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1. Introduction 

A subset S of a Banach algebra B is said to generate B if the smallest closed 
subalgebra of B which contains S is the whole of B. S is then said to be a 
system of generators for B. The object of this paper  is to find systems of gen- 
erators for LI(R) and a class of related algebras. 

Let  U be an arbi t rary compact topological space, and C(U)the algebra of all 
complex-valued continuous functions on U with the supremum norm. Then it 
is easy to see tha t  the problem of finding finite systems of generators for C(U) 
is equivalent to the difficult problem of uniform polynomial approximation on 
subsets of complex n-space, which is completely solved only for n = 1. See Mergeljan 
[10] and Wermer [15]. For a positive result on the number  of generators, see 
however Browder [4]. 

I f  the problem is limited to tha t  of finding systems of real-valued generators 
of C(U) it is much simpler and completely solved by the Stone-Weierstrass 
theorem (see e.g. Loomis [9], p. 9), which can be stated as follows. 

Theorem A. A subset S o /  C(U), which consists o[ real-valued/unctions and con- 
tains unity, generates C(U) i~ and only i/ it separates the points o~ U. 

:Now let U be a compact manifold, differentiable of order m and c m ( u ) t h e  
algebra of all m times continuously differentiable, complex-valued functions on 
U, with the topology of uniform convergence of the functions together with their 
first m derivatives. For this algebra the problem of finding real-valued generators 
was solved by L. Nachbin [11]. 

Theorem B. A subset S o~ C'~( U), which consists o/ real-valued /unctions and con- 
tains unity, generates C'~(U) i~ and only i / i t  separates the points o/ U, and/or every 
point xEU and every direction a, tangent to U at x, there is an / E S  such that 
d/(x)/~40. 

We shall consider the cases when U is the unit circle, T, or the real line, R. 
Tha t  R is not compact does not make any  important  difference. We shall s tudy 
functions, /, which have Fourier transforms, ], defined on the group of integers, 
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Z, or on R, respectively. For  p ~ 0 we define function spaces, .B,(T) and B~ (R), 
as the sets of all integrablc functions such tha t  the norms 

II / IIv = ( (1-+-]r~ I t< , ,#p (~ .1) 
. .oo 

and 11111, = I/(u) I:d*' 

are finite, respectively. This proper ty  is equivalent  to a certain eontinuit.y prop- 
er ty  of / or its derivatives, and therefore these spaces lie, in a sense, between 
C and C =. We shall show tha t  for p > 1 B, (T )and  Bp(R)are Banaeh algebras, 
and then s tudy the problem of finding systems of real-valued generators  for 
these algebras. 

If  S is a point-separat ing subset of one of these algebras, and Es is the set 
where the first derivatives of all functions in S exist and equal zero, the result 
is, generally speaking, tha t  the size of Es is decisive for whether or not  S is a 
system of generators.  Moreover, the larger one chooses p, the smaller Es has to  
be, until for p : > 3  it, must  be empty,  for S to generate the algebra. One can 
compare this to Theorem A where the size of E~ is unimportant ,  and Theorem 
B, where E s mus t  be empty.  See Theorems 3 . 4 ,  7, 9, 10. 

I t  was proved by  Katznelson and Rudin  [S] tha t  the Stone-Weiers t rass  prop- 
er ty  does not hold for the group algebra LI(G) of a locally compact, ahelian 
group whose dual group is not  tolal ly discormee~ed. As corollaries to Theorems 
3 an<t 4 we obtain more precise results on svstems of real-valued generators 
for LI(Z) an<t LI(R), 02" equivalently,  for the dual algebras A(T) aud A(R) of 
all functions with absolutely convergent  Fourier  transforms. See Theorems 5 
and 6. 

The above-ment ioned material  occupies Sections 3 and 4. Section 2 contains 
prel iminary material,  no tably  a previously unpublished uniqueness theorem of 
Carleson. See Theorem I. The results in this secti<m are not  needed in the rest of 
the paper, but  serve to characterize certain set.~ of uniqueness which will be 
needed. 

I was introduced to the problems t reated here by Professor Lennar t  Carlesou, 
and his generous advice and criticism have been a eont.inual source of inspira- 
tion, and have led to numerous improvements.  For  all t.his, and for permission 
to inch'.de the unpublished result ment ioned above, I wish to express m y  deep 
grati tude.  

2. Sets of  uniqueness for 121 v (T) and B1 ~ (R)= 0 < p < 1 

If  a function c(x) belongs to B, .v(T) or J22 v(R), O ~ p <  1, it is known tha t  
if c(x) is suitably modified on a set of measure zero 

c(x)- -lim ~ ~0') e~"*, 
n - - - ~  t~ 
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] A 

or c(x)=lim - ( d(u) e*UXdu, 
A'r 2J"~ 3 - . 4  

except on a set of p-capaci ty  zero (logarithmic capacity for p - 0 ) .  This was 
proved for 7' by Bcurling E2], Salem-Zygmund [14], and Broman [3] ~nd the proof 
in [31 easily extends to R. ]n the following we assume that  c(x) is thus modified. 
We make the following definition. 

Definition 1. A set E in T or R is called a set o/ uniqueness /or B, p(T) or 
BI-~ (R), i/ every /unction, c(x), in B1 ~ (T) or B I - ,  (R), such that c(x)=0 /or all x 
not in E, must be identicaUy zero. 

These sets of uniqueness arc characterized by the following theorem, which is 
due to Ahlfors and Beurling ([1], p. 124) for p:  0, and to Carleson in the 
general case. As Carleson's result has not been published we include its proof 
here. 

We denote p-capaci ty  (capacity with respect to the kernel r v) by Cp and 
logarithmic capacity by C O . For definitions and properties of capacities we refer 
to Frostman [7] and Carleson [5]. 

Theorem I. A Borel subset E o/the unit circle T is a set o/uniqueness/or B1 p (T), 
0 < p < l, i / and  only i / C ,  (T - E) = Cz, (T). 

A Borel .subset E o/the real line R is a set o/ uniqueness/or B1 , (R) i / and  only 
i /Cp ( 1 -  E) = Cp (I ) /or  every interval 1. 

Proo/. We give the proof only for R and for p > 0 .  The proof for T is simi- 
lar. 

Let  E be a set such that  C ~ ( I - E ) =  C~(I) For every I.  (~re use the notation 
A B for A N C(B).) Choose an arbi t rary int~wval I .  

We can choose an increasing sequence {F~}~ of closed subsets of l - - E ,  such 
that  

lim C, (Fn) = C, ( I -  E) = C~ (I). 
7Z-~ Oo 

For each F~ there is a positive unit measure /~,, the equilibrium measure, such 
tha t  the corresponding potential, 

f d~,~ (t) U~(x)= ]x -t-]~-- V.=I/C~(F,,).xeF,,, 

except possibly on ~ set of p-capaci ty zero (see Frostman [7], p. 56). 
Put  f i~(u)--j 'e i~'~d/~(x). Then, if I 'arseval 's  formula is applied to evaluate 

the energy integral of fin (see Carleson [5], p. 20), we find 

] l - p  d u - - C o n s t .  Un(x)d#n(x)-Const. V , < ~ .  (2.l) 

Now let c(x) 6Bl_p(R) be such that  

l imcA(X)=l im -1 J(-A Ad(u) e i~du~:0,  x~E .  
A ---~ ~<~ A -..r 2d-g 
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By the Schwarz inequality 

f\ ( :  du < + 
Lco I 1': 

because of (1.2) and (2.1). Thus, for all n, by Parseval's formula, 

f;. 1; fe 1 6(u) fin (u) du = lira ~(u) ft,, (u) du = lira ~ (x) d/t~ (x). 
2~r A-~co ~ - A  A-,co 

For each Fn we can choose a subset F~ such that  limA-+0 c~ (x)= 0 uniformly on 
F~, and such that  t h e  restriction, /z~, of /t~ to F n - F ~  has arbitrarily small 
energy integral. In fact, this integral is less than V. "/~n ( F , -  F~), which can be 
made small by Egoroff's theorem. Using this and applying the Schwarz ine- 
quality again we obtain 

.4--~ oo A - - ~  

< ~  [~(u)fi'~(u)ldu<.Const. {Ia~(F~-F'~)}�89 

which can be made as small as we please. Thus 

f c o  ~(u)f~n(u)du=O, all n. 
j -co 

If the equilibrium measure for I is ~u, and the corresponding potential U, we 
then find by (2.1) and the Schwarz inequality 

I f[co au ) (f,,, (u ) - f,(u ) ) du J~ <- Const. f ( U,, (x) - U (x) ) (d~,, (x) - d~ (x) ) = 

=Const.  {fU,,dg,,+ f U d g - 2  fud~,,}=Const. {C,,~F,) C~(/)}" 

But  limn_~coC v (F,) = C v (I), and thus 

f /oo ~Cu) f~(u) du = o. 

As /x is the equilibrium measure for an interval, 

d u(x) = re(x) dx, 

and c(x)m(x)GL:, since m(x)EL ~. See PSlya-Szeg6 [12], p. 23. Thus, by Parse- 
val's formula 
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(x) re(x) dx = O. 

The same argument  can be applied to the function c(x)e ~zt for every t, so that  

f~r  c(x) re(x) e -txt dx = 0, all t. 

Hence c(xim(x)=O almost everywhere, and as re(x)>0 in I ,  c (x )=0  almost 
everywhere in I .  But  I is arbitrary,  and thus c(x)--O, which proves the suffi- 
ciency. 

To prove the necessity we assume that  the set E is such tha t  for a certain 
interval I, C~(I- E)< C~ (I). Then, by the eapacitabili ty theorem (see Choquet 
[6] or Carleson [5]), there is a closed subset F of E such tha t  we also have 
C~ ( I - - F )  < C~ (I). We let {F,}~ be an increasing sequence of closed sets, each 
consisting of finitely many  closed intervals, such tha t  I - F  = U ~ F , .  Again ~u, 
is the equilibrium measure for F,, and Un (x) the corresponding potential. Then 
U,(x )=Vn=I /C , (F , )  for all xEF~. In  the same way as in the proof of (2.1) 
we find 

The sequence {/tn}~ has a subsequence which converges weakly to a measure p 
with support  in I .  Then, if ~0 is an arbi t rary differentiable function with support  
contained in I - F ,  we find 

( d t , ! t ) =  f,#,(t) J l ~ - t l  ~ J l ~ - t l  ~ 

f f d~.,(t) (t) T ~ - l i m  rcf(x)dx ri- -Tvp 

= lim g., f ~(x)dx 1 f 

Hence 
. . . .  _1 

U ( x ) = j l x _ t  l" C , ( I - F )  

for almost all x in I - F ,  and because of the semicontinuity of the energy in- 
tegral 

fl u l l - i  o < oo. 

But  U(x) is not constant on the whole of I, for in tha t  case, if v is the 
equilibrium distribution for I and Y(x) the corresponding potential, we would 
obtain 
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. 1 ~ V(x)dp(x)= U(x)d~,(x):-C~(i_F ), 
C, (I) 

which is contrary to assumption. Thus U(x)4 1/C~(I- -F)  on a set of positive 
measure. 

Now let a(x) be a differentiable function with support in I, and let 

1 
c ( x ) = a ( X ) ( c p ( I -  F) U(x)). 

I t  is easy to prove that c(x)EBl p(R) (cf. p. 85 below), and clearly c(x)=O 
almost everywhere outside F. But since the complement of F is open it follows 
that limA-~ccCA(X)=0 everywhere outside F, and hence also outside E. 

If  a(x) is suitably chosen c(x)~0,  and we have proved Theorem I. 

Remark. We note that  the function c(x) constructed in the second part of the 
proof has the additional property that (1 + ] u l  1 v)~(u) is bounded. I t  is easy 
to prove that a similar construction can be made in the case p = 0 ,  and then 
(1 +lul)d(u) is bounded, a fact which will be of use later. 

From now on we only consider functions on R, although all results and proofs 
hold, with only small changes, for functions on T as well. 

We need a somewhat stronger uniquene~ property, which we define as follows. 

Definition 2. A subset E o/ R is called a strong set o/uniqueness /or B1 p (R) i/ 
every /unction,, c(x), in B1 p (R), such that c(x) ~ 0/or  almost all x not in E, must be 
identically zero. 

If E c R  we denote the characteristic function of E by )~E(x), and by E* we 
mean the set of all density points of E, i.e. all x ER such that 

1 (x+h 
lim Jz X (t)dt= 1. 

Theorem 2. A subset E o/ R is a strong set o/uniqueness/or B~ _p (R), 0 < p  < 1, i /  
and only i/ /or every in~rval I 

Cp (I - E*) ~ Cp (I). 

Proo/. The necessity follows from Theorem 1, and the well-known fact that  
for every interval I m ( 1 - E * ) = m ( I - E ) .  (See Saks [13], p. 128.) 

Now we let E be a set which satisfies the condition in the theorem. We 
denote the complement of E by F, and the complement of E* by F*, and we 
let c(x) e Bl ~ (R) be such that c(x) = limA-.~ c~ (x) = 0 almost everywhere on F. 

By assumption, for every point x in F* 

l imsup  1 f|~+~ ZF(t)dt>O. 
h--~ 2h Jz  h 
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I f  we define, for an a r b i t r a r y  pos i t ive  in teger  k, a set F~ b y  

F*  = x; l im sup ZF (t) dt > , 
h--)O x h 

i t  is clear t h a t  F * :  U ~F~.  Now let  I be an  a r b i t r a r y  in te rva l  and  K be any  
closed subse t  of I N F* for some k, and  let  /z be the  equ i l ib r ium measure  cor- 
responding  to  K.  I f  we can show t h a t  S c ( x ) d # ( x ) = 0  the  theorem will  follow 
in the  same way  as Theorem 1. 

Choose 5 > 0 .  F o r  every  x in K we can f ind a number  h~<(~ such t h a t  

. ~ -~Z~( t )d t>~2hJk .  Hence,  as K is compact ,  the re  is a f ini te  covering of K by  

in tervals ,  I j ,  such t h a t  m(Ij  N F)>~(1 /k )ml j .  I t  is easi ly seen t h a t  superf luous 
in te rva ls  can be removcd  so t h a t  no po in t  is con ta ined  in more  t h a n  two inter-  
vals.  Le t  {l j}[  be the  resul t ing covering,  and  assume t h a t  the  lef t  endpo in t s  of  
the  in te rva ls  form an increasing sequence.  

W e  now define a measure  v b y  v =  ~ j -1  j, where the  measures  vj a re  defined 
as follows. The in te rva ls  I~, I3, 15 . . . .  do no t  in tersect ,  and  corresponding to 
these we p u t  

#(I~)F)[j Z1inF (x) dx, j dvj (x) - m (Ij odd. 

Each  of the  remain ing  in te rva l s  can in tersec t  a t  mos t  two in terva ls ,  and  we 
p u t  

dvj (x) /a(Ij - I j_ l - Ij~ 1) 
~ -  m ( I j N F )  Zzjny(x)dx, j even.  

I t  follows from the  as sumpt ions  t h a t  S c(x)d~,(x)=O. One easily sees t h a t  the  
measures  v converge weak ly  to /~ as (~ tends  to  zero. W e  shall  see t h a t  this  
implies  S c(x) dp(x) = O. 

Choose e > 0 .  Then,  if the  number  A is chosen so large t h a t  

f, t ul' Pl (u) l du < ul>A 

and  if the  energy in tegra l  of a measure  /~ is deno ted  b y  J(/~), i t  follows a s  
before t h a t  

,f 2 
(c (x ) -cA (x))dF(x) Const.  ~" J (# ) .  

S imi la r ly  f (c(x) - cA (x))dr(x) 2<~ Const.  e" J(v).  

Now, because of the  weak convergence,  we can choose 5 so smal l  t h a t  

c ,  (x) dT,(x) - c .  (x) (x) < ~. 
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Thus, if we can prove tha t  J(~)~< Const. J (# )  independent ly  of the choice of ($, 
it will follow tha t  $ c(x) d#(x) = O. 

Let  the length of the interval  I j  be lj, and let the greatest  distance between 
a point  in I j  and  a point  in I~ be a w Then, clearly 

On the other  hand, 

j(~) = f fdu(x) d~(y) d~i (x) du, (y) <~ ~ n dxdy 
x -y l~"  t=1|=1 lil t Jli 

Thus,  it suffices to show t h a t  for all i and  j 

Ix--y[p ~ C~ a~. ~" 

Consider two intervals, I t  and  Ij, i <. j, and assume li ~ lj. Then either a~j < 3lj 
or a~j> 31~. I n  the first case 

l ~ d x ~  dy 1 ~  ~ dt 2 p 6 p 
- - j , ,  j , j  - -  dx ~ -  - <  g, gJ Iz-yl'<'z, gJJ,, J~,,~,,,~ll (1-p)l~ (1-p)a~" 

I f  a~j > 31j it follows tha t  I x - y ] >~ a~J3 for x E I~, y E Ij, and  we find t h a t  in this 
case 

dx ix_ylP<~a~, 

which proves Theorem 2. 

Remark. Theorems 1 and 2 imply  tha t  if a set E has the proper ty  tha t  for 
all I C ~ ( I - E * ) =  Cp (I), the same holds for E.  The converse s ta tement  is no t  
true, however. I n  fact,  let F~ be an  increasing sequence of closed sets contained 
in an  interval  I ,  and  assume t h a t  mF~ = 0  and lim~_~:r C~(Fn)= C~ (I). Such sets 
can be constructed.  Let  F = U ~Fn and E = I -  F .  Then  C~ ( I  - E)  = Cp (I), bu t  
E* = I and  hence C~ ( I  - E*) = 0. 

3. Generators in BI+~ (R), 0 < p <  1, and A(R) 

As we have a l ready remarked we formulate  our results for R, al though with 
minor changes they  hold also for T. Also, those results which we formulate  for 
sets of real-valued functions are easily seen to hold also f o r  sets which are 
closed under  complex conjugation.  

I t  is well known (see e.g. Beurling [2]), and easy to prove by  the Parseval  
formula, t ha t  for a funct ion / in Bx+v (R), O < p <  1, 
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where the constant depends only on p.  Thus we can renorm the space by putt ing 

I t  is then clear that  e.g. all square integrable functions which satisfy a 
H61der condition of order (1 + p ' ) / 2  for some p '  > p  are in Bi.p (R). 

By the Schwarz inequality we find 

M?x I/(u) ldu 

. +lu _O+lul'+')ll(u)l du <Const. llllb . 
(3.1) 

By means of this inequality it is easy to verify that  the norm satisfies the 
relation 

[]f~lll+p ~'~ Const. [[1 [[l+p ][~[[l+p, 
and hence BI+p(R) is a Banach algebra for O < p < l .  

For a subset S of such an algebra to generate the algebra it is clearly neces- 
sary tha t  the following two conditions hold. 

(3.2) For every couple (x, y) with x=~y there is an / in S such that/(x) :#/(y). 
(3.3) For every x there is an / in S such that/(x)=~O. 

Theorem 3. Let S={/~}~ be a subset o/ B~+p (R), 0 < p <  1, satis/ying (3.2) and 
(3.3). For S to generate B14p(R) it is necessary that every set o[ points xE R, where 
/or each i limh_,o ([t(x + h ) - / l ( x ) ) / h ) = 0  uni/ormly, be a strong set o/ uniqueness 
]or Bl-p (R). (See De/. 2). 

Proo/. We assume that  there is a set E where /l '(x)--0 uniformly for every 
i, and tha t  E is not a strong set of uniqueness for B I - ,  (R). Then there is a 
non-zero function, c(x), in Bl-p  (R), such that  c(x)=0 for almost all x not in E. 

We observe tha t  the space of bounded linear functionals on BI+~ (R) can be 
identified with the space of those tempered distributions, C, on R, whose Fourier 
transforms, r are functions which satisfy 

1 + lul  l + ' d u  < oo 

and then (C, /)  = O(u)~(u)du._ 

This is a consequence of the Schwarz inequality. 
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As the function c(x) above belongs to Bl ~ (R), we have 

i 4lup:- du< ..lulX-Pl (u)12du < 

Hence the function iud(u) is the Fourier transform of a bounded linear func- 
tional on Bl+p (R), which we denote by C 0. 

I f  / is a polynomial in elements of S it is now easy to see tha t  (Co , / )  =0 .  
In  fact, 

f ~  c . . . . .  e,U~- 1 <Oo,/>=.~iu~(u)t(u)du:-lim J e(u)l(u)~--du, 
because I e 'ua-  1 I / I h l -  21 sin 91 uhl/I h l ~< I u I, and the first integral is absolutely 
convergent. But  both ~ and t are in L 2, and thus by the Parseval formula 

f~" ~( i5/ (x+ (Co, / )  = lim 2:r h) -/(X)dx, 

which is equal to zero, because apar t  from a set of measure zero c(x) is dif- 
ferent from zero only in E, where / ' (x)=0 uniformly, since / depends on only 
finitely many  /~. 

As C0:~0 this proves that  S cannot generate Blqp(R). 

Remark. I t  is seen from the proof that  it is enough to assume about  E tha t  
there is a sequence {h,.)~, lim~_~ h , = 0 ,  such that  for all i 

lim (/~ (x ~ h~) -/~ (x))/h~ : 0 
hv-~O 

uniformly on E, or even 

lira (1/h~) [ (/~ (x + h,) - /~  (x))2dx = O. 
hv-~0 J E  

If this is compared to Theorem 4 below, it follows tha t  the size of such sets 
is not independent of the size of the set where /~(x)=0 in the ordinary sense. 

For a given set S of functions on R we denote by Es the set of all x ER 
such that  for every / in S /'(x) exists and equals zero. We denote the comple- 
ment  of Es by Fs. 

Theorem 4. Let S--  {/~}~ be a set o/ real-valued /unctions in Blip(R) ,  0 < p <  1, 
satis/ying (3.2) and (3.3). Then S generates BI-p (R) i/ E s i8 a strong set o/ uniqueness 
/or BI-~ (R) (see De/. 2), and i/ the moduli o/continuity, cot ((~), o/the /unctions /t 
satis/y wt (5) - ' '  O ( ( ~ ( 1 - p ) / 2 ) .  

Proo/. We assume that  S satisfies the conditions in the theorem. I t  is clearly 
no restriction to assume that  

II/,117- < (3.4) 
1 

oo 

and tha t  ~eo~(5) 2~ K~- 51' P, where lim K~ = 0. (3.5) 
1 5--~0 

We denote by Bs the closed subalgebra of BI~ p (R) generated by S. 
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By the R iemann-Lebesgue  l emma  lim . . . . .  /~ (x )=  0. Thus,  as x describes the 
ex tended  line, R, for every  N the N- tup le  FN(X)= {/t(X)}l N describes a closed 
curve,  FN, in N-dimensional  space, R N. We denote  the Eucl idean norm of FN(x) 
by ]FN(X)]. 

I f  ~(~) is a funct ion on R N which is defined and has continuous par t ia l  deri- 
va t ives  in a neighbourhood of I~N, and if qg(0)= 0, we shall see tha t  the func- 
t ion r is in Bs. In  fact ,  there  is a compac t  neighbourhood,  W, of FN 
where grad q~(~) is bounded,  and  hence there  is a (~>0 such tha t  for every  
~0EFN the ball ~ - ~ 0  ~< ~} is contained in W, and  then  if I~l--~0I ~< ~ 

[ ~(~1) - ~(~0) [ ~< Max [grad q~(~) [ [ ~1 - ~0 [" 
~e W ~.: 

I t  follows by  uniform cont inui ty  t h a t  there is ~n A > 0  such tha t  for [x[~>A 

I (FN(x))l Igrad I, 

and  tha t  there is an ~ > 0  such tha t  for all x and  [t[~< 

[q)(FN (x + t)) -- cf(FN (x)) ] ~ Max [grad ~(~)[  [FN (x + t) F~ (x)[. 
~ e w  

This  implies tha t  q~(FN)EBI~p (R). Fur thermore ,  by  a version of Wciers t rass '  
app rox ima t ion  theorem (see Whi tney  [16], p. 74), there is a sequence of poly- 
nomials,  {P~}, converging to q~ in CI(W), and  if the above inequalities arc 
appl ied  to the functions ~ P,, it follows tha t  q~EBs. 

For  every  posit ive integer,  n, we define a set Fs. ~, by  

Fs. ~ : (x; lim sup [/, (x + h )  -/, (x)[/[ hi > 1/n, some [, E S}. 
h--M) 

"then Fs - [,J ~ l Fs. ~. 
Now we choose a set Fs. ~, a compac t  in terval  I ,  and a funct ion 

g(x) :  f;~ck(t)dt, 

where k(t)= 0 for t r  N Fs. ,, [k(t)[ ~< 1, and ,[~r162 k(t)dt--- 0. I t  is clear t h a t  
g E B1 t v (R). We shall show tha t  g E Bs. 

In  v i r tue  of the above  a rgumen t  it suffices to show t h a t  for a given s > 0 ,  
we can choose an integer N and const ruct  a differentiable q so t h a t  

[[~ -- (])( FN) HI§ < E. 

For  every  point  x in I NFs .~  there is a funct ion /t and  an increasing (or 
decreasing) sequence, {h~}~ r such t h a t  l im,_~chv=0,  and  

[/,(x+h~)-/,(x)l>~[h~l/n, u = l , 2  . . . . .  

W e  fix a number  ~ > 0. B y  Vitali 's  covering theorem ([13], p. 109), applied to 
the  set  I N Fs. n, there is a finite sequence of non-intersect ing intervals,  Iv = (av, b,), 

= 1, 2 . . . .  , q, contained in the interior of I = (a, b), with the p rope r ty  t ha t  
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]/, (b,) - l, (a~)l >1 (b~- a,)/n, i = i(v), r = 1, 2 . . . .  q, 

q 

m(I  n F s . . -  UI~) <~,  (3.6) 
1 

and Max, (b~ - a,) ~< (~. 

We can assume b 0 = a < a~ < b, < a~ < ... < bq < b = aq+l.  

We shall now choose N in a way suitable for the sequel. First, N has to be 
greater than Max1<~<q i(u). For every point (x, y) in R •  R which is not on the 
diagonal, x = y ,  there is an N such tha t  F~(x )*FN(y) ,  by  assumption, and 
because of continuity this also holds in a neighbourhood of the point (x, y). We 
choose an interval, I ' =  (a, b'), where b ' >  b and is independent of (~. Then, by  
the Heine-Borel  property,  for any , />  0 the compact subset, V, of R •  de- 
fined by  V = ( ( x , y ) ;  I x - y l  >~ ,  x 6 I } ,  can be covered by a finite number  of 
such neighbourhoods. I t  follows tha t  there is an integer, N,, such tha t  for 
N>~N n we have FN(x)+FN(y)  for all (x, y) in V. 

We shall now choose the number  ~/. ~r _~ by (3.1) and (3.4), 
and by  assumption SUpNIFN(x)--FN(y)I>O for all x, y e R  with x * y .  We put  

Min sup [FN (by) - F ~  (a~)] = ~,, 
l ~ v ~ q + l  N 

where bq+l denotes b'. 
I t  is easily seen tha t  we can choose m so that  {~+l / , (x)2} �89 for all x. 

We choose ~ > 0 so small tha t  {~[" (/~ (x) - / ,  (y))~}t ~< ~/36 for all (x, y) with 

I x - y  I<. ~, which is possible because of uniform continuity. I t  follows tha t  
for a l l  N ,  a s  s o o n  as  

Now we fix the value of N so tha t  for this choice of 

N>~N,, N>~Max i(~), 
l ~ v ~ q  

and so tha t  Min I FN(bv)-FN(a~) I >7~/2. 
l~v~<q+l 

Consider the curve IN. We introduce the notation .FN(a~)=~, .FN(b,)=fl,, 
etc. An interval a ~ x < . b ,  corresponds to an arc A(a,,fl~) on FN, and the sets 
x<.a and x>~b' correspond to arcs A(0, ~) and A(fl', 0). Because of our choice of 
N we have 

I f l , -  ~ >~ ( b y -  a , ) /n ,  ~, = 1, 2 . . . . .  q, (3.7) 

FN(x)+FN(y) ,  I x - - y l > ~ ,  x e I ' ,  (3.8) 

] .FN(x)-FN(y)]<~ Min 1 f l ~ - ~ l / 6 ,  (3.9) 
l~<v~<q+l 

Let h be an increasing function in C~(O, oo) such tha t  

= / 0,  r < 
h(r) 

�9 [ 1, r > ~ .  
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For  every v, 1 ~ v<~ q, we now define a funct ion q~ on FN as follows: 

0, ~EA(0, ~) 

( g ( b ~ ) - g ( a ~ ) ) h ( ~ ) ,  ~ e A ( a ,  fl,) 

~ ( ~ ) =  g(b~)--g(a~), ~eA(fi~,fl) 

-g(a~)) (1-  h {I S- fil ] ~ (g(b~) 

o, ~eA(fl', 0). 

(3.1o) 

Then we define ~ by  ~ =~q= l  ?~. 
We shall see tha t  this definition of ~ makes sense, i.e if FN intersects itself 

(3.10) gives only one value for q~ at  t ha t  point.  I t  is clear t ha t  

~] < Minl<~<q+l (b~ - a~), 

and  hence the arcs A(~, a~) and A(fl~, fl') do not  intersect. Let  a~<x<b~ 
and  assume tha t  ~=FN(X ) is such tha t  ~ ( ~ ) # 0 ,  i.e. [ ~ - a , [ > ~ [ f l ~ - ~ l "  
I t  follows from (3.9) tha t  we must  have x - a ~ > ~ ,  and this implies t h a t  for 
any  y<~a~ we have x - y > ~ ,  and thus FN(x)#FN(y),  by  (3,8). Similarly, if we 
choose an  x such tha t  ~ = FN (x) satisfies [ ~ -- a~ [ < ~ I fl~ -- a~ [, it follows t h a t  
b ~ - x > ~ ,  and thus FN(x)#FN(y)  for all y~b~. The case when b < x < b '  can be 
handled in the same way, and it follows tha t  the definition (3.10) is consistent. 
I t  also readily follows tha t  the definition of ~ can be extended consistently by  
the same formulas to a small neighbourhood of FN, and tha t  ~ is differentiable 
to all orders there. Thus  cf(FN(x))EBs. 

We shall show tha t  l im~0 I[ g - ~(FN))]]l+p = 0. P u t  ~(x) = g(x) - cf(FN(X)). Then 
we observe tha t  for all x 

I I < 38. (3.11) 

I n  fact, for v = l ,  2, ..., q + l ,  

~'-- I  v 

[ ~(a~) ] = I g(a') --,=1 ~ (g(b~) - g(a~))l= l~l(g(a,)= - g(b,_l))l<~ 8, 

by  (3.6). Fur thermore,  if by l<x<b~ we have 

Ig(x)-g(a~)]<<.~, and Icf(FN(x))--cf(FN(a,,))[<~(~, 

which proves (3.11). 
As 2 ( x ) = 0  outside I '  it follows t h a t  .~Y~[2(x)]2dx-->O, as 8-->0. I t  is thus 

enough to prove tha t  

J =  IA(x§ a-~O. 
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f~ We find J ~ 2 dx I~f(FN(X§ Vdt 

+ 2 l a(x + t) - g(x)]~ltl-~-~dt 
tl<O 

Z;, + dx I ) . (x+t)-a(x) lZl t1-2 P d t = J l + J 2 + J  3. 

B y  (3.11) j a ~ [ b ' d x [  36521t]-2-Pdt<~Const. ~l-p. 
d a dltl>~a 

B y  the definition of g 

2 [  b+~ ( J 2  ~ J a-~ Jltl<O [t]-Pdt <~ C~ 51-P 

Hence it suffices to prove t ha t  lim~-,0J1 = 0, or which is the same thing, tha t  

lim I q)(FN (x)) -- q)(F~r (y))I ~ (9 - x ) - e - ' dY  = 0. (3.12) 

If a ~ x < y < ~ b ~ ,  l ~ < v ~ < q + l ,  we have 

I ~~ (x)l - ~ ( f ~  (Y))I < Const. I FN (x) - F~ (Y) I" (3.13) 

For  in the ease when l~<v~<q, we find by  (3.10) and (3.7) 

I qJ(FN (x)) -- q~(FN (y))[ = ]~, (FN (x)) -- q,  (FN (y) ) l  

h'(r). ] F N ~  --  F N  (Y) I <~ n.  Max h'(r). I F N  (x)  - -  F N (y )  1" < I g(b~) - g(a , )  I �9 Max - ~ l  r 

Similarly, for v = q + 1 

]c f (P N (x))  - qg(P N (y))] ~ [ ~ (g(b~) - g(a~)) I _ , , I f l - f l ' l  I~N~x~--FN(y) I <~ IFN(x)-F~(Y)I"  

Now, if a~<x<b~, and a , < y < b , ,  where l ~ < v < # ~ < q + l ,  we find, using (3.10) 
and (3.13) 

I~(FN (z)) - ~(FN (Y))I "<< I ~v(FN (x)) -- ~(FN (b,)) I 
p 1 

+ ~ I~(F~ (a,)) - -  ~ v ( F N  (b,)) I + I~(F~ (a.)) - -  ~ ( F N  (y))l 
i = v + l  

/x-1 

~< Const. ]FN (x) - FN (b~) I + =~+l 9(a,) - g(b~)l + Const. I FN (a,) - FN (Y) I 

~< Const. { I F N ( x ) - F N ( b ~ ) I + y - x + I F N ( a ~ ) - F ~ ( y ) I } .  (3.14) 
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f i" ['x+~ J1 ~< Const. -e dx Jx 

I n  the same way  we find tha t  if x~<a 1 or b , ~ x ~ a , + l  for some v < ~ ,  the term 
IF~(x)-FN(b,)] in (3.14) should be replaced by  zero, and if y>~b' or b,_~ <~y<.a~ 
for some /~ > v, the term I FN (a~) - FN (y) I should be replaced by  zero. 

Subst i tut ing (3.13) and (3.14) in (3.12) we thus  find 

q+l [*b v [*by 

7,L L 
§ I F~ (x) (y - 

v ~ l  ~ a  v v 

q + l  f b a  /_,u } 
+ ,~_~ :,I~, IFN(a')-FN(y)I2dy (y - x )  -2 ~dx 

= Const. {Jll § J m  + Jla + J14}" 

Here 

and  

J l l  ~ Const .  (~l-v, 

J12<~ | dx | ~ I/,(x+t)-/,(x)12t-2-Vdt, 
J - o r  J 0 | = l  

which tends to zero with (~ because of (3.4). I f  we apply  (3.5) to J13 and J14 
we find respectively 

q+l ~bv 
g13 < Const. K~ ~ | dx ~ Const. K~ (b' - a); 

v=l J a y  

,11~ ~< Const. Ke ~. ~< Const. Ko (b' - a). 

These inequalities prove tha t  l ime_.0J l=0,  and hence tha t  g EBz. 

We shall now show tha t  this implies t ha t  B z = B I + ,  (R). We assume tha t  C 
is a bounded linear functional on BI+~ (R) which annihilates Bs, and we shall 
prove tha t  C = 0 .  

F rom the preceding it follows tha t  for every  interval  ( - A ,  A) there is 
a funct ion a(x) in Bs such tha t  a ( x ) =  1 on ( - A ,  A) and  a ( x ) = 0  outside 
( - A --1,  A + 1). I n  fact,  for every  interval  I m(I - Es) > 0, for otherwise I would 
be a s t rong set of uniqueness for BI-v(R), which is impossible. We can thus 
const ruct  the funct ion a with a bounded  derivative. 

We now define a new bounded linear functional,  C1, by  

(Cl, g>=<C, ag >, gEBI+,(R). 

Obviously,  C 1 also annihilates Bs, and if g(x)=O outside ( - A ,  A) we have 

< e l ,  g )  = <C, g>. 

C 1 i s  D~ distr ibution with compact  support ,  and thus Ci(u ) is differentiable. 
Moreover, if gEBs and g ( x ) = l  on ( - A - l ,  A + I ) ,  we find 

C a (0) = (C1, 1> = (C1, g> = 0. 
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I t  follows that  the function ~1 (u)/iu is continuous everywhere. Also 

(1 + l u I ~-v) - -  ~< 2 ]u  ]-1 p l01 (u)12du < o<), 
ul~>l i u  ul~>l 

and thus 

Hence there is a function c(x) in BI_ p (R) whose Fourier transform is 01 (u)/iu, 
and one sees easily that  e(x) = 0  outside ( - A  - 1, A + 1). 

Let k(x) be an arbitrary bounded function, such that  k(x)= 0 outside F s , ,  
for some n and outside a compact interval. Then choose a similar function, 
]el(X), such that  k l (x)=0 outside some Fz. n and on ( - A - 1 ,  A + 1) and 

f~cc(k(x)~-ki(x))dx=O. 

I t  follows from the first part of the proof that  g(x)= Sx~r (k(t)+kl(t))dt belongs 
to Bs, and thus (C1, g)= O. On the other hand, the Parseval formula yields 

<O.g>=f~C~(u)~(u)du=f~Ci(u)(~(u)+~(u))/iudu 
- -  2:7g C ( Z )  (k(;~) + kl(X)) d z  = - 27g e(x) k(x) d x .  

As n and k are arbitrary this implies that  c(x)= 0 almost everywhere outside 
Ez. But Es is a strong set of uniqueness for BI_p(R), and thus c(x)~O, and 
hence also C 1 = 0. Moreover, A is arbitrary, and thus (C, ~} = 0 for every dif- 
ferentiable ~ with compact support. Hence C =  0, which proves TheOrem 4. 

Before applying these results to A(R) we shall generalize Theorem 4 slightly. 
We define a class of weight functions as follows. 

Definition 3. A /unction h(x) on R is said to belong to the class W i/ it is con- 
tinuous, even, non-negative, increasing/or x > O, 

and 

f:( 1 + xh(x))-Idx < oo, 

For every hE W we define a space Bh(R) as the set of functions /(x) on R 
for which 

II111  = II(x)l"dx+ I i (x+t ) - l (x) l~ l t l -2h( t -1)dxdt  < oo. 

Then Bh (R) = Bl+p (R) for h(x) = Ix I p, 0 <p < 1. 
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I t  is easily seen tha t  

lulh(u))I1(u)l au <Const. IIII1 ,, (3.]5) 

where the constant  is independent  of h, and hence also 

M2x It(x)l ~< ~ I[(u)ldu<Const. IIII1~. 

I t  follows as before tha t  Ba(R) is a Banach algebra, and Theorem 4 easily 
extends to this case. I t  also follows tha t  Bh(R) cA(R)  for all h in W. 

The bounded linear functionals on A(R) are those distr ibutions on R whose 
Fourier  t ransforms are bounded.  We denote by  D(R) the set of all functions 
c(x) on R such t h a t  ( l + ] u l ) ~ ( u )  is bounded. Then  we can define sets of uni- 
queness and strong sets of uniqueness for D(R) exact ly  as in Definitions ! 
and  2. 

I f  E* is defined as on p. 82, it follows from the remark following the 
proof of Theorem 1 tha t  a set E is no t  a s t rong set of uniqueness for D(R) if 
Co(I -  E*)< Co(1 ) for some interval I ,  and it follows from Theorem 2 tha t  E is 
a strong set of uniquenesss for D(R) if for some p,  0 < p <  1, Cp( I -E* )=  Cp(I), 
for all intervals I .  

Theorem 3 has the following counterpar t  for A(R). 

Theorem 5. Let S = {/i}~ be a subset o[ A(R) satis/ying (3.2) and (3.3). For S to 
generate A(R) it is necessary that every set o/ points x E R  where /or each i 
limh-,o (/i (x + h) - / t  (x))/h = 0 uni/ormly, is a strong set o[ uniqueness/or D(R). 

The proof is the same as t ha t  of Theorem 3. 
In  the other  direction Theorem 4 gives the following corollary. 

Theorem 6. Let S = {/i}~ be a set o/real-valued /unctions in A(R) satis[ying (3.2) 
and (3.3). Then S generates A(R) i] the [ollowing three conditions are saris/led: 

(a) Es is a strong set o/uniqueness/or D(R); 
(b) /or each i there is an hie W such that/iEBh~(R); 
(c) /or each i the modulus o/continuity, wt, o/]t satis/ies wl ((~)2 = o(~/ht (1/(~)). 

Proo/. We assume tha t  S satisfies the conditions stated. Let  HN (u) -- Mini<N h~ (u). 
Then II~ is also in W, for 

f / ( l  +uHN(u))-ldu<~ ~t- i f / ( l  +uhi(u)) ldu. 

I t  is clearly no restriction to assume tha t  the series on the r ight  is bounded.  If  
HIll ~ S~ l[ (u) l  du it follows from the Schwarz inequali ty and (3.15) tha t  

[][11 ~< Const. H/II~1~, (3.16) 

where the constant  is independent  of N. 
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We can also assume tha t  

I1 I, I1 , < o o  
i = 1  

N 
and tha t  ~ ~, (~)2 <~ K~. ~/H~r (1/~), 

1 

where K~ is independent  of N and lim~_~oK~ = 0. I t  is now easy to see tha t  
the proof of Theorem 4 applies to this case almost  wi thout  change. Thus, with 
the nota t ions  used there, we can make I I g - ~ ( F ~ ) l l , ~  arbi trar i ly small, and  
then the theorem follows by  (3.16). 

An  amusing consequence of Theorem 6 is t ha t  a f u n c t i o n / i n  A(R) together  
with its complex conjugate generates A(R) if / separates points on R,  / is 
HSlder continuous of order p for some p > ~, and / is nowhere differentiable. 
We give an  example of such a funct ion (in A(T) for simplicity). 

I~ t  r(x)= ~ a n /.,=1 cos bnx + C, where b is an integer, b -1 < a < b -~, p >-~, and C 
is so large tha t  r(x)> 0 for all x. I t  is well known tha t  r is nowhere differen- 
tiable, and one can easily prove tha t  r satisfies a HSlder condition of order p.  
I f  we pu t  f(x)=r(x)e ix, f satisfies all conditions, and  thus  / and  f generate 
A(T).  

On the other  hand,  there are C ~ functions,  /, which separate points on T 
and  are never zero a l though / and f do not  generate A(T).  (Cf. Ka tzne l son-  
Rud in  [8], where the existence of such functions is proved in a somewhat  
different way.) 

Let  E be any  closed, total ly  disconnected set on T such tha t  C o (T - E) < Co(T ). 
Such sets exist, for one can construct  T - E  as the union of sufficiently small 
intervals containing the rat ional  points. I t  is easy to construct  a str ict ly mono- 
tonic C ~ funct ion a(x) such tha t  a'(x)= 0 for x E E, a (0 )=  0, and a ( 2 ~ ) =  2~. Then  
if we pu t  / (x )=exp  (ia(x)), / and [ do not  generate A(T) by  Theorem 5. 

4. Generators in B~ (R), p >~ 2 

We shall first s tudy  B 3(R). I f  /EB~(R), ]' exists and belongs to L2(R). We 
can thus renorm the space by  put t ing  

and it is then easily seen t h a t  B 2 (R) is a Banach algebra. 
For  the sake of simplicity we only s tudy  finite systems of generators.  

Theorem 7. Let S = (/,}~ be a set o/ real-valued /unctions in 8 2 (R), satis/ying (3.2) 
and (3.3). A necessary and su//icient condition/or S to generate B e (R) is that the set 
Es, where/((x) = 0 ]or i = 1, 2 . . . . .  N, has Lebesgue measure zero. 

Proo/. The necessity is obvious. Here we do not  need the hypothesis  tha t  
the functions /t are real-valued, nor t ha t  S is finite. 
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Suppose now mEz = O. Then, if E~ is the union of Es and the set where for 
some i fi(x) does no t  exist, Es  is also of measure zero. Choose a ~ > O, and let 
K be a compact  set contained in the complement  of E's, such tha t  for every  
x e K  there is an  /~eS with [/~'(x)[~>~. 

Let  g(x)=~_cok(t)dt ,  where k is a bounded function which is zero outside K 
and has the proper ty  tha t  ~-ook(t)dt= O. Clearly g e B  e (R). We shall show tha t  
g ~Bs  (the subalgebra generated by  S). 

As x describes the extended line, the N-tuple  F ( x ) =  (/~ (x)} N describes a closed 
J o r d a n  curve, F, in R ~. As on p. 87 it is easy to prove b y  means of the 
Weierstrass approximat ion  theorem tha t  any  funct ion cf(F(x)), where ~(~)=  
~(~(~) . . . . .  ~(N)) belongs to C ~ in a lqeighbourhood of F, is in Bs. Thus  it is 
enough if we can find a sequence, { ~ } ~ ,  of C ~ functions, such tha t  as n--> c~ 

f ~oclg(x ) - cf~ (F(x))l ~ dx + f ~ I k(x) - ~ aq~ (F(x)) . . . .  ,2 .  ___> 

We can determine bounded functions, y~, such tha t  

N 

and y~ (x)=  0 outside K. B y  Lebesgue's  theorem on dominated convergence it 
suffices if we can construct  the functions ~n so tha t  for i =  1, ..., N 

lim ~ (F(x)) y, (x) 

boundedly,  for almost  all x. 
For  each y~ there is a sequence of step functions which converges boundedly  

to y~ almost  everywhere,  and thus it is no restriction to assume tha t  the func- 
tions y~ are step functions such tha t  

),~ (x) h (x) dx = O. 

We let {a,}~, a~ < av+l, be the set of all points  of discont inui ty  of the y~, i = 1 . . . . .  N. 
Then, for all i, y~(x)=O for x < a  1 and X>am. We pu t  y~(x)=bi~, a , < x < a ~ + l ,  
and we denote the point  F(a,) on lP by  ~ = (~1) . . . . .  ~ ) ) .  We then define a 
funct ion g~(~)= ~0(~ ~1) . . . . .  ~(N)) on I? by  

N 

q~(~e)=~b~(~e(~ for ~ = F ~ ( x ) ,  a~<~x<a~+l, v = l  . . . . .  m - l ,  
t = l  

and ~0(~)=0 for ~=FN(x) ,  x < a  1 or x>~am. 

Since q~(~)-q~(~)= ~,b,v(~ e( ')-  o~)) b~( / , ( x ) - / , (a~) )  = y , ( t ) f i ( t )dt  
t = l  t = l  t 

for a~<~x<a,+~, it follows tha t  the constants  c~ can be chosen  so tha t  @ is 
continuous on F. 
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Now let h be an  increasing funct ion in C~(0, ~ )  such tha t  

{0, 
h( r )=  1, r~>a ~. 

For  every positive integer n such tha t  1 / n  < ~ Min~., I ~ -  ~. ] we modify  the 
funct ion ~ by  put t ing  

q~= (~) = (q~(~) - q~(~)) . h ( n  l ~ - ~ I) + q~(~)  

on the intersection of the a r c s  (Q~,-1, G~,) and (~ ,  ~+~) with the ball I~ - ~, I ~ I /n ,  
for v = 1,. . . ,  m (we pu t  ~o = 0, a~+z = 0), and  ~v~ (~) = q(~) elsewhere on F. I t  is then 
easily seen tha t  q~(~) is extendable by  the same definition to a C ~ funct ion 
defined in a neighbourhood of F, and thus ~= (F )~Bs .  

I f  ~ fi (~ ,  a~+z) and r (~) = (~(~) - ~0(~)) �9 h(n] ~ -  a~ I) + ~ ( ~ )  we find for all i 

~ ( , ~  = b,." h (n  I ~ - ~ ]) + (q~(~) - q~(o~) ) .  h ' (n  I ~ - o~ I)" n . ]  ~ _ ~ I . 

Here h (n 1~ - a~ ) = 0 for ~ - ~ : / 2 / 3 n ,  and since I ~(~) - < Const. J ~ - ~, , 
we have ] ~(~) - ~v(~)]" h'(n I ~ -  ~ )" n <~ Const. for all n. Hence 18q= (~)/~$(0 ] is 
uni formly bounded  as n--> ~ ,  and  lim=_,ccS~(~)/8~(t)=b~,. This proves tha t  
the funct ion 9 E Bs. 

Since the number  6 is arbi t rary,  and rues = 0, it is now obvious tha t  every 
funct ion in Bz(R) can be approximated  by  functions in Bs, i.e. Bs=B2(R),  
which proves the theorem. 

We now tu rn  to the spaces B2+v(R), 0 < p ~ < l ,  and we renorm them by  
pu t t ing  

H 'H22+D = f~oo "(x)[2dxJ~ f-~ f~-~ '/t'x-~-')- "(x)i2]"-i-Pdxd" 
To prove tha t  these spaces are Banach algebras we need the following lemma. 

Lemma 1. I / /EB2+v (R), 0 < p  ~< 1, the modulus o/ continuity, co, o~ / satisfies 

< C o n s t . -  II/11=+, �9 6 ` '+' ' '= /or  0 < p < 1, 

and co(6) ~< Const.-' II/11  ~ log 1/6 /or p = 1. 

1 f 
Proo/. l(x) = ~ J_ /(u) etZU du. 

Hence, for 6 > 0, 
1 c~o 

6 fz:(~ i d u + 1 j_,, lul It(u) It(u) ldu. 
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~< Const.. II t11~--" a (' ~";~ 

Const.- II I I1~." a(" ')~, 

which proves the lemma in this case, and for p = 1 

lul-2-Pdu} t 

lu[ Pdu} ~ 

lulll(u)lau<.alj_,~6(l+lul)lui~l/(u)12au (l-: lul) ldu 
J -  1 / 6  ( d - 1 / 6  

< Co.st..  ll/ll~'6 log (1 + l /a).  

This proves the lemma. 

Theorem 8. Be ~p (R), 0 < p  ~< l, is a Banach algebra. 

Proo/. We introduce the notation 

I(/)= f~_~.f~ l/(x ~O-/(x)l~lti-l-~dxdt. 

Let / and g belong to B2~z,(R). As before Max~l/(x)l~<Const. 1]/]]0.-~, so it is 
enough to prove tha t  e.g. 

I(/'g) ~< Const. I I I I1~, I lgll~,,. 

F B u t  I(l'g)<~2 II'(x)l~dx Ig(x+o-g(x)l~ltl-l-'dt 
- oo  - r  

 f\f= + I g(x + t)12l['(x + t) -/ '(x) [sit [-l-~dxdt, 

and by Lemma 1 we find 

~< Const. Ilgll~+~ f_~oo I/'(x)12dx+ 2 Maxx Ig(x)12I(/') ~< Const. l]/ll~+p Ilgll~,p, I(/'g) 

which proves the theorem. 

I t  was proved by Beurling [2] and Broman [3] that  if a function / belongs 
to By(T), 0 < p  ~ l, the Fourier series of / converges, except possibly on a set 
of ( 1 - p ) - c a p a c i t y  zero, and the sum equals the derivative of the primitive 
function of /. The proof in [3] extends easily to Bp (R). 
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I f  /EB2+p (R), its derivat ive / '  is in B~(R), and it follows tha t  /'(x) exists 
and  equals its Fourier  integral except on a set of ( 1 - p ) - c a p a c i t y  zero. 

Theorem 9. Let S =  {/~}N be a set of real-valued functions in B2+~ (R), 0 <p  ~ 1, 
satisfying (3.2) and (3.3). For S to generate B2+p (R) it is necessary that C~_v (Ez) = O, 
and if, in addition, the derivatives /[, i = 1 ..... N, are continuous, this condition is 
also sufficient. 

Proof. If  CI_ p ( E 8 ) > 0  , 0 < p <  1, there is a measure ~u with suppor t  contained 
in Es and with finite energy integral, i.e. 

f~lul ~l~(u)l~du< ~ .  

For  p = 1 one finds similarly, using the kernel log+I / r ,  t ha t  there is a measure 
/~ with 

f~( t +In I)-' [p(u)l:du < ~ .  

Then, as in Theorem 3, the funct ion inf,(u) is the Fourier  t ransform of a non- 
zero bounded linear functional,  C, on B2+v (R). I f  / is a polynomial  in elements 
of S, it follows, after an application of Egoroff ' s  theorem, as in Theorem 3 
tha t  <C, /}  = 0 ,  which proves tha t  S does no t  generate Be+v (R). Here  we have 
nei ther  used the reality, nor  the finiteness of S. 

Now we assume tha t  C1 ~ (Es)=0, and  tha t  fi, i = 1 .. . . .  N, are continuous.  
Le t  g be an a rb i t ra ry  C ~r funct ion with compact  support .  Such functions are 
dense in B2+v(R) and it is thus  enough to show tha t  gEBs. 

We let I be an open interval  which contains the support  of g, and  for every 
positive integer n we denote by  Kn the subset of I where ~N-1]fi(X) I~< 1/n .  
Then  I N E s =  N~_IKn. Since Es is closed, it is easy to see tha t  we can find 
open sets On, K n c O n c I ,  such tha t  limn_,:cCl-v(On)=C1 p ( I N E z ) = O .  (See 
Carleson [5], p. 22). We can also assume tha t  O= consists of a finite number  
of intervals, since Kn is compact .  

We denote by  ~un the equilibrium distr ibution of On with mass Cl-p (On), and  
by  Un the corresponding (1 -p ) -po t en t i a l .  Then 1 -  Un(x) vanishes everywhere 
on 0n, and is positive outside 0n. 

We can then choose a C ~r function, ~n, with support  in I - 0 ~ ,  so tha t  

~_oo~n (x) dx = f~_~ g'(x) Un (x) dx, 

and  define a funct ion 

gn (X) = f x  ~ kn (t) dt, 

b y  kn (x) = g'(x) (1 - un (x)) + ~n (x). 
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I t  is easily seen t h a t  k~ E Bp (R), and since gn (x)= 0 outside I it follows tha t  
g~eB2+~ (R). We shall show tha t  limn_,~ I I g - g ~ l l e + , = 0 .  I t  suffices to show t h a t  

M We first  observe t h a t  for any  M > O  lim~_,~ ~-MUn(x)dx=O. Indeed,  

L lz_tl _ , < Const. 

which can be made  arb i t rar i ly  small. I t  follows t h a t  we can choose ~n so t h a t  
l i m ~ - , ~ ] l ~ l l p = 0 ,  and  thus  it is enough to show t h a t  lim~_,:c]lg'U~llv=O. As 

f[r f V (x)dx, 
i t  suffices to prove  t h a t  lim~_,~cl(g'U~)=O. We choose r  and then  M > 0  so 
large t h a t  for all n Un(x)~<e for [x]>~M. We find 

](9'Un)•2 ]g'(x+t)]2]Un(x+t)-Un(x)[U]t]-x--Pdxd$ 

+ 2  [Un(x)[~dx [9'(x+t)-g'(x)]~]t[-1-Vdt 

M 

~< Const. I (U~) + Const. U~ (x) ~ dx + 2e~I(g ') 
M 

f ~< Const. Un (x) d#~ (x) + Const. Un (x) dx + Const. ~2 ~< Const. (Cl-p (On) + ~*), 
- - M  

which proves  the  assertion. Hence  g E Bs if g~ E Bs for all n. 
Thus,  f rom now on we can assume tha t  g is a funct ion in B~+v (R) such 

t h a t  g' is cont inuous and  g'(x)=O outside a set  I - 0 ~ .  
E v e r y  point  in the  suppor t  of g' has  an open neighbourhood where for some 

i I f i ( x ) l > 5 > 0  for some ~, and  thus  the suppor t  can be covered b y  a finite 
n u m b e r  of such intervals,  {~oj}~ n. 

We  can mul t ip ly  g b y  any  C ~ funct ion which is cons tan t  on 0~, and  still 
remain  in the  class considered. Hence,  by  a par t i t ion  of uni ty ,  we can reduce 
the  p rob lem to the cases when g(x)# 0 on only one in terva l  ~oj, or when the  sup- 
por t  of 9' is contained in two non-intersect ing intervals ,  ~% and  0)2, say. I t  is 
enough to consider the  second case, and  we assume t h a t  f~ (x )>  ~ > 0  on e% 
and f~ (x) > (~ > 0 on w2. 

As before, F(x)= {/i (x)}l N maps  R onto a closed J o r d a n  curve F in R N. We 
shall show tha t ,  g iven e > 0, there  is a funct ion ~0 which belongs to C ~ in a 
ne ighbourhood of F, such t ha t  ] l g -  ~(F)][2+v < e. 

We s ta r t  by  defining funct ions hi, i = l ,  2, b y  ht(x)=g'(x)//;(x), for x e w i ,  
and  hi (x) = 0 elsewhere. We  show t h a t  hi E By (R). I n  fact ,  [ hi (x) ] ~< Const . /8 ,  
and,  if x and  y belong to ~oi, 
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n h, (x) - h, (Y) I < ~-~1 {Max~, II,(x) I I ~,'(x) - a'(U) I + Max~,~, I g'(U) I I f (x )  - l;(U),n}, 

and  if x is in (9t and  y belongs to neither (91 nor  (92 

Ins ( x ) -  h, (y) l < ~ I g'(x) I = I g ' (~ ) -  g'(y) l, 

which proves the assertion, since either of these al ternat ives holds for I x - Y l  
sufficiently small. 

I t  is easy to see, e.g. by  means of convolutions with positive kernels having  
compact  support ,  t ha t  we can find cont inuously differentiable functions, ~ ,  such 
tha t  

and Max I h, ( x ) -  r,  (x) l < 6, 
x 

and such tha t  the support  of ~i is contained in (9i. We can also assume t h a t  

f,,, ~,~ (x) l[(x) dx = f,~, g'(x) dx. 

We denote h~-  7~ by  ~,  and  we shall show tha t  

llg'- ~,1;- y~l~ II~ < I[.~/; Ib + II ~l~ll~ ~ Const. s. 

Since I ~ l ~ / ~  12dx ~<~2. Max/~(x)2.mw,,  
j - ~  XEali 

it suffices to prove tha t  I{il~fi)~<Const. e 2. We choose M > 0  so large t h a t  
(9i c ( -  M, M), i = 1, 2. As 2~ ( x ) = 0  outside (9~, we find tha t  

1(2,/:)< /:(x)~dx I~,(x§ l "dt 
2 M  oo 

I tl-l-rdt + s2I(/~ ') ~< Const. e 2. 

+ 

<~ Max /[ (x)2 " I (2i) + 4e2 " f :~ /[ (x)2 dx " f l 
]x[~2M t[> M 

Now we define a funct ion q~ on I ~ by  

~])(F(x)) = {•1 (t)/~ (t) + 72 ( )/2 (t)} dt. 
oo 
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Because of the choice of 71 and Y2, q~(F(x))=0 outside a compact interval, and 
thus ~(~) is continuous on F. 

Since [t is monotonic on co~, we can extend ~ to small neighbourhoods of 
the images of co 1 and c% by defining ~9 t o  be constant sufficiently near to F 
on the hyperplanes ~(o = It (x), x E w; ~ cot, i = 1/2. Everywhere outside the intervals 
mr, ~(F(x)) is constant, and hence we can extend q continuously to a neighbour- 
hood of F by putting it equal to a constant in a small neighbourhood of each 
of the two remaining arcs of F. 

On the image of o~t we clearly have 

a~(F(z)) 
a~r = y~ (x). 

and all other derivatives are zero. Since yt (x) is continuously differentiable, and 
l/fi(x) is continuous on tot, it follows that  ~ has continuous second derivatives 
on F, and because of the way we extended % also in a neighbourhood of F. 

blow it is easy to see that  IIg-w(F)ll,+,<Const.e. Indeed, we have 

d~(F(x)) 
dx ~1 (x) /; (x) + r, (x) /~ (x). 

and it follows from the construction that  

f [oo [g(x) - ~(F(z))[~ e". dx <. Const. 

and that 

I g,_d <~2i(~t[i)+2i(2~212)<<eonst" e2 

To complete the proof we need only observe that  for all C ~ functions ~0, 
q~(F) E Bs, which is easily proved as before by the ~ Weierstrass approximation 
theorem (Whitney [16], p. '/4). 

For the sake of completeness we also treat the spaces B~(R), p > 3 .  We put 
• = 2 k + q ,  where k is an integer and 0~<q<2.  If  q = 0  we renorm the space 
by : 

and if q > 0  we put 

If  ]EB~,(R), p=2k+q, the derivatives up to order k - 1  have absolutely 
integrable Fourier transforms, and thus these derivatives are continuous and 

101 



L. Io HEDBERG, The Stone-I~'eierstrass theorem 

b o u n d e d .  I t  fo l lows easi ly ,  b y  m e a n s  of  t h e  Le ibn iz  f o r m u l a  for  t h e  d e r i v a t i v e s  
of a p r o d u c t ,  t h a t  t he se  spaces  a r e  also B a n a c h  a lgebras .  

T h e o r e m  10. Let S be a set o/ real-valued /unctions in By(R) ,  p >  3, satis/ying 
(3.2) and (3.3). For S to generate By (R) it is necessary and su//icient that the set Es be 
empty. 

Sketch o/proo/: Since  t h e  p roo f  does  n o t  i n v o l v e  a n y  n e w  ideas  we o n l y  g i v e  
a br ie f  ske tch .  (Cf. a lso T h e o r e m  B.)  

T h e  neces s i t y  of t h e  c o n d i t i o n  is obv ious ,  s ince c o n v e r g e n c e  in  By (R), p > 3, 
impl i e s  u n i f o r m  c o n v e r g e n c e  of t h e  f i rs t  d e r i v a t i v e s .  

To  p r o v e  t h e  suf f ic iency ,  we a s s u m e  t h a t  Es=r  a n d  we le t  g be  a C ~r 
f u n c t i o n  whose  s u p p o r t  is c o n t a i n e d  in  a n  in t e rva l ,  co, such  t h a t  for  some  / E  S,  
/ ' ( x ) ~ > ( ~ > 0  in  o). 

W e  t h e n  wr i t e  g(x)=~,(/), p r o v e  t h a t  ~(k)([)EBq(R),  a n d  a p p r o x i m a t e  ~,(k)(/) 
in Bq(R) w i t h  a c o n t i n u o u s l y  d i f f e r en t i ab l e  f u n c t i o n  a(/) ,  wh ich  can  be  mod i -  
f ied  so t h a t  i t  is t h e  k- th  d e r i v a t i v e  w i t h  r e spec t  to  / of a f u n c t i o n  A(/) in  
Bp(R). T h e n  we  p r o v e  t h a t  A( / )  a p p r o x i m a t e s  g, a n d  f in i sh  b y  showing  t h a t  
A(/) e Bs. 

University o/ Uppsala 
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