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E s t i m a t e s  o f  h a r m o n i c  m e a s u r e s  

By KERSTI I-IALISTE 

Introduction 

Est imates  of harmonic measures in terms of Eucl idean quanti t ies are useful in 
m a n y  situations. I n  the two-dimensional case one can apply  methods of conformal 
mapping  and extremal lengths, and m a n y  sharp results are well known. Different 
means of harmonic measures can be studied in the n-dimensional case. This paper is 
intended to provide a survey of methods available to estimate harmonic measures. 

The two-dimensional case is t reated in Chapter  I. The second paragraph  contains 
well-known distort ion inequalities f rom the theory  of conformal mapping,  and w 3 
contains well-known results f rom the theory  of extremal lengths. I n  w 4 we prove 
two symmetr izat ion theorems with the aid of a result f rom w 3. I n  w 5 we apply  
results f rom w 3 to comb domains. 

Chapter  I I  gives n-dimensional methods.  I n  w 6 a method  of Carleman [6.1] is 
applied to harmonic measures. The derivation of Carleman's method  in Theorem 6.1 
follows tha t  of Dinghas [6.3]. The est imates of harmonic  measures in Theorems 6.2 
and 6.3 are new in the case n > 2 .  I n  w 7 we t reat  Nevanl inna 's  mean  value in a 
special case. I n  w 8 we prove some symmetr iza t ion results with probabilistic methods.  

The main problem is to provide upper  bounds for harmonic measures. Lower 
bounds are discussed in w 2 and w 7. 

Bearing in mind the possibility of exhaust ing a given domain with more regular 
domains we have not  aimed at  generali ty in assumptions about  the domains con- 
sidered. 

The subject of this paper  was suggested by  Professor L. Carleson, to whom I am 
deeply grateful for all his advice. 

1. Definitions 

R n is the n-dimensional Euclidean space, n >~ 2, with points z = @1, Yl . . . . .  Yn-1) = 
(xl, y). I n  Chapter  I we t reat  the case n = 2  and prefer to write z=x+iy. The 
following definitions are then to be unders tood with Re z instead of x 1. 

D denotes a domain (open connected set) and ~D the boundary  of D. 
Ox-{z[xl=x, zeD}. 
D x is the subdomain of {zlxl<x , zED} tha t  contains a given point  %. 
Ox={z]zeOx, ze~D~}. 
Without  D being specified D~ denotes a domain in {z]x~<~} with par t  of its 

boundary  on {z Ix x =~} and O~ then denotes the interior of {z]x~ =~,  z E ~D~}. 
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KERSTI HALISTE: Estimates of harmonic measures 

Given D~, Ox={ZlXl=X , zED~}, x<~. 
0~, i= 1, 2 ..... n(x), are the components  or unions of components  of 0z(v~x) tha t  

separate two given points  or surfaces. (Cf. w 2.) 
O(x), O(x), O(x), O~(x) are the measures of the respective sets. 
0~ will be used in preference to v~ and 0~, if D is such tha t  all the Ox are connected. 
0~ can also be used to denote a set in the ( n -  1)-dimensional y-space. 
e)(z; ~; D) denotes the harmonic measure at  the point  z of a ~  ~D with respect to D. 
c m a y  denote various constants.  

Symmetr iza t ion of an  n-dimensional open set A with respect to an (n -1 ) -d imen-  
sional hyperplane p (Steiner symmetr izat ion)  [1.1, p. 5, pp. 151-152] means the fol- 
lowing: A is t ransformed into A* so tha t  any  straight  line perpendicular to iv tha t  
intersects A also intersects A*. Bo th  intersections have the same measure (length) 
and the intersection with A* is a single line-segment symmetr ic  with respect to p.  

When  n = 2  this reduces to the definition of symmetr iza t ion with respect to a 
s traight  line. 

A continuous funct ion / is symmetr ized with respect to a hyperplane iv by  sym- 
metrizing the sets {zi/(z ) >a},  inf/(z) ~<a < sup/(z),  in the manner  described above. 

Symmetr iza t ion of an n-dimensional open set, n > 2 ,  with respect to a straight  
line 1 (Schwarz symmetrizat ion)  [1.1, pp. 151-152] means the following: A is trans- 
formed into A* so tha t  a ny  (n 1)-dimensional hyperplane perpendicular to l tha t  
intersects A also intersects A*. Bo th  intersections have the same measure and the 
intersection with 2t* is a sphere with its centre on 1. 

Chapter I. The two-dimensional case 

2. Distortion theorems in the theory of  conformal mapping 

Problems of distort ion in the theory  of conformal mapping  have been widely 
studied. We shall refer to the survey given by Lelong-Fer rand  [2.2, Ch. VI,  in partic- 
ular pp. 185-202, pp. 216-217]. 

Let  D be a s imply connected domain in the z-plane not  containing the point  at  
infinity. Let  A and B be two accessible boundary  points. We limit the discussion to 
the following situation: A and B are the only boundary  points of D at  infinity and 
Re z -+ - 0% when z-+A,  z E D, and Re z -+  + 0% when z--->B, z E D. Let  L be a Jo rdan  
arc in D joining A and B. 0~, i = 1, 2 .. . . .  n(x), are the segments of Ox tha t  separate 
A and B. 01 is the first of the 0~ tha t  is met  when moving along L f rom A to B. 0~ 
can also be defined as t ha t  segment among the 0~. tha t  separates the largest sub- 
domain of D from A. Cf. Fig. 2.1.01(x), the length of 01, is lower semicontinuous. A 
detailed discussion of the definition of 01 is given by  Le long-Fer rand  [2.2, pp. 185- 
186]. 

D is mapped  eonformally onto G in the w-plane, w =u +iv. G = {w I I v ] <  �89 and 
A corresponds to u = - ~ and B to u = + oo. yx is the image of 0~. ua and u2 are 
defined by  

ul(x ) = inf u, u2(x ) = sup u. 
W E ~  x WE~ x 

Let be the subdomain of D separated from B by0 . G a = { w i u < a ,  IvI 
and I a = {w ]u = a, Iv ] < �89 We use conformal invariance of harmonic measures, the 
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F i g .  2.1 

B - - >  

extension principle, and explicit harmonic measures in G~ to establish the following 
relations: 

max a)(z; 0~; D~)< eo(u2(x); /~,(~); G~,~)) 
ze(~ 

4 
. . . .  arctg exp (- ul(_~ ) + u2(x)), us(x ) < ul(~); (2.1) 

4 
max w(z; 0~; D~) >1 eo(ui(x); /~.~); G~,~(~))= - arctg exp ( - u2(~ ) + Ul(X))- (2*2) 

Ahlfors' first distortion inequality [2.1, pp. 7-I2], [2.2, pp. 187-190], [2.3, pp. 
93-100], states that  

fl ul(~ ) - us(x ) > ~ 01(t ) - 4~, when ~l~t i > 2. (2.3) 

By (2.1) this yields an upper bound for ~o(z; 0~; D~). (Also cf. [2.3, pp. 76=78]~) 
However, a more general result is proved in Theorem 3.2 with the method of 
extremal lengths. In connection with estimates of harmonic measures, distortion 
inequalities in the other direction arc more useful, since there are few other methods 
for finding lower bounds of harmonic mcasures. 

Distortion inequalities in the other direction requil'e various restrictive assumptions 
about D. Ahlfors' original second inequality [2.1, pp. 12-17] is contained (with a 
different constant term) in an inequality by Lelong-Ferrand [2.2, pp. 194=198]. 
Another variant was proved by Warschawski [2.4, pp. 291-296], [2.2, p. 202]. Wi th  
(2.2) this yields the following theorem. 

Theorem 2.1. Let D be bounded by the curves y:-~02(x ) and y=q~l(X), ~2(x)>~01(x), 
- - ~ < x < ~ .  Let ql and q~2 have' bounded derivatives; [Vi(x)[ <m,  [ ~ ( x ) [ < m ,  
- -  C<:) < X  ~: cx:z, ~)(X) - -  ol.((~l(X) "002(X)) ,  (~)(X):::(p2(,~) - -  ~91(X ). Then 
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m a x w ( z ; O ~ ; D ~ ) > / c e x p  - ~  O ~ - ~  [ 0 ~  + 1 2 0 ( 0 ]  at , 
ZeOx 

where c = exp ( - 8z(1 + I  m2)) �9 

Another  method  for determining lower bounds of harmonic  measures will be 
discussed in w 7. Lower bounds of the form c exp ( - ~  j'x ~ dt/O(t)) can not  be estab- 
lished if O oscillates too much. An example illustrating this is given in w 5. 

3. Relations between extremal lengths and harmonic measures 
This subject dates back to Beurling's thesis [3.2], and appears to have been well 

known to m a n y  mathemat ic ians  before an account  of it was published by  Hersch 
[3.3]. 

Let  F be a family of locally rectifiable curves (denoted ?) in a domain D (i.e. 
each compact  subcurve of a y is rectifiable). 

Consider non-negat ive functions 0 in D for which 

= L~(F) = inf ( 9 [ d z  [ L0 
? Jv 

A q  = AQ(D) = f f D o~dxdy 

are defined and are not  both 0 or bo th  c~. (For a locally rectifiable ~, So[dz [ is defined 
as the supremum of the integrals over subcurves of y.) The extremal length X(F) 
is defined by  

L 2 
2(F) = sup -.~. 

q Aq 

The functions Q define a conformal metric by  da =e(z)]dz[ .  
The definition of extremal length is due to Ahlfors and Beurling [3.1, p. 114]. The 

extremal length is a conformal invariant.  Thus, if relations between some extremal 
lengths and harmonic measures are known in, for instance, the circle, these relations 
can be used to find estimates of harmonic measures. 

I n  the following, when discussing a family of curves we shall assume tha t  they  are 
locally rectifiable. Let  D be s imply connected and let all points  of OD be accessible. 
Let  four points be picked on ~D, so as to divide ~D into four parts, ~x, ill '  0~2' fi2, 
in this order. D is then called a quadrangle.  Let  F be the family of curves joining 
~1 to ~ within D. Then 

is called the extremal distance between a 1 and  a s in D. 
We now list a few well-known properties of extremal lengths and distances [3.1, 

p. 115], [3.3, pp. 305-308]. We only discuss extremal lengths different f rom zero and 
infinity. Considering those 0 for which S~ ff [dz[ ~> 1, for all 7 E F, ;t(P) is defined by  

~(F) = sup A~ 1. 
Q 

Such a ~ will be called admissible with respect to F. 

4 
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Lemma 3.1. ~t(F) is a con/ormal invariant.  

Lemma 3.2. / /  I l l  C F2 ,  then ~t(F1)~>~t(F2). 

The first two lemmata  follow immediate ly  f rom the definition. 

Lemma 3.3. Let the F k be in  disjoint domains Dk, Ic = 1, 2 . . . . .  n. Let I ~ = {~} be such 
that each ~ contains at least one ~k r Fk /or each lc, lc = 1, 2 . . . . .  n. Then 

;~(r)/> ~ 2(r~). 
k= l  

Proo/. Let  ~)k be admissible with respect to Fk, ]c = 1, 2 .. . . .  n. Let  tk, lc = 1, 2 . . . . .  n, 
~- n = Y.~I  tk~k is admissible with respect to be positive numbers  ~ lth ~k=l tk = 1. Then be positive numbers ~ lth ~k=l tk = 1. Then 

I~ n *-.7 F. The lemma is proved by  choosing tk =~( k)" (~k=l Jt(Fk)) -1, /c = 1, 2, n. 

Lemma 3.4. Let D be a rectangle with sides o~ 1 and ~2 o] length a, and sides fll and 
fl~ o/ length b. Then 

~(~1 '  ~2) - -  ba-i. 

Proo/. Let  D be { z I 0 < R e  z < a ,  0 < I m z < b } .  Then, by  the Schwarz inequality,  

In tegra t ing  over x we obtain  

aL~ <~bAe (3.1) 

and hence ~(el, ~2) <~ba 1. 

Equal i ty  in (3.1) holds for ~ =b  -1. This proves the lemma. 

Lemma 3.5. Let D be a quadrangle with ~D divided into 6r ill' ~2, f12 in  this order. 
fll and fi2 are assumed to be analytic arcs and ~1 and ~2 simple arcs. Let u be harmonic 
in  D with boundary values 1 on ~2, 0 on ~1, and #u/an = 0  on fix and f12. Then 

2-i(~. ~2)= f f ]grad uI~dxdy. 
Proo/. By Lemma 3.1 it is sufficient to prove this in the case of a rectangle. Let  

~1 in Lemma 3.4 be on the real axis. Then u - y b  =1 and the lemma is correct. 

Lemma 3.6. Let - denote reflection in  the real axis. Let  D be symmetric with respect 
to the real axis and F such that ~ E F ~ ~ E F. Then it is su// icient to consider ~'s sym- 
metric with respect to the real axis to determine 2(F). 

Proo/. Let  ~ be admissible with respect to F. Then ~ and 1(~ +~) are also admis- 
sible. Fur thermore  

5 
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A - 1 2 1 

This proves the lemma. 

Next we collect the information that  we shall need about elliptic integrals. We 
assume that  0 < k < 1. Define 

and 

Then 

K ( k ) = f ~ ( 1 - x 2 ) - i ( 1 - k 2 x 2 ) - � 8 9  K'(k)=K((1-k2)~) ,  (3.2) 

K'(k) 
t(k)= K(k~" (3.3) 

t(k)~<~ log ~, (3.4) 
7~ 

t(k) --2 log 4=A(k)]c2; IA(k)l~c0, when 0 ~ ] c ~ ] c 0 < l .  (3.5) 

(3.4) and (3.5) follow, for instance, from [3.4, p. 54] and are used by Hersch [3.3, 
pp. 316-319]. 

The following theorem giving an explicit relation between a harmonic measure 
and an extremal length was proved by Hersch [3.3, pp. 319-320]. 

Theorem 3.1. Let D be simply connected and let all points o~ ~D be accessible. ~D is 
divided into two connected parts ~ and ft. z o is a / ixed point in D and co =o~(zo; ~; D). 
Let F be the/amily o/ curves in D ~oining points on ~ and separating z o/rom ft. t is 
de/ined by (3.2) and (3.3). Then 

2(F) = 2t (sin 2~~ ) . (3.6) 

Proo/. D is mapped conformally onto G, the interior of the unit circle in the w-plane, 
so that z=z0 corresponds to w = O  and to Iwl =1}.  
f i l : ~ G - ~  1 and ~ l - { w l  - 1  < R e  w~0,  Im w - 0 } .  F 1 is the family of curves 71 in G 
joining points on ~1 and separating w =0 from ill. C is the family of curves c joining 
~1 and zq in G I = G - ~ I .  

By Lemma 3.6 it is sufficient to consider ~ symmetric with respect to the real axis 
to determine ~t(l~l) and ~t(C). A curve 71 E I~I contains two curves c' and c" in C. 
Let - denote reflection in the real axis. Then, for a symmetric Q, 

Hence 

and 

L o(F1) = 2Lq(C) 

~(F1) = 4~(C). (3.7) 
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Pxe Z =~ 

Fig. 3.1 Fig. 3.2 

2(C) =2G,(~1, ~1) is now determined by a conformal mapping of the quadrangle 
G 1 onto a rectangle. By virtue of conformal invarianee the theorem follows. 

The following corollary will be useful in the next paragraph. 

Corollary 3.1. Let D~ (containing z0) satisfy the assumptions of Theorem 3.1 with 
0~ = ~ and let ~D~be piecewise smooth. D~ is mapped conformally onto G = {w I I w I < 1} 
so that z = z  o corresponds to w = 0  and 0~ to { w [ - 7 ~ < a r g  w<zee), Iw] =1}, where 
co=co(z0; 0~; D~). ~x denotes {w[0~<Re w < l ,  I m w = 0 }  and g is the image of ~ l in  
D~. Let u be harmonic in D~-~r with boundary values 1 on ~, 0 on OD~-0~, and 
~u/On = 0 on 0~ (except at the endpoint of u). Then 

2t(sin2)=ff~lgradul~dxdy. (3.8) 

Proo/. We consider G. Then by (3.6) and (3.7) 

1 -- 1 1 . 
~c-~,(zl, f l~)=2t(s in  ~ ( 1  m ) ) = 2 t - ( s i n  ~ - )  

The corollary now follows by Lemma 3.1 and Lemma 3.5. 

Corollary 3.2. With the notation of Theorem 3.1 

o)(z0; a; D)~<4 exp ( -4J t ( l~) ) .  

Proo/. This follows from {3.6) and (3.4). 

Theorem 3.2. Let D be s imply  connected and let all points  o~ ~D be accessible. Assume  
that D has no boundary point  at in / in i ty  wi th / in i te  R e  z. Let D~ (containing z o = x o + iyo) 
be such that O~ consists o/ one segment. Let O~x, i = 1, 2 . . . . .  n(x), separate z o and 0~. 
Assume that n(x) = O, x < x o. Then 
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/'~ /~(~) 1 \ \ 
- ~ - -  dx  (A)(ZO;O';D')~4exp :7~Jxoti=lO~(x) ) )" 

Proo/. The 0~ cover the shaded area in Fig. 3.2. Let  F be the family of curves in 
D~ joining points  on 0~ and separating z 0 f rom ~D~-O~. We use Corollary 3.2 with 
:r = 0~ and D = D~. Thus 

A simple estimate of 2(P) is obtained by  the following choice of ~: 

O~(x)' z ~ Cx, i = 1, 2 , . . . ,  n(x) ,  xo < x < 
~(z) 

0 otherwise. 

We note tha t  each 0f (x) is lower semicontinuous. Now 

~t(F) >~ r ~ a  1 ) 4  dx, 
a i 

and the theorem is thus proved. 

Remark 1. The possibility of such a choice of metric (in the case of n ( x ) - - l )  
was noted by  Hersch [3.3, pp. 325-326]. 

Remark 2. Let  the D in Theorem 3.2 have a boundary  point  B such tha t  Re z -~  § ~ ,  
z -~B,  z E D. Let  0~, i = 1, 2 ..... n(x), separate z 0 and B. D~ is the subdomain of D 
separated from B by  0~. We drop the assumption tha t  n(x)=0, x < x  o. Let  I be the 
interval generated by  the 0~ separating z 0 and a fixed 0~. Then 

, 1 

where ' means tha t  the sum is to be taken over the 0~ separating z 0 and 0~. 

Remark 3. The estimate of o)(%; 0~; D~) in Theorem 3.2 in terms of the lengths of 
the 0~ separating z 0 and 0~ can be generalized to higher dimensions, cf. Theorem 6.2. 

Remark 4. I t  does no t  appear  possible to extend the method of w 3 to higher dimen- 
sions. I n  Theorem 3.1 )~(F) differs little from 42D(~ 1, ~), when D is a quadrangle with 
two opposite boundary  arcs :r and :r such tha t  the distance between al and :r is 
large in comparison with the length of ~ and z 0 is near :% Now let G be a vertical 
r ight  cylinder of height b and let the area of the two horizontal  sides ~1 and :r be A. 
Then, in analogy with Lemma 3.4, 2C(al, ~)=bA-1 .  However,  the harmonic measure 
of ~ with respect to G depends no t  only on the size bu t  also on the shape of a cross- 
section of the cylinder. 
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4. Symmetrization results for harmonic measures 

Symmetr iza t ion with respect to a s traight  line is defined in w 1. The following two 
theorems are proved with the aid of Corollary 3.1. Another  me thod  to prove sym- 
metr izat ion results is dicussed in w 8. 

Theorem 4.1. Let D~ (containing %) be bounded by a piecewise smooth simple 
closed curve. Let O~ consist o/one segment. * denotes symmetrization with respect to the 
real axis. Then 

max ~o(z0; 0~; D~) <~ W(Xo; 0~; D~). 
R e  Zo=Xo 

Equality holds i/and only i/ D~ is a translate o] D~. 

Proo/. We use the same nota t ion as in Corollary 3.1. Let  u be the image of ul in 
D~. The slit u'={zlx0-~<Re z<~ ,  I m  z - 0 }  is the image of ~1 in D~. Let  u be har- 
monic in D ~ - u  with boundary  values 1 on u, 0 on ~D~-O~, and ~u/~n=O on 0~ 
(except at  the endpoint  of u). Let  v be harmonic in * ' D~ - u  with boundary  values 1 
on u', 0 on ~D~-O~, and ~v/~n =0 on 0~ (except at  the endpoint  of u'). Then by  (3.8), 

2t(sin 2co)=ffD~ ~'gradu]2dxdy, 

2 t ( s i n  7~2- **)=frO. ~ ,,Igradvl~dxdy. 

where co = to(z0; 0~; D~) and ~o*= to(xo; 0~; D~). 
Let  u be symmetr ized with respect to the real axis. The symmetr ized funct ion is 

u*. u corresponds to ~* on the real axis so tha t  u * =  1 on z*. I t  is possible tha t  u* 
extends to the left of x0. We now reflect D~ and D~ in l =  {z IRe z = ~} and denote the 
reflected domains by  /3~ and D~. Set G = D~ U 0~ U D~ and G* = D~ U 0~' U/)~. ~, ~', 
and u* (including endpoints) are also reflected in l, and s, s', s* denote the unions of 
the given slits and their reflections. By  reflection in l u is defined to be harmonic in 
G -  s and v is defined to be harmonic in G * - s ' .  The domain of u* is also extended in 
this way. According to a result of P61ya and Szeg5 [4.4, p. 186-187] 

f f a_slgrad ul2dxdy>~ f f o, z. lgrad u*l~dxdy. (4.1) 

When  s* - s' 4 r ~v/~n = 0 on s* - s'. B y  Dirichlet 's  principle (with free boundary  
values) 

ffo. lgrad *l dxdy>  (( Igradvl2dxdy 
J J G * - s '  

and hence /fa ~'gradu]2dxdy>~ff.,-s, igradvl2dxdy" (4.2) 

From this we obtain  
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Fig. 4.1 Fig. 4.2 

t sin :re) >it sin~re~ . 

Since t(k) is strictly increasing, 0 < k <  1, we obtain the result eo ~<~o*. 
The Dirichlet integrals in (4.2) are the inverted values of the modules of the 

doubly connected domains G - s  and G*-s' .  These modules are (without restrictions 
in the boundary assumptions) equal if and only if G - s  is a translate of G* -s ' .  This 
follows from a result by  Jenkins [4.2, p. 106, p. 115]. Theorem 4.1 is now proved. 

Remark 1. We mention another possibility of discussing equality in Theorem 4.1. 
This is to make a detailed examination of a proof of (4.1) along the lines of a proof 
given in [4.1, pp. 416419].  Such an investigation was made by  Ohtsuk~ [4.3, pp.  
202-205] in the case of circular symmetrization (cf. the following remark). By  the 
result of Jenkins above the case of equality can be settled for more general domains. 

Remark 2. Theorem 4.1 can also be formulated for circular symmetrization with 
respect to the positive real axis. To define circular symmetrization, in the definition 
of symmetrization in w 1 straight lines are replaced by  circles with their centres at the 
origin [4.4, pp. 193-195]. 

Theorem 4.2. Let D~ (containing z o-xo) be bounded by a piecewise smooth closed 
curve. Let O~ consist o/ one segment. D~ is assumed to be symmetric with respect to 
the real axis. D~ is reflected in l: Re z =~. The reflected domain is f)~ and G = D~ [J O~ U b~. 
G is symmetrized with respect to l, the symmetrized domain being G*; O~ ={zlzEG*, 
Re z=~} and n~={zlzeG*,  Re z<~}. Then 

co(x0; 0~; D~)~< oJ(x0; 0~; D~) 

with equality i/ and only i /Dr = D~. 

Proo/. We use Corollary 3.1 and its notat ion again. Let  ~ be the image of ~1 in De. 
Let  u be harmonic in D r  with boundary values 1 on x, 0 on ~De-0r and 
~u/~n=O on 0~ (except at  z=~) .  Set ~*={zl  IRe z-~e I ~ < ~ - x  o, I m  z=0} .  By 
reflection in l, u is defined to be harmonic in G -  u*. Let  v be harmonic in G*-~*  
with boundary values 1 on u* and 0 on ~G*. Then by (3.8) 

10 
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[ zt~o *k 
t ( s i n  ~ ) =  fro . . . .  ]grad vledxdy, 

where o)=  co(z0; 0~; D~) and  co*= co(x0; 0~; D~). 
Let  u be symmetr ized with respect to 1. The symmetr ized funct ion is u*. We then 

obtain in the same wa y  as in the proof of Theorem 4.1 

f f G_ I grad u dxdy f f o. ~, Igrad v l2 dxdy. 

The proof can now be completed in the same way  as in the proof of Theorem 4.1. 

5. A n  application to comb domains 

Let  a simply connected domain D satisfy the following conditions. Ox =~b outside 
A < x < B  ( - ~ < A < B ~ < ~ ) .  O x - { z l R e z = x ,  I I m z l  < ~ }  for  all  x in A < x < B  
except x -  Xm. The number  of points x,, in a finite interval is finite. Each  Oxm consists 
of one bounded line-segment. We then call D a comb domain. 

First  we ment ion an explicit example illustrating w 2. Let  D be bounded by  the 
straight  lines {z ]Re z = xm = - 2ma, I I m  z I >~ b}, m = 1, 2 .. . . .  (a > 0) and the imaginary  
axis ,  whe re  a = {z I R e  z = 0, I I m  z [ < b}. ~(z;  ~; D) can be determined explicitly when 
z=xm. We write exp ( - ~ b a  -1) =k and use the nota t ion in (3.2) and (3.3). 

By  a conformal mapping  of {z I - 2a < Re z < 0} onto a rectangle {w ] ] Re w ] < kK, 
0 < I m  w < kK'} in the w-plane and by  analytic continuation,  we obtain a conformal 
mapping of D onto a strip {wiRe w < k K ,  0 < I m  w<kK'} .  Hence 

~o(x,; a; D)=_4 arctg  exp zx~ 
at(k)" 

When a---~0, the term on the r ight tends to 4~ -1 arctg exp (7tx~/2b), by (3.5). 
Now let G be a domain such tha t  Ox = {z I Re z = x, I I m  z I < O ( x ) / 2 } ,  - ~ < x < 0 ,  

and O ~ = r  x~>0 Let  inf O(x)=2b  be a t ta ined at  the points xm, m = 1 , 2  . . . . .  Then 
eo(xn; ~; G) <<. ~o(x~; ~; D). For  small values of a, the above estimate for eo(x~; a; G) can, 
for sui tably chosen O(x), be considerably smaller than  c exp ( - ~  S~ 

Theorem 5.1. Let the comb domain D be bounded by the lines {z IRe z=xm, 

I I m  z ~>b~}, m = l ,  2 .. . . .  0 > x l > x 2 >  .... and the imaginary axis. Set ~ = { z l R e  z = 0 ,  
I m z  ~<b0} , O,n={ZlI:tez=xm, I I m z l < b m } ,  and b in=max  (bm, brn_l), m = l , 2  . . . . .  

Given x, let n be such that xn+ 1 <x <~x~. Assume that 

m--~ \ b'~ ! 

Then there is a constant c such that ( XmlX.) 
~o(x; ~; D)~<c exp - ~  2b~ " 

1 
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KERSTI HALISTE~ Est imates  o f  harmonic measures 

Proo/. ~o=~o(x; ~; D). Let F be the family of curves in D joining points on 
and separating the point z = x  from ~ D -  g. By Corollary 3.2 

~o~<4exp - i 2 ( F )  . 

Let C be the family of curves in {z]zED,  Re z>xn} joining On and ~. By the same 
reasoning as in the proof of (3.7), 

2(r)  >~4~(C). 

We now estimate ~t(C). Set x0=0 and O0=~.  Let Dm denote {zlxm<Re Z<Xm_l} ~ 
r e = l ,  2, .... By Lemma 3.3 

),(C) ~ ~ ~Dm(Om, Om-1)- 
/'n=l 

Set O~ = (z IRe z = xm, I I m  z I < bZ} and O r e - 1  = {Z ] Re z = xm-1, I I m  z I < bZ}, where 
b~ = max (bin, b~-l), m = 1, 2 .... , n. By  Lemma 3.2 

2(O~, O~ 1) is determined explicitly by a conformal mapping of D~ onto a rec- 
tangle. We write 

i 2 b: 1 km e x p \  xm- l - Xm/ 

and define tm by (3.2) and (3.3). Then 

2Din(Ore, O~n-i) = 2tin 1 

]~y (3.5) 2tm 1 -  Xm-1 -- ~ xm-1 ~ Xm~2 

where IBm I is less than a constant depending only on M. 

Remark. If, in Theorem 5.1, 2bm=O(x,~) for a suitable continuous O(x), we can, 
by a limiting process, obtain a special ease of Theorem 3.2. 

Chapter II. The general case 

6. C a r l e m a n  ' s me thod  

This method was first used by  Carleman in 1933 in a proof of Denjoy's conjecture 
concerning the number of finite asymptot ic  values of an integral function of finite 
order [6.1]. Denjoy's  conjecture had been proved earlier by  Ahlfors who used his 
distortion inequality (2.3). An account of Carleman's method in two dimensions 

12 



ARKIV FOR MATEMATIK. B d  6 n r  1 

is given in two text-books [6.4, pp. 219-224] and [6.6, pp. 121-126]. The growth 
of harmonic and subharmonic functions of n variables has been investigated by  
several authors with Carleman's method. Besides the references mentioned here in 
the text  see [6.9]-[6.32] in the bibliography. In  these investigations the main problem 
has been to study the growth of a given function; constants appearing in the estimates 
are allowed to depend on the function under consideration. However, a direct appli- 
cation to harmonic measures was given by  Tsuji [6.8, pp. 112-117] in polar coordi- 
nates in the plane, cf. Lemma 6.7. 

Carleman's method consists in establishing a differential inequality for the Carle- 
man mean (6.1) of a harmonic function. This can also be interpreted as a differential 
inequality for a certain Dirichlet integral. In  Theorem 6.1 Carleman's method is 
applied to harmonic measures. The proof of Theorem 6.1 follows--with some altera- 
t ions- -a  proof given by  Dinghas [6.3, pp. 3-9]. We use Theorem 6.1 and some lem- 
mata  to establish the estimates of harmonic measures in Theorem 6.2 and Theorem 
6.3. In  the case n > 2  these estimates are new. 

We assume tha t  D satisfies the condition A below. 

A. D is such tha t  0 ~ = r  for x ~ 0  and O~q~  for x > 0 .  D is bounded by  a finite 
number of piecewise smooth surfaces. D has no boundary point at  infinity for which 
x I is finite. O(x) is bounded and ~< M for all x > O. Set 0 0 -  {z] x 1 = 0, z E ~D}. The mea- 
sure of 00 is positive. 

To begin with, we collect information about  the principal eigenvalues in B. 

B. Let  the domain G in R n be bounded by  a finite number of piecewise smooth 
surfaces. Let  V be the class of functions / such tha t  

(1 )  / is continuous in G U ~G and piecewise continuously differentiable in G, 
(2) /(z)=O, z ~ a ,  
(3) /(z) =~ o. 

Consider the variational problem of minimizing in V the Rayleigh quotient 

f a lg  rad [ [2dz 

R(/)= " f f dz 

Let v be the first (normed) eigenfunction of Av+2v=O in G, v = 0  on ~G, and 2 
the principal eigenvalue. I t  is well known that  the Rayleigh quotient is minimized 
in V by  v and tha t  the minimum is )~ [6.2, p. 399]. ~t decreases when G increases [6.2, 
p. 409]. ~t varies continuously with G [6.2, p. 423]. 

Furthermore 2 decreases when G is symmetrized with respect to an ( n -  1)-dimen- 
sional hyperplane (cf. w 1) [6.5, p. 419]. We also mention the Fabe r -Krahn  inequality. 
Let  A be the volume of G. Let Vn be the volume and An the principal eigenvalue of 
the n-dimensional unit sphere. Then [6.5, p. 413] 

A21n~ ~ A TZ21n 

For a domain G with a less regular boundary, we define A as infn 2, where ~ is 
of the type considered above and ~ c G. 

13 



KERSTI tIALISTE, Estimates of harmonic measures 

Le t  z 0 = (x0, Y0) be a f ixed po in t  in D. W e  wri te  

u(z) = oJ(z; 0~; D~). 

W e  shall  es tabl ish  upper  bounds  for u(z) a t  z = z 0 b y  s tudy ing  the  Car leman mean  ~, 
def ined b y  

/ a  

~ ( x ) =  J~l~ y)dy, 0 < x < ~ .  (6.1) 

The def ini t ion of ~ is comple ted  b y  se t t ing ~v(O)=0 and  ~v(~)=0(~). 

C. W e  define 2(x) in the  following way.  Consider  a decreasing sequence,  {e}, of 
posi t ive  numbers  wi th  l imi t  zero. W e  choose the  e so t h a t  g rad  u ~ 0  on the  surfaces 
u - e  in D~. (The n u m b e r  of values  a for which g rad  u vanishes  a t  po in ts  of the  
equ ipo ten t i a l  set u - a  in D~ is enumerab le  [6.7, p. 276].) W e  wri te  u~ = m a x  ( u - e , 0 )  
and  s e t  ~)qz,~--.{ZlXl--X, u ~ ( z ) > O } .  ~x.~ consists of a f ini te  n u m b e r  of componen t s  
#i To each 0 ~ . . . .  x. ~ we define ~.  ~(x) according to  B. F ina l l y  we define 

~(x)  = min  2t. ~(x), ~ (x )=  l im 2~(x). 
i e--~O 

The exis tence of ~t(x) will be es tab l i shed  in the  proof  of Theorem 6.1. 

Le t  ~t be def ined b y  (~. Then  we define ~v b y  

W e  can now s ta te  

(6.2) 

Theorem 6.1. Let D satis/y the assumptions A. Let q~ and ~ be de/ined by (6.1) and 
(6.2). Then q) is a convex/unction o/y)/or O ~ x < ~  and 

~(x) <~(x)0(~)w-l(~). (6.3) 

To prove  Theorem 6.1 we consider  

q~(x) = ,J~~ ~ u~(x, y) dy. 

I n  the  following l e m m a t a  6.1-6.4 we drop the  index  e. This  means  t h a t  we work  under  
the  assumpt ions  t h a t  u = 0  on ~Dr and  t h a t  u is ha rmonic  in a ne ighbourhood  
of each po in t  of ~D~ for which x 1 < ~. Ac tua l ly  v~x. ~ = r  for x ~< x~, v~z, ~ # r  for x > x~ > 0, 
b u t  when d ropp ing  the  index  e we also wri te  0 ins tead  of x~. 

L e m m a  6.1. O(x) is continuous and ,~(x) is upper semicontinuous, 0 <x  <~. 

Proo/. F o r  s impl ic i ty  we t r e a t  only  the  case n - 3 .  Suppose  t ha t  #(x) is discon- 
t inuous  a t  x - 0 .  Then  S -  {zlu(z ) = 0) contains  a surface e lement  of pos i t ive  measure  
in the  p lane  x 1 = a .  This  is impossible,  since an  ana ly t ic  surface has  a t  mos t  a f ini te  
n u m b e r  of po in ts  in common wi th  a n y  s t ra igh t  line (not conta ined  in the  surface). 
Thus  #(x) is continuous.  

14 
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When the plane x 1 = a is not tangent to S, each component v~ of # ,  is bounded 
by a finite number of analytic curves, and ~(a) is the principal eigenvalue of #~. 
I f  the plane x~ = a  is tangent to S, ~#~ may  for instance contain isolated points. In  
such a case ~t~(a) is taken to be infant, where ~ is contained in v% and ~ consists 
of a finite number  of analytic curves. Then ~i(a)= inf R(f) for / s  V in #~. 

Given a number  A >~(a) =~((~), we can choose g2 so tha t  A is the principal eigen- 
value of ~ and ~2 is strictly contained in #~. Then ~ is contained in some component 
of #x for all x sufficiently near (~. Thus A >~(x) for all x sufficiently near a and ~ is 
upper semicontinuous. 

Lemma 6.2. ~ ' (x )=2  ~uu~dy,  0 < x < ~ .  

Proo/. Let #~\v% be the set of points y belonging to v~ but  not to v%. Then 

~(x + h)-q~(x)= fo~+ u2(x+ h, y )dy-  fo u~(x, y)dy= fo (u2(x+ h, Y)-U2(x, y))dY 

+ ( u (x+h,y)dy - (  2(x+h,y)dy=I +Z2+I . 
J,~+h\'~ J ~\'~+~, 

Divid ing  I 1 by h and letting h tend to zero we obtain 2 So uu~ dy. Now consider 12 
for small h. To each point (x + h, y), y E#x+h\#x, belongs some point (s, y), x ~ s ~ x § h, 
such tha t  u(s, y)=0. As the measure of #x+h\# x is O(1), 12 is O(h2). In  the same way 
I a is O(h2). This proves the lemma. 

Lemma 6.3. ~"(x) = 2]o~ [grad u ]2 dy, 0 < x < $. 

Pro@ By Lemma 6.2 and Green's formula 

 '(x)=2f (f lgradnl2dy)dx 

The integrand S~]grad  ul2dy being continuous by  Lemma 6.1, we obtain our 
lemma. 

Lemma 6.4. ( Carleman' s di//erential inequality.) 
, i  >~ I �89 cf (x) ~ 2q~ (x) 2 (x), 0 < x < ~. 

Proo/. By Lemma 6.3 

q/'(x)= 2 fo u:dy + 2 f~ ]gradyu]2 dy, O <x < ~. 

The first integral is estimated by applying the Sehwarz inequality to ~'(x) in 
Lemma 6.2. Thus 

f U2x dy 
q9 

(6.4) 
~ 4~v 
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The second integral  is e s t imated  by  B. 

f~, lgrad~ul2dy>~ 2~(x) f , u2dy>~ 2(x) fo: u~ dy. 

Summing  over  i we obta in  

f ~  I grad~ u ]2 dy >12@) of(x). (6.5) 

t t  t 2  

Hence 2~ q >~ ~ + 44, 0 < x < ~. (6.6) 

B y  the proof  of L e m m a  6.3 ~v' is a Dirichlet integral  and  thus  posit ive for 0 < x < ~ .  
B y  the inequal i ty  (~v"/~'-~'/T)2>~0 and taking the square root  the l emma  now 
follows f rom (6.6). 

Proo /o /  Theorem 6.1. We now use the index e again. B y  B and L e m m a  6.1 {2~} 
is a decreasing sequence of integrable functions. 2 �89 = lim 2~ is integrable over  0 < x < ~. 
( In tegrabi l i ty  a t  x = 0  is guaran teed  b y  the assumpt ion  t ha t  the measure  of 00 is 
positive.) B y  L e m m a  6.4 

~7(x) >/2~(x)  2~(x) >i 2~(x)2~-(x), x~ < x < ~. 

For  ~0 defined b y  (6.2) 

~o"(x) = 22�89 ~'(x)  a.e. 

d 
Hence  dx (log ~ - log ~p') ~> 0 a.e. 

Since log ~v: and log ~v' are absolutely  continuous on an in terval  a ~< x ~< fl, x~ < a < fl < ~, 
~v~ is thus  a convex funct ion of v 2 on any  such interval .  B y  cont inui ty  a t  x = 0 and  
x - ~ ,  ~ - l i r a  ~v~ is a convex funct ion of ~ for 0 ~ x  ~<~. Thus  (6.3) is t rue  and  Theorem 
6.1 is proved.  

Remark. (Asymptot ic  equal i ty  in Car leman 's  differential  inequali ty.)  

Equa l i ty  in (6.4) holds if and  only if u =/Ux, where / depends only on x. When  t9 x 
is connected and  ~z9 x smooth,  equal i ty  holds in (6.5) if and  only if u=gv ,  where g 
depends only on x and  v is the first  eigenfunetion of A v + 2 v = O  in v~x, v=O on ~v~z. 

Now let D~ be a r ight  cylinder, D~ = {z Ix 1 <~, y E O}, where 0 is s imply  connected 
and  has a smooth  boundary .  Le t  {~n}~ be the eigenvalues (21=4) and  {v~}[ r the  
corresponding eigenfunctions of Av +2v = 0  in O, v = 0  on ~ ) .  Then,  b y  the me thod  
of separa t ion of var iables  (the c~ denot ing constants)  

u(x, y) = ~cn  exp (2~(x - ~))vn(y). 
1 

Thus,  for large negat ive  values  of x -  ~, 

u(x, y) ~ c 1 exp (2�89 - ~)) vl(y ), 
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ARKIV F6R MATEMATIK. B d  6 nr 1 

ux(x, y) "~ c x h ~ exp (21(x - ~)) vl(y). 

% as well as q~, is now twice differentiable, and asymptot ic  equal i ty  in (6.4) and  
(6.5) holds for q. 

Ins tead  of defining ~v as an integral over v~x as in (6.1) we now define ~ as an integral 
over 0x. I n  order to estimate ~ in this case we introduce the following addit ional  
assumptions about  D. 

D. Ox is connected, x ~< x 0. ~D is smooth.  I n  any  finite interval ~D has a finite number  
of tangent  hyperplanes x 1 =c .  

E. X(x) is defined as in C, b u t  with respect to 0z instead of Vqx . (For x <~x o Oz is under- 
stood to be equal to O~). 

Lemma 6.5. Let D satis/y A and D. Then (6.3) in Theorem 6.1 is true ]or x - x  o 
with % ~, and y~ defined with respect to Ox instead o/ ~9~. 

Proo/. The choice of 0~ is due to Tsuji [6.8, p. 112]. I n  the case of simply connected 
0~ and D~ he takes into account  only the first of the 0~z separating 00 f rom 0~, cf. Ahlfors '  
distort ion inequali ty (2.3). However,  some irrelevant components  of z9 x no t  separat- 
ing 00 f rom 0~ also enter the discussion. I n  Fig. 6.1 the 0~ cover the shaded area. 

Let  x 1 = a  be those hyperplanes tangent  to ~D for which D ,  is a proper subdomain 
of D~+0. 

Let  the a belonging to the interval  0 < x  <~  be a l < a S  <. . .  <a~.  Then 

~ ( ~ )  < ~ ( ~ .  + 0), ~ ( ~ -  0) < r  + 0), ~ = 1, 2 .. . . .  m. 

Thus ~ and d%/dyJ have positive jumps at  x - a p ,  t t = l ,  2 . . . . .  m. According to the 
proof of Theorem 6.1 q~ is a convex funct ion of yJ on intervals not  containing any  of 
the a. Thus, for x~<X<Xo<~a ~, 

~v~(x) < 0(~  ~(x) - ~(x~) 
"~" ~(~) - ~ ( x ~ ) "  

The lemma now follows by  letting s tend to zero. 

Lemma 6.6. u(zo)~<c~t(x0), where z o - ( x  o, Yo) and c depends only on the geometry o/ 
D near %. 

Proo/. This lemma is an immediate  consequence of Harnack ' s  inequali ty for 
positive harmonic  functions. I f  a closed sphere S(r; %) with radius r and  centre a t  
z o is contained in D, then for z ES(r/2; %) 

u(z) >1 (~)~-~ U(Zo), 

and  hence q~(x) >1 Cn r n- lu2(zo), 

where c~ only depends on n. This proves the lemma. 

We now discuss est imating ~ f rom 

~(X) ~< ~/)(X) 0(~) ~0--1(~). 

2:1 

(6.3) 

17 



KERSTI HALISTE, Estimates of harmonic measures 

f 

f 

Fig. 6.1 

Wri t ing tt instead of 22 �89 we have  instead of (6.2) 

;0 (; ) v2(x ) = exp  ~(u) du dt. 

Since O(x) <<- M, it follows b y  the  F a b e r - K r a h n  inequal i ty  t h a t  #(x) >~ m > 0. Hence  

W(x)=exp (f~(u)du) f~exp (- f(~(u)du)dt<m l exp (f(~(u)du). (6.7) 

I n  the  same way,  assuming tha t /~(x)  ~< ml, we obta in  for ~ > m l  1 log 2 

( ; )  ~0(~ e) >~ (2ml) -1 exp #(u) du 

and hence q~(x)<~cexp(f]#(u)du). (6.8) 

I t  is, of course, unsa t i s fac tory  to require t ha t  ~ be bounded.  I n  general the es t imate  
(6.8) does not  follow f rom (6.3). For  instance take  O(x)~O(x)~l and/~(x)--=2x, x >0 .  
Then,  for large ~o(~) ~ (2~)- lexp ~2. A general result  is given in the following lemma.  

L e m m a  6.7. Let D satis/y A and ,~ be de/ined by C. Then/or 0 ~ 1 < ~ - xo, z o ~ (xo, Yo), 

U(Zo)<~cl �89  ( - f x ' ~ ' ( x ) d x ) ,  

where the constant c depends only on A and the geometry o / D  near %. I / D  also 
satis/ies D this is true with ~ de/ined by E. 

Proo/. We use a t r ivial  es t imate  of y~(~). Wri t ing  # = 22 �89 we have  for l > 0 

y~(~)>~exp ( ; - I t t (u )du )  ; lexp ( ;_z  #(u)du)dt>~l exp ( ; -Z#(u)du) .  
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Hence, by (6.3) and (6.7) 

Our lemma now follows from Lemma 6.5 and Lemma 6.6. 

Remark. Tsuji proved this result in polar coordinates in the plane [6.8, pp. 112- 
117], but  with a more complicated derivation of the estimate of ~. 

In  Theorem 6.3 we shall estimate q~ from (6.3) in some special cases. First, however, 
we shall make the same choice among the components of ~ as in Theorem 3.2 with 
Carleman's method. By Lemma 6.2 and Green's formula ~ / 2  is a Dirichlet integral. 
By working in terms of convexity in the proof of Theorem 6.1 difficulties due to 
infinite Dirichlet integrals are avoided. Now we have to introduce auxiliary functions 
possessing finite Dirichlet integrals. We shall assume tha t  D satisfies D and D~ F. 

F. 0~ is connected, and the diameter of D ~ -  D~_ i is less than a fixed constant. 

G. Given ~, let 0~, i = 1, 2 ..... n(x), denote the components or unions of com- 
ponents of v~, separating 00 from 0~. ~t~(x) is now defined with respect to 0~z in the 
same way as was 2(x) with respect to v~, in C. We write 

n(x) 

~�89 = V ~(x) .  
i = 1  

Lemma 6.8. Let D satis/y A and D and let D~ satis/y F. Let ,~ be de/ined by G. Then 
/or z o = (xo, Yo), ~ > xo + 1, 

u(zo) <~c ex p (- (6.9) 

where the constant c depends only on A, F, x0, and the geometry o / D  near %. 

Proo/. We first modify D~. Since, by  F, the diameter of D~-D~_ i is bounded, each 
v~x with ~ - 1  ~<x~<~ is contained in an (n-1)-dimensional  sphere of fixed radius R 
and centre Y. Set G ~ = { z l ~ - l < x l < ~ ,  l Y - Y I  <R}.  We consider D~tJ G~ instead 
of D~, but  do not change our notation. Thus O~={z Xl=~, y - Y  <R}.  Set 
O'~={zlxl=~, l y - Y l < R / 3 }  and O'~'={zlx~=~, y - Y  <2R/3}. We choose a 
function F, twice continuously differentiable and monotonic for � 8 9  with 
F ( 1 ) = I  and F(~) =0. 

Now let / be harmonic in D~ with boundary values 0 on ~D~-O~', F(R-11yl)  on 
0~'-0~, and 1 on 0~. We shall need an inequality of the following type: : 

u(z)<~c/(z). (6.10) 

Applying the method of separation of variables in the cylinder G~, we obtain that  
u(z) and/(z)  tend to zero in the same way when z Ev~_�89 tends to ~v~_�89 Therefore we 
can, with the aid of Harnack 's  inequality, establish the inequality (6.10) on v~ i 
and hence in D~_�89 

Let D~. denote the subdomain of D separated from 0~ by 0ix. We assume tha t  the 
O~z, i = 1, 2 ..... n(x), are taken in such order that  D~xc D~ +i, i = 1, 2 ..... n ( x ) -  1. 
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We now define 

and  

Dr ~ = (z  I z e D~, /(z)  > e}, O~x., = {z ] z e O~x, /(z)  > e}, 

D~x., = {z ]z e D~x, l(z) > e}, 1~ = max  (l - e, 0), 

W,.~(x) = f,,,., ]/~]2dy, d,. ~(x) = fD'~., I grad /" l" dz" 

{e} is t aken  to be a sequence of the type  considered in C (with respect  t o / ) .  
Le t  x 1 = a  be those hyperplanes  tangent  to aD for which one of the following situa- 

D~+0, and  di. ~(a) ~<di. ~(a §  tions occurs for some i. I .  Di, is a proper  subdomain  of i 
I I .  D~ is a proper  subdomain  of D,-o ,  and  di.,(a)<~d~,~(a-O). I I I .  The  interior of 
D~'+I-  D~, contains no 0~ (j = 1, 2 . . . . .  n(x)), and d,. ~(a)~<d,+l,~(a). Cf. Fig. 3.2. 

On an interval  I (not containing any  points  a) where Dtx increases wi th  x 

2di. ~(x) = ?~(x) 

b y  L e m m a  6.2. Le t  25 be defined by  G. B y  vir tue  of L e m m a  6.4 we obta in  

di'.,(x)/> 22~(x)d,. ~(x). (6.11) 

On an  interval  J (not containing a n y  points  a) where D~ increases with - x  we 
obta in  in the same way  

- d~'. ~(x) ~> ~ ( 6 . 1 2 )  22i (x) d~, ~(x). 

Now we run th rough  D~_ 1 f rom z 0 to 0~_1 so t ha t  each 0~ is passed once. Then  the  
i Dx. ~ on intervals  I and  J according Dirichlet integral  of/~ over  Dx, ~ increases with t 

to (6.11) and  (6.12). At  the points  a the Dirichlet  integral  of /~ has non-negat ive  in- 
crements  as described in I - I I I .  When  running through D~_ 1 in this manner  we 
integrate  in (6.11) and  (6.12). Wri t ing  d~ ins tead of dl, ~ we obta in  

d~(xo) ~ d~(~ - 1) exp ( - 2 [~-1  
in(x) \ 

\ 

:By Green 's  formula  (with inner n o r m a l  derivat ives)  we obta in  

when ~--> 0 .  :By the m a x i m u m  principle 

-- fo  / ~ d Y < - -  foJeSudY,  

where g is harmonic  in G~ with  bounda ry  values / on 0~ and bounda ry  values 0 on 
~G~-  0~. Hence  for sufficiently small  e, d~(~) ~< %. 

Final ly  we est imate/(Zo).  Since 2d~ = ~ is increasing, 

r -~. x o cp~(xo) <~ c d~(xo). 
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We let e tend to zero and  then estimate/(Zo) by  L e m m a  6.6. Thus  we obtain (6.9) 
for f(z0). By  (6.10), (6.9) is also valid for u(zo) in the modified domain and hence for 
the original U(Zo)=cO(Zo; 0~; De). 

Remark. The original domain D e was modified so as to 1 ~ facilitate defining auxi- 
l iary functions /, 2 ~ assure the boundedness of d~(~), and 3 ~ allow est imating u in 
terms o f / .  I n  the two-dimensional case we can instead begin by  considering domains 
D bounded by  a finite number  of analyt ic  curves. / can now be defined in the original 
domain D e as above. Discussion of /~ is unnecessary. We can use the technique of 
Lemma 6.9 below. We define N in the following way: ~ EN if and only if an isosceles 
triangle A t with base along 0~ and a fixed opposite angle 2~c is contained in D e. 
When  ~ E N, the Dirichlet integral of f is bounded  by  a fixed constant  and  further-  
more the inequali ty (6.10) is correct. I f  ~ ~ N  a simple expedient is to consider D e U A t 
instead of D e. 

F rom Lemma 6.7 and Lemma 6.8 we now obtain the following 

Theorem 6.2. Let D satisfy A p. 13 and let ~ be defined by C p. 14. z o = (xo, Yo) is 
a fixed point in D. Then for ~ > x o + 1 

o~(zo; O~; D~) <c exp ( -  f x ~ l ~ ( x ) d x ) .  (6.13) 

I / D  satisfies A p. 13 and D p. 17 and ~ is defined by E p. 17, (6.13) is also correct. 
Finally, (6.13) is correct i/ D satisfies A p. 13, D p. 17, and D e satisfies F p. 19, 

and ~ is defined by G p. 19. 
The constant c depends only on the geometry of D near z o and constants appearing in 

the conditions satisfied by D and D~; when F is used c also depends on x o. 

Remark. The conditions involving smoothness in A and D were introduced for 
simplicity and are not  essential. I f  A, D, F (or some of them) - a p a r t  f rom smoothness 
condi t ions--are  satisfied, we can exhaust  D e with a monotone  sequence of subdomains 
D~ ), v = l ,  2 .. . .  , in which the theorem above can be applied. Now e0(z; 0~; De) and 
2(x) in D e are defined f rom the corresponding quanti t ies ~o (~) and  )~(~)(x) in D~ ~) b y  a 
limiting process. (~(~)(x)} is a non-increasing sequence. I t  follows tha t  (6.13) is 
valid even though  the smoothness conditions are not  satisfied. 

/ 

If  ~t is bounded we can integrate up to ~ in (6.13) and let c also depend on the least 
upper  bound  of 4. We shall now show tha t  integrat ion up to ~ in (6.13) is possible in 
some special cases when ~t is not  bounded.  

Theorem 6.3. Let D satisfy A p. 13 and @x be connected, x >0.  Let ,~(x) be defined by 
C p. 14. Let (~(x) and )~(x) be continuous, x > 0 .  z0-(x0,  Y0) is a fixed point in D. Then 

~o(zo; O~; D~) <~c exp ( -  ; , , ~ ( x ) d x  ) (6.14) 

is implied by any one o/the ]ollowing three conditions. 

(a) n = 2. 
(b) n > 2 ,  ,~�89174 x > 0 , / o r  some r < l .  
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(c) n > 2, ~ (x)@(x)-~Mo, ),(x) non-decreasing, x > O. 

The condition (d) implies (6.15). 
(d) n > 2, 2�89 = ~ ( x 0 )  k(x)~�89 (@(x)/O(xo) ) 1/)~ 1), k(x) non-decreasing, x > O. 

eO(Zo;O~;D~)<~ck ~ n(~)exp(- f]o2�89 (6.15) 

The constants c depend only on the geometry o / D  near %, xo, and constants occurring 
in A, (b), and (c). 

We first prove a lemma. 

Lemma 6.9. Let / be continuous and bounded, O</(x)<~K, x ~ 0 ,  and / (x)=K,  
0 <~ x <~ a. Then/or p > 1 and ~ >~ a 

; ( ;  ) max ] P(x) exp -- / - l ( u ) d u  dt>~c>O, (6.16) 

where e only depends on p, a, and  K. 

Proo/. Let  P denote the curve y =/(x),  x >0 ,  in the xy-plane. A z denotes a triangle 
with vertices (x, 0), (x,/(x)), (x /(x) cot ~, 0), where tg ~ =q is a large constant.  Set 
N -  {xlthe interior of A x lies below P}. If  we choose q > K/a, N will certainly be non- 
empty .  

Now let ~ belong to h r. Given $, we take t o - 4 -  (2q)-l/(~) �9 

Then ; s l - l (x )dx< ( / (~) -q(~-x) ) - ldx<. log  2. 
o 

Hence / l(~) f~exp  ( - f )  /q(u)du)dt>~(4q) -1. (6.17) 

By  taking x =~ in (6.16), the t ru th  of (6.16) follows for ~ EN. 
Now consider a ~o ~N,  ~o > a. By  cont inui ty  there exists a largest b < ~o such tha t  

b EN. Then (6.17) is valid for ~ = b  and fur thermore 

exp(_ f~~247  l/q, (6.18) 

and ~o b~<Kcot  a. Now take x=b  and $=~0 in (6.16) and use (6.17) with ~=b .  
Then it remains to determine a fixed lower bound for 

By  vir tue of (6.18) this is done by  choosing q ~> ( p -  1) -1. Thus the lemma is proved. 
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Proo/ o/ Theorem 6.3. We use the technique of Lemma 6.9. By (6.3), (6.7), and 
Lemma 6.6 we can reduce the proof of our theorem to determining a fixed positive 
lower bound for 

If this cannot be done for all large ~, we can under the condition (a) obtain the 
desired estimate for U(Zo) by a simple estimate of an auxiliary harmonic measure. 
Under the condition (b) we instead reduce the proof to determining a fixed positive 
lower bound for 

; max O--l(x) exp --2 ~.'(u)du dt. (6.19) 
x ~  

(a)~ (6.14). We use the technique of Lemma 6.9 with/=(2~)-1@ =�89 ~. (The as- 
sumption that  / be constant for small x is not essential. I t  can be satisfied by a modi- 
fication of D.) If ~EN, (6.17) is true, and (6.14) follows. Now consider a ~ N ,  ~ suf- 
ficiently large. By continuity there exists a largest b <~, such that  b EN. Then (6.17) 
is true for b instead of ~. By the maximum principle 

o~(z0; | D~)< w(z0; Oh; Db) max co(z; @~; D~). 
Z~Ob 

Hence it suffices to prove that  

exp (~/~O l(u)du)maxeo(z;O~;D~) ~c. 
z~O b 

(6.20) 

By the definition of b 

2g f~ O-I(u) du ~- ~-1 log (1 § 2~ q(~ - b) O-l(b)). 

If (~-b)O-l(b)<~cl (a fixed number), then (6.20) is correct. If (~-b)O-l(b)>cl, 
we use a simple estimate of ~o(z; 0~; D~). Set l={Z]Xl=~ } and let G be the domain 
bounded by l and {zlx 1 =b, y >~ O(b)/2}. By the extension principle and an explicit 
eonformal mapping of G onto a half-plane we obtain 

max co(z; @~; D~) ~< ~o(b; l; G) < c(~- b)-�89189 
zeO b 

Hence (6.20) is correct, and this part  of the lemma is proved. 
(b) ~ (6.14). We use Lemma 6.9 with / =  �89 Since @(x) ~< M, x > 0, 2�89 is bounded 

from below according to the Faber-Krahn inequality. The condition (b) now implies 
(6.16). We thus obtain a fixed lower bound for (6.19) and (6.14) follows. 

(c)~ (6.14), (d)~ (6.15). We use the technique of Lemma 6.9 w i th /= �8 9  -�89 For a 
non-increasing / all sufficiently large ~ are in N and (6.17) gives the desired results. 
(Instead of / being non-increasing we can require t h a t / '  exists and is bounded by 
a fixed constant.) 
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7. The Nevanlinna mean 

I n  a special case lower bounds of harmonic measures can be established by  study- 
ing the :Nevanlinna mean (7.2). Heins used this name for (7.2) in the case of a rec- 
tangle or a half-plane (in polar coordinates) [7.1, p. 4]. 

We consider domains D such tha t  Ox~:r - c~ < x  < ~ .  O 0 is assumed to be Steiner 
symmetr ic  with respect to the coordinate hyperplanes y i = 0 ,  i = l ,  2 . . . . .  n - 1 .  By  
this we mean tha t  the intersection of O0 with a straight  line perpendicular to y~ = 0  
is either a single line-segment symmetr ical  with respect to y~ = 0  or empty ,  i = 1, 2, ..., 
n - 1 .  When  n > 2  B(~)0 is assumed to possess piecewise continuous curvature.  O~ is 
is obtained from O0 by  the mapping  y--~ k-l(x) y, k(0) = 1, #(x) > 0, #(x) non-decreasing 
and twice continuously differentiable, - c o  < x <  co. Under  these assumptions we 
shall establish the following 

Theorem 7.1. Let ,~ be the principal eigevalue o/ 0o. Then 

max c~ O~; D~) ~ (]c(~)/k(x))i-n exp (-)~�89 ; k(t)dt) 

We start  by  proving some lemmata.  We use the following notat ion.  Let  {v~}~ 
be the normed eigenfunctions of Av+~v=O in Oo, v = 0  on B~)o, and {2~}~ the cor- 
responding eigenvalues. Let  {Vx. ,}~ and {A~. ~}~r be defined in the same way with 
respect to O~. Then 

Ax. ~ = k2(x) ~ ,  Vx, ~(y) = #(~ 1)/2(x) v~(lc(x) y). (7.1) 

I n  the following we write ~ and v instead of 21 and v 1. 

Lemma 7.1. .Let m(x) be the Nevanlinna mean o/ u(x, y ) =  co(z; 0~; D~) over 0~, 
x<~, 

re(x) = j~)~ u(x, y) v(k(x) y) dy. (7.2) 

Let y.  grad v denote the scalar product in (~o. Then 

( ux(x, y)v(k(x)y)dy§ ]c'(x) je(U(X' y) ( y . g r a d  v) (k(x)y)dy, x<~. (7.3) m l ( x )  ~ JO~ 

Proo/. Under  our assumptions about  k and BOo, u possesses continuous first deriva- 
tives up to the boundary  at  points  where BO o is of continuous curvature  (in the case 
n >2)  for x 1 <~  [7.3, p. 635]. The same is t rue for v, since exp (~Xl)V(y) is harmonic 
in a r ight  cylinder with base O0. The lemma then follows. 

Lemma 7.2. SexUx(X, y) v(k(x) y) dy <~ ~ ]c(x) m(x), x < ~. 

Proo/. Let  x be fixed and set O={z=(s, t)ls<x , tEOx}. We write 1 ~ instead of 
BG and define ~ = F -  Ox. Let  U be harmonic in G with boundary  values u(x, y) on 
Ox and 0 on ~. G c  D ,  since O0 is Steiner symmetr ic  with respect to the coordinate 
hyperplanes and k is non-decreasing. By  the max imum principle the inner normal  
derivatives of U and u satisfy the inequali ty BU/Bn <--.Bu/Bn on O,. We write V(y) 
instead of v(k(x)y). Then 
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fo u~Vdy<~- fo  V ~U ~ ndy= - - f r  V~nda'  (7.4) 

where da is the area element on F. We now apply Green's formula to the last integral 
and note tha t  U = 0  on ~ and ~V/~n =0 on Ox. (We first consider finite subdomains of 
G and then use some majorant  of ~U/~n in the limiting process.) Taking (7.1) into 
account we obtain 

frv eU da= faU• = -Zk~(x) f UVdz. ~n 

Hence by  (7.4), 

/~ u~ (x, y) v(k(x) y) dy ~k2(x) ~ u(s, t) v(k(x)t) ds dr. 
J J a  

(7.5) 

Now U can be represented in the following way in the cylinder G: 

U(s, t) = (_ y)P(s, t; x, y)dy, s<x, (7.6) 

where P(s, t; x, y) = ~ exp ((s - x) A~, ~) Vx. ~(y) Vx. n(t). 

We shall need the relation 

fo P (s, t; x, y) v(k(x) t) dt = exp (2�89 - x) k(x)) v(k(x) y), s < x. (7.7) 

By (7.6) and (7.7), after first considering subdomains 

{z= ( s , t ) [ zEG,  - c~  < a < s < b < x }  

of G, we obtain 

f l u ( s ,  dsdt = ~�89 k-l(x). t) V(]C(X) t) 

By (7.5), this proves our lemma. 

Lemma 7.3. Under the assumption that 0 o is Steiner symmetric with respect to the 
coordinate hyperplanes, the scalar product y. grad v is non-negative. 

Proo/. We want  to prove tha t  v is symmetrically decreasing with respect to y~ ~0 ,  
i = 1 ,  2, ..., n - 1 .  Let  us assume tha t  this is false for some i. We then symmetrize 
v with respect to y~=0 (cf. w 1) and denote the symmetrized function by v*. By 
[7.2, pp. 184-186] 

f~~ f~.lgradvl~dY>~folgradv*l~dy" 
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By B in w 6 v minimizes the Rayleigh quotient and thus v =v*, and the lemma is 
proved. 

Proo/o/ Theorem 7.1. Since k' is non-negative it follows from the lemmata  7.1, 
7.2, and 7.3 that  

m'(x) < ~k(x )  m(z), x < ~. 

Hence m(x) >~m(~) exp ( -  X�89 ; k(t)dt). 

however, fo v(k( )y)dy= V v(y)dy=CoV 

and v being positive in Oo, 

re(x) <~ maxy u(x, Y) jv~- v(k(x) y) dy = c o kl-n(x) max~ u(x, y). 

and Theorem 7.1 is proved. 

Remark. Theorem 7.1 is of interest in connection with the estimate (6.15) in 
Theorem 6.3. Also of. Theorem 2.1. 

8. Harmonic measures and probability theory 

Harmonic measures have a probabilistie interpretation in the theory of Brownian 
motion. A standard work of reference for this theory is tha t  of Ldvy [8.3]. Later  
works of Doob and others are not referred to here. Let  the domain D in R n be 
bounded by a finite number of closed surfaces, p(z; ~; D) is the probabil i ty that  the 
Brownian motion particle which starts from the point z in D first reaches ~D on a 
subdomain ~ of ~D. Then [8.3, p. 62] 

~o(z; ~; D)=p(z ;  zr D). (8.1) 

This interpretation is useful for heuristic argument. For instance, the choice of 
Q in the proof of Theorem 3.2 appears reasonable since it takes into account those 
segments of Ox that  the Brownian motion particle starting from z 0 (and the curves in 
F) must  pass through to reach 0~. I t  appears difficult to obtain majorants  of harmonic 
measures by  a s tudy of Brownian motion or of the corresponding random walk. We 
can, however, prove symmetrization results for harmonic measures by  considering 
independent components of a Brownian motion. Definitions of the different kinds of 
symmetrization are given in w 1. 

Theorem 8.1. (The two-dimensional case.) Let D~ be bounded by a/inite number o/ 
simple closed curves; 0 x = U i=lm(z)~ai~'x, m(x) <~ M. Assume that the ~9~x vary continuously; 

26 



ARKIV leOR MATEMATIK. B d  6 nr  1 

it is allowed that at a ]inite number o] points two segments come together or one splits or one 
vanishes. * denotes symmetrization with respect to the xl-axis. Then 

max (o(z; 0~; D~)~< co(x; 0f; D~). 
z E a  x 

Proo/. B y  (8.1) is is sufficient to prove tha t  

m a x  p(z; 0~; D~) ~ p(x; 0~; D~). (8.2) 
ZE~ x 

Consider a two-dimensional Brownian mot ion {(X(3), Y(v))=Z(3), 0 ~ 3 < c ~ } ,  
star t ing from a point  z = (x, y), where {X(T), 0 ~< 3 < oo } and { Y(T), 0 ~ 3 < c~} denote 
one-dimensional Brownian motions and the components  are independent.  X(T) and 
Y(T) are continuous with probabi l i ty  one [8.3, p. 10], so we assume cont inui ty  of 
X(T) and Y(T) in the following. 

Let  Mx(t) denote max X(T) when O ~ v ~ t .  M x  has an inverse funct ion T x indi- 
cat ing the first passage t ime [8.3, p. 31]. We now write 

p(z;O~;.D~)= P{t<~Tx(~)<t+dt ,  Z(3)ED~ when O--<v<t} 
~0 

= P {t ~< Tx(~) < t + dt} P { Y(v) E Ox(~) when 0 ~ T < t I t ~< Tx(~) < t + dt} 
t=O 

and p(z; 0~; D~) 

= P {t <~ Tx(~) < t + dt} P { Y(T) E zg*x(~) 
= 0  

when O<~T <t[t<~ Tx(~)<t+dt} .  

Given a sample funct ion X(T), 0 ~ v ~< t, we now consider 

P{Y(T)  EOx(~) when 0~<T~<t}. 

Some segments of V~x(,) m a y  be inaccessible to the Y-particle tha t  is to  reach V~x(t). 
Later  in the proof we require tha t  the domain accessible to the Y-particle be bounded 
b y  curves continuous in 3. By  translat ion (perpendicular to the T-axis) of any  inac- 
cessible segments we obtain  a larger accessible domain • with accessible segments 
V~x(,) of total  length v~'(X(v))=v~(X(v)). We need only consider such components  of 
the complement  of (J t ha t  possess positive area. They  can be enumerated  according 
to the length of their projections on the z-axis. 

Thus, to prove (8.2) it suffices to prove the following inequality: 

P { Y ( T ) E ~  when O<~T<~t}<-.P{Y(T)e~* w h e n  O~<3~<t}, (8.3) 

where Y(O)-0 ,  and a~ is a finite union of accessible open line-segments varying 
cont inuously in 3, so tha t  two components  of ~ are separated by  one point  for a t  most  
a finite number  of values of 3. * denotes symmetr iza t ion  with respect to the z-axis. 

Now choose ~_(k)~k T(0 k) t~v ]0, SO tha t  0 = < v(1 k) < . . .  < T(k k) = t and {T(~k)}0~ becomes dense 
in 0 ~ 3 ~< t, when k -> ~ .  We shall prove tha t  for any  k 

P { Y(3(~ ~)) E ~(~), v = 1, 2 .. . . .  k} ~< P { Y(3(~ k)) E a*(k), v = 1, 2 .. . . .  k}. (8.4) 
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Thanks  to our assumpt ions  abou t  the  ~ (8.3) follows f rom (8.4) b y  e.g. [8A, 
Theorem 2.2, p. 54]. Now,  omi t t ing  the  upper  index/c  

P { Y(v,) e ~ ,  v = I, 2 . . . . .  k} 

= ... exp ( 

( y ~ -  y~ ])~ ~, 
�9 "" ~ ~ ) _ l ) ) a y l . . . a Y k  �9 

Y~ (Y~ - -  y l )  2 

2 ~  2(~'2 - -  ~:1) 

(8.5) 

Thus  (8.4) will foUow f rom an inequal i ty  of the  following type:  

exp  y~ -- e2(y2 -- Yl)  ~ - . . . - - e k ( y ~ - - y k  dyv..dyk 

. . .  - y~-~) ) dyz . . . dy~  e x p  ( - c a y~)e - - e~(y~ 

where the  c~ are posit ive constants  and  the  ~ are finite unions of intervals  and  
~ = { y ~ l ] y ~ [ < *  l (~ ) /2} ,  l (~)  being the  to ta l  length of ~ = 1, 2 . . . . .  k. Such an ine- 
qual i ty  follows f rom L e m m a  8.1 below and  the reby  our theorem is proved.  

L e m m a  8.1. L e t  {a(~ ~)} be s y m m e t r i c a l l y  decreas ing  sequences  o /  n u m b e r s  w i t h  
a~ i) >1 a(1 ~) = a~)l >1 a~ ) = a"-)~ ~ . . .  ~ O, i = 1, 2 . . . . .  k .  W e  a s s u m e  that  

T h e n  

b(~)= /1 /o r  2 s ~ + l  values  o / v  i = l ,  2 , . .  k .  

[o otherwise  ' "' 

x;_(1)~(1)a(2) b(2) _(k) ~(k)~ ~ ~. _(1)~.(z) _(~) 
' ' *~ . .~ t~dF1LJv  1 V l - - F  2 Vr "''r * ' "  e'~Vl f'~l~ 1 r Z ' ' * t ~ Y k _ _ l - - V  k "  

Vl % Iv, l < s t  I rk l<s k 

P r o o / .  Let  {a,} be a finite set  of numbers .  The  rear ranged  set  {a~ +} is defined b y  
a~ ~>a~ >~a21~ .. . .  We  write A~ - ~,,~(i)m)o~. Then  A+ ~= 0 and  A~ ~a(1) for v =  - s p .  . . ,  s 1. 
Hence it  is sufficient to prove  t h a t  

"~ ~ ' A  a (2, b (2, . . . .  a (k, h(k)< ~ ~ A +~,,,_,,,._(2) .. a(k) (8.6) 
d._t, �9 .s162 Yl yl--J)2 Y2 � 9  u]r  ~Pk ~Y/~ ]~_l--J)~" 
n % Ivxl<s~ lvkl<sE 

When  /c= 2 (8.6) follows f rom Theorem 373 [8.2, p. 265]. To p rove  (8.6) when 
/c > 2, the induct ion me thod  of Theorem 374 [8.2, p. 273-274] is used. We write 

~bv~--va.  �9 t ~ V k _ l - r  k �9 ~l~Y2 ~ u 2  9 . . . .  
vx Ival~<s3 Ir~l<~sk 

Under  the assumpt ion  t h a t  (8.6) is t rue  for k -  1 

Z-- -  ~ B~, _(a) ~(3) a(k) b (~) ~ ~ B + C~. LbvI--V~U'e 3 . . .  r k _ l - - V  k v k 
v~ v k [v21~s~ 
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Let ~ be a permutat ion function for which B++(:)= B:. We write c+(:)= C: and 
d: = b(,2)C,. By Theorem 373 [8.2, p. 265] 

+ ~ A + d + a (2) ~. B ~ c ~ = ~ B ~ C ~ = ~ . ~ A ~ , d ~ : a ( ~  2)~_~ <~ ~. ~ . . . . . .  -~. 

However by  Theorem 375 [8.2, p. 273] c o ~ c I = c_~ ; % = c_~ ~ .... Hence d~ ~ c~ 
when [~2 [ < % and 

+ ~ +  (2) 
Irwin<s2 Irfl<~s~ ]v2Ks2 Ir~l~<s~ Irkl~s.~ 

The general result (8.6) now follows by  induction and thereby the lemma is proved. 

For the sake of simplicity we formulate the n-dimensional result for domains 
D~ such that  D~ is the restriction to {z]x I <~} of a finite union of spheres. By  an 
exhaustion process we can extend the result to harmonic measures in more general 
domains. Let {D~ ~)} be a monotone sequence of subdomains of D~ converging to D~, 
such that  each n~ ~) is the restriction to {z]xl<~} of a finite union of spheres. Then 
by  Theorem 8.2 below and the maximum principle 

max co(z; 0~); D~ ~)) ~< co(z,; 0~)*; D~ ")*) ~< co(z,; 0~; D~) 
yi 

and thus max co(z; 0~; D~) ~< co(z~; 0~; D~). 
yi 

Theorem 8.2. (The n-dimensional case.) Let D~ be the restriction to {z [x~ <~} o / a  
/inite union o/n-dimensional  spheres. * denotes symmetrization with respect to a coordi- 
nate hyperplane y~ =0.  Given z, z~ has the same coordinates as z except that the ith co- 
ordinate o/z~ is zero. Then 

max co(z; 0~; D~) ~< co(z,; 0~,*" D~*). 
yi 

Proo/, Consider an n-dimensional Brownian motion {(Xl(r), Yl(~), ..., Yn_l(T))= 
(X(v), Y(~))=Z(~), 0~<T<c~} starting from a point z=(x ,  y). {XI(T), O~<v<oo}, 
{ Y,(~), 0 ~<~ < ~ }, i = 1, 2 ... . .  n - 1, denote one-dimensional Brownian motions and 
the components are mutual ly independent. The proof is analogous to that  of Theo- 
rem 8.1. 

When considering P{ Y(~)EVqx(,) when 0 ~<~ ~< t} we now translate any inaccessible 
line-segments on straight lines perpendicular to the hyperplane y , = 0  in the (~, y)- 
space. We then proceed as in the proof of Theorem 8.1 up to (8.5). 

Instead of (8.5) we now have, with Y(0) = y, 

P{ Y(U) 6 ~ , ,  ~ = 1, 2 .... , k }  = (2 :7 /0 -k (n -1 ) /2 (~ l (T  2 - -  T 1 ) . . .  ( T  k - -  7 f k _ l ) )  - ( n - l ) / 2  

x cup  ( 'y-y")I2 [Y(i)-Y(2)I2 [Y(~-I)-Y(~)I2] 
�9 k 2~1 2(~2 - ~1) "'" 2 ( ~ k - ~ - 1 )  ] dY(1)"" dY(~)" 

We now consider the integrand as a product, one factor being 

e x p  ( ( Y i -  y~1))2 (y~l) _ y~2))2 (y~k-i) __ y~k))2] 
' ] 
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We first integrate with respect to dy~ 1) ... dy~ ~) and use Lemma 8.1. Our theorem 
now follows in the same way as Theorem 8.1. 

R e m a r k  1. The method of proof used above is not suitable for discussing the case 
of equality in the theorems. Cf. Theorem 4.1. 

R e m a r k  2. I t  seems reasonable that  Theorem 4.2 can be generalized to higher 
dimensions, but  a probabilistic proof does not appear easy. 

Remark  3. In  connection with the results of this paragraph we note tha t  the prin- 
cipal eigenvalue occurring in B in w 6 and in Theorem 6.2 is decreased by symmetriza- 
tion, according to B. 

R e m a r k  4. By a limiting process we can establish the result of Theorem 8.2 for 
more general domains. By an infinite sequence of symmetrizations with respect to 
hyperplanes through the x~-axis, we can thus obtain the following result, * denoting 
symmetrization with respect to the xl-axis (n >2), 

0~, D~ ). max co(z; 0e; De)~<og(x; *" * 
zEO z 
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