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Estimates of harmonic measures

By Kersti HALISTE

Introduction

Estimates of harmonic measures in terms of Euclidean quantities are useful in
many situations. In the two-dimensional case one can apply methods of conformal
mapping and extremal lengths, and many sharp results are well known. Different
means of harmonic measures can be studied in the n-dimensional case. This paper is
intended to provide a survey of methods available to estimate harmonic measures.

The two-dimensional case is treated in Chapter I. The second paragraph contains
well-known distortion inequalities from the theory of conformal mapping, and § 3
contains well-known results from the theory of extremal lengths. In § 4 we prove
two symmetrization theorems with the aid of a result from §3. In §5 we apply
results from § 3 to comb domains.

Chapter II gives n-dimensional methods. In § 6 a method of Carleman [6.1] is
applied to harmonic measures. The derivation of Carleman’s method in Theorem 6.1
follows that of Dinghas [6.3]. The estimates of harmonic measures in Theorems 6.2
and 6.3 are new in the case n>2. In § 7 we treat Nevanlinna’s mean value in a
special case. In § 8 we prove some symmetrization results with probabilistic methods.

The main problem is to provide upper bounds for harmonic measures. Lower
bounds are discussed in § 2 and § 7.

Bearing in mind the possibility of exhausting a given domain with more regular
domains we have not aimed at generality in assumptions about the domains con-
sidered.

The subject of this paper was suggested by Professor L. Carleson, to whom I am
deeply grateful for all his advice.

1. Definitions

R" is the n-dimensional Euclidean space, n>2, with points z=(xy, ¥, ..., Y1) =
(7y, ¥). In Chapter I we treat the case n=2 and prefer to write z=x+4y. The
following definitions are then to be understood with Re z instead of x,.

D denotes a domain {open connected set) and D the boundary of D.

0, ={z|x, ==, z€D}.

D, is the subdomain of {z|2; <=, z€ D} that contains a given point z,.

0,={z|2€0,, z€0D,}.

Without D being specified D, denotes a domain in {z|2; <&} with part of its
boundary on {z|z, =&} and 6; then denotes the interior of {z|x; =§, z€0D¢}.
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Given D, 9, ={z|x,=x, 2€ D}, x<&.

6., 1=1,2, ..., n(x), are the components or unions of components of ®,(J,) that
separate two given points or surfaces. (Cf. § 2.)

O(x), 6(x), P(x), 0;(x) are the measures of the respective sets.

@, will be used in preference to ¥, and 0,, if D is such that all the O, are connected.

0, can also be used to denote a set in the (» —1)-dimensional y-space.

w(z; o; D) denotes the harmonic measure at the point z of < 0D with respect to D.

¢ may denote various constants.

Symmetrization of an n-dimensional open set 4 with respect to an (n —1)-dimen-
sional hyperplane p (Steiner symmetrization) [1.1, p. 5, pp. 151-152] means the fol-
lowing: A is transformed into A* so that any straight line perpendicular to p that
intersects 4 also intersects A*. Both intersections have the same measure (length)
and the intersection with 4* is a single line-segment symmetric with respect to p.

When n=2 this reduces to the definition of symmetrization with respect to a
straight line.

A continuous function f is symmetrized with respect to a hyperplane p by sym-
metrizing the sets {z|f(z) >a}, inf f(z) <a <sup f(z), in the manner described above.

Symmetrization of an n-dimensional open set, n>2, with respect to a straight
line ! (Schwarz symmetrization) [1.1, pp. 151-152] means the following: 4 is trans-
formed into A* so that any (n —1)-dimensional hyperplane perpendicular to I that
intersects A also intersects 4*. Both intersections have the same measure and the
intersection with A* is a sphere with its centre on 1.

Chapter 1. The two-dimensional case
2. Distortion theorems in the theory of conformal mapping

Problems of distortion in the theory of conformal mapping have been widely
studied. We shall refer to the survey given by Lelong-Ferrand [2.2, Ch. VI, in partie-
ular pp. 185-202, pp. 216-217].

Let D be a simply connected domain in the z-plane not containing the point at
infinity. Let A and B be two accessible boundary points. We limit the discussion to
the following situation: 4 and B are the only boundary points of D at infinity and
Re z2—— oo, when z—4, 2€ D, and Re 2— + oo, when 2—>B, z€ D. Let L be a Jordan
arc in D joining 4 and B. 6%,i=1, 2, ..., n(z), are the segments of O, that separate
A and B. 6} is the first of the 0%, that is met when moving along L from 4 to B. 6;
can also be defined as that segment among the 0, that separates the largest sub-
domain of D from A. Cf. Fig. 2.1. 6,(x), the length of 6}, is lower semicontinuous. A
detailed discussion of the definition of 6} is given by Lelong-Ferrand [2.2, pp. 185-
186].

D is mapped conformally onto @ in the w-plane, w=u +1. G ={w||v| <in} and
A corresponds to #= — oo and B to u= + co. y, is the image of ;. %, and u, are
defined by

u,(x) = inf u, u,(x) = sup u.
wey, wey,

Let D} be the subdomain of D separated from B by 0. G, ={w|u<a, |v| <in}
and [, ={w|u=a, |v| <}a}. We use conformal invariance of harmonic measures, the
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Fig. 2.1

extension principle, and explicit harmonic measures in G, to establish the following
relations:

max o(z; 02’; D}) S o(uy(®); Ly Guus)

€l
4
-+ arctg exp (- uy(£) F uy(@)), uy(x) <uy(§); (2.1)
max w(z 6 DY) > o(uy(2); L Guge) = - arotg exp (—uld) +my(x)).  (2.2)
€] 7

Ahlfors’ first distortion inequality [2.1, pp. 7-12], [2.2, pp. 187-190], [2.3, pp-
93-100], states that
S dt

u(§) ~uy(z)> 7 f; ed(tt) —4n, when 5(_5) > 2. (2.3)
r v z Uy

By (2.1) this yields an upper bound for w(z; 6} D}). (Also cf. [2.3, pp. 76-78].)
However, a more general result is proved in Theorem 3.2 with the method of
extremal lengths. In conneection with estimates of harmonic measures, distortion
inequalities in the other direction arc more useful, since there are few other methods
for finding lower bounds of harmonic measures.

Distortion inequalities in the other direction require various restrictive assumptions
about D. Ahlfors’ original second inequality [2.1, pp. 12-17] is contained (with a
different constant term) in an inequality by Lelong-Ferrand [2.2, pp. 194-198].
Another variant was proved by Warschawski |2.4, pp. 291-296], [2.2, p. 202]. With
(2.2) this yields the following theorem.

Theorem 2.1. Let D be bounded by the curves y--@y(x) and y=@(x), @a(T) > @y(2),
—co<x<oo. Let @, and @, have bounded derivatives; |gi(x)|<m, |gs(x)|<m,
— 00 <Z < oo, P(T) — H(¢1(¥) +@a(®)), O) = @o(®) — @u(%). Then
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ey Fdr[F(vE0), 070
n;le?;jc w(z; Qg D) =c exp (—n . @%4:”[9: (@(t) +12®m) dt),

where ¢ =exp (—8n(l +4 m?).

Another method for determining lower bounds of harmonic measures will be
discussed in § 7. Lower bounds of the form c exp (—n [$dt/@(f)) can not be estab-
lished if © oscillates too much. An example illustrating this is given in § 5.

3. Relations between extremal lengths and harmonic measures

This subject dates back to Beurling’s thesis [3.2], and appears to have been well
known to many mathematicians before an account of it was published by Hersch
(3.3].

Let T' be a family of locally rectifiable curves (denoted o) in a domain D (i.e.
each compact subcurve of a y is rectifiable).

Consider non-negative functions ¢ in D for which

L,= L,T")=inf fg|dz|
L4 ¥

A, = A, (D)= ij o*dxdy

are defined and are not both 0 or both co. (For a locally rectifiable y fo|dz| is defined
as the supremum of the integrals over subcurves of y.) The extremal length A(I')
is defined by

2

L
AT)=sup =2,
() =sup 7*

The functions ¢ define a conformal metric by do =p(2)|dz|.

The definition of extremal length is due to Ahlfors and Beurling [3.1, p. 114]. The
extremal length is a conformal invariant. Thus, if relations between some extremal
lengths and harmonic measures are known in, for instance, the circle, these relations
can be used to find estimates of harmonic measures.

In the following, when discussing a family of curves we shall assume that they are
locally rectifiable. Let D be simply connected and let all points of 0D be accessible.
Let four points be picked on 2D, so as to divide 8D into four parts, o, By, ota, fa
in this order. D is then called a quadrangle. Let I' be the family of curves joining
o, to o, within D. Then

ML) =Ap(oy, otg) =A(oty, t3)

is called the extremal distance between «, and o, in D.

We now list a few well-known properties of extremal lengths and distances [3.1,
p- 115], [3.3, pp. 305-308]. We only discuss extremal lengths different from zero and
infinity. Considering those o for which {, o|dz| =1, for all y€I', A(T') is defined by

ML) =sup 4,
Q
Such a g will be called admissible with respect to I'.

4
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Lemma 3.1. A(T") is a conformal invariant.
Lemma 3.2. If I',< Ty, then A))=AT,).
The first two lemmata follow immediately from the definition.

Lemma 3.3. Let the I, be in disjoint domains Dy, k=1,2, ..., n. Let I'={y} be such
that each y contains at least one y, €V for each k, k=1,2, ..., n. Then

ATy > élz(rk).

Proof. Let g, be admissible with respect to Iy, £=1,2, ..., n. Let ¢, k=1,2, ..., n,
be positive numbers with >_;,=1. Then p=> 7. t,0, is admissible with respect to
I". The lemma is proved by choosing t,=A(I',)- (Ch-1 AT k=1,2, ..., n.

Lemma 3.4. Let D be a rectangle with sides «; and ay of length a, and sides 3, and
Bs of length b. Then

Moy, o) =baL.

Proof. Let D be {z]0<Rez<a, 0<Im z<b}. Then, by the Schwarz inequality,

b 2 b
Li< (L gdy) <b J; ody.

Integrating over x we obtain
alZ<b4, 3.1)
and hence Aoy, otp) <ba L.
Equality in (3.1) holds for g =b-. This proves the lemma.
Lemma 3.5. Let D be a quadrangle with 8D divided into ay, By, o, Bo tn this order.

B, and B, are assumed to be analytic arcs and o, and o, simple arcs. Let u be harmonic
in D with boundary values 1 on oy, 0 on oy, and du/on =0 on By and B,. Then

Aoy, 0p) = ff | grad u|® dady.
D

Proof. By Lemma 3.1 it is sufficient to prove this in the case of a rectangle. Let
%, in Lemma 3.4 be on the real axis. Then « =yb~! and the lemma is correct.

Lemma 3.6. Let — denote reflection in the real axis. Let D be symmetric with respect
to the real axis and I" such that y €U ET. Then it is sufficient to consider ¢’s sym-
metric with respect to the real axis to determine A(I).

Proof. Let o be admissible with respect to I". Then g and }(¢ +¢) are also admis-
sible. Furthermore
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1 _ 1 -
A= 1 ffp (ot @)zdxdy <§ ffp (@2 + 92)dxdy =A4,.

This proves the lemma.

Next we collect the information that we shall need about elliptic integrals. We
assume that 0 <k <1. Define

K(k)= f(l —2%) Y (1 —k*2?) " tdx, K'(k)=K((1—k)}), (3.2)
0
_K'(k)
and tk)= Kk (3.3)
2 4
Then (k) <7_z log P (3.4)
t(k)—?_[ log %=A(k)lc2; |A(k)|<Cy, when O0<Ek<k,<I. (3.5)

(3.4) and (3.5) follow, for instance, from [3.4, p. 54] and are used by Hersch [3.3,
pp. 316-319].

The following theorem giving an explicit relation between a harmonic measure
and an extremal length was proved by Hersch [3.3, pp. 319-320].

Theorem 3.1. Let D be simply connected and let all points of 0D be accessible. 0.D is
divided into two connected parts o and B. z, is a fized point in D and o =w(zy; o; D).
Let T' be the family of curves in D joining points on « and separating z, from f. t is
defined by (3.2) and (3.3). Then

A =2t (sin ”2—“’) . (3.6)

Proof. D is mapped conformally onto G, the interior of the unit circle in the w-plane,
so_that z=z, corresponds to w=0 and « to a;={w|-—nw<argw<mw, |w|=1}.
p1=0G —ay and 7, ={w| —1 <Re w<0, Im w=0}. T, is the family of curvesy, in G
joining points on «; and separating w =0 from 8,. C is the family of curves ¢ joining
7, and oy in Gy =G —7n,.

By Lemma 3.6 it is sufficient to consider ¢ symmetric with respect to the real axis
to determine A(I';) and A(C). A curve y,€l'; contains two curves ¢’ and ¢" in C.
Let — denote reflection in the real axis. Then, for a symmetric g,

| elawl= [ olavl+ [ olav]= [ olul+ [ olaul
>min(f 79|dw|,f _g|dw|).
c'Je’ c’Ue”

Hence Ly(T')) =2L,(C)
and AT,) =44(C). | (3.7)



ARKIV FOR MATEMATIK. Bd 6 nr 1

Fig. 3.1

MC)=2¢,(n,, o) is now determined by a conformal mapping of the quadrangie
G, onto a reetangle. By virtue of conformal invariance the theorem follows.
The following corollary will be useful in the next paragraph.

Corollary 3.1. Let D, (containing z,) satisfy the assumptions of Theorem 3.1 with
0= and let 0D¢ be piecewise smooth. D; is mapped conformally onto G = {w| [w| <1}
so that z=z, corresponds to w=0 and 6 to {w| —mw <arg w<zmw, |w| =1}, where
o =w(2g; Og; Dg). 2%, denotes {w|0<Rew<1, Imw=0} and x is the image of #, in
D¢. Let u be harmonic in D;—x with boundary values 1 on x, 0 on 8D;—0;, and
odujon =0 on 0; (except at the endpoint of »). Then

2t (sin @) = ff | grad u |* dady. (3.8)
2 Df—u
Proof. We consider ¢. Then by (3.6) and (3.7)
Ly ) 1, (o
A=y, By) 2t(sm 3 )—2t (sm 3 )
The corollary now follows by Lemma 3.1 and Lemma 3.5.
Corollary 3.2. With the notation of Theorem 3.1
7
w(zy; a; D) <4 exp (—; l(F)).

Proof. This follows from (3.6) and (3.4).

Theorem 3.2. Let D be simply connected and let all points of 0.D be accessible. Asswme
that D has no boundary point at infinity with finite Re z. Let D (containing z, =2y -+iy,)
be such that Oz consists of one segment. Let 0%, i =1, 2, ..., n(x), separate z, and 0.
Assume that n(x) =0, x<z,. Then
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U |
o(zg; Bs; D) <4 exp (~ nfxo (I:ZI m) dx) .

Proof. The 6, cover the shaded area in Fig. 3.2. Let T be the family of curves in
Dy joining points on §; and separating z, from 9D;—0.. We use Corollary 3.2 with
a=0; and D= D;. Thus

o(zg; B De) <4 exp ( - f—: z(I‘)) .

A simple estimate of A(I") is obtained by the following choice of g:
1

o) =1 Bi()’
0 otherwise.

z€0L, i=1,2,..., n(x), xs < <&

We note that each 0, (x) is lower semicontinuous. Now

& /@)
2 4-1 ——
AT =LA, >4 f (i:1 ei(x)) =

and the theorem is thus proved.

Remark 1. The possibility of such a choice of metric (in the case of n(x)=1)
was noted by Hersch [3.3, pp. 325-326].

Remark 2. Let the D in Theorem 3.2 have a boundary point B such that Re z— + oo,
z—>B, z€D. Let 6, i=1, 2, ..., n(x), separate z, and B. D is the subdomain of D
separated from B by 6,. We drop the assumption that n(z) =0, # <z,. Let I be the
interval generated by the 6. separating z, and a fixed 6}. Then

i Dy - ’ 1) )
o(zy; 0% D§)<4exp( nfz(zi: 0i(x) )

where ' means that the sum is to be taken over the 6, separating z, and 6%.

Remark 3. The estimate of w(zy; O¢; Dg) in Theorem 3.2 in terms of the lengths of
the 6, separating z, and 0 can be generalized to higher dimensions, cf. Theorem 6.2.

Remark 4. It does not appear possible to extend the method of § 3 to higher dimen-
sions. In Theorem 3.1 A(T') differs little from 42,(a,, &), when D is a quadrangle with
two opposite boundary arcs o, and «, such that the distance between «; and « is
large in comparison with the length of &, and z, is near «,. Now let G be a vertical
right cylinder of height b and let the area of the two horizontal sides «, and « be 4.
Then, in analogy with Lemma 8.4, Ao(,;, ) =bA~'. However, the harmonic measure
of & with respect to G depends not only on the size but also on the shape of a cross-
section of the cylinder.
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4. Symmetrization results for harmonic measures

Symmetrization with respect to a straight line is defined in § 1. The following two
theorems are proved with the aid of Corollary 3.1. Another method to prove sym-
metrization results is dicussed in § 8.

Theorem 4.1. Let D, (containing z,) be bounded by a piecewise smooth simple
closed curve. Let 0, consist of one segment. * denotes symmetrization with respect to the
real axis. Then

max w(zy; 0g; De) < w(ay; 0F; DF).

Re 29=1¢
Equality holds if and only if Dy is a translate of Df.

Proof. We use the same notation as in Corollary 3.1. Let x be the image of zx, in
D;. The slit %' ={z|x,<Re 2<&, Im z=0} is the image of », in D}. Let u be har-
monic in D;—» with boundary values 1 on x, 0 on 8D;—0;, and ou/on=0 on 6,
(except at the endpoint of x). Let v be harmonic in Df —x’ with boundary values 1
on %', 0 on 9D —0, and dv/én =0 on 6 (except at the endpoint of »’). Then by (3.8),

. TW _ 2
2t (sm 2) Jf%%' grad u |? dady,

*
2t (sin 7&)=Jf . |grad v[*dxdy.
2 Dg—w

where © = w(zy; 05 Dg) and o* = w(x,; 6%; D).

Let u be symmetrized with respect to the real axis. The symmetrized function is
u*. % corresponds to »* on the real axis so that u*=1 on »*. It is possible that x*
extends to the left of xy. We now reflect D¢ and D in I ={z|Re z=£} and denote the
reflected domains by D; and Df. Set G=D;U0:U D and G*=D¥ U0 UD}. x, «/,
and »* (including endpoints) are also reflected in I, and s, s’, s* denote the unions of
the given slits and their reflections. By reflection in ! u is defined to be harmonic in
G —s and v is defined to be harmonic in G* —s’. The domain of «* is also extended in
this way. According to a result of Pélya and Szego [4.4, p. 186-187]

ff | grad « |? dady > ff | grad «* |® dady. (4.1)
G~s G*—s*

When s* —s'+¢ v/0n=0 on s*—s'. By Dirichlet’s principle (with free boundary

values)
ff |grad u* |2 dxdy > ff | grad v ? dady
G*—s* GH—g’

and hence f f | grad » [ dady > Jf | grad v |? dady. (4.2)
G-s G*—s’

From this we obtain
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wd

Fig. 4.1

*
t(sin %9) =t (sin n;o )

Since #(k) is strictly increasing, 0 <k <1, we obtain the result w <e*.

The Dirichlet integrals in (4.2) are the inverted values of the modules of the
doubly connected domains G —s and G* —s’. These modules are (without restrictions
in the boundary assumptions) equal if and only if G —s is a translate of G* —s’. This
follows from a result by Jenkins {4.2, p. 106, p. 115]. Theorem 4.1 is now proved.

Remark 1. We mention another possibility of discussing equality in Theorem 4.1.
This is to make a detailed examination of a proof of (4.1) along the lines of a proof
given in [4.1, pp. 416-419]. Such an investigation was made by Ohtsuka [4.3, pp.
202-205] in the case of circular symmetrization (cf. the following remark). By the
result of Jenkins above the case of equality can be settled for more general domains.

Remark 2. Theorem 4.1 can also be formulated for circular symmetrization with
respect to the positive real axis. To define circular symmetrization, in the definition
of symmetrization in § 1 straight lines are replaced by circles with their centres at the
origin [4.4, pp. 193-195].

Theorem 4.2. Let D; (containing zy=1u,) be bounded by a piecewise smooth closed
curve. Let O consist of one segment. Dg is assumed to be symmetric with respect to
the real awxis. Dy is reflected in I: Re z=&. The reflected domain is Dg and G = Dg U 0 U D,.
G is symmetrized with respect to I, the symmetrized domain being G*; 0F ={z|2€G*,
Re z=¢} and Df ={z|2€G*, Re z<&}. Then

o(#y; 05 De) < w(zy; 0F; D)
with equality if and only if Ds= Df.

Proof. We use Corollary 3.1 and its notation again. Let x be the image of x, in D,.
Let u be harmonic in D;—» with boundary values 1 on %, 0 on 8D;—6; and
du/on=0 on 0; (except at z=§). Set »*={z| |Re z—&|<&—x, Im z=0}. By
reflection in I, u is defined to be harmonic in G — »*. Let v be harmonic in G — »*
with boundary values 1 on »* and 0 on #G™*. Then by (3.8)

10
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4t (sin %cg) = ff |grad « |* dady,
G—n*

) = J‘f |grad » |* daedy,
G*—n*

where o = w(zy; 0z De) and o* = w(xy; 0%F; D).
Let u be symmetrized with respect to I. The symmetrized function is »*. We then
obtain in the same way as in the proof of Theorem 4.1

rad u |® dedy > rad v |* dxdy.
G-u* & G*—u* &

The proof can now be completed in the same way as in the proof of Theorem 4.1.

new™
2

4% (sin

5. An application to comb domains

Let a simply connected domain D satisfy the following conditions. @, =¢ outside
A<z<B (—o0<A<B<w). 0,={z|Rez=x, |Imz| <co} for all x in A<x<B
except # —2x,,. The number of points z,, in a finite interval is finite. Each O, consists
of one bounded line-segment. We then call D a comb domain.

First we mention an explicit example illustrating § 2. Let D be bounded by the
straight lines {z|Re z=,,= —2ma, |[Im z| b}, m=1, 2, ..., (¢>0) and the imaginary
axis, where a ={z|Re =0, |Im z| <b}. w(z; «; D) can be determined explicitly when
z=1x,. We write exp (—mba—1) =k and use the notation in (3.2) and (3.3).

By a conformal mapping of {z| —2a <Re z<0} onto a rectangle {w||Re w| <kK,
0 <Im w<kK'} in the w-plane and by analytic continuation, we obtain a conformal
mapping of D onto a strip {w|Re w<kK, 0<Im w<kK'}. Hence

Ty

at(k)’

When a—0, the term on the right tends to 4! arctg exp (nx,/2b), by (3.5).

Now let G be a domain such that ©,= {z|Re z=z, |Im 2| < O(z)/2}, — o0 <2 <0,
and ©,=¢, x>0 Let inf O(z)=2b be attained at the points x,, m=1,2, .... Then
w(z,; o G)<o(r,; «; D). For small values of a, the above estimate for w(x,; ; G) can,
for suitably chosen ®(x), be considerably smaller than cexp (—x fgndx/®(x)).

4
o(xy; D)=:7_z arctg exp

Theorem 5.1. Let the comb domain D be bounded by the lines {z|Re z=z,,
Imz| >b,}, m=1,2, .., 0>x,>x,> ..., and the imaginary axis. Set & ={z|Re 2=0,
Im z| <b,}, ©,={z|Rez=x,, |Imz|<b,}, and by=max (b,, b,,), m=1,2, ...

Given x, let n be such that x, ., <x <z, Assume that

n y 2
Tp1"" Ty
LT <M.
Then there is a constant ¢ such that

w(x; «; D) <c exp (—n > %E;b— xm)
=1 m

m

11
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Proof. w=w(x; o; D). Let 1" be the family of curves in D joining points on «
and separating the point 2=z from D —«. By Corollary 3.2

<4 exp (—Zl(F)).

Let C be the family of curves in {z|2€ D, Re z>z,} joining ®, and . By the same
reasoning as in the proof of (3.7),

AT)>44(0).
We now estimate A(C). Set 2y=0 and @y=o. Let D,, denote {z|x,,<Rez<u, ,},
m=1,2,.... By Lemma 3.3
2(0)2 Z ADm(®m> ®m~l)'

m=1
Set ©,,={z|Re z=1,, |Im z|<b,} and O, _,={z| Rez=x, ,, |Im 2| <b,}, where
b, =max (bp, by-1), m=1, 2,..., n. By Lemma 3.2

A-Dm(®ma ®mwl)2le(®;m ®:n~1)-

MO, ©,,_1) is determined explicitly by a conformal mapping of D, onto a rec-
tangle. We write

2s7tbr, )

Typ1" Ty

k,=exp (—

and define t,, by (3.2) and (3.3). Then
sz(G);m G');n—l) :2t;1

and hence w <4 exp (— 27 D t;nl).
m=1
2
“1_Tm-1" Tm Tm-1"" Ty
By (3.5) 2yt Tty ( 2 ) B,

where | B,,| is less than a constant depending only on M.

Remark. If, in Theorem 5.1, 2b,,=@(x,,) for a suitable continuous @(x), we can,
by a limiting process, obtain a special case of Theorem 3.2.

_ Chapter II. The general case
6. Carleman’s method

This method was first used by Carleman in 1933 in a proof of Denjoy’s conjecture
concerning the number of finite asymptotic values of an integral function of finite
order [6.1]. Denjoy’s conjecture had been proved earlier by Ahlfors who used his
distortion inequality (2.3). An account of Carleman’s method in two dimensions

12
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is given in two text-books [6.4, pp. 219-224] and [6.6, pp. 121-126]. The growth
of harmonic and subharmonic functions of n variables has been investigated by
several authors with Carleman’s method. Besides the references mentioned here in
the text see [6.9]-[6.32] in the bibliography. In these investigations the main problem
has been to study the growth of a given function; constants appearing in the estimates
are allowed to depend on the function under consideration. However, a direct appli-
cation to harmonic measures was given by Tsuji [6.8, pp. 112-117] in polar coordi-
nates in the plane, cf. Lemma 6.7.

Carleman’s method consists in establishing a differential inequality for the Carle-
man mean (6.1) of a harmonic function. This can also be interpreted as a differential
inequality for a certain Dirichlet integral. In Theorem 6.1 Carleman’s method is
applied to harmonic measures. The proof of Theorem 6.1 follows—with some altera-
tions—a proof given by Dinghas [6.3, pp. 3-9]. We use Theorem 6.1 and some lem-
mata to establish the estimates of harmonic measures in Theorem 6.2 and Theorem
6.3. In the case n>2 these estimates are new.

We assume that D satisfies the condition A below.

A. D is such that ©,=¢ for <0 and @,=¢ for x>0. D is bounded by a finite
number of piecewise smooth surfaces. D has no boundary point at infinity for which
x, is finite. ©(x) is bounded and <M for all >0. Set 6, = {z|x; =0, 2€0D}. The mea-
sure of 0, is positive.

To begin with, we collect information about the principal eigenvalues in B.

B. Let the domain G in R" be bounded by a finite number of piecewise smooth
surfaces. Let ¥V be the class of functions f such that

(1) f is continuous in GU2G and piecewise continuously differentiable in G,
(2) f(z)=0,z€00,
3) f(z)=*0.

Consider the variational problem of minimizing in ¥ the Rayleigh quotient

J | grad f|*dz
R()=" 7
f fPdz
¢

Let v be the first (normed) eigenfunction of Av+4v=0 in @, v=0 on 9@, and A
the principal eigenvalue. It is well known that the Rayleigh quotient is minimized
in V by v and that the minimum is 1 [6.2, p. 399]. A decreases when @ increases [6.2,
p. 409]. 4 varies continuously with G [6.2, p. 423].

Furthermore A decreases when @ is symmetrized with respect to an (n —1)-dimen-
sional hyperplane (cf. § 1) [6.5, p. 419]. We also mention the Faber-Krahn inequality.
Let 4 be the volume of G. Let V, be the volume and A, the principal eigenvalue of
the n-dimensional unit sphere. Then [6.5, p. 413]

AP = AV

For a domain G with a less regular boundary, we define 4 as infq A, where Q is
of the type considered above and Q<=@.

13



KERSTI HALISTE, Estimates of harmonic measures

Let z4 = (2, y,) be a fixed point in D. We write
u(2) = w(z; O D).

We shall establish upper bounds for u(z) at z=z, by studying the Carleman mean ¢,
defined by

p(x)= fﬂ u¥(x, y)dy, 0<z <& (6.1)

The definition of ¢ is completed by setting (0)=0 and (&) =6(£).

C. We define A(z) in the following way. Consider a decreasing sequence, {¢}, of
positive numbers with limit zero. We choose the ¢ so that grad u==0 on the surfaces
u=¢ in D.. (The number of values a for which grad « vanishes at points of the
equipotential set =a in D, is enumerable [6.7, p. 276].) We write u, =max (u —¢,0)
and set 9, ,—={z|2, ==, u(z)>0}. ¥, . consists of a finite number of components
9% . To each 9% . we define ; (x) according to B. Finally we define

Ae(x) =min }; (z), A(z) =1in; Ae().

The existence of A(x) will be established in the proof of Theorem 6.1.

Let 4 be defined by C. Then we define ¢ by
z t
w(x)=f exp (2f Z*(u)du) dt. (6.2)
0 0

We can now state

Theorem 6.1. Let D satisfy the assumptions A. Let ¢ and p be defined by (6.1) and
(6.2). Then ¢ is a convex function of p for 0 <z <& and

@(x) <p(x)(E)p~(§). (6.3)

To prove Theorem 6.1 we consider
pel@) = f , @, y)dy.

In the following lemmata 6.1-6.4 we drop the index ¢. This means that we work under
the assumptions that u=0 on 9D¢—0¢ and that u is harmonic in a neighbourhood
of each point of 8D for which x; <&. Actually 9, .=¢ for x <z, 9, .+¢ for x>2,>0,
but when dropping the index ¢ we also write 0 instead of ..

Lemma 6.1. 9(x) s continuous and A(x) is upper semicontinuous, 0 <x <&.

Proof. For simplicity we treat only the case n=3. Suppose that J(z) is discon-
tinuous at « —¢. Then 8 = {z|u(z) =0} contains a surface element of positive measure
in the plane x, =c. This is impossible, since an analytic surface has at most a finite
number of points in common with any straight line (not contained in the surface).
Thus J(x) is continuous.

14
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When the plane x, =¢ is not tangent to S, each component 9 of ¥, is bounded
by a finite number of analytic curves, and A,(¢) is the principal eigenvalue of ¥%.
If the plane z, =o is tangent to S, &9, may for instance contain isolated points. In
such a case 1,(0) is taken to be infy1, where Q is contained in ¥} and o€ consists
of a finite number of analytic curves. Then A,(¢) =inf B(f) for f€ V in 5.

Given a number A >A(6) =2,(¢), we can choose () so that 4 is the principal eigen-
value of Q and Q) is strictly contained in 9#%. Then Q is contained in some component
of 9, for all x sufficiently near ¢. Thus A4 >/(z) for all 2 sufficiently near ¢ and 1 is
upper semicontinuous.

Lemma 6.2. ¢'(x)=2 [, uu,dy, 0<x<&.

Proof. Let 9,\9, be the set of points y belonging to ¢, but not to &,. Then

ui(x+ h, y)dy — f
+h 2

@(x+h)—g(x)= fa iz, y) dy = L (u¥(x + b, y) —u(x, y)) dy

z z x

+ Ha+h, y)dy — Ha+h, y)dy=1,+1,+1,.
Lﬁh\ﬂxu (x y)dy Lx\ﬂmu (@+h y)dy=1I,+1,+14

Dividing I; by & and letting % tend to zero we obtain 2 {, uu, dy. Now consider I,

for small 4. To each point (z +5, y), y €9,,,\9,, belongs some point (s, y), r<s<z+h,
such that u(s, y) =0. As the measure of #,,,\?, is O(1), I, is O(h?). In the same way
I, is O(h?). This proves the lemma.

Lemma 6.3. ¢"'(x) =2f, |grad u[*dy, 0 <w<§&.

Proof. By Lemma 6.2 and Green’s formula

@'(x) =2 fo (J; | grad » |? dy) dx.

The integrand f, |grad «|*dy being continuous by Lemma 6.1, we obtain our
lemma.

Lemma 6.4. (Carleman’s differential inequality.)
@ (%) >2¢ (x) A (z), 0 <z <&
Proof. By Lemma 6.3 .

(p”(oc)='2f19 u%dy-FZJ‘ﬂ |grad, P dy, 0 <z <§&.

The first integral is estimated by applying the Schwarz inequality to ¢’(x) in
Lemma 6.2. Thus

2 ‘Prz
=1, 4
J;xux dy ) (6.4)

15



KERSTI HALISTE, Estimates of harmonic measures

The second integral is estimated by B.

fai |grad, u [*dy > A(x) J;’i wrdy = Ax) ﬁai u?dy.

Summing over ¢ we obtain

J; | grad, » |*dy > A(z) p(x). (6.5)

re 2
Hence 207 P +42,0<a<t. (6.6)
¢ ¢

By the proof of Lemma 6.3 ¢’ is a Dirichlet integral and thus positive for 0 <z <§.
By the inequality (¢"/¢"—¢'/@)?>0 and taking the square root the lemma now
follows from (6.6).

Proof of Theorem 6.1. We now use the index ¢ again. By B and Lemma 6.1 {}}
is a decreasing sequence of integrable functions. 2* =lim A} is integrable over 0 <z <.
(Integrability at =0 is guaranteed by the assumption that the measure of §, is
positive.) By Lemma 6.4

@ (x) = 20.(x) A} (@) = 2g0(x) A (), @, <@ <&

For y defined by (6.2)
p"(x) =24 (z) ' () a.e.

Hence ;;(log @.—log ') >0 ae.

Since log ¢, and log 3’ are absolutely continuous on an interval a <z <f, . <a < <&,
. is thus a convex function of » on any such interval. By continuity at =0 and
x=§&, ¢ =lim ¢, is a convex function of y for 0 <x <. Thus (6.3) is true and Theorem
6.1 is proved.

Remark. (Asymptotic equality in Carleman’s differential inequality.)

Equality in (6.4) holds if and only if  =fu,, where f depends only on x. When 9,
is connected and 8¢, smooth, equality holds in (6.5) if and only if u=gv, where g
depends only on z and v is the first eigenfunction of Av +Av=0 in 9., v=0 on 89,.

Now let D, be a right cylinder, D, = {z|x, <§, y€©}, where O is simply connected
and has a smooth boundary. Let {1,};° be the eigenvalues (1, =12) and {v,}{° the
corresponding eigenfunctions of Av+Av=0 in ®, v=0 on 0. Then, by the method
of separation of variables (the ¢, denoting constants)

u(z, ) =3 n exp (1h(z—E)1a(y)
Thus, for large negative values of z—§,

u@, y)~c; exp (AHz— &) vy(y),
16
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us(%, y) ~ ¢, A exp (A — &) vy(y)-

@, as well as ¢,, is now twice differentiable, and asymptotic equality in (6.4) and
(6.5) holds for ¢.

Instead of defining ¢ as an integral over 9, as in (6.1) we now define ¢ as an integral
over 0,. In order to estimate ¢ in this case we introduce the following additional
assumptions about D.

D. 0, is connected, x <x,. 8D is smooth. In any finite interval 9.0 has a finite number
of tangent hyperplanes x; =c.

E. A(x) is defined as in C, but with respect to 0, instead of &,. (For z <z, 0, is under-
stood to be equal to @,).

Lemma 6.5. Let D satisfy A and D. Then (6.3) in Theorem 6.1 is true for x =1,
with @, 1, and w defined with respect to 0, instead of 9.

Proof. The choice of 0, is due to Tsuji [6.8, p. 112]. In the case of simply connected
6 and D; he takes into account only the first of the §’, separating 0, from 6, cf. Ahlfors’
distortion inequality (2.3). However, some irrelevant components of ¢, not separat-
ing 6, from 0; also enter the discussion. In Fig. 6.1 the 0, cover the shaded area.

Let #; =0 be those hyperplanes tangent to 8D for which D, is a proper subdomain
of -DLH-O'

Let the o belonging to the interval 0 <x <& be 6, <6,<...<0,. Then

9:(0,) S (04 +0), @e(04— 0) S e, +0), p=1, 2,..., m.
Thus ¢, and dg./dy have positive jumps at =0, g=1, 2, ..., m. According to the
proof of Theorem 6.1 ¢, is a convex function of  on intervals not containing any of

the ¢. Thus, for z. <z <z,<0ay,

p(x) — p(e)
@) <O(8) w(E) —p(@)

The lemma now follows by letting & tend to zero.

Lemma 6.6. u(z,) <ce(x,), where zy=(,, y,) and ¢ depends only on the geometry of
D near z,.

Proof. This lemma is an immediate consequence of Harnack’s inequality for
positive harmonic functions. If a closed sphere S(r; z,) with radius r and centre at
%o is contained in D, then for z€S(r/2; z,)

u(z) > (3)" hulz,),
and hence () = e, 7" P (2,),
where ¢, only depends on n. This proves the lemma.

We now discuss estimating ¢ from

(@) <p(@)0(E)y~(£)- (6.3)
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Fig. 6.1

Writing u instead of 24*, we have instead of (6.2)

p(x)= erXP (f ,u(u)du) dt.
0 0

Since J(x) < M, it follows by the Faber-Krahn inequality that u({x)>m> 0. Hence

p(x) =exp (fxlu(u) du) fr exp ( — fxy(u) du) dt<m™! exp (fxlu(u) du) . (6.7)
1] 0 t 0

In the same way, assuming that u(x) <m,, we obtain for £>m; " log 2

3
(&) > (2m,) ! exp (fo () du)

and hence p(x) Sc exp (ffy(u) du). (6.8)

It is, of course, unsatisfactory to require that u be bounded. In general the estimate
(6.8) does not follow from (6.3). For instance take §(x)=9(x)=1 and u(x)=2x, x>0.
Then, for large £y(£) ~ (2£)'exp &£2. A general result is given in the following lemma.

Lemma 6.7. Let D satisfy A and A be defined by C. Then for 0 <l <& —x,, 2y= (2, ¥y):

£
u(zg) <cl ¥ exp (—

A¥(x) dx) ,

Zo

where the constant ¢ depends only on A and the geometry of D near z, If D also
satisfies D this is true with A defined by E.

Proof. We use a trivial estimate of y(£). Writing u = 24*, we have for [>0

(&) = exp (J‘Eﬁl uu) du) fé exp (Jt p(u) du) dt =1 exp (Jé‘l plu) du).
0 £-1 E-1 0

18
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Hence, by (6.3) and (6.7)

&1

p(r,) <cl™' exp (—f ) du) .

Zo
Our lemma now follows from Lemma 6.5 and Lemma 676.

Remark. Tsuji proved this result in polar coordinates in the plane [6.8, pp. 112
117}, but with a more complicated derivation of the estimate of .

In Theorem 6.3 we shall estimate ¢ from (6.3) in some special cases. First, however,
we shall make the same choice among the components of ¢, as in Theorem 3.2 with
Carleman’s method. By Lemma 6.2 and Green’s formula ¢,/2 is a Dirichlet integral.
By working in terms of convexity in the proof of Theorem 6.1 difficulties due to
infinite Dirichlet integrals are avoided. Now we have to introduce auxiliary functions
possessing finite Dirichlet integrals. We shall assume that D satisfies D and D; F.

F. 0¢ is connected, and the diameter of D;— D;_, is less than a fixed constant.

G. Given &, let 6, 1=1, 2, ..., n(x), denote the components or unions of com-
ponents of 9, separating 0, from 6;. 1,(x) is now defined with respect to 6% in the
same way as was A(z) with respect to ¢, in C. We write

n@)

A¥z) =i§11f(x).

Lemma 6.8. Let D satisfy A and D and let D satisfy F. Let A be defined by G. Then
for zo=(xg, yo), §>xy+ 1,

£-1

u(2,) <€ exp (— A¥x) dx) . (6.9)

Zo
where the constant ¢ depends only on A, ¥, x,, and the geometry of D near z,.

Proof. We first modify Dg. Since, by F, the diameter of D;— D;_, is bounded, each
9, with & —1<x<¢£ is contained in an (n—1)-dimensional sphere of fixed radius R
and centre Y. Set G;={z|&é—1<x, <&, |y—Y|<R}. We consider D;U G, instead
of D¢, but do not change our notation. Thus 0;={z|z; =& |y—Y|<R}. Set
O:={z|z, =&, |y—Y|<R[3} and 0; ={z|x,—&, |y—Y|<2R/3}. We choose a
function F, twice continuously differentiable and monotonic for }<t<2, with
F(3)=1 and F(3)—0.

Now let f be harmonic in D; with boundary values 0 on 8D;—0;", F(R|y|) on
0 —0;, and 1 on 0;. We shall need an inequality of the following type: '

u(?) <cf(z). (6.10)

Applying the method of separation of variables in the cylinder G, we obtain that
u(2) and f(z) tend to zero in the same way when z€9¢_; tends to &9 ;. Therefore we
can, with the aid of Harnack’s inequality, establish the inequality (6.10) on 9,
and hence in Dg_,. .

Let D; denote the subdomain of D separated from 0 by .. We assume that the
0%, i=1, 2, ..., n(x), are taken in such order that Dic D'l ¢=1,2, ... n(x)—1.
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We now define
D, ,={z|z€Dg, f(z)> ¢}, 6. . ={z|2€0%, f(z)> ¢},
D, .={z|z€Di, f(z)> ¢}, f.=max (f—¢, 0),

and @i,(%) f |f€| dy, d;, (x) = fDi |gradfs|2d2.

{e} is taken to be a sequence of the type considered in € (with respect to f).

Let x, =c be those hyperplanes tangent to 0.D for which one of the following situa-
tions occurs for some ¢. I. D} is a proper subdomain of D, ¢, and d; (o) <d; (¢ +0).
II. D is a proper subdomain of D} g, and d; .(0) <d; (o0 —0). IIL. The interior of
D¢, — D, contains no 6 (j=1, 2, ..., n(z)), and d; (o) <d,, (o). Cf. Fig. 3.2.

On an interval I (not conta,mmg any points ¢) where D, increases with

2d; o(x) = (}9;(”)
by Lemma 6.2. Let 1, be defined by &. By virtue of Lemma 6.4 we obtain
| & () > 22}(2) . o). 6.11)

On an interval J (not containing any points ¢) where D) increases with —z we
obtain in the same way

— di, (%) > 22} () di, o(). (6.12)

Now we run through D;_, from z, to 6;_, so that each ¢, is passed once. Then the
Dirichlet integral of f. over D’ . increases with D . on intervals I and J according
to (6.11) and (6.12). At the points ¢ the Dirichlet integral of f. has non-negative in-
crements as described in I-IIT. When running through D ; in this manner we
integrate in (6.11) and (6.12). Writing d, instead of d,, . we obtain

de(xy) <d.(£—1) exp (— 2‘[&‘1 (ng) Zf(x)) dx) <de(§) exp (-’— 2\[571 A (x) dx) .

Zo Zo

By Green’s formula (with inner normal derivatives) we obtain

0=, 12 ay-— [, 120y [ ay

when ¢—0. By the maximum principle

o 4 o9
a Y 4
~Jo o= Jo 9™

where g is harmonic in G, with boundary values f on 6; and boundary values 0 on
0Ge— 0. Hence for sufficiently small ¢, d (f) <co
Finally we estimate f(z,). Since 2d. = ¢, is increasing,

Qo) S g (p;(xo) <cd ().
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We let £ tend to zero and then estimate f(z,) by Lemma 6.6. Thus we obtain (6.9)
for £(zy). By (6.10), (6.9) is also valid for u(z,) in the modified domain and hence for
the original u(zy) =w(zy; O D).

Remark. The original domain D, was modified so as to 1° facilitate defining auxi-
liary functions f, 2° assure the boundedness of d,(£), and 3° allow estimating u in
terms of f. In the two-dimensional case we can instead begin by considering domains
D bounded by a finite number of analytic curves. f can now be defined in the original
domain D, as above. Discussion of f, is unnecessary. We can use the technique of
Lemma 6.9 below. We define N in the following way: £€N if and only if an isosceles
triangle A. with base along 6 and a fixed opposite angle 2« is contained in Dj.
When £€N, the Dirichlet integral of f is bounded by a fixed constant and further-
more the inequality (6.10) is correct. If £ ¢ N a simple expedient is to consider Dz U A,
instead of Dg.

From Lemma 6.7 and Lemma 6.8 we now obtain the following

Theorem 6.2, Let D saiisfy A p. 13 and let ) be defined by C p. 14. zy=(%,, y) 8
a fixed point in D. Then for &>x,+1

w(zy 05 De) <c exp (—f

Lo

o (=) dx) . (6.13)

If D satisfies A p. 13 and D p. 17 and A is defined by B p. 17, (6.13) <s also correct.

Finally, (6.13) is correct if D satisfies A p. 13, D p. 17, and D satisfies F p. 19,
and 2 is defined by G p. 19.

The constant ¢ depends only on the geometry of D near z, and constants appearing in
the conditions satisfied by D and D¢; when ¥ is used ¢ also depends on z,.

Remark. The conditions involving smoothness in A and D were introduced for
simplicity and are not essential. If A, D, F (or some of them) —apart from smoothness
conditions—are satisfied, we can exhaust D¢ with a monotone sequence of subdomains
DY, v=1,2, ..., in which the theorem above can be applied. Now w(z; 05 Dg) and
A(x) in D are defined from the corresponding quantities o® and A”(x) in D{’ by a
limiting process. {A”(z)} is a non-increasing sequence. It follows that (6.13) is
valid even though the smoothness conditions are not satisfied.

If 7 is bounded we can integrate up to £ in (6.13) and let ¢ also depend on the least
upper bound of 1. We shall now show that integration up to £ in (6.13) is possible in
some special cases when A is not bounded.

Theorem 6.3. Let D satisfy A p. 13 and O, be connected, x>0. Let A(x) be defined by
Cp. I4. Let ©(x) and A(x) be continuous, x>0. z,= (2, Yo) is @ fixed point in D. Then

£
0(2g; Og; Dg) <c¢ exp (—f A (x) dx) (6.14)

15 implied by any one of the following three conditions.

(@) n=2.
(0) n>2, A2)O"(x) < M, >0, for some r<1.
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(¢) n>2, A¥(x)O(x) <M, Az) non-decreasing, x> 0.

The condition (d) implies (6.15).

(@) n>2, 2} @)= A (z,) k(x) =1 (%) (O(x)/O(,)) 1" P, k(w) non-decreasing, x> 0.

3
o(zg; O Dg) <ck® (&) exp (——f A (x,) k() dx). (6.15)

The constants ¢ depend only on the geometry of D near zy, %, and constants occurring

i A, (b), and (c).

We first prove a lemma.

Lemma 6.9. Let f be continuous and bounded, 0<f(x)<K, x>0, and f(x)=K,
0<z<a. Then for p>1and £>a

max f ?(x) frexp (—fsf‘l(u) du) dt=c>0, (6.16)
r<g 0 t

where ¢ only depends on p, a, and K.

Proof. Let T denote the curve y=f(x), x>0, in the zy-plane. A, denotes a triangle
with vertices (z, 0), (z, f(x)), (x — f(z) cot «, 0), where tg a=g is a large constant. Set
N ={z|the interior of A, lies below I'}. If we choose ¢>K/a, N will certainly be non-
empty.

Now let & belong to N. Given &, we take t,=£& — (2¢) " f(&).

Then fs f"l(x)dx<f5 (f(&) — q(& — x)) 'd <log 2.
to to
3 &
Hence f’l(f)f exp (—j i (w) du) dt > (4q)7L. (6.17)
0 ¢ /

By taking x=¢£ in (6.16), the truth of (6.16) follows for £€EN.
Now consider a & ¢ N, £,>a. By continuity there exists a largest b <&, such that
bEN. Then (6.17) is valid for £ =& and furthermore

Eﬂ
exp (- fb ) du) =(1+q(&—b) @), (6.18)

and &, —b<K cot a. Now take =5 and £=£, in (6.16) and use (6.17) with &=b.
Then it remains to determine a fixed lower bound for

F7(b) exp (— E £ ) du).

By virtue of (6.18) this is done by choosing ¢ = (p —1)~1. Thus the lemma is proved.
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Proof of Theorem 6.3. We use the technique of Lemma 6.9. By (6.3), (6.7), and
Lemma 6.6 we can reduce the proof of our theorem to determining a fixed positive

lower bound for
3 &
@“l(f)f exp (—2'[ ﬂ(u)du) dt.
0 t

If this cannot be done for all large & we can under the condition (@) obtain the
desired estimate for u(z,) by a simple estimate of an auxiliary harmonic measure.
Under the condition (b) we instead reduce the proof to determining a fixed positive
lower bound for

z &
max @"'l(x)f exp (-— 2f A3 (w) du) dt. (6.19)
T<§ 0 t

(@)= (6.14). We use the technique of Lemma 6.9 with f=(2m)1@ =32"%. (The as-
sumption that f be constant for small « is not essential. It can be satisfied by a modi-
fication of D.) If £€N, (6.17) is true, and (6.14) follows. Now consider a £¢ N, £ suf-
ficiently large. By continuity there exists a largest b <&, such that b€ N. Then (6.17)
is true for b instead of £. By the maximum principle

o(2g; Og Di) S w(zg; Op; Dy) max w(z; O D).

260,

Hence it suffices to prove that

¢
exp (nf O (u) du) max o(z; O De) <c. (6.20)
b

2€0,

By the definition of b
&
27 f O Huydu<qg'log (1+2mq(&—b)O (D).
b

If (£-b)O(b)<c¢, (a fixed number), then (6.20) is correct. If (£—5)O-1(b)>cy,
we use a simple estimate of w(z; g D). Set I ={z|x;=£} and let G be the domain
bounded by I and {z|x,=b, y >®(b)/2}. By the extension principle and an explicit
conformal mapping of & onto a half-plane we obtain

max o(z; Qg Ds) <w(b; I; G) <c(&—b) 10(D).

2€0

Hence (6.20) is correct, and this part of the lemma is proved.

(b)=(6.14). We use Lemma 6.9 with f=1}1"% Since O(z) <M, x>0, 1¥(z) is bounded
from below according to the Faber-Krahn inequality. The condition (b) now implies
(6.16). We thus obtain a fixed lower bound for (6.19) and (6.14) follows.

(¢)=(6.14), (d)=(6.15). We use the technique of Lemma 6.9 with f=}1"%. For a
non-increasing f all sufficiently large £ are in N and (6.17) gives the desired results.
(Instead of f being non-increasing we can require that f exists and is bounded by
a fixed constant.)
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7. The Nevanlinna mean

In a special case lower bounds of harmonic measures can be established by study-
ing the Nevanlinna mean (7.2). Heins used this name for (7.2) in the case of a rec-
tangle or a half-plane (in polar coordinates) [7.1, p. 4].

We consider domains D such that @,=F¢, — oo <z < co. @, is assumed to be Steiner
symmetric with respect to the coordinate hyperplanes y;,=0, i=1,2, ..., —1. By
this we mean that the intersection of ®, with a straight line perpendicular to ;=0
1s either a single line-segment symmetrical with respect to y; =0 or empty, ¢ =1, 2, ...,
n—1. When n>2 00, is assumed to possess piecewise continuous curvature. @, is
is obtained from ®, by the mapping y —k-1(x)y, k(0) =1, k(x) >0, k(z) non-decreasing
and twice continuously differentiable, — co <z < co. Under these assumptions we
shall establish the following

Theorem 7.1. Let A be the principal eigevalue of ©@,. Then

&
max w(z; O Dy) > (k(E)/ka)) " exp ( — 2t f k(t) dt).
2€0, z

We start by proving some lemmata. We use the following notation. Let {v,}{°
be the normed eigenfunctions of Av-+iv=0 in @y, v=0 on 90,, and {1,}{° the cor-
responding eigenvalues. Let {V_ ,}{° and {A, ,}i° be defined in the same way with
respect to ©,. Then

Aein = @) Ay Vi, n(y) = K" V(@) va(k(2) y). (7.1)
In the following we write 1 and v instead of 1, and v,.

Lemma 7.1. Let m(x) be the Nevanlinna mean of u(x, y)= w(z; Og D;) over O,
r<§,

m(x) = f@ u(@, y)v(k(x)y) dy. (7.2)

Let y - grad v denote the scalar product in ©,. Then
m'(x) = f@ Uz, y) v(k(x) y) dy + K’ (x) f@ u(x, y) (y- grad o) (k@) y)dy, <& (7.3)

Proof. Under our assumptions about k and 00, % possesses continuous first deriva-
tives up to the boundary at points where ¢@, is of continuous curvature (in the case
n>2) for x; <& [7.3, p. 635]. The same is true for v, since exp (A3z;)v(y) is harmonic
in a right cylinder with base ®,. The lemma then follows.

Lemma 7.2. fo_u,(%, y)v(k(z)y)dy <A k(z) m(z), z <E.

Proof. Let x be fixed and set G={2=(s, t)|s<z, t€0,}. We write I' instead of
0G and define y =I'—0,. Let U be harmonic in G with boundary values u(x, %) on
0, and 0 on y. G< D, since O, is Steiner symmetric with respect to the coordinate
hyperplanes and % is non-decreasing. By the maximum principle the inner normal
derivatives of U and u satisfy the inequality 8U /on <ou/on on ©,. We write V(y)
instead of v(k(x)y). Then
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oU
< Ay = — = 74
f@ u, Vdy f y? dy fr 14 ™ do, (7.4)

where do is the area element on I'. We now apply Green’s formula to the last integral
and note that U =0 on y and 0V /on =0 on @,. (We first consider finite subdomains of
@ and then use some majorant of ¢U/on in the limiting process.) Taking (7.1) into
account we obtain

f dea f UAVdz= ~/’lk2(x)f UvVdz.
G G

Hence by (7.4),

f@ ug (z, y) v(k(x) y) dy < Ak (=) ff U(s, t)v(k(x)t) ds dt. (7.5)
x G .
Now U can be represented in the following way in the cylinder G:
U, t)= f@ u(z, y) P(s, t; x, y)dy, s <z, (7.6)
where Pls, t;2,9)= 3 exp (5= 2) L) Vaoaly) Ve nl):
n=1

We shall need the relation
f@ P(s, & x, y)v(k(x)t)dt =exp (A¥(s— ) k(x)) v(k(x)y), s <. (7.7)

y (7.6) and (7.7), after first considering subdomains
{e=(s,)|2€F, — 0 <a<s<b<u}

of G, we obtain
Jf U(s, t) v(k(x) t) dsdt = A¥m(z) b~ (z).

By (7.5), this proves our lemma.

Lemma 7.3. Under the assumption that O, is Steiner symmetric with respect to the
coordinate hyperplanes, the scalar product y-grad v is non-negative.

Proof. We want to prove that v is symmetrically decreasing with respect to y,=0,
i=1,2,...,n—1. Let us assume that this is false for some 7. We then symmetrize
v with respect to g,—=0 (cf. § 1) and denote the symmetrized function by v*. By
[7.2, pp- 184-186]

f vzdy=f v*zdy,f Igradvlzdy>f |grad v* [*dy.
O Do [cH D)
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By B in §6 v minimizes the Rayleigh quotient and thus v=v* and the lemma is
proved.

Proof of Theorem 7.1. Since ¥’ is non-negative it follows from the lemmata 7.1,
7.2, and 7.3 that

m' (x) < Ak(x) m(zx), x < E.

Hence m(x) = m(E) exp ( — it Jf k() dt) .

However, m(&) = fesv(k(S) y)dy="k""() f@ v(y)dy = cy k' 7" (&)
and v being positive in ©,,

m(x) <max u(x, y) f@ v(k(x) y) dy = ¢, k'~ "(x) max u(x, y).

Hence max u(z, y) = (k(£)/k(z))* " exp (— At f; k(t) dt)

z
and Theorem 7.1 is proved.

Remark. Theorem 7.1 is of interest in connection with the estimate (6.15) in
Theorem 6.3. Also cf. Theorem 2.1.

8. Harmonic measures and probability theory

Harmonic measures have a probabilistic interpretation in the theory of Brownian
motion. A standard work of reference for this theory is that of Lévy [8.3]. Later
works of Doob and others are not referred to here. Let the domain D in R" be
bounded by a finite number of closed surfaces. p(z; «; D) is the probability that the
Brownian motion particle which starts from the point z in D first reaches 6D on a
subdomain « of D. Then [8.3, p. 62]

o(z; o; D) =p(z; o; D). (8.1)

This interpretation is useful for heuristic argument. For instance, the choice of
¢ in the proof of Theorem 3.2 appears reasonable since it takes into account those
segments of @, that the Brownian motion particle starting from z, (and the curves in
') must pass through to reach 6;. It appears difficult to obtain majorants of harmonic
measures by a study of Brownian motion or of the corresponding random walk. We
can, however, prove symmetrization results for harmonic measures by considering
independent components of a Brownian motion. Definitions of the different kinds of
symmetrization are given in § 1.

Theorem 8.1. (The two-dimensional case.) Let D be bounded by a finite number of
simple closed curves; 9,= UMD9., m(x) <M. Assume that the 9. vary continuously;
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it is allowed that at a finite number of points two segments come together or one splits or one
vanishes. * denotes symmetrization with respect to the x,-axis. Then

max (z; 0 Dg) < w(x; 05; D).
L

Proof. By (8.1) is is sufficient to prove that
max p(z; Oz Dy) <p(e; 0F; DE). (8.2)

2€d,

Congsider a two-dimensional Brownian motion {(X(7), Y(7))=Z(z), 0<7< o0},
starting from a point z =(z, y), where {X(7),0<r<occ} and {¥(z), 0 <7< oo} denote
one-dimensional Brownian motions and the components are independent. X(r) and
Y(r) are continuous with probability one [8.3, p. 10], so we assume continuity of
X(r) and Y(7) in the following.

Let M4(t) denote max X(z) when 0<t<t. My has an inverse function 7'y indi-
cating the first passage time [8.3, p. 31]. We now write

oo

P(z; Gs; D¢)=f P{<Tx&)<t+dt Z(r)ED; when 0<7<i}
0

=f P{<Ty&)<t+dt} P{Y(1)€0xa, when O<t<t|t<Ty(&)<t+dt}
0

t=

and  p(z; 0F; DY)

I

f P{<Ty&)<t+dt} P{Y(r)€0%s when O0<7<t|[t<Ty(&)<t+dt}

t=0

Given a sample function X(t), 0 <7 <!, we now consider
P{Y(r)€¥xwn when 0<7<t¢}.

Some segments of ¥y, may be inaccessible to the Y-particle that is to reach & x,.
Later in the proof we require that the domain accessible to the ¥-particle be bounded
by curves continuous in 7. By translation (perpendicular to the 7-axis) of any inac-
cessible segments we obtain a larger accessible domain § with accessible segments
#xe of total length ¢ (X (7)) =%(X(r)). We need only consider such components of
the complement of § that possess positive area. They can be enumerated according
to the length of their projections on the 7-axis.
Thus, to prove (8.2) it suffices to prove the following inequality:

P{Y(z)€x, when O0<t<t}<P{¥(r)€af when 0<7<¢}, (8.3)

where Y(0)=0, and o, is a finite union of accessible open line-segments varying
continuously in 7, so that two components of «, are separated by one point for at most
a finite number of values of 7. * denotes symmetrization with respect to the 7-axis.

Now choose {7{”}§, so that 0 =17 <7{® < ... <t =t and {z{”}¢ becomes dense
in 0 <t <t, when k— co. We shall prove that for any k

P{Y(r,(,k’)Eoz,ik), v=1, 2., B} <P{Y(#") €xt, v=1, 2,..., k}. (8.4)
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Thanks to our assumptions about the o, (8.3) follows from (8.4) by e.g. [8.1,
Theorem 2.2, p. 54]. Now, omitting the upper index &

P{Y(r,)€a,, v=1, 2,..., k}

5 2
= (27!)_”2(71(72 =TTk — Tk—l))‘% J;rl s - €xp ( - éy’_;_l - (232:2_%1)1') -
_ (yLyk_fl)f)
ST S— dy,...dyy. (8.5)

Thus (8.4) will follow from an inequality of the following type:
f . ---LkeXp (—e i~y — )" — oo — el — Y 1" Ay Y
<f . f . °XP (=Yt = (U= 91— oo — ey — Yr-1)?) Ay, .- dyic
oy -4

where the ¢, are positive constants and the «, are finite unions of intervals and
a ={y ||y | <Uex)/2}, l(a,) being the total length of «, =1, 2,..., k. Such an ine-
quality follows from Lemma 8.1 below and thereby our theorem is proved.

Lemma 8.1. Let {a"} be symmetrically decreasing sequences of numbers with

ayzaP’=a® zaf=a%>...20,i=1, 2,..., k. We assume that
o 1 for 2s;+ 1 values of v
& = . ,t=1,2..., k.
O otherwise
Then
DD, D K () D@ )
2 abPa, b AL S SO > al (N S,
v Py 7| <81 |1’k|<3k

Proof. Let {ay} be a finite set of numbers. The rearranged set {a, } is defined by
ag Zay 2aZ;>.... Wewrite 4, = a{®b". Then 4; +0and 4, <a’ for v= —s,,..., s,.
Hence it is sufficient to prove that

@ @ w (0 + @ (k)
z...vzlélylavr,zb,,2 RSN o S S JP ) AN M (8.6)
k &

Vi lnal<s:  [7gl<s

When k=2 (8.6) follows from Theorem 373 [8.2, p. 265]. To prove (8.6) when
k> 2, the induction method of Theorem 374 [8.2, p. 273-274] is used. We write

= (2) 2) = 3) (%)
‘BVz - zAf’l a”x‘”z b”z ’ c”z - Z s Z a”z‘l’a"' a'vk_l—i’k'
21 |va| <ss |vgl<sp

Under the assumption that (8.6) is true for k—1

(3) (3 X () +
Z"' zBﬁzavz*Vab”s)"' (l( ’ b”k < Z B”z C"z'
Vs Vi

ve_1~¥
k—-1""k
ral<se
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Let ¢ be a permutation function for which By, = B,. We write ¢y, =C, and
d,=bPC,. By Theorem 373 [8.2, p. 265]

Z B’Z c”z = Z B”z 0"2 = Z Z A‘Vl dvs ag’%)—vz < Z Z A:; dfj; af’%)"’z'
Iril<sy 72 v s P1]<81 ¥z

However by Theorem 375 [8.2, p. 273] ¢y=>¢,=c_y=¢,=¢_2>.... Hence d, <,
when |v,|<s, and

+ + 2 _ + . (2) k)
> B, < 2 AP, = > .. > ALaR,,...af .

12l<sa 71 <81 Iral<s2 Irl<s: ) rgl<sg
The general result (8.6) now follows by induction and thereby the lemma is proved.

For the sake of simplicity we formulate the n-dimensional result for domains
D¢ such that D is the restriction to {z|2, <&} of a finite union of spheres. By an
exhaustion process we can extend the result to harmonic measures in more general
domains. Let {D} be a monotone sequence of subdomains of D converging to D,
such that each Df’ is the restriction to {z|x; <&} of a finite union of spheres. Then
by Theorem 8.2 below and the maximum principle

max (z; 09; DY) < w(z; 027 DP*) < w(z; 0F; DY)
Yi
and thus max w(z; 0 De) < w(z; 0F; D).
Yi

Theorem 8.2. (The n-dimensional case.) Let Dy be the restriction to {z|z, <&} of a
finite union of n-dimensional spheres. * denotes symmetrization with respect to a coordi-
nate hyperplane y,=0. Given z, z, has the same coordinates as z except that the ith co-
ordinate of z; is zero. Then

max w(z; Og Dg) < w(z; 055 Df).
vi

Proof. Consider an n-dimensional Brownian motion {(X1(2), Yi(2), oo Yoy(2))=
(X(7), Y(7))=%(1), 0<v<co} starting from a point z=(z,y). {X(r), 0<r<oo},
{Yi(r), 0<t<e0},i=1,2,..,n—1, denote one-dimensional Brownian motions and
the components are mutually independent. The proof is analogous to that of Theo-
rem 8.1.

When considering P{Y(7) €9z, when 0 <7<t} we now translate any inaccessible
line-segments on straight lines perpendicular to the hyperplane y;=0 in the (z, y)-
space. We then proceed as in the proof of Theorem 8.1 up to (8.5).

Instead of (8.5) we now have, with ¥(0)=y,

P{Y(,)€a,, v=1,2,.., k} = (27) ¥ D2z (7, ~ Ty)e (T — Tioq)) 2

X f f €xp (— ly—yF - 2=y P — e ———l vy |2) dy®... dy®.
a, o, 21, 2(r,— 1) 2(t— Th-1)
We now consider the integrand as a product, one factor being
(N2 M _ (22 (k—1) _  (k)\2
exp (_(:’/1 Yi )_(?/z Yi )_“.__(?/1 Yi ))
21, 2(7,— 7y) 2(T%— Ti-1)
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We first integrate with respect to dy® ... dy{® and use Lemma 8.1. Our theorem
now follows in the same way as Theorem 8.1.

Remark 1. The method of proof used above is not suitable for discussing the case
of equality in the theorems. Cf. Theorem 4.1.

Remark 2. Tt seems reasonable that Theorem 4.2 can be generalized to higher
dimensions, but a probabilistic proof does not appear easy.

Remark 3. In connection with the results of this paragraph we note that the prin-
cipal eigenvalue occurring in B in § 6 and in Theorem 6.2 is decreased by symmetriza-
tion, according to B.

Remark 4. By a limiting process we can establish the result of Theorem 8.2 for
more general domains. By an infinite sequence of symmetrizations with respect to
hyperplanes through the x,-axis, we can thus obtain the following result, * denoting
symmetrization with respect to the x;-axis (n>2),

max (z; 0 Ds) < wlx; 0F; D).

2€d,

Uppsala University
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