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Weighted mean square approximation in plane regions, 
and generators of an algebra of analytic functions 

By LARs INGE HEDBERG 

1. Introduction 

If  D is a region in the complex plane, and a(z) is a continuous, positive function 
in D, we denote by  H~(a; D) the set of all analytic functions, h(z), in D, which 
have the property tha t  

II h I1~ = j DI h(z) I~a(z) dA < 

where dA denotes plane Lebesgue measure. 
D is called a Carathdodory region if it is simply connected, bounded, and its 

boundary, ~D, coincides with the boundary of the infinite component, D~r of the 
complement of the closure of D. 

In  1934 Markuw and Farrell proved independently tha t  for any Carathdodory 
region, D, the polynomials are complete in HZ(1; D). I t  is well known that  this pro- 
per ty  need not hold for non-Carath$odory regions. (See e.g. [3]). The result has 
been generalized to spaces with weight functions other than the identity by various, 
notably Soviet, mathematicians.  A survey of this theory is given in Mergeljan's 
paper  [3]. Most of the results, however, deal with non-Carathdodory regions, and 
because of this the weight function a(z) is required to tend to zero, when z ap- 
proaches the boundary. 

For Carathdodory regions much more can be said, and the first par t  of this paper  
is devoted to this problem. The result is stated in Theorem 1. 

In  the second par t  we shall s tudy the related problem of finding generators of 
xT"oo w n  the algebra, A, of all analytic functions, g(w) = .Lo gn , in the unit  disc, such tha t  

the norm, Jig II = ~ l g ~  I, is finite. By  a generator of A we mean a function, % in 
the algebra A, such tha t  the polynomials (with constant term) P(~) are dense in A. 
For a function to be a generator of A it is obviously necessary tha t  it is univalent 
in the closed unit  disc, but  whether this condition is also sufficient is an open prob- 
lem. D . J .  Newman proved [5] tha t  a univalent function which maps the unit disc 
onto a region with rectifiable boundary is a generator of A, and a simpler proof of 
this was given by H.S .  Shapiro [7]. See also [6]. As a corollary to Theorem 1 we 
get another sufficient condition which we state as Theorem 2, and then we show 
by  means of examples (Theorems 3 and 4) tha t  our result neither includes, nor is 
included in Newman's .  

I wish to acknowledge m y  great indebtedness to Professor Lennart  Carleson, who 
has contributed important  ideas to this work. 
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L. I. HEDBERG, Weighted mean square approximation in plane regions 

2. Po lynomia l  approximation 

I f  D is a s imply connected region, we denote b y / ( z )  a funct ion which maps  D 
conformally onto the uni t  disc, and we denote  the inverse funct ion to / ( z )  by  ~(w). 
We denote by  6(z) the distance f rom z to ~D. Then we have the  following theorem. 

Theorem 1: Let D be a Carathgodory region and a(z) a continuous, positive/unction 
in D. Then the polynomials are complete in H~(a; D) i/ the weight, a(z), satis/ies the 
/ollowing two conditions: 

(a) f a(z)4(logo~z---))SdA<oo 

(b) the polynomials are complete in H2(a(q~(w)); ]w] < 1). 

Remark: Litt le  seems to be known about  when condition (b) holds, except  the 
easily proved fact  t h a t  it holds when a(q~(w)) depends only on I w [, i.e. when a(z) is 
constant  on every  level curve ]/(z) I = K. (See [3]). 

As for condit ion (a) it would be an  interesting task to t r y  to replace it by  the 
clearly necessary condit ion ~ D a(z) dA < oo. 

We need the following lemma, which it  of course well known, bu t  since there 
seems to be no convenient  reference, we include its proof. 

Lemma:  For every bounded, simply connected region, D, there is a constant K such 
that the mapping/unction/(z) satis/ies 

/or all z in D. 
1 - ]/(z) [ ~< K {5(z)} �89 

Proo/: The proof is a simple application of the Beur l ing-Nevanl inna  estimates of 
harmonic  measures. 

Le t  the diameter  of D be d, and choose a positive number  ~ < d/6 .  Le t  z 0 be a 
point  on a level curve I/(z) I = 1 - ~ /and  let a(z0) be the disc with radius ~ and centre 
%. Then, if to(z) is the harmonic measure of ~D n a(z 0) with respect to D at  the point  z, 

~(%) 
to(z~ >~ 2 aresin ~ + r ' 

by  the Beur l ing-Nevanl inna  theorem ([4] p. 104 ft.). I t  follows tha t  

1 - to(zo) < ~ {~(%)}~. 

W h e n  D is mapped  onto I w [ < 1, OD fl a(zo) corresponds to a set, Sz., on [w [ = 1, 
and because of the invariance of the harmonic measure co(z) = wl(/(z); Sz.), where toa 
is the  harmonic  measure with respect to the uni t  circle. 

Now OD can be covered by  a finite number  of discs, al, a 2 . . . . .  aN, with radius ~. 
OD always contains a point,  Zl, with [ z 1 - z o [ >~ d/2. z a is contained in a disc a, with 
centre a,, and then  [a, - z o [ >~ d/2 - 0 > 2Q. Thus, for every z o in D there is a a, such 
tha t  a(Zo) and a, are disjoint. Bu t  all the sets ~D N a, correspond to sets of positive 
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ARKIV FOR MATEMATIK, B d  5 nr 36 

measure on ] w ] = 1, otherwise their harmonic measures with respect to D would be 
identically zero. I t  follows from the Poisson representation tha t  there is a constant 
K, independent of %, such tha t  

1 - -  (DI(/(Z0) , Sz, ) ~ KT]. 

Hence there is a constant K such tha t  ~ ~< K ((~(z0)}~. 

Proo/ o/ Theorem 1: The proof depends mainly on methods of Bers and Carleson. 
We assume D to be Carathdodory, and s tar t  by  observing, with Mergeljan, [3J 

p. 136, tha t  it is enough to show tha t  for every n > 0  and every ~ > 0  there is a 
polynomial, P(z), such tha t  

fDi/n(Z)/'(Z) P(z) I ~a(z) < e. dA 

For if h(z) is arbi t rary in H2(a; D), h(cf(w)) ~f'(w) is clearly i n He(a(q~(w)); I wl < 1), 
and thus, by condition (b), there is a polynomial, Q(w), such tha t  

f DI h(z) - O(/(z) ) /' (z) l'a(z) dA = /,w,<, I h(~(w) ) ~' (w) - o(w) [~a(~(w) ) dA < ~" 

But  Q(/(z))/'(z) is a linear combination of functions In(z)/'(z), and thus there is a 
polynomial, P(z), such tha t  

f j  l Q(l(z))l'(z) P(z) I sa(z) s. dA < 
9 

I t  follows tha t  ~or every s > 0 there is a P(z) such tha t  

fD I h(z) - P(z)I~ a(z) < s, dA 

which proves this first assertion. 
Any bounded linear functional, L, on H2(a; D) can be expressed in the form 

L ( h )  = fob(z) dA, 

where tt(z) is a function satisfying 

f j  [~(Z)[2a(z)-idA < ~ .  (1) 
9 

We are thus required to prove tha t  if the function 

m(z)-  ~ F(r dA=O -J~ -z  
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L. I. HEDBERG, Weighted mean square approximation in plane regions 

for all z in Doo, then  (1) implies t h a t  

f /n(z) ['(z) #(z) dA = O, 
i) 

n>~O. 

Now, for q > 0 we define a C ~ function,  oJq(z), in D with  the  following properties:  

0 <~ ooq(z) <<. 1, 
eo~(z)=O for 6(z)~<q, 

coq(z)=l  for ~(z)>~2q, 

I g rad  ~oq(z) [ ~< K/q for some cons tant  K.  

Such a funct ion obviously exists, for the  funct ion 5(z) itself satisfies [(~(zl) - c~(z2) I ~< 
[zx - z2 I- We denote by  Dq the  set {z; q ~< 5(z) ~< 2q}. 

We assume for the m o m e n t  that /~(z)  E Coo and is zero outside a compac t  subset  
of D. Then  the funct ion  m(z) is cont inuous in the  whole plane and  

Ore(z) ~ z~ . tt(z) 

in D (see e.g. [9], p. 29). Now, following L. Bers [1], we app ly  Green 's  formula  to a 
region D '  c D, such t h a t  0]9' is smooth  and  contained in the  set  where 6(z) < q. By 
the ana ly t ie i ty  o f / " (z )  ]'(z) we find 

--~t f D,~%(Z ) f'(Z) /'(Z) I~(Z) dA = f D, Wq(Z) 3~ (/~(Z) /'(z)m(z))dA 

=-f~,O~(O/"(z)/'(z)m(z)dA-foDo,o(z)/"(z)/'(z)m(z)dz. 

F r o m  the definit ion of ~oq(z) i t  follows tha t  the bounda ry  integral  is zero, and  t ha t  
we can replace D '  b y  D in the o ther  integrals.  Thus  

~ o ~ ( z )  . ~Lo~q(z)/"(z)/ '(Z)l . t(z)dA=~q~-z/ (z)/'(z)m(z)dA. (2) 

Le t t ing  q - +  0 we find t h a t  the  integral  on the  left  tends to ~D/n(z)/'(Z) #(Z)dA, and 
hence we have  to p rove  t h a t  the  integral  on the r ight  tends to zero. 

B y  the definit ion of wq(z) and the  Sehwarz inequal i ty  

LqO~q~(z) /n(z) /'(z)m(z)dA ' 

q Joq 

Here  

f Dq I/'(z) l'(z) [2 ~(z)- �89 dA <~ Kq- �89 fa(z)<_2q I l"(z) l'(z) 12 dA 

<Kq-~( I/'(z) 12dA=Kq-~ ( dA<K, 
Jl-Is189 J O<l-lwl<Kq�89 
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where the  second inequal i ty  follows f rom the lemma.  (Throughout  the  pape r  we use 
K to denote  different  constants .)  Because of this and  the  definit ion of Dq the left- 
hand  side in (3) is major ized by  q-~-~DqJm(z)l~dA, and we have  to p rove  t h a t  
S Dq ] m(z) ]2dA = o(qi). 

B y  a theorem of Sobolev [8] a funct ion 

( #(~) dA 

belongs to L2(D) if/~(z) E L~(D) for some p > 1 such t h a t  �89 >~ 1 /p  + ~t/2 - 1, and  then  

{f Jm~(z)l~dAl'<K{~l~(z)l'dA} "p, (4) 

where K depends on p, ~ and D. 
B y  tt61der 's  inequali ty,  for  p < 2 

Ljla(z)jPdA<{fDj/~(z)j~a(z)_idA},12{fDa(z),~(2 p)}l ,/2 (5) 
The second integral  on the  r ight  is finite as soon as p / ( 2 - p )  < 4 ,  i.e. p < 8/5,  b y  
assumpt ion  (a), and  so/~(z) ELY(D) for p < 8/5 ,  b y  (1). 

Now we can remove  the regular i ty  hypothesis  on/~(z) and  prove  t h a t  (2) holds 
for all /~(z) sat isfying (1). For  if ~ = 1, (4) holds for all p > 1, and  thus b y  (3), (4), 
and  (5) 

( -~ ! (z)i (z)m(z)dA <gq-~jDJ,U(Z)J~a(z)-adA. 

I f  we app ly  the  Schwarz inequal i ty  to  the  lef t -hand side in (2) we find 

L oq(z) /~(z) /, (z) ,u(z) d A e < L j f~(z) /, (z) j~ a(z) dA L j t~(z) l~ a(z)_l dA" 

Because for any/~(z)  sat isfying (1) there  is a sequence {#~(z))~ of funct ions in C ~ 
such t h a t  i'D J/~(Z) --/~(Z) J2 a(z) -~ dA--~ O, these two inequalit ies show t h a t  (2) holds 
for all such #(z). 

Assuming t h a t  re(z)=0 for z E D~r we shall now es t imate  re(z)in D b y  means  
of a device due to Carleson, [2], and  show t h a t  .~Dq re(z) 2dA = o(q~). 

Fix  a zED and let zoE~D be such t h a t  z - z  o =~(z). Let  Cz be the disc wi th  
centre  z 0 and  radius  O(z). E v e r y  circle J s - z0J = Q intersects the open set  D :cbecause  
of the Cara th6odory  proper ty ,  and  hence there  is a measure  da(s) which is suppor ted  
by  l inear segments  in D ~  N C~, such t h a t  

f ls_ zol<_qda(s) = e 

for all e < 5(z). As re(z)= 0 in D~  we find 

1 

O[Z)JD~--Z J~--s 
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L; I. IIEDBEllG, Weighted mean square approximation in plane regions 

where the change in the order of integrat ion is permissible, because it  follows from 
the est imates below tha t  

f l~(~)ldA (da(s) j l r  < oo. 

I n  (6) we always have I~- ~ I < 2a(~). For  (~(~) >~ }5(z) (and I r  z I < 4(~(z)) we have 
I ~ - s]/> ~(~)/> }(~(z), and hence, in this case 

~) f ~z~d~(s) <4. (7) 

If  I r  ~,a,~(,) we have 1r162189162 and thus 

a~) ~:~do(~) < 1 ~ - ~ - - - ~  (s )  

o - -  - -  - -  �9 ~ P  - - o =  

J ~o - ~o I = to, t h e n  I ~o - ~ 1/> Ir - ro I, a n d  it  f o l l o w s  t h a t  I ~ - ~ I >1 ~ I ~ - ro I if I r - ~o I/> 
2(~(~). Hence,  by  the  definit ion of da, 

f _ _  f__+dr 2 ( d r  , 
JIc-~l .to(c) JIr-rol 

where the  first integral  is t aken  over  all r with ] r - r 0 [ ~ 2~(~), and the second over  
all r with I r -  r 0 [ ~> 2(~($) and 0 ~< r ~< O(z). The  second integral is clearly greatest  when 
r 0 = iS(z), and i t  follows tha t  

c ~  f~ - -~  I "~' '  ~(z) 1 1 , da(s) <~ ~1 ,og ~ + K 2 ~ K 1 log 5 ~  + K2, (9) 

since (~(z) is bounded by  a constant .  
Now re(z) can be wri t ten  as the  sum of three  integrals m~(z), i = 1, 2, 3, corre- 

sponding to the domains A~ where (7), (8), and (9) hold respectively. I t  is thus suffi- 
cient to show tha t  for i = 1, 2, 3 

B y  (7) we find 

f ~  [mdz)pdA = o(q+ ). 

.-f'olm~(~)pdA<K( ~ ( IZ'(~)I . .  "F J-oU-~.I $ -  z ~ ' ~ : ]  " dA~ 
I/-*( )[ d A ] d  

j . o L J . l ~ - i l  ~ ~f ~. 
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B u t  b y  (4) and  (5) 

JDIJDI~--Zl J 
and  it  follows t h a t  if we pu t  q =  2 -~, v = 1, 2 . . . . .  

which proves  our assert ion for ml(z ). 
For  ms(z ) we find by  (8) t h a t  

[#(~) i~dAc} dA~ 

I~Wl ~ ~I ~=o(q~), 
as above.  

Similary,  in the  th i rd  case it  suffices to prove  t h a t  

fDq {fD'l~ [/x(~)[ dA:}~dAz = [ ~ - ~ r" o(q+). 

I f  we replace the inequal i ty  (5) b y  

f I~(~)l" I log ~(~)pdA 

<<. { f D, ~(z)12 a(z)-i dA}'/2 { f Da(z) P~(2-')] log ~(z)]Uv'(~-') dA} ~-~/2, 

this case follows as before, b y  assumpt ion  (a), and  the  proof  of Theorem 1 is complete.  

Remark: I t  is easily seen f rom the proof  t h a t  if ~D is so regular  t h a t  1 - I/(z) [ 
K {(~(z)} ~ for some a in �89 < a ~< 1, a s sumpt ion  (a) can be replaced b y  

f D(a(z) [ log 6(Z)12)21~ dA < ~ . 

3. App l i ca t ion  to  a g e n e r a t o r  p r o b l e m ,  and  e x a m p l e s  

Applied to the genera tor  p rob lem s ta ted  in the introduct ion,  Theorem 1 gives the 
following result .  For  no ta t ion  see the introduct ion.  

Theorem 2: A /unction qD(w) = ~ q~nw n is a generator/or A i /  it is univalent in 
Iwl <<. 1, and i/, /or some cr 12, 
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L. I. HEDBERG, Weighted mean square approximation in plane regions 

oo 

~. n(log n)~l  ~ .  I ~ < oo. 2 
Remark 1: Note tha t  the condition that  q is in A and is univalent implies tha t  

Remark 2: In  the case when ~ n~+~l~l~< ~ for some a > 0, I t .  S. Shapiro has 
recently obtained a simple direct proof of the above theorem (private communication). 

Proo/: ep maps the unit disc onto a region D which is bounded by  a Jordan  curve. 
Let  the inverse of ~ b e / .  

I t  is easy to prove by  means of Parseval 's  relation and elementary estimates, 
that  for any  g(w) = ~'~ g,~ w n the condition ~ n(log n) ~ I gn I ~ < o~ is equivalent to 

I g'(w) 12 log dA < ~ .  (10) wl<l 

Thus, if we apply this to ~, and pass to D, we find 

L( i; 1 dA< oo, 
log 1 - I I (~)  

for some a > 12. I t  follows, by the lemma and by the remark following Theorem 1, 
tha t  the weight function 

1 )1+~ 
as(z ) = 1 § log 1 - I1(~)1 , z eD,  

satisfies all the conditions in Theorem 1, whenever fl ~< a / 4 -  3. 
Furthermore,  by Cauchy's inequality, 

I I g l l = Z l g . l v l g 0 1 +  1 �89 ~r �89 0 n +  n(log n) 1+~ (n + n(log n) a+~) [gn I ~ ( l l )  

I t  is enough to show tha t  for every e > 0 there is a polynomial P such tha t  
Hw-P(q)(w))ll<e. But  by  (10) and (11), for f l>0 ,  

f f  , ] �89 
Hw- P(~(w)) II < I p(~(0))I + K __.iJ,~l< 11- P'(~(w))q~ (w)12at3(cf(w))dA I 

, �89 
= 'P(cf(O)), + K { L  ' / ' ( z ) -  P (z)'2a~(z)dA} . 

Here the last integral can be made less than s (if fl ~< a / 4 -  3) by  Theorem 1, for 

f ] / , ( z ) i2aa(z )dA=f lwl<l ( l+/ )  flog 1 ~ _ i  w [ ) 1  ~l+fl~) dA, 

which is certainly finite. Then we can choose P(~(0)) = 0, which proves the theorem. 
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Our result  is neither included in, nor  does it include, Newman ' s  theorem. This is 
a consequence of the following two constructions. 

Theorem 3: There is a region D, bounded by a non recti/iable Jordan curve, such 
that the Riemann mapping ]unction ](z) satis/ies 

fD(1 - I ] ( z ) <  I)-~dA 

/or every ~ < 1. 

Proo/: We shall construct  induct ively a sequence of regions, {Dn)~, such tha t  
Dn c Dn+l, and then define D = [J n~_0 Dn. 

11 
D2 

Fig. 1 

See Fig. 1. We let D o be a square with sides of uni t  length. We divide one of the 
sides in three parts  so tha t  the length of the middle pa r t  is 1/~/2, and the lengths 

of the other  par ts  are �89 - 1/2 ~/2. We choose a number,  N1, and divide the middle pa r t  
in N 1 equal parts, and then we let each of these par ts  be the base of an  isosceles 
r ight  triangle, which lies outside D 0. The union of D o and these N 1 triangles is D 1. 

To construct  D 2 we first divide each of the 2 N  1 legs of the isosceles triangles of 
D 1 - D o in three par t  in the same proport ions as above. Then  we choose a number,  
N2, (to be determined later) which is a multiple ( >~ 2N1) of N 1, and divide each of 
the middle par ts  in N2/N 1 equal parts,  and  add isosceles r ight  triangles lying outside 
D 1 as above. The length of the legs of one of these triangles is clearly 1/4N 2. The 
union of D 1 and these 2 N  2 triangles is D 2. 

Now assume tha t  Dn is constructed and  tha t  D ~ -  D~-I  consists of 2n- lN~ isos- 
celes r ight  triangles with legs 1/2nNn. To construct  D~+I we choose a multiple, 
N~+I ( ~> 2N~), of/V~ and divide the 2~N~ legs of the triangles const i tut ing D~ - D~-I  
in three par ts  as before. Then we divide the middle par ts  in Nn+l/Nn equal par ts  
and  add isosceles r ight  triangles lying outside D~ as above. We evidently have 
2n2u such triangles whose legs are 1/2~+1Nn+1. 

I t  is easy to see tha t  the ~D so constructed is a J o r d a n  curve. The difference in 
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length between ~Dn+ 1 and ODn is 1 - 1/]/2 for all n, and thus ~D is not rectifiable. 
We shall show that the numbers N= can be chosen so that  D satisfies the require- 
ment in the theorem. 

I t  is enough to show that  the Green's function, g(z), of D, with the centre of D O 
as pole, satisfies .~Dg(z)-~dA < c~ for all a <  1. 

We shall determine the sequence {N=}~ r inductively. We assume that  the numbers 
N~, 1 < i < n, are already chosen. Let the Green's function of D~ with pole at the 
centre of D O be gn(z). Then, if In is the subset of ODn to which the triangles of D=+I 
are to be joined, the inner normal derivative, Og~(z)/On, of g,~(z) is continuous on 
and near In, and 

eg.(z) 
Min = 2~/~ > 0. 
ZEIn 

Thus there exists an Sn > O, such that  if z o E In, if z E Dn lies on the normal to ~D n 
through %, and if [ z - z0[ < en, then 

g.(z)>~.lZ-~ol. 

We choose N.+I  ~> Max (~/2n+len, exp (1/~]n)), 

and complete the construction of D by choosing N1 arbitrarily. 

For every n, 0 < gn(Z) < g(z) in Dn. Thus, for ~ > 0, 

1 2 n - D n - I  

If  one of the triangles in Dn-D~-I  is extended into D~-I by a square (which 

then has the side ]/2/2~Nn), we have on the side, l~, of the resulting pentagon, P~, 
which faces the triangle, 

gn(Z) > gn- l (Z)  > ~n 1 ~/2"N., 
for by the choice of Nn, ]/2/2nNn <~s=-l. Hence in P~, 

gn(Z) > (~n-1  ~ / 2 " N . )  tOn(Z), 

where con(z) is the harmonic measure of In with respect to Pn. But 

f2. co.(z)-'dA=K(1/2"N.)2fplo~l(z)-'dA, 

by the invarianee of the harmonic measure, and the last integral is finite for all 
< 1, because the angles in P1 are all greater or equal to ~/2.  I t  follows that  

fm~_Dn_lgn(Z)-~dA ~'~ on(~-l)  IT~r -~ n(~r ~--1 < . . . . .  . ~ . _ ~ < K 2  N .  ( l ogN. ) ,  
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b y  the choice of N~. Bu t  N 1-~ (log N~) ~ is bounded  as n--> oo. Hence ~D g(z)-~ dA  < c~ 
for all ~ < 1. 

Theorem 4: Let k(t) be a decreasing/unct ion/or  0 < t ~ 1, such that limt-~0/~(t) = oo. 
Then there is a region D, bounded by a recti/iable Jordan curve, which is such that the 
m a p p i n g / u n c t i o n / ( z )  satis/ies 

f l /~(1 - [/(z)[) dA  = cx). 
) 

Proo/: Let  {a~}~ be a sequence of discs with centres a t  the points  as on the  
x-axis, and  radii r~ with 

for all i. Le t  D~ = (J ~ o~ and  D = U ~ o~. See Fig. 2. We shall prove t h a t  the se- 
quences {a,} and  {r~} can be chosen so tha t  D fulfils the requirements.  

Fig. 2 

We  first choose {r~} so tha t  ~ r~ < ~o. Then D is clearly bounded  by  a rectifiable 
J o r d a n  curve. 

For  given (as} we let to(z) be the  harmonic  measure with respect  to D - %  of 
~o 1 (] 00. I f  g(z) is the Green's funct ion of D with pole a t  a0, g(z) is  bounded  on 
~o 1 N 00 by  a constant  C, which is independent  of the choice of a~, i > 1. This follows 
f rom the  fact  t ha t  there  exists a region which has ~ol N o 0 as a par t  of its boundary ,  
and  which contains D - o 0 for every choice of a~, i > 1. Then g(z) <~ Cre(z) in D - 00. 
Also, if we assume tha t / ( ao)  = 0, 1 - I/(z) I ~< log 1/I/(z) I = g(z). I t  is therefore enough 
to  show tha t  we can make ~D-aa k(C6o(z))dA = oo. 

I n  a disc o~, i >~ 1, re(z) is always less t h a n  the  harmonic  measure with respect  to 
o~ of the pa r t  of ~a~ which is con ta ined  in o1-1 tJ o~+1. Tha t  is, co(as) is majorized by  
the sum of the central  angles corresponding to the arcs ~a~ n o~-1 and  ~o~ N o~+1. Thus, 

t oo for any  given positive sequence, { ~}2, we can clearly choose the as inductively in 
such a way  t h a t  2Cre(a 0 ~t~, i > 1. 

B y  Harnack ' s  inequali ty re(z) ~< 2re(a~) in the disc, o~, with centre as and radius 
r~/3, and it follows t h a t  

_o/r dA >1 -- dA  >1 Y. It(t,) r~ ~. 
2 a s 

t oo But  the sequence { ~}~ can be chosen so t h a t  ~ k(t~)r~ ~ 0% and  this proves the  
theorem. 
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