
ARKIV FOR MATEMATIK Band 6 nr 2 

1.64141 Communicated 11 November 1964 by L. GJ~RDING and L. CARLESO~ 

M i n i m i z a t i o n  p r o b l e m s  f o r  t h e  f u n c t i o n a l  

SUpx F(x, f(x),f'(x)) 

By GU~NAn AaoNsso~ 

l .  Introduction 

Let F(x,  y, z) be a given function,  defined for z 1 ~ x ~ x 2 and  all values of y and  z. 
Let fur ther  :~ be a class of func t ions / (x) ,  all of which are defined on x 1 ~ x ~ x ~  and  
are sufficiently regular. For  every /C :~, we define the funct ional  

H(/) = sup F(x, /(x), /'(x)). 
X l ~ X ~ X z  

We are interested in the problem to minimize H(/) over :7. For  example, we will t ry  
to answer these questions: Does there exist a minimizing funct ion? Is it  unique? 
Has it any  special properties? W h a t  is the value of infr~ s H(/)? For  reasons of brevi ty,  
m a n y  of the results are not given in the most  general form. We shall only consider 
real funct ions and  real variables. 

If g(x) is cont inuous and  non-negat ive  on x I ~ x  ~x2, then  

(? ) max g(x)= lim (g(x))~dx 1/~. 
X l ~ X ~ X  ~ Tt"-)'Or Xl  

This suggests tha t  we should approximate  the funct ional  H(/) with the sequence of 
funct ionals  

(? ) H~(I) = [F(x,/(x) , / ' (x))]ndx ~/~, n = 1, 2, 3 , . . . .  
X~ 

The Euler  equat ion corresponding to Hn(/) = rain is 

) dx [F(x, y, y')~] - ~yy [F(x, y, y')~] = 0, 

which can be wr i t ten  as 

n ( n - 1 ) F n - 2  [dx Y' dx 

Let us pu t  the expression in brackets  equal to zero and  then  let n tend  to infinity.  

3:1 33 



c. ARONSSON, Minimization problems 

Then we get (formally) a new equat ion 

d ! ! 
_ _  o dx (F(x, y, y )) F~.(x, y, y ) = O. (*) 

We want  to s tudy  the connection (if there is any) between this differential equation 
and the minimization problem. 

I t  might  be expected tha t  functions /(x), such tha t  F(x, /(x), / '@))-constant ,  
should be impor tan t  for the problem. This is true, as we shall see in sections 2 and 3. 

I n  section 4, we shall introduce a class of functions which minimize the functional  
"on every interval"  and prove tha t  such a function must  satisfy the equat ion (*) 
in a certain sense. 

A similar problem has been studied in [1]. 

2. The special case F = F ( y , y  ') 

We shall s tar t  with a s tudy  of the case where F is independent  of x, since this case 
is simpler than  the general and since we are interested in the interaction between y 
and y' .  

2 A. The minimization problem 

Lemma 1: Suppose that: 

1) /(x) is continuous/or a ~ x ~ b ,  
/'(x) is continuous/or a < x < b, 

2) / ' ( x ) > 0 / o r  a < x < b ,  
3) g(x) is absolutely continuous on a ~ x ~ b, 
4) g(a) </(a), g(b) ~/(b) a n d / $ g .  

Then there exist numbers tl, t 2 on the open interval (a, b) such that 

l) /(tl)=g(t2) , 
I I )  g'(t~) exists and/'(tl)  <g' (4) .  

Proo/: Clearly, we m a y  assume tha t  g(a) - / (a) ,  g(b) - / (b)  and / ( a )  <g(x) </(b) for 
a < x < b. For, if this is no t  the case, we define 

p - max  {x [ g(x) </(a) }, 

q - min {x I x >~p, g(x) >~ ](b)}, 

and, instead of g(x), we consider gl(X)=g(p+(q-p)(x-a) [b-a]  1). (If gl=/,  then 
the result is trivial; if gl ~ / ,  then the proof below applies to gl, and then the result for 
g follows.) Now y - / ( x )  has a continuous inverse x - ~ ( y )  f o r / ( a ) ~ y ~ / ( b ) .  ~'(y) is 
continuous and positive for / (a)<y</(b) .  Hence ~(y) is absolutely continuous on 
](a) <~y <~/(b). 

F o r m  the funct ion q~(x)-at(g(x)). I t  is absolutely continuous on a ~ x ~ b  and 
q/(x)=ot'(g(x)).g'(x) a.e. By  assumption,  there exists a number  xo, a<xo<b,  such 
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that/(Xo) ~:g(x0); say/(xo) <g(xo) (the other case is t reated similarly). Then we have 
~(x0) > x  0 and 

f loq~'(x)dx=q~(Xo)-q~(a)=q~(Xo)-a>xo-a.  

So there mus t  exist a number  ~ such that :  a<~<xo,  g'(~), ~'(~) exist and ~ ' (~)>  1. 

Thus 

Bu t  

~'(g(~)).g'(~)>l. 

1 
~'(g(~))=/,[~(g(~))], which gives us 

g'(~) >/'[~(g(~))]. 

Obviously, the numbers  t 1 = a(g(~)) and t~ =~  will have the required properties. 

Remark: If  we change the conditions 2 and 4 t o / ' ( x )  < 0  and g(a) >/(a), g(b) ~/(b), 
respectively, and the assertion I I  to  g'(ta)</'(tl) , then we get  another  form of the 
lemma which follows f rom the preceding by  the subst i tut ion t = - x .  

Now let us consider a funct ion F = F(y, z) and let us impose a few conditions upon it: 

1) F is defined and continuous for all y and z. 

2) exists for all y and z and ~ is = 0  if z = 0  

< 0  if z < 0 .  

Let [xDx2] be the interval  ment ioned in the introduct ion and let Yl,Y~ be any  two 
numbers.  F rom now on, the class ~ of admissible funetions is defined as follows: 
~ is the class of all absolutely continuous functions o n  X l ~ Z  ~.x2, which satisfy the 
boundary  c o n d i t i o n s / ( x l ) - Y l  and/(x2)  =Y2. L e t / (x )  E ~- and let E be the set where 
['(x) exists. I t  should be noticed tha t  x 1 and x~ belong to E if the one-sided derivatives 
in question exist. 

Now H(/)= SUpx~E F(/(x), / ' (x))  is well-defined and obviously 

H(/) >~ max (F(y 1, 0), F(y 2, 0)). 

Therefore infr~ ~ H(/) is finite, and the questions ment ioned in the introduct ion are 
meaningful. 

Wi th  the use of Lemma 1, we can easily prove the following simple theorem: 

Theorem h Suppose that F(y,z) satisfies the conditions 1 and 2 stated above. Suppose 
/urther that/(x) is an admissible/unction such that 

a) /'(x) is continuous/or x 1 ~ x  ~x2, 
b) /'(x):#O /or xl <x<x2,  
c) F(/(x), /'(x)) = M  /or x 1 ~ x  ~ x  2 (M is any constant). 

Then/(x)  is a unique minimizing/unction in :~. I.e.: i /g(x) is a di//erent element o/ 
5, then H(g) > H(/). 
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Proo/: Consider the  case / '(x)>0. According  to L e m m a  1 there  exis t  t D t 2 such 
tha t / ( t~ )  =g(t2), 0 <ff(tl)<g'(t2). This gives 

Hence  

H(g) >~ F(g(t2) , g'(t2) ) > F(/(t~),/'(t:)) = M  = H ( / ) .  

H(g) > H(I). 

The o ther  case is t r e a t ed  ana logous ly  (see the  r e m a r k  to L e m m a  1). This theorem 
should be compared  wi th  the  theorems of sect ion 3. 

I n  order  to give a more  sys temat i c  t r e a t m e n t  of the  case F = F(y,z), we in t roduce  
ano ther  condi t ion  on F :  

3) l ira F ( y , z ) - +  c~ for all  y. 

As is easi ly seen (using the  condi t ions  1 and  2 also), this  implies  t h a t  the  l imits  

l im F(y , z )=  + ~ ,  l im F(y ,z )= + c~ 
Z- - - )  + o r  Z - - - )  - 

are  uni form for bounded  y. 
I n  the  rest  of sect ion 2, we shall  a lways  assume t h a t  F(y, z) satisfies the  condi t ions  

1, 2 and  3 given above.  
W e  now in t roduce  two aux i l i a ry  functions:  

De/inition: I /  F(y ,O)<M, then we set OM(y)=the positive number z such that 
F ( y , z ) - M ,  tFM(y ) - t he  negative number z such that JT(y,z)-M, and i/ F(y ,O)=M 
then we set r (If F(y,O)>M, then  the equa t ion  F ( y , z ) = M  has no 
solut ion z.) 

L e m m a  2: OM(y) and tFu(y  ) are continuous /unctions o/ y and M on the set where 
they are de/ined. 

The proof  is s imple and  we omi t  it. 
W e  will now t r y  to give a comple te  solut ion of the  min imiza t ion  p rob lem under  

the  assmnpt ions  1, 2 and  3 a b o u t  F(y,z). W e  shall p a y  most  a t t en t i on  to  the  case 
Yl <Y2 and  the  corresponding resul ts  for the  case Yl > Y2 will be given la te r  wi thou t  
proofs,  since the  reasoning is ve ry  s imilar  in bo th  cases. F ina l ly ,  we shall  consider  
the  case Yl = Y~- 

A) Le t  us now suppose Yl < Y2- 

(v2 (it 
In tegra l s  of the  t y p e  .]vl(I)M(t) t u r n  out  to be ve ry  useful.  Le t  us agree to call 

the  in tegra l  above  wel l -def ined if and  on ly  if (PM(t)> 0 a.e. on Yl < t ~<Y2" Then  

1 
(])~(t) is non-negat ive ,  measu rab le  and  f ini te  a.e. Le t  us use the  n o t a t i o n  

f Y~ dt 
y~ d)M(t~ = s  

Thus  s  > 0  a lways  and  the  poss ib i l i ty  s  = + ~ is no t  excluded.  
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Lemma 3: Assume that M~-+M, MI>M2>Ma>.. .  and that, /or all v, s is 
well-de/ined and s <~ C (C independent o/ v). Then s  is also well-de/ined and 
l : ( M ) - l i m ~ _ ~  ~(M~). 

Proo/: I f  yl<~y<~y.~ then, clearly, F(y,O)<M, for all v and F(y,O)<~M. This 
means tha t  OPM(y ) is defined for yl<~y-<,y2. I f  (I)M(y)>O, then, according to 
Lemma 2, 

1 1 

CPM,(y) OM(y)' 

and if OM(y)= 0, then 
1 

- - - -  - - ~  C x 3  . 

(D.~(y) 

For  every y we have 
1 1 1 

OMI(Y) OM~(y) r . . . .  

But  it is also t rue tha t  
r',~ dy 

- -  < ~ C  J ~, q%~(y) 

1 
I t  follows from Beppo-Levis  theorem t h a t  lira 

~-~ (P~.(y) 

Y~ ~< Y ~< Y2 and tha t  

-h(y)  exists finite a.e. on 

fY~ (Y~ dy h(y) dy = lim dy,  O ~ ( y ) - -  lim s 
Y l  v - - > ~  v---> o o  

1 
From the preceding we see tha t  h (y)=  OM(Y) a.e., which completes the proof. 

Theorem 2: I/there exists an admissible/unction/(x) such that supx F(/(x), /' (x) ) 4 M, 
then ~(~I) is well-de/ined and I=(M)4x2-x 1. 

Proo/: I f  M~=M+l/v  for v=l ,  2, 3 . . . . .  then H(I)<M~. Hence, if y l4y4y2,  
F(y,O) <M~ and (~Mv(y) >0.  

We m a y  assume tha t  yl~/(x)~y2. Take an arbi t rary  u. F rom the inequali ty 
F(/(x),/'(x)) <M, it follows t h a t / ' ( x )  <O~,(/(x)) (a.e.). Therefore 

1'(~) 
b,,~(l(x)) < ]" (]) 

l "y dt 
Now ~ ( y ) =  | - -  is a continuously differentiable funct ion of y for Yl ~< Y < Y2. 

Jy, O~,~(t) 
Thus ~ ( x ) =  ~(/(x)) is absolutely continuous on x 1 ~<x ~ x  2. I t  follows from (1) t ha t  
~F'(x) 4 1 a.e. 

So ~F(x~) -~F(xl) ~x~-Xl.  
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:But ~ ( x l )  =(~(Yl) = 0  a n d  ~F(x2) =(P(Y2) = I~(M~). This gives 

s  < x2 - x r  

Now the assertion follows from the preceding lemma. 

Theorem 3: I /  ~(M) is well-de/ined and /inite, then there is a /unction /(x) with 
these properties: 

1) /(x) is de/ined and strictly increasing/or 0 ~ x ~ F.(M), 
2) / (0 ) -YD/ ( s  =Y2, 
3) /'(x) is continuous/or 0 ~ x  ~ IZ(M), 
4) F(/(x), ] ' ( x ) ) -M /or O<~x<F.(M) (i.e./'(x)=(I)M[/(x)]). 

Proo/: Form the function el(y) = ~ dt/(~M(t ). Clearly, it is continuous and strictly 
increasing for Yl ~< Y ~< Y,. Further, ~(Yl)= 0 and ~(Y2)= E(M). If  we define/(x) as the 
inverse function of ~(y), then it follows at once that / (x)  satisfies 1 and 2. In  order 
to s tudy/ ' (x) ,  take an x 0 on the interval 0~<x0~< I~(M) and let {~}~ be a sequence 
such that ~--~x o and ~ # x  o for all v. Set / (~)  = ~  and/(Xo) =Yo (~-->Yo but ~:4=yo). 
Then we have 

/ ( ~ )  - / ( X o )  _ ~ - Y o  _ 1 _ 

~ - x o ~V(~]~) - ~o(y  o) ~ ( ~ v )  - ~O(Yo) 

~v -- YO 

l ('~ dt " 

~ - YoJy. O~(t) 

I t  follows from the continuity of (I)M(t) that  if (~)M(Yo)>0, then 

~(~v) - ~ (Yo!__>  1 _ 1 

~v-yo  OM(Yo) OM(/(Xo))' 

but if OM(Yo): O, then ~(~) - qO(yo) _+ ~ .  
~Tv - Yo 

Hence 

in both cases, and we have 

/(~)-/(Xo) ~r ) 
~ v  - -  X 0 

l'(xo) =r 

But then it follows tha t / ' (x)  is continuous and 

F(/(x), / ' (x ) )=M for O<x<E(M).  

This completes the proof. 
The solution of the minimization problem is given in the following 

Theorem 4: 

a) Given M, a necessary and su//ieient condition/or the existence o/ a /unction /E :~ 
such that H(/) =M, is that ~(M) •x 2-x l ;  

b) there is a number M o such that F.(M) <~x 2 - x  1 i /and only i / M  >~ Mo; 
c) M0-infr~ ~ H(/); 
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d) there exists a minimizing/unction/o (which can be chosen continuously di//erentiable); 
e) the minimizing/unction is unique i] and only i / s  2 - x l ;  
f) i] the minimizing/unction is not unique, then M0=maxy,<y<y ~ F(y,0), but the con- 

verse is not true. 

Proo/: a) This is seen from Theorems 2 and 3. In  general, the function in Theorem 3 
must be translated in the x-direction and continued as a constant to give the function 
mentioned above. 
b) I t  follows from the properties of F(y,z) and the definition of OM(Y) that  OM(y) 
is an increasing function of M and hence s is decreasing. Let E be the set of all 
numbers M such that s ~x  2 - x  1. I t  is clear that  E is bounded from below. Let 
M 0 = inf E. Lemma 3 implies that M 0 E E and, since s is decreasing, the assertion 
follows. 
c) and d) Consequences of a), b) and Theorem 3. 
e) Suppose first that  s  2 - x  1. I t  is clear that  the function in Theorem 3 
can be translated in the x-direction and continued as a constant in different ways so 
as to give us different minimizing functions. 

Suppose then that  I:(M0)=x,~-x 1. If  /(x) is the function from Theorem 3 with 
M = M o ,  then we assert that  h ( x ) = / ( x - x  0 is the only minimizing function. Let 
g(x) E ~ and assume for example g(~)<h(~) for some ~ between x 1 and x~. According 
to our choice of h(x) we have 

f Y~ dt 
h(~) OM~ x 2 -  ~" 

If  H ( g ) = M ,  then, according to Theorem 2, 

f ~  dt 

I t  follows that  
Y~ dt ~Y~ dt 
h(~) OM(t) < j h(~) O~o(t)" 

This implies that M >M0, which completes the proof of assertion e). 
f) First we shall prove that if the minimizing function is not unique, i.e. s  
x2-x l ,  then M0=maxyl<u<y ~ F(y,O). Assume then that M0>maxyl<~<y ~ F(y,O). 
This means that (YPMo(Y)>0 :[or yl<~y<~ya. Since F(y,z) and (PM(Y) are continuous 
functions, there must be a number 5 > 0  such that  1/Oi(y) is uniformly continuous 
for Yl ~< Y ~ Y2 and IM-M01  ~<5. But then there also must exist a number M 1 < M 0 
such that  s 1. But this contradicts b). 

Hence 
M0= max F(y,O). (1) 

Yl<~Y~Y~ 

In order to show that the converse assertion is not true, we give an example where 
(1) holds and the minimizing function is unique. 

Choose 

F ( y , z ) = y 2 + z  e , x l = y l = 0 , x  2 = ~  and y ~ = l .  
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Perhaps  the  easiest  w a y  to see t h a t  y - s i n  x is the  unique  minimizing funct ion is 
to  a p p l y  Theorem 1. (But,  of course, the  same conclusion can be d rawn  wi th  the  a id  
of e) above.)  

Clearly 
M 0 = 1 - m a x  F(y, 0). 

0~<y~<l 

This completes  the  proof  of Theorem 4. 

B) yl>y2.  

The in tegra l  s  is now replaced  b y  

s ff  I at (=(~'d t~  

and  our  convent ions  are corresponding to those of the  former  case. Thus,  for example ,  
0<s  + ~ .  

The exac t  analogues of L e m m a  3 and  Theorems 2, 3 and  4 are now ob ta ined  in a 
ve ry  na tu r a l  manner  b y  subs t i tu t ing  s for C(M) and  (in Theorem 3) ~FM(y ) for 
(~PM(Y)" I n  Theorem 3, we mus t  also change the word  increasing into decreasing.  The 
proofs are p rac t i ca l ly  the  same in bo th  cases. 

C) Yl=Y2. 

Clearly, the  funct ion ](x)=Yl  is a minimizing funct ion.  Le t  us wr i te  

M o - F(y  1, 0). 

As regards  the  quest ion of uniqueness,  i t  follows from Theorem 4 and  its analogue 
in case B tha t  the  minimizing funct ion is unique  if and  only if none of the  condi t ions 

and  fi below is satisfied: 

~) bo th  in tegrals  and  dy __ 
~y,  r ~ ,  --'FM0(y) 

bo th  in tegra ls  (Y' d y  and  ( y l  d?] P) 

exis t  f inite for some ~ > O; 

exis t  f ini te  for some (5 > 0. 

2 B.  Determination of  the attainable cone 

Le t  us now leave the  min imiza t ion  p rob lem and  consider ano ther  quest ion.  
Suppose there  are given a po in t  (x 0, Y0) and  a number  M >~ F(y  o, 0). Denote  b y  E 

the set of all  poin ts  (x, y) such t h a t  

a) x>~Xo, 
b) there  is an abso lu te ly  cont inuous  funct ion /(t), jo ining the po in ts  (Xo, Yo) a n d  
(x,y), such t h a t  supt F(/(t), /'(t)) <~M. 

Our t a sk  is to de te rmine  the  set E. As a convenient  name for the  set E we use 
" the  a t t a inab le  cone".  I f  x >~x 0 then  clearly (x, y0)E E. I f  x > x 0 and  y >Y0 then  we 
know a l r eady  t h a t  ( x , y ) E E  if and  only if  ,~odt/(~M(t ) is well-defined and  ~<x x 0. 
Of course, there  is a s imilar  condi t ion  for the  case y < Y0. I f  (x, Yl)E E and  (x, y2)E E, 
then  (x, y) C E for every  y be tween Yl and  Y2. 
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We define g(x) = inf {y: (x, y) C E} and  h(x) = sup {y: (x, y) C E}. The funct ions  g(x) and  
h(x) m a y  t ake  on infini te  values.  I f  g(x) is finite,  then  (x,g(x))EE and  the same is 
t rue  for h(x). This follows f rom the  cr i ter ion above.  

F o r  the  de t e rmina t ion  of E,  i t  is thus  sufficient to  de te rmine  g(x) and  h(x), and  
we shall  confine our discussion to h(x). Let  us use the  no t a t i on  ~(y) = x  0 + S~0 dt/OgM(t)" 
The divis ion into  var ious  cases below and  the facts  abou t  h(x) follow easi ly from the 
condi t ion  ~(y)~<x and  the  proper t ies  of ~(y). 

A) Fo r  eve ry  Y>Yo, cp(y) is infini te  or no t  defined. Then h(x)=Y0 for all  x>~x o. 
B) ~(y) is def ined and  f ini te  for yo<~y< Y <  o~ (clearly ~(Y) = oo). 

h(x) = i n v e r s e  of q0(y) for al l  x>~x o 
l ira h(x)= Y. 
x--> or 

C) ~(g) def ined and  f ini te  for Y0 ~<Y ~< Y <  oo 

inverse  of ~v(y) for Xo<~X<~v(Y ), 
h(x)= Y for x~>~v(Y). 

D) ~(g) def ined and  f ini te  for all Y>~Yo" 

1. l im ~v(y)= 
y--->~ 

h ( x ) = i n v e r s e  of ~v(y) for all x>~x o 
lira h(x)= c~. 

x--->oo 

2. lira ~v(y) = X < 
y---> ~ 

inverse of ~v(y) for x 0 ~<x < X 
h ( x )  = 

§ o~ for x>~X. 

Clearly, h(x) is s t r ic t ly  increasing on every  in te rva l  where i t  is def ined as the  inverse 
of ~v(y). 

Fu r the r ,  the  re la t ion  
F(h(x), h'(x))=M 

holds a t  every  po in t  where h(x) is finite.  

3. Some suff icient  condit ions  for a g iven  funct ion  to m i n i m i z e  the  

func t iona l  in  the case F = F(x, y, z) 

Let  us now re tu rn  to the  general  case where F is al lowed to depend  on x also. 
As we have  seen in sect ion 2, monotonic  func t ions / (x ) ,  such t h a t  F(x, [(x), ['(x)) - 
cons tant ,  are  of g rea t  impor tance .  Such a funct ion  minimizes  H([),  as is seen f rom 
Theorem 5. Rough ly  speaking,  Theorem 6 shows t ha t  if ](x) is also s t r ic t ly  monotonic ,  
t hen  ](x) is the  unique  minimizing funct ion.  Compare  also Theorem 1. 

Of course, i t  can be deduced  f rom the  condi t ion  F(x,/(x), ]'(x))=constant t h a t  
[(x) has a cer ta in  degree of r egu la r i ty  (at  least  for the  funct ions  F(x,y,z) t h a t  we 
s tudy) .  Bu t  since this  is easy  to do and  no t  ve ry  i m p o r t a n t  for the  theorems,  we 
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shall  omi t  a discussion of this  and  ins tead  choose the  condit ions on / such as to 
make  the  proofs simple. Pe rhaps  we shall  r e tu rn  to this  quest ion in a l a te r  connection.  

Now let  us assume t h a t  the  funct ion  F(x,y,z) satisfies the  condit ions:  

1) F is cont inuous  for xl<~x<~x ~ and  all  y and  z, 
2) ~F/~z exis ts  for xl~x<~x 2 and  all  y and  z. 

> 0  if z > 0 ,  

F u r t h e r ,  ~F__ is = 0  if z = 0 ,  

~z < 0 if z < 0. 

W e  shall  use the  same no ta t ions  as in sect ion 2 and  the  same defini t ions of admis-  
sible funct ions and  the  funct ional .  I t  follows t h a t  

H(9) ~>max (F(xl,yl,0), F(x2,y2,0)) 
for  a n y  g E 5.  

Theorem 5: Suppose that F satisfies the conditions 1 and 2 above. Let / be an admis- 
sible/unction such that: 

a) /'(x) exists/or x I ~X~'~X2, 
b) /(x) is monotonic (not necessarily strictly), 
c) F(x, /(x), / ' ( x ) ) -  i /or xl <~x<~x 2. 

Then/(x)  is a minimizing/unction. (/(x) need not be the  only  one.) 

Proo/: Le t  us choose the  ease where /(x) is non-decreasing.  Le t  h be a different  
e lement  of :~. Then  we have,  for example ,  h(~)</(~)  for some ~:, x 1 < ~  <x~. 

Then there  mus t  exis t  an  x 0 ~ x  2 such t h a t  h(xo)=/(x0) b u t  h(x)</(x) for ~ ~ x  < x  0. 

Hence  lira h' (x) >~ /' (Xo) >~ O. 
X--~X0 

I f / ' ( X o ) - 0 ,  then  i t  follows a t  once t h a t  

l im F(x, h(x), h'(x)) >~ F ( x  0,/(Xo),/'(x0)) = M.  (1) 
X'-~Xo 

If/ ' (Xo) >0 ,  then  we t ake  a ~ > 0  and  a sequence ~ - - ~ x  0 such t h a t  h ' (~ )  >/'(Xo) - ~  >0 .  
This means  t h a t  

F ( ~ ,  h(~),  h ' ( ~ ) ) >  F(~,,, h ( ~ ) , / ' ( x o ) - ~ ) .  

The r ight  member  tends  to 

F(xo, /(Xo), /'(Xo)-~). 

I f  we le t  (5-~0, then  (1) follows again.  Thus 

H(h) >~ F(x o,/(Xo),/'(xo) ) = i  =H(/). 

This completes  the  proof.  

Theorem 6: Suppose that F(x,y, z) satisfies the conditions: 
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_ _  _ _  Ix1 ~< x ~< x 2 , 
A) F, ~F~y, ~F~z ezist and are continuous/or [y, z arbitrary. 

~F [ > 0  if z > 0 ,  

B) ~z  is l = 0  if z = 0 ,  
< 0  if z < 0 .  

Suppose/urther that/(x) is an admissible/unction such that: 

a) / ' (x )  is continuous and ~ 0/or x 1 <~ x <~ x2, 
b) F(x, /(x), /'(x)) = M  /or xl <-<x<x2. 

Then/(x) is a unique minimizing/unction in 5. (Compare Theorem 1.) 

Proo/: Following our habit ,  w e  will carry out  the proof only for the case / '  >0 .  
Assume now tha t  gE :~, g~-/and H(g)<~M. We want  to derive a contradict ion from 
this. 

Let  g(~)>/(2) for some 2, X l < ~ < X 2 .  Then there mus t  be a number  x o such tha t  
x 1 ~< x o < ~ and g(x) > ](x) for x o < x ~ ~ bu t  g(xo) =/(xo). 

t Hence lim g'(x) ~ / (Xo). 
X'-~X.+{} 

:But since F(x ,g ,g ' )<M and  /'(xo)>0 it follows with the use of B ) t h a t  

lim g (x)-~/(Xo). 
x.-.).x o 

' X  ' X  Consequently lira g ( ) = / ( o ) .  
x--~xo 

Form ~v(x) =g(x) - /(x) .  

If  g'(x) exists, then we apply  the mean value theorem to the funct ion 

�9 (t) = F(x,/(x) +t~(x),/'(x) +tqJ'(x)) 

between t = 0 and t = 1. This gives 

~(x). F~(x, /(x) +Oq~(x), /'(x) +Oq)'(x)) +~'(x) Fz(...) 40, 

i.e. q)'(x) Fz(... ) <~ -q)(x) Fy(...). (1) 

Let  5 be a number  > 0 such tha t  x o + 5 ~< ~, and write Ja = [Xo, Xo + b]. Then ~0(x)~> 0 
for xEJ~. 

Form the funct ion 
C(~) = sup ~'(x). 

xeJ6 

Clearly O<~(x)<(~C((~) for xEJ(~. (2) 

P u t  (5~ = 1/v and select, for every v >~Vo, x~ EJ~ such tha t  

~'(x~) > (1 - ~ )  C(5~) >0 .  

g'(x~) >/'(x~) implies lim g'(x~) >~/'(Xo). 
v--> r162 
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B u t  lira g'(x) =/'(Xo). 
x.-.~xo 

Hence  lira g' (x~) = / '  (x0). 
v---> o r  

P u t  x = x ,  in (1). 
/ ' (x~)</ ' (x~)+O~'(x , )<g(x~) .  

~.~e see t ha t  P _ _ ~  P /'(x,.) + 0 ~  (x,) / (x0) >0. 

F r o m  the condi t ions on F i t  follows t ha t  

F,(x~, /(x~) +O~(x~), /'(x~) +O~'(x~)) ~ o: > 0 

and IF~(...)]<K for v~v~. 

Here  ~ and  K are cons tants  i ndependen t  of v. 
(1) can now be wr i t t en  (for r>~ra) 

This implies  t h a t  

for v ~ r  1 

Lef t  m e m b e r  

R igh t  m e m b e r  

Hence  

and  we have  

Bu t  this  gives a con t rad ic t ion  if v - - > ~ .  
The  case g(~) </(~) can be t r ea t ed  analogously,  and  so the  proof  is complete.  

0 <~'(x~) Fz(...) < ~(x~) F,(...). 

[~'(x,)[ [F~(...)[ <]~(x,)l fF,(...)l, 
>(1 c~,) C(d~) ~. 

< ~ C ( ~ ) K  (see (2)). 

(1 -,~) C((~)~ <~,C(~) K 

4. Examination of  functions which minimize the functional on every interval 

I n  this  sect ion we shall  examine  more closely the  connect ion be tween the  mini- 
miza t ion  p rob lem and  the  dif ferent ia l  equa t ion  

dF(x,/(x),/'(x)) F~(x,/(x), fl(x)) = 0 
dx 

der ived  in the  in t roduct ion .  The ma in  resul ts  on this sub jec t  are the  Theorems 8 
and  9.( 1 ) 

Le t  us first  s ta te  the  condi t ions on F(x, y, z). We shall assume tha t  the  condi t ions 1 
and  2, given in sect ion 3 (before Theorem 5) hold th roughou t  section 4, bu t  we mus t  
replace [Xl,Xe] b y  the  in te rva l  considered in each case. L a t e r  on, we shall  impose 
fur ther  condi t ions  on F .  

Suppose  t ha t  the  f u n c t i o n / ( x )  is defined on the in te rva l  I and  let  ~ x < ~ f i  be a 
compac t  sub in te rva l  of I .  

(1) See also the Theorems 5 and 6 of section 3. 
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Definition: If  i t  is t rue,  for eve ry  such in te rva l  [a,fl] (inclusive of I if I is compact )  
t h a t  /(x) is a minimiz ing  funct ion for o~<~x<~fl and  assigned b o u n d a r y  values  /(a)  
and  /(fi), t hen  /(x) is said to minimize  the  funct ional  in the absolute sense on the  
in te rva l  I .  The f u n c t i o n / ( x )  is said to  be a minimal in the absolute sense on I .  This 
will be a b b r e v i a t e d  a.s. minimal in the  sequel. 

L e m m a  4: Let I be a compact interval and suppose that / (x)  is absolutely continuous 
on I .  Denote by E the subset of I where/ '(x) exists, including endpoints o / 1  i / the  ap- 
propriate one-sided derivatives exist. Then 

s u p  F ( x ,  / ( z ) ,  / ' (x) )  = e s s  s u p  r ( x , / ( x ) , / ' ( x ) )  
x~E xEE 

in the sense that i /one  member is finite, then so is the other and they are equal. 

Proof: Let  x 0 be a po in t  of 1 such t h a t / ' ( x o )  exists  and  let  I s be a sub in te rva l  of I 
conta in ing x 0. Then i t  is t rue,  for eve ry  (~>0, t h a t / ' ( x )  > / ' (x0)-c~ on a subset  of 11 
of posi t ive  measure.  Similar ly ,  /'(x)<f'(Xo)+(5 holds on a subset  of 11 of posi t ive  
measure .  

F r o m  this,  and  f rom the condi t ions on F(x,y ,  z), i t  follows easi ly  t h a t  

e s s  s u p  F(x,/(x),/'(x)) >~ F(x o,/(x o)/'(Xo)), 
XE[ l fl E 

and  the  res t  of the  proof  is obvious.  

Remark: I t  follows f rom this  l emma t h a t  our previous  def ini t ion of H(f) is equi- 
va len t  to the  def ini t ion 

H(/) = e s s  s u p  F ( x , / ( x ) ,  l'(x)). 
xEE 

I t  also follows tha t ,  in the  def ini t ion of H(/), we can exclude the endp0ints  of I f rom 
E wi thou t  changing the  funct ional  in a n y  way.  Therefore,  the  condi t ions a) and  c) 
in Theorem 1 m a y  be weakened  into 

a ' )  /'(x) is cont inuous  for x 1 < x < x  2 

and  

C') F ( f ( x ) , / ' ( x ) ) - - M  f o r  x i < x < x  2. 

Let  us now consider the  min imiza t ion  p rob lem on the in te rva l  x 1 ~ x  ~ x  2 wi th  
the  b o u n d a r y  values  Yl and  Y2, respect ively .  Le t  us use the  no t a t i on  

M (xl, x2; Yl, Y2) = inf H (/). 

W e  shall  need the  following es t imates :  

L e m m a  5: Let L be the straight line between (xl, Yl) and (x 2, Y2). 

Put  t = y ~ - y l  
Z 2 - - X  1 

Then rain F(x, y, t) <~ M(x  1, x~; Yl, Y2) <~ m a x  F(x, y, t). 
(x,y)eL (X,y)eL 
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Proo/: The right inequali ty is obvious. Let  l(x) be the admissible linear function 
and let re(x) be a different admissible function. Now the left inequali ty is proved in 
the same way  as Theorem 5. We only have to substi tute l(x) fo r / (x )  and re(x) for 
h(x). This completes the proof. 

Lemma 6: Suppose that x~-->Xo, ~=-->Xo, x ~ < ~  /or all n, yn-~yo, ~n-->yo and 
(~7~-Yn)/(~ x~)->z o. (0/ course, F(x,y,z) must be de/ined and satis/y its conditions 
on an interval containing all the points xo, {x~}~ and {~}~.)  Then 

lim M(x,,  ~,; y~, ~n) = F(x0, Y0' %)" 
n - - ~  

Proo/: This is an immediate  consequence of the preceding lemma and the cont inui ty  
of F(x,y,z). 

Lemma 7: Suppose that /(x) is a minimizing /unction on xl<~x~x z. (Boundary 
values Yl and Y2. ) Suppose/urther that x I ~ ~ < fi ~ x 2. Then 

M(zc,fl; /(~), /(fl)) <~M(xl,x2; Yl,Y2). 

Proo/: M(g, fl; /(~), /(~)) ~H(/; ~,fl) ~H(/; xi,x2) =M(xa,x2; Yl,Y2), where ' the  mean- 
ing of the notat ions is obvious. 

Now we must  introduce a new condition on F(x, y, z), and this condition is assumed 
to hold in the rest of section 4: 

3) limR~l_~r F(x,y,z)= + ~ for every fixed x and y. 

As is easily seen, using the conditions 1 and 2 also, this means tha t  

lim ( inf F(x, y, z))= + 
lYI<~K 

for every compact  interval [u,fl] (where F is defined) and for every K >0 .  

Theorem 7: I / / ( x )  is an a.s. minimal on an interval containing x o in its interior, 
then/'(Xo) exists. 

Proo/: Let  I be a compact  interval with x 0 in its interior such tha t / (x )  is an a.s. 
minimal on I. T h e n / ( x )  and F(x, /(x), /'(x)) are bounded on I .  But  then it follows 
t h a t / ' ( x )  is also bounded  on I .  Let  zr be the greatest and fi the smallest of the four 
derivates of / (x)  at  x = x  0. Then zr and fi are finite. Clearly, there exist sequences {p,} 
and {q~} such tha t  

p~ < x o < q~, q n - p ~ - ~  0 

and /(q.) - /(P-)_+~. 
q, - Pn 

Of course, corresponding sequences {%}, {s,} exist for ft. 
Assume now tha t  ~>f l  and let ? be any  number  such tha t  ~>7>fl.  As is easily 

seen, there mus t  exist sequences {tn}, {u,} such tha t  t~<xo<U,, u~-tn--+O and 
[ / ( u n ) - / ( t , ) ] / ( u , - Q )  = ? .  According to Lemma 6 we have 

lira M (pn, qn; /(P.), /(q.) ) = F ( x o , / ( X o ) ,  ~), 
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lim M (rn, s~; /(rn), /(sn) ) = F(xo, /(Xo), fl), 
n--->oo 

and lim M (t,, u,; /(t,), /(u~) ) = F ( x  o,/(Xo), ~). 
n--> ~ 

Now there exist arbitrari ly great  numbers  nl, n2, n a such tha t  (t~,,unl) c (rn~,s~,) c 
(P~0, qn~). 

Applicat ion of Lemma 7 now gives F(xo, /(Xo) , ~) ~ F(xo, /(Xo), fl) ~ F(x  o,/(xo), a). 
But  the inclusion relations can also be chosen in the opposite way, which gives 

F(Xo, /(Xo), ~) >~ F(Xo, /(Xo), fl) >~ F(xo, /(xo), ~). 

Hence these three numbers  are equal. But  this contradicts  our assumption tha t  

Consequently ~ =fi which means tha t / ' (xo)  exists. 

Remark: I f / ( x )  is an a.s. minimal on the interval x I ~X~'~Z2, then it follows (with 
a few modifications in the proof) tha t  the one-sided derivatives in question exist at  
x 1 and x 2. 

Lemma 8: I / / ( x )  is an a.s. minimal  on an open interval containing x o and/ ' (xo)  =0,  
then/ ' (x)  is continuous at x o. 

Proo]: Lemma 6 gives 

l i m M ( x o - l , x o §  O) 

and, since / is an a.s. minimal, we get  

lira HI/ ;  x o -  1 , x  o + 1)  = F(xo '/(Xo), O) 
n--+oo \ n n /  

f rom which the assertion follows. 

Remark: This result is obviously true also for an end:point  of an interval. 

Theorem 8: To our previous conditions on F(x ,y , z )  we add the /ollowing: Fx, Fy 
and F z exist and are continuous/or all x under consideration and all y, z. 

Suppose now that / (x)  is an a.s. min imal  on an interval which contains x o in its in- 
terior, and suppose/ '(xo) ~:0. 

Then 

1) /(x) E C 2 on an open interval I containing x o 
2) F(x,  /(x), / '(x)) =constant on I .  

(Hence  dF(x'/(x) ' / ' (x))-Odx on I . )  

Proo]: Our method  of proof will be the following: We construct  two solutions of 
the differential equat ion F ( x , y , y ' ) = c o n s t a n t ,  the first of which is equal to /(x) at  
x o and at  some x' > x  0 and the second is equal to / (x )  at  x o and at some x" < x  0. Then, 
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using Theorem 6, we prove t h a t / ( x )  and these two solutions are identical. We shall 
confine the discussion to the case /'(Xo)>0, since the other case is analogous. 

Let  us introduce the notat ions Y0 =/(Xo), zo =/'(xo), Mo = F(xo, Yo, %) and 
~F(x,y,z,M) ~ F(x,y,z) M. Then q~(xo,Yo, zo, Mo) = 0  and 

W'~(xo,Yo, Zo, Mo)=F~(xo, Yo, Zo)>O. 

Hence the equation 1F(x, y, z, M ) = 0  can be used to define z as a function 
z-OP(x,y,M) on the set R in x yM-space, defined by  the inequalities Ix x 0 ~<5, 
l y - yo l  <~5 and I M - M o I ~ < 5 ,  for some 5 > 0 .  

We may  assume tha t  we have, for . (x,y,M)ER and for some 51 >0 ,  

0 <% -51  <~(P(x,y,M) <~z o +51. 

We shall also assume tha t  /(x) is an a.s. minimal on [X-Xol <5. The function 
(I)(x, y, M) is cont inuously differentiable on R, and we have 

Hence 

~x F~' By Fz and - ~M F~" 

~x ~ 1 and ~<C 2 on R. 

Let  us consider the differential equation y' =dP(x,y,M) together with the initial 
value y(xo)-Yo- Here the parameter  M is assumed to satisfy I M - M o l  ~ .  

I t  follows from Picard 's  theorem tha t  there exists a unique solution for I x - x 0 ] ~ 5~, 
and 52 is independent  of M. Let  us denote the solution by  y(x, M). I t  is also true tha t  
for every Xl, such tha t  Ix1 x0] <5~, the solution y(Xl,M ) depends continuously on 
M. This is proved by  a s tandard  argument .  (Cf. [2], pp. 46, 65, 70.) If  ] x - x 0 l  ~3  ~ 5~, 
then, clearly, ]y(x,M) Y0] ~K3, where K=zo+51. If  f l > 0  is small enough, then 
there is a 7 > 0  (but 3<52) such tha t  the inequalities Ix-x01 <7,  lY-Y0] ~<KT, 
imply  tha t  

I CP(x,y, Mo+5) ~Zo+t~ 
and [ (I)(x~y,M o -5)  <~z o-ft.  

(For d) is continuous and ~ / ~ M  > 0  on R.) This gives the inequalities 

y(x, M o + 8) ~ Yo + (% +~) (x - xo) 

and y(x, M o-5)  ~ Yo + (%-  fl) (x -xo), 
valid for x 0 ~ x ~< x o + 3. 

Fix numbers  fl and 3 having the above properties and, in addition, satisfying the 
condition 

Yo + (Zo fi) 3 </(x o + 3) < Yo + (% + fi) 3. 
Then we have 

y(x o +'v, M o - (~) </(x o + 7) < y(x o + % Mo + (~). 

Since y(x o + T, M) depends continuously on M, there is a value M* such tha t  

y(x o + T,M*) =/(x  0 +3). 
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B u t / ( x )  is an  a.s. min imal  and  now it follows from Theorem 6 t h a t / ( x )  =y(x ,M*)  
for Xo <~X<~Xo+T. 

I n  a similar way one can f ind number s  T' and  M** and  prove tha t / (x )  =y(x,M**)  
for x o - T '  ~<x ~ x  o. 

Hence /'(Xo) = r Y0, Mo) = (I)(x0, Y0, M*) = O(x 0, Yo, M**), 

which gives us M o = M* = M**. Consequent ly/ ' (x)  = �9 (x,/(x), Mo) for x o - 3' ~< x ~< x o + 3. 
This means  tha t  F(x , / ( x ) ,  ] ' ( x ) ) = M  o for the same values of x, a nd  the rest of the 

proof is obvious. 

Remark: As is easily seen, the theorem continues to hold (but  with obvious modi- 
fications) in the case when x 0 is an  end-poin t  of an  interval ,  where / (x )  is an  a.s. 
minimal .  

Theorem 9: Let F(x ,y , z )  satis/y the same conditions as in the previous theorem. I /  
/(x) is an a.s. min imal  on the interval I ,  then: 

1) /(x) eC l on I 
2) the di//erential equation 

dF(x , / (x ) , / ' ( x ) )  Fz(x , / (x) , / ' (x) )  = 0 
dx 

is satis/ied on I in the/ollowing sense: The second/actor is well-de/ined on I and i/  it 
is di//erent /rom zero at xo, then the/ irst /actor exists and is zero in a neighbourhood o/ x o. 

Proo/: The theorem is a consequence of Theorem 7, Lemma 8 and  Theorem 8. 

Remark: As is shown by  Example  6 in section 5, the derivat ives /"(x) and  
dF(x , / ( x ) , / ' ( x ) ) / dx  need not  exist a t  points  where ] ' (x)=0.  

Corollary: Under the present conditions on F(x ,y , z ) ,  suppose that / (x )  is a unique 
min imiz ing /unc t ion  on x 1 <~ x <~ x 2. Then 

/ (x )EC 1 on [x D x2] and F(x,  /(x), / '(x)) =constant on [x 1, x2]. 

Proo/: Obviously, / (x)  is an  a.s. min ima l  on [Xl, x2]. Hence, by  the theorem,/ (x)  E C 1. 
If  it  were t rue tha t  F(xo,/(x0) ,/ '(xo) ) <H( / )  for some x 0, then  we could alter /(x) 
slightly in  a neighbourhood of x 0 wi thout  increasing the value of H(/). B u t  this con- 
t radicts  the uniqueness,  and  hence we have F(x,  /(x), / '@))=cons tant .  (Compare 
Theorem 1 and  Theorem 6.) 

I n  the theorems 5 and  6, the condi t ion t h a t / ( x )  is monotonic  plays an  impor t an t  
role. If we impose a suitable extra condit ion on F(x ,y , z ) ,  then  every a.s. min imal  
mus t  be monotonic:  

Theorem 10: Suppose that F(x,  y, z) satis/ies all the conditions in Theorem 8 together 
with the extra condition that ~F/~x  does not change s ign /or  x E I and any y,z.  I / n o w  
/(x) is an a.s. minimal  on the interval I ,  t hen / (x )  is monotonic on I .  ( B u t / ( x )  need 
not be strictly monotonic; compare Example  3 in section 5.) 

Proo/: According to Theorem 9 we have /(x) ECI(I). Assume, for example, tha t  
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there  exis t  x 1 and  x 2 on I such t h a t  / ' ( X l ) > 0  and  / ' (x2)<0.  Assume also Xl<X 2. 
Obviously ,  there  exis t  x a and  x 4 such t h a t  x 1 ~< x 3 < x 4 ~< x2,/(x3) =/ (x4) , / ' (x3)  > 0 and  
/'(x4) < 0 .  Consider the  min imiza t ion  p rob lem on x s ~<x ~<x 4. I f  g(x) .~/(xs), t hen  g(x) is 
admiss ib le  and,  since F x does no t  change sign, we have  H(g) = m a x  (F(xs,/(x3),  0), 
F(x 4,/(x4), 0)). Assume H(g) = F(xs,/(Xs) , 0). Bu t  since ]'(x3) > 0 we have  H(/) > H(g) 
which is impossible,  s i nce / (x )  is an  a.s. minimal .  H e n c e / ' ( x )  does no t  change sign, 
which completes  the  proof.  

5.  E x a m p l e s  

I n  this  section, we wan t  to  show a few appl ica t ions  of some of the  theorems a l r eady  
given. W e  also m o t i v a t e  b y  means  of examples  the  in t roduc t ion  of condi t ion  3 and  
the  fo rmula t ion  of Theorem 9. 

Example 1A: Le t  us use Theorem 4 to solve the  min imiza t ion  p rob lem if 

1 
F , _ 2+~,~  x and  ( y , y ) - y  y , 

W e h a v e  ~PM(y)=l/M----y 2, and  

f l o ' V ' d t  
s  = VM - t 2 

is wel l -def ined for M / >  �89 F o r  such values  of M,  we have  s  = arcs in  ( 1 / l / ~ ) .  
To f ind  M0, we m u s t  de t e rmine  the  smal les t  M>~ �89 such t h a t  

1 ~ g  
arcsin ~ - ~  ~ .  

This gives us M . = I .  Since s  there  is a unique  minimiz ing  funct ion.  
I n  o rder  to  f ind  it ,  we use Theorem 3 and  form 

g~(y) = ~ = arcs in  y. 

Since X l = 0  , the  minimiz ing  func t ion  is the  inverse of rp(y), n a m e l y  /o(x)=sin x. 

Example 1 B: This will i l lus t ra te  the  ease in Theorem 4 where there  is no unique 
minimiz ing  funct ion.  

Choose F(y, y')  = y ,4 _ 16y2, 

X l = - 2 ,  y x = - l ,  x 2 = 2  and  y 2 = l .  

W r i t e  y'4--16y2 = M  which gives 
4 

= Vi y 2 + M .  
F o r  the  exis tence of 

s  4 dt 
�9 V1-6  7 M  

i t  is c lear ly  necessary  a n d  sufficient  t h a t  M~> 0. 
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W e  need  no t  eva lua t e  the  in tegra l  F~(M), since 

(1 dt 
s = J - 1 2 ~ t ] -  < x~ -  xl. 

W e  see t h a t  M 0 = 0 and  t h a t  the re  is no un ique  minimiz ing  funct ion.  
Le t  us  de te rmine  a minimiz ing  funct ion!  F o r m  the  func t ion  

= ( Y  dt 
g(Y) J o 2v l 

{Compare Theorem 3.) W e  ge t  

for - - l ~ y ~ < l .  

{1/y for y ~> 0, 

g(Y)= - V ~ -  I for  y~<O. 

The  inverse funct ion  is ](x) = x  Ix].  I f  we def ine / (x)  as + 1 for x > 1 and  - 1 for x < - 1, 
then  we ge t  a minimizing funct ion.  The  funct ion  h(x)= �88 Ix[ (for - 2  ~<x ~< 2) is also 
a minimizing funct ion,  b u t  in con t ras t  to  the  former  one, i t  is con t inuous ly  dif- 
ferent iable .  

W e  have  Mo=maxy,<~<v~ F(y,O) in accordance  wi th  Theorem 4. 

Example 2: Let  us use the  rules g iven  in sect ion 2 B  to de te rmine  the  a t t a i na b l e  
cone if ( y , y )  = y _ y4, Xo = 0, Yo = 1 a n d  M = 0. F J  1~ t 2 

We have  O0(y ) =y2 a n d  hence 

q(Y) = x ~  J ~t/~,~ - .'~t t 2 1 - Y-" 

Since l im~_~ ~(y) = 1 we see t h a t  the  p resen t  case is D2 and  t h a t  X = 1. The inverse  
of x =~0(y) = 1 - 1/y is y = 1/(1 - x ) .  Therefore,  

1 for 0 ~ x < l ,  
h(x) = 1 -  x 

+ ~ for  x >/1. 

I n  o rder  to  de te rmine  g(x), we form the  funct ion  

~(Y)=X~ -~F~(t) j~t2 y 1. 

Clearly,  th is  corresponds to  the  case B. The inverse of x =us = 1/y - 1 is y = 1/(1 +x ) .  
Hence  g(x) = 1/(1 +x )  for al l  x ~>0. 

F ' = y~ + y'2 Example 3: P u t  (y,y) and  define the  func t ion /o(x)  as 
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I 1 

/o(X) = ~ sin x 

2Z 
for x ~  2 '  

7g< x for -- _<~_ 
" ~ 2  ~ 

2~ 
- 1 for x < - - 

2" 

Clearly, /o(x)EC 1 and/o(X) is monotonic  on ~ < x < ~ .  Fur ther ,  F(/o(X), /0 (x ) )= l  
for all x. Now it follows from Theorem 5 that/o(X) is an  a.s. min imal  on - c~ < x  < c~. 
Observe tha t  [o'(x) does no t  exist a t  x = + ~ / 2 .  Compare Example  5. 

Example 4: This example shows tha t  the condit ion 3 cannot  be omi t ted  in Theorem 
7. I t  will also give an  idea of the case where F is independent  of y. Let  

F(x, y, Y') = x~ + y,4 
y,4 + 1" 

The condit ions 1 and  2 are satisfied, bu t  not  condit ion 3. 

P u t  F(x, y, y') = 1. 

4 

This gives y, = + r 1 - x ~ 
- -  X 2 

Form the pr imi t ive  func t ion  
4 

VItl 
I t  is easy to see tha t  [(x) is a un ique  minimizing funct ion between ( - 1 , / ( - 1 ) )  and  
(1,/(1)). Hence , / (x )  is an  a.s. minimal .  Bu t  ['(0) is not  finite. 

Example 8: This is a con t inua t ion  of Example  3. We now want  to determine all 
a.s. minimals  for F(y,y ' )=g2 +y,2. 

Assume tha t  /(x) is an  a.s. min imal  on an  open in terval  I .  I t  follows from the 
theorems 9 and  10 tha t  ](x)ECI(I) and  t h a t / ( x )  is monotonic.  

Clearly / (x ) - - cons t an t  is possible. Bu t  assume now tha t  we have ['(xl)=t=0 for 
some x 1 E I .  

Let  11 be the largest open in terval  conta ining x 1 where ['(x)=t=0. Then  [(x)E Ce(I1) 
and  [(x) 2 + ['(x) ~ = cons tant  on 11. Different iat ion gives /"(x) +/(x) = 0. Hence there 
exist A and  B such t h a t / ( x )  = A sin (x + B) on 11. Since/(x)  is monotonic,  i t  follows 
tha t  11 is bounded,  say I i= (~ , f l ) .  Now we assert tha t  ['(x) = 0  on I - I  1 (if it  is no t  
empty) .  If this were no t  so, then  we would have a different open in terva l  12 = (y,d) 
with the same properties as 11. Let  us assume tha t  fi ~<~, and  t h a t / ' ( x )  > 0  on 11 U 12. 

We have ] '( f l)=['() ,)-0.  Since [(x) is a s ine-function on I1, it  follows tha t / ( f l )  >0 .  
F r o m  the monotonie i ty  we conclude tha t  /(y)>~[(~). Hence / ( x )=C sin ( x+D)  has  
the properties [()p) >0 ,  ['(~,) = 0  and  ]'(x) > 0  for y < x  <d. Bu t  this is clearly impossible. 
Consequen t ly / ' (x )  = 0  on I - 1 1 .  This leads to the following result: There exist n u m -  
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bets p and  q such t h a t / ( x )  =p/o(x § q) for all x E I, where/o(X) is the funct ion  intro- 
duced in  Example  3. 

Hence we have found tha t  the class o/a.s, minimals /or F(y,y') =y2 +y,2 is the class 
o//unctions o/the/orm p/o(X § q) where p and q are arbitrary real numbers, and constant 
/unctions (which cannot  be wr i t ten  as p/o(x + q) if I is the entire real axis). 

Example 6: This example shows tha t  the derivat ives dF(x,/(x),/'(x))/dx and/" (x)  
in  Theorem 9 need no t  exist for all x. 

Choose F(x ,y ,y ' )=y ,2_x  and  consider the func t ion  

0 for x~<0, 

](x)= w ~j2 for x>~0. 

Then  F(x,/(x),/'(x)) = I [x[ for x ~<0, 
[ 0 for x>~0. 

We assert t h a t / ( x )  is an  a.s. min imal  on - ~ < x < ~ .  To prove that ,  consider the 
min imiza t ion  problem on x I ~< x ~< x 2. If  Xl ~> 0 then  i t  follows from Theorem 5 t ha t  
/(x) is a minimizing funct ion.  

If x 1 < 0, then  we have H(/)= Ix1/ and  since every admissible funct ion  mus t  pass 
through the po in t  (Xl,0), it  follows tha t  inf~ H(g)>~F(Xl,0,O ) = I x~l. Hence ](x) is 
an a.s. minimal .  Bu t  the derivatives dF(...)/dx and / " (x )  do no t  exist a t  x=O. 

Therefore, in  Theorem 9, we can not assert t ha t  the differentiaI equat ion  
dF(...)/dx. F~(...)=0 is satisfied in the classical sense. 
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I n  a coming paper  we shall discuss some quest ions t ha t  have been left open here. 
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