A > 0, $A_0 > 0$, may also be removed, since by a translation in the eigenvalue parameter λ we may make these two inequalities satisfied, and the translation does not change the asymptotic formulas.

We can also take care of the case where A is not bounded from below. We have the following lemma.

Lemma 10. Let A be an arbitrary self-adjoint extension in $L^2(S)$ of a_0 and $E(\lambda)$ the corresponding spectral resolution. Then for any λ , $E(\lambda)$ is given by a kernel e_{λ} :

$$E(\lambda) u(x) = \int_{S} e_{\lambda}(x, y) u(y) dy \quad (u \in L^{2}(S)),$$

where e_{λ} is infinitely differentiable in $S \times S$ and where

$$e_{\lambda}^{(lpha,\,eta)}(x,y) = O(1) \exp\left(-c|\lambda|^{b(M)}\right) \quad (\lambda \to -\infty)$$

uniformly on compact subsets of $S \times S$. Here c is a positive constant and α, β are arbitrary multi-indices.

Proof. For a proof we refer to Nilsson [8], the Theorems 3 and 4, where the corresponding theorem is proved for an elliptic differential operator P(D). The proof, however, works as well in our case. For it uses essentially three facts:

(a) To every $x \in S$ we have a fundamental solution $g_{\lambda}(x,y)$ with pole x of $(P(D) - \lambda)$, defined when λ is large and negative and decreasing exponentially outside the pole when $\lambda \to -\infty$,

(b) the fundamental solution $q_{\lambda}(x,y)$ above satisfies an inequality

$$|g_{\lambda}(x,y)| \leq C \cdot |x-y|^{-n+\delta} \quad (x \neq y)$$

uniformly on compact subsets of $S \times S$ and for all λ . Here C and δ are positive constants.

(c) we have for P(D) an interior a priori L^2 -estimate of the type (2) (this paper).

Now (a) holds also for M(D) (Lemma 7) and so does (c). Further in [8] (b) is only used to make certain that the mapping

$$u \rightarrow \int_{K} g_{\lambda}(\cdot, y) u(y) dy \quad (K = \text{compact} \subset S)$$

is continuous from local L^2 to local L^2 and that the continuity is uniform with respect to λ . In our case we have that $M(\xi) \ge C |\xi|^k$ when ξ is large, with some positive c, C, and it follows that the temperate fundamental solution of $(M(D)^r - \lambda)$ is uniformly bounded with respect to λ , if r is large enough and λ large and negative.

This result may then replace (b) in question of $M(D)^r$, but via the elementary connection between spectral functions of M(D) and $M(D)^r$, with r odd, we get the desired result also for M(D).

By Lemma 10 we may now see that (22) is valid also if A is not bounded from below. For let us consider A^r with r even; then A^r is bounded from below so that (22) holds for $e_{r,\lambda}$. But $e_{\lambda} = e_{-\lambda} + e_{r,\lambda^r}$ for $\lambda > 0$, and so by lemma 10 we get (22) also for e_{λ} . We collect our results in the following theorem.

Theorem 2. Let $M(\xi)$ be a real hypoelliptic polynomial in \mathbb{R}^n , $n \ge 2$, such that $M(\xi) \to +\infty$ when $|\xi| \to \infty$. Let S be an open subset of \mathbb{R}^n and let a_0 be the operator in $L^2(S)$ defined by the differential operator M(D), acting on $C_0^{\infty}(S)$. Suppose that A is a self-adjoint extension in $L^2(S)$ of a_0 , not necessarily bounded from below. Then the spectral resolution $E(\lambda)$ of A is given by a kernel $e_{\lambda}(x,y)$:

$$E(\lambda) u(x) = \int_{S} e_{\lambda}(x, y) u(y) dy \quad (u \in L^{2}(S)),$$

where e_{λ} is infinitely differentiable in $S \times S$, and

$$e_{\lambda}^{(\alpha,\beta)}(x,y) = O(1) \exp\left(-c|\lambda|^{b(M)}\right) \quad (\lambda \to -\infty)$$

for any multi-indices α, β . Here c > 0, and b(M) is the largest positive number b such that with some constant C

$$|M^{(\alpha)}(\xi)| \leq C(|M(\xi)|+1)^{1-b|\alpha|}$$

for all α and all real ξ . (If M is elliptic and of degree m, we have b(M) = 1/m). Further, if A_0 is the unique self-adjoint extension in $L^2(\mathbb{R}^n)$ of M(D), defined on $C_0^{\infty}(\mathbb{R}^n)$, and $e_{0,\lambda}$ its spectral function, then

$$(e_{\lambda}^{(\alpha,\beta)}(x,y) - e_{0,\lambda}^{(\alpha,\beta)}(x,y)) = O(1)\lambda^{(t_{\alpha}+t_{\beta}-2b(M))}(\log \lambda)^{(t_{\alpha}+t_{\beta})/2}$$

when $\lambda \to +\infty$. Here α, β are arbitrary. The pair (a_{γ}, t_{γ}) is characterized by the property that

$$K^{-1}\lambda^{a}{}^{\gamma} (\log \lambda)^{t}{}^{lpha} \leqslant e^{(\gamma,\gamma)}_{0,\lambda}(x,x) \leqslant K\lambda^{a}{}^{\gamma} (\log \lambda)^{t}{}^{\gamma}$$

for some K > 0, all large positive λ and $\gamma = \alpha, \beta$. That such numbers exist was proved in Theorem 1.

BIBLIOGRAPHY

- 1. BERGENDAL, G., Convergence and summability of eigenfunction expansions connected with ellipitic differential operators. Medd. fr. Lunds univ. mat. sem 15 (1959).
- 2. BESICOVITCH, A. S., Almost Periodic Functions. Cambridge, 1932.
- 3. GANELIUS, J., Un théorème taubérien pour la transformation de Laplace. C. R. Acad. Sci. Paris 242, 719-721 (1956).
- GORTJAKOV, V. N., On the asymptotic behaviour of the spectral function of a class of hypoelliptic operators. Doklady Ak. Nauk, 152,3, p. 519-522 (1963).
- 5. GOURSAT, E., Cours d'analyse mathématique 2. Paris, 1924.
- HÖRMANDER, L., On the theory of general partial differential operators. Acta Mathematica 94 (1955).
- 7. —— On interior regularity of the solutions of partial differential equations. Comm. of pure and appl. math. 9 (1958).
- 8. KELDISH, M. V., On a Tauberian theorem. Trudy Matematitjeskovo Instituta Imeni V. A. Steklova, vol. XXXVIII, 77–86 (1951).
- 9. Sz-NAGY, B., Spektraldarstellung linearer Transformationen des Hilbertschen Raumes. Berlin, 1942.
- NILSSON, N., Some estimates for eigenfunction expansions and spectral functions corresponding to elliptic differential operators. Math. Scand. 9 (1961).
- 11. Some growth and ramification properties of certain integrals on algebraic manifolds. Arkiv för matematik 5, 463 (1964).
- 12. ODHNOFF, J., Operators generated by differential problems with eigenvalue parameter in equation and boundary condition. Medd. fr. Lunds univ. mat. sem. 14 (1959).
- 13. SCHWARTZ, L., Théorie des distributions, I-II. Paris, 1950-1951.

Tryckt den 19 januari 1965