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The Stone-Weierstrass theorem in certain Banach

algebras of Fourier type

By Lars INcE HEDBERG

1. Introduction

A subset 8 of a Banach algebra B is said to generate B if the smallest closed
subalgebra of B which contains S is the whole of B. § is then said to be a
system of generators for B. The object of this paper is to find systems of gen-
erators for LY(R) and a class of related algebras.

Let U be an arbitrary compact topological space, and C(U) the algebra of all
complex-valued continuous functions on U with the supremum norm. Then it
is easy to see that the problem of finding finite systems of generators for C(U)
is equivalent to the difficult problem of uniform polynomial approximation on
subsets of complex n-space, which is completely solved only for n = 1. See Mergeljan
[10] and Wermer [15]. For a positive result on the number of generators, see
however Browder [4].

If the problem is limited to that of finding systems of real-valued generators
of C(U) it is much simpler and completely solved by the Stone-Weierstrass
theorem (see e.g. Loomis [9], p. 9), which can be stated as follows.

Theorem A. A subset S of C(U), which consists of real-valued functions and con-
tains unity, generates O(U) if and only if it separates the points of U.

Now let U be a compact manifold, differentiable of order m and C™(U) the
algebra of all m times continuously differentiable, complex-valued functions on
U, with the topology of uniform convergence of the functions together with their
first m derivatives. For this algebra the problem of finding real-valued generators
was solved by L. Nachbin [11].

Theorem B. A subset S of C™(U), which consists of real-valued functions and con-
tains unity, generates O™(U) if and only if it separates the points of U, and for every
point x€U and every direction o, tangent to U at x, there is an fES such that
df(z)/00+0.

We shall consider the cases when U is the unit circle, 7', or the real line, .
That R is not compact does not make any important difference. We shall study
functions, f, which have Fourier transforms, f, defined on the group of integers,

77



L. I. HEDBERG, The Stone—Weierstrass theorem

Z, or on R, respectively. For p 0 we define function spaces, B, (T) and B, (R),
as the sets of all integrable functions such that the norms

1Al =S -+l ooy (L1)
o0 ¥
and o= {f (1| ul?) | f ) |2du} (1.2)

are finite, respectively. This property is equivalent to a certain continuity prop-
erty of f or its derivatives, and therefore these spaces lie, in a sense, between
C and C™. We shall show that for p>1 B, (T) and B, (R) are Banach algebras.
and then study the problem of finding systems of real-valued generators for
these algebras.

If S is a point-separating subset of one of these algebras, and Eg is the sct
where the first derivatives of all functions in S exist and equal zero, the result
is, generally speaking, that the size of Eg is decisive for whether or not S is a
system of generators. Morcover, the larger one chooses p, the smaller E has to
be, until for p>>3 it must be empty, for S to generate the algebra. One can
compare this to Theorem A where the size of Eg is unimportant, and Theorem
B, where Eg must be empty. See Theorems 3. 4, 7, 9, 10.

It was proved by Katznelson and Rudin [8] that the Stone-Weierstrass prop-
erty does not hold for the group algebra L'(G) of a locally compact abelian
group whose dual group is not totally disconnected. As corollaries to Theorems
3 and 4 we obtain more precise results on systems of real-valued generators
for I'Z) and LYR), or equivalently, for the dual algebras A(T) and A(R) of
all functions with absolutely convergent Fourier transforms. Sce Theorems 5
and 6.

The above-mentioned material occupies Sections 3 and 4. Section 2 contains
preliminary material, notably a previously unpublished uniqueness theorem of
Carleson. See Theorem 1. The results in this section are not needed in the rest of
the paper, but scrve to characterize certain sets of uniqueness which will be
needed.

I was introduced to the problems treated here by Professor Lennart Carleson,
and his generous adviee and criticism have been a continual source of inspira-
tion, and have led to numerous improvements. For all this, and for permission
to include the unpublished result mentioned above, 1 wish to express my deep
gratitude.

2. Sets of uniqueness for B, ,(T) and B, ,(R), 0<p<1

If a function c¢(z) belongs to By ., (T) or B, ,(R), 0<p<], it is known that
if ¢(x) is suitably modified on a set of measure zero

n
c(@)--lim X éw)e™,

n—L n
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1 (4 .
or c(x) —~lim -- f é(u) e*du,
A

Ao 27T

except on a set of p-capacity zero (logarithmic capacity for p —0). This was
proved for 7' by Beurling [2], Salem-Zygmund [14], and Broman [3], and the proof
in [3] easily extends to B. In the following we assume that c(z) is thus modified.
We make the following definition.

Definition 1. A sef K ¢n T or R is called a set of uniqueness for Bl 2(T) or
By. p (R). if every function, c(a), in By ,(T) or Bi_,(R). such that c(a) =0 for all =
not in E must be identically zero.

These sets of uniqueness are characterized by the following theorem, which is
due to Abhlfors and Beurling (1], p. 124) for p: 0, and to Carleson in the
general case. As Carleson’s result has not been published we include its proof
here.

We denote p-capacity (capacity with respect to the kernel » ?) by €, and
logarithmic capacity by €. For definitions and properties of capacities we refer
to Frostman [7] and Carleson {5].

Theorem 1. A Borel subset E of the unit circle T is a set of uniqueness for B, , (T'),
0<p<l, if and only if C,(T — E)=C,(T).

A Borel subset B of the real line R is a set of uniqueness for By ,(R) if and only
if Cp(1--E)=C,(I) for every interval 1.

Proof. We give the proof only for B and for p>0. The proof for T is simi-
lar.

Let £ be a set such that C (I —E)=C,(I) for every I. (We use the notation
A--B for A0 C(B).) Choose an arbitrary interval I.

We can choose an increasing sequence {F,};* of closed subsets of I--E, such
that

lim C,(F,)=C,(I- E)y=C,).

For each F, there is a positive unit measure y,, the equilibrium measure, such
that the corresponding potential,

(’{ n r 7
U (2)— ]llu‘( I)”: Va=1/C,(F,). 2 €F,,
except posubly on a set of p-capacity zero (see Frostman [7]. p. 56).
Put i, (u)~ Je " du,(x). Then, if Parseval’s formula is applied to evaluate
the energy integral of u, (sce Carleson [5], p. 20), we find

oo ~ 2
f | (lu-)p| du — Const. JU" () dp, (x) — Const. V< oo, (2.1)

= |

Now let ¢(x) €EB;_, (R) be such that

1[4 .
lim ¢, (x) =lim ; J fu)e*du-:0, x¢kK.
2

A0 A->oc
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By the Schwarz inequality

[} o 2 =}
{fﬁwlc‘(u)ﬂ"(u)ldu} <Jl [u[?

because of (1.2) and (2.1). Thus, for all », by Parseval’s formula,

12

c‘(u)lzdu-f— l‘r;flu)p du < oo,

1 [ 4

S T = I
o | F0 @ du=tim o [ G o) du=lim [erte)du o)

For each F, we can choose a subset F; such that lim,_,¢c, (x) =0 uniformly on
F,, and such that the restriction, y;, of y, to F,— F, has arbitrarily small
energy integral. In fact, this integral is less than V,-u,(F,—F,), which can be
made small by Egoroff’s theorem. Using this and applying the Schwarz ine-
quality again we obtain

lim ch (x)dp, (x) [ =lim ch (@) dps (x)
A—>»o0 A—>00
< %z é(u) i, (w) | du < Const. {u, (F,— Fi)}},

which can be made as small as we please. Thus

f é(w) i, (w)du=0, all n.

— o0

If the equilibrium measure for I is y, and the corresponding potential U, we
then find by (2.1) and the Schwarz inequality

2

f wc‘@')(/zn (@) - a(w)) du

< Const. ﬁ U (2) — U(2)) (dptn (2) — dpa (1)) =

1 1
= Const. {jUn dﬂ" + JU d‘u, -2 fUd,u,,} = Const. {m — O_D (I)} .

But lim,,.Cp(F,)=C,(I), and thus

fw c‘?l,—)‘a(u) du=0.

As u is the equilibrium measure for an interval,
du(x) = m(x)dz,

and c(x)m(x) € L}, since m(z)€ L. See Pélya~Szegd [12], p. 23. Thus, by Parse-

val’s formula
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fw c(x) m(x)dz=0.

The same argument can be applied to the function c(x)e'™ for every ¢, so that

f c(x)m(z)e " dz=0, all t.

~00

Hence c(z)m(z)=0 almost everywhere, and as m(z)>0 in I, ¢(x)=0 almost
everywhere in I. But I is arbitrary, and thus c¢(z)=0, which proves the suffi-
ciency.

To prove the necessity we assume that the set E is such that for a certain
interval I, C,(I — E)< C,(I). Then, by the capacitability theorem (see Choquet
[6] or Carleson [5]), there is a closed subset F of E such that we also have
C,(I—~F)<Cy(I). We let {F,}° be an increasing sequence of closed sets, each
consisting of finitely many closed intervals, such that I—F= U F,. Again g,
is the equilibrium measure for F,, and U, (x) the corresponding potential. Then
Un(2)=V,=1/C,(F,) for all z€F,. In the same way as in the proof of (2.1)
we find

flul“” | 0, (u)|*du = Const. V, < co.

The sequence {y,,}l has a subsequence which converges weakly to a measure pu
with support in 1. Then, if ¢ is an arbitrary differentiable function with support
contained in I—F, we find

_dp(t) p(x)dz _
f‘l’(x)dzflx_t f t‘)J~ ~ip
— f el f (p(x)tln_ o f (z)dz J‘dﬂm ttl)p
L = LOL

du(t) 1
H —_ .
enee fl ~tPp~ C, (I~ F)

for almost all z in I —F, and because of the semicontinuity of the energy in-
tegral

f|u|1"”|0(u)|2du< oo,

But U (z) is not constant on the whole of I, for in that case, if ¥ is the
equilibrium distribution for I and V(z) the corresponding potential, we would
obtain
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1 1
e fV(:c)dy(x)-— fU(x) dy(z) = oI Fy

which is contrary to assumption. Thus U(x)+1/C,(I--F) on a set of positive
measure.
Now let a(zx) be a differentiable function with support in I, and let

1
C(CIJ) = a(:v) (Eﬂ - U(I)) .

It is easy to prove that c(x)€B; ,(R) (cf. p. 85 below), and clearly ¢(x)=0
almost everywhere outside F. But since the complement of F is open it follows
that lim,_,.c4(z)=0 everywhere outside F, and hence also outside E.

If a(z) is suitably chosen c¢(z)#0, and we have proved Theorem 1.

Remark. We note that the function c¢(x) constructed in the second part of the
proof has the additional property that (1+|z|' ®)é(u) is bounded. It is easy
to prove that a similar construction can be made in the case p=0, and then
(1 +]%])é(w) is bounded, a fact which will be of use later.

From now on we only consider functions on R, although all results and proofs
hold, with only small changes, for functions on 7' as well.
We need a somewhat stronger uniqueness property, which we define as follows.

Definition 2. A subset E of R is called a strong set of uniqueness for B; ., (R) if
every function, c(x), in By, ,(R), such that c(x) =0 for almost all x not in E, must be
wdentically zero.

If E<R we denote the characteristic function of £ by Xz(x), and by E* we
mean the set of all density points of E, i.e. all x€ R such that

1 r+h
lim Xe(f)dt=1.

h—>0 z h

Theorem 2. A subset E of R is a strong set of uniqueness for By ., (R), 0 <p <1, if
and only if for every interval I

OD(I_E*)_" Cy(1).

Proof. The necessity follows from Theorem 1, and the well-known fact that
for every interval I m(I — E*)=m(I — E). (See Saks [13], p. 128.)

Now we let £ be a set which satisfies the condition in the theorem. We
denote the complement of £ by F, and the complement of E* by F*, and we
let ¢(z) € B, ,(R) be such that ¢(x) =lim . ¢4 (z) =0 almost everywhere on F.

By assumption, for every point z in F*

rih
lim sup 21h_[ Xe(t)dt>0.

h—>0 I -h
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If we define, for an arbitrary positive integer k, a set Fy by

1 zih 1
Fﬁ={x; lim sup 5 xp(t)dt>—},

h—0 “ T h k

it is clear that F*— U{°F}. Now let I be an arbitrary interval and K be any
closed subset of I N F} for some k, and let u be the equilibrium measure cor-
responding to K. If we can show that [c(z)du(x)=0 the theorem will follow
in the same way as Theorem 1. :

Choose §>0. For every x in K we can find a number A,<4 such that
j‘;‘:iXF (tydt >2h,/k. Hence, as K is compact, there is a finite covering of K by
intervals, I;, such that m(I,n F)=(1/k)ml, It is easily seen that superfluous
intervals can be removed so that no point is contained in more than two inter-
vals. Let {I;}{ be the resulting covering, and assume that the left endpoints of
the intervals form an increasing sequence.

We now define a measure » by »= >} ,v, where the measures v; are defined
as follows. The intervals I,, I,, I;, ... do not intersect, and corresponding to
these we put
ML) _

B @)= 0 F)

Yuar(z)dz, § odd.

Each of the remaining intervals can intersect at most two intervals, and we
put
I,-I, ,—1,.
dv,-(x)~—-'—u( 3y Iy 1.4)
m(I; N F)

Inar(z)dz, § even.

It follows from the assumptions that fc(x)dv(z)=0. One easily sees that the
measures » converge weakly to u as 6 tends to zero. We shall see that this
implies § c(x)du(x)=0.

Choose £>0. Then, if the number 4 is chosen so large that

Jo e
lul>A4

and if the energy integral of a measure u is denoted by J(u), it follows as
before that

é(u) Pdu <,

2
< Const. &-J(u).

|
| f (c(x) -~ cq (x)) du(x)

2
< Const. ¢ J ().

Similarly ' f(c(x) — ¢4 (x))dr(x)

Now, because of the weak convergence, we can choose § so small that

<E.

f 64 (z) dv(z) - f ¢4 () dpu(x)
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Thus, if we can prove that J(»)< Const.J(u) independently of the choice of 9,
it will follow that [c(x)du(z)=

Let the length of the interval I; be l;, and let the greatest distance between
a point in I; and a point in I; be ay; Then, clearly

”dﬂ(x)d/t Y ffdﬂ 0c)dﬂ(y)> %iuh)u I)
/41 1-1 )Ry

|z—yl? le—y|P 4SS af)

On the other hand,

”dv(x)dv(m 53 ”dv.(x)dv,m B

[z—y|° lz~yl>

3 Bud)ul) [ dedy
i=1 L L 1,-|x—y|”

1l M:z

Thus 1t suffices to show that for all ¢ and j

1 dxdy 1
— —— < Const. —.
lihfhfb"”_ylp 0 ah

Consider two intervals, I, and I, ¢<j, and assume [;<I; Then either a,<3l,
or a;>3l;. In the first case

1 dy 1 f f dt PAd 6?
Tl dz) <~ | d T < .
lillfli xj‘lflx“?llv Ll Jx ’ Itl<11/2|t|p Q- (1—p)ai

If a;>3l; it follows that |x—y|>a,/3 for €I, y€I; and we find that in this
case

y 3
= de | — <,
liljfli 1,-|:I:—y|” a,g
which proves Theorem 2.

Remark. Theorems 1 and 2 imply that if a set E has the property that for
all I C,(I—-E*)=C,(I), the same holds for E. The converse statement is not
true, however In fact let F, be an increasing sequence of closed sets contained
in an interval I, and assume that mF,=0 and lim,_., C,(#,)=C,(I). Such sets
can be constructed. Let F= |J{°F, and E=I—F. Then C,(I — E)=C,(I), but
E*=1 and hence C,(I —E*)=0.

3. Generators in By, , (R), 0<p <1, and A(R)

As we have already remarked we formulate our results for R, although with
minor changes they hold also for 7'. Also, those results which we formulate for
sets of real-valued functions are easily seen to hold also for sets which are
closed under complex conjugation.

It is well known (see e.g. Beurling [2]), and easy to prove by the Parseval
formula, that for a function f in B,,,(R), 0<p<]1,
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oo o0 oo
f | w]|**?| f(u)|?du = Const. - f f |fx-+t)— f() |*| ¢ 2P ddt,
where the constant depends only on p. Thus we can renorm the space by putting
1-0= | bass [~ [ ltie+o- el de

It is then clear that e.g. all square integrable functions which satisfy a
Holder condition of order (1 +p’)/2 for some p'>p are in By., (R).
By the Schwarz inequality we find

1 -]
Max |/ < 5 [ |fw)|du

1 (= 1 (oo H
(3.1)

By means of this inequality it is easy to verify that the norm satisfies the
relation

l1glli+5 < Comst. [ flli+sllg 1.5

and hence B,.,(R) is a Banach algebra for 0 <p<1.
For a subset S of such an algebra to generate the algebra it is clearly neces-
sary that the following two conditions hold.

(3.2) For every couple (z, y) with x=<y there is an f in S such that f(x) =+ f(y).
(3.3) For every x there is an f in S such that f(x)=+0.

Theorem 3. Let S={f} be a subset of B;,,(R), 0<p<1, satisfying (3.2) and
(3.3). For 8 to generate B, ,(R) it is necessary that every set of points x € R, where
for each i limy o (fi(z+k)—f,(x))/h) =0 uniformly, be a strong set of uniqueness
for Bi_, (R). (See Def. 2).

Proof. We assume that there is a set E where f;(x)=0 uniformly for every
1, and that E is not a strong set of uniqueness for B;_ ,(R). Then there is a
non-zero function, ¢(z), in B;_,(R), such that c(z)=0 for almost all z not in E.

We observe that the space of bounded linear functionals on By,,(R) can be
identified with the space of those tempered distributions, C, on R, whose Fourier
transforms, €, are functions which satisfy

f ® 10w

oo L+[u[tt?

du < oo,
and then 0, = f B C(w) f(u)du.

This is a consequence of the Schwarz inequality.
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As the function c(zx) above belongs to B,_,(R), we have

= A 2 0
o ans [ jubslapans o

Hence the function iué(u) is the Fourier transform of a bounded linear func-
tional on B;,,(R), which we denote by C,.

If fis a polynomial in elements of S it is now easy to see that (C, f>=0.
In fact,

iuh

o h—>0 s

because |e™"—1|/|h|= 2| sin 2uh|/|h|<|u| and the first integral is absolutely
convergent. But both ¢ and f are in L? and thus by the Parseval formula

(Cor o=~ lim 27 f PR R,
h=>0 o0

which is equal to zero, because apart from a set of measure zero c¢(x) is dif-
ferent from zero only in E, where f'(x)=0 uniformly, since f depends on only
finitely many f,.

As C,+0 this proves that S cannot generate By.,(R).

Remark. Tt is seen from the proof that it is enough to assume about E that
there is a sequence {A,}7°, lim,, o k =0, such that for all ¢

lim (f, (z + k) — f; (x)) /b, = 0
B0
uniformly on E, or even
tim (1/88) [ (1 (e b =1 (0P =0.
h,—0 E
If this is compared to Theorem 4 below, it follows that the size of such sets

is not independent of the size of the set where f/(z)=0 in the ordinary sense.

For a given set S of functions on R we denote by Ky the set of all x€R
such that for every f in S f'(x) exists and equals zero. We denote the comple-
ment of Eg by Fs.

Theorem 4. Let S={f}° be a set of real-valued functions in By, (R), 0<p<1,
satisfying (3.2) and (3.3). Then S generates B, , (R) if Es is a strong set of uniqueness
for By _,(R) (see Def. 2), and if the moduli of continuity, w,(9), of the functions f;
satisfy w; (0)=0(6 7%,

Proof. We assume that S satisfies the conditions in the theorem. It is clearly
no restriction to assume that

,?_Il filltsp < oo, (3.4)
and that Sw(0)P<Ks-6'"'?, where }sl-?o} K;=0. (3.5)
1
We denote by Bg the closed subalgebra of B.,(R) generated by S.
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By the Riemann-Lebesgue lemma lim,, . f;(x)=0. Thus, as x describes the
extended line, R, for every N the N-tuple Fy(x)={fi(x)}{ describes a closed
curve, I'y, in N-dimensional space, RY. We denote the Euclidean norm of Fy ()
by |FN x)|

If <p(§-‘) is a function on RY which is defined and has continuous partial deri-
vatives in a nelghbourhood of T'y, and if @(0)=0, we shall see that the func-
tion @(Fy(z)) 1s in Bs. In fact, there is a compact neighbourhood, W, of I'y
where |grad @(£)| is bounded, and hence there is a >0 such that for every
&,€Ty the ball |§ & |<0 is contained in W, and then if |& ~&|<4

|¢(6) — @(50)| < Max [grad g(§)] [~ &]-

It follows by uniform continuity that there is an A >0 such that for |z|>4
|9(Fx ()| < Max [grad ¢(&)| | £ (=)].

and that there is an 2 >0 such that for all z and [¢|<y

| p(Fy(z+1)) —¢(F~(x))|<1gga3vx |grad ¢(&)| | Fy(x+t) - Fy(2)|.

This implies that @(Fy)€B,;, (R). Furthermore, by a version of Weicrstrass’
approximation theorem (see Whitney [16], p. 74), there is a sequence of poly-
nomials, {P,}, converging to ¢ in C'(W), and if the above inequalitics are
applied to the functions ¢ P, it follows that ¢ € Bs.

For every positive integer, n, we define a set Fg ,, by

Fg = {=; lim;ljoup |f(x-+R)--f(x)|/| k]| >1/n, some f€S}.

Then Fg— U5.1Fs 5.
Now we choose a set Fg ,, a compact interval I, and a function

g(z)= f " ke,

where k(t)=0 for t¢/NFs,, |k(t)|<1, and [, k(t)dt=0. It is clear that
g€B;,,(R). We shall show that g€ Bs.

In virtue of the above argument it suffices to show ‘that for a given s>0
we can choose an integer N and construct a differentiable ¢ so that

lg - @(Fx)l-» <e

For every point = in INFg , there is a function f; and an increasing (or
decreasing) sequence, {h,}{°, such that lim,_ .k, =0, and

lfi@+h)—fi@)|=]h|/n, v=1,2, ....

‘We fix a number 6>0. By Vitali’s covering theorem ([13], p. 109), applied to
the set I N Fy ,, there is a finite sequence of non-intersecting intervals, I, = (a,, b,),
v=1,2,..., q, contained in the interior of I=(a, b), with the property that
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Ifi(bv)—fi(av)l>(bu—av)/n: 1':7’(1’); v=172)---q$

q
m(I N Fs,,—UL)<, (3.6)
1
and Mazx, (b,—a,)< 4.
We can assume by=a<a,<b <a,<...<by<b=aq1.

We shall now choose N in a way suitable for the sequel. First, N has to be
greater than Max;,«,¢(»). For every point (z,y) in Rx R which is not on the
diagonal, =y, there is an N such that Fy(z)=Fy(y), by assumption, and
because of continuity this also holds in a neighbourhood of the point (z, ). We
choose an interval, I'=(a,b’), where b'>b and is independent of 4. Then, by
the Heine-Borel property, for any 7>0 the compact subset, V, of ExR, de-
fined by V={(z,y); |x—y|>%, x€I'}, can be covered by a finite number of
such neighbourhoods. It follows that there is an integer, N, such that for
N >N, we have Fy(z)+Fy(y) for all (z,y) in V.

We shall now choose the number 7. >;2;Max, f;(z)’< oo by (3.1) and (3.4),
and by assumption supy |Fy(z)— Fy(y)|>0 for all z, y€R with x=y. We put

Min sup [Fy ()~ Fy(@)|=1y,
1<v<qg+1 N
where b,.; denotes b'.

It is easily seen that we can choose m so that {2, f;(x)*}* <y/36 for all z.
We choose >0 so small that {37 (f;(x)—fi ()} <y/36 for all (x, y) with
x—y|<7%, which is possible because of uniform continuity. It follows that
FN(x)—FN(y)|<y/l2 for all N, as soon as |x—y|<17.

Now we fix the value of N so that for this choice of 7

N>=N,, N2>Maxi®y),

1sv<e

and so that Min |Fy(b,)— Fy(a,)|>y/2.

1<r<g+1
Consider the curve I'y. We introduce the notation Fy(a,)=a,, Fy(b)=48,,
etc. An interval a,<z<b, corresponds to an arc A(x, f,) on I'y, and the sets

z<a and z>b" correspond to arcs 4(0, «) and A(f’, 0). Because of our choice of
N we have

|B—|=(®,—a,)/n, v=1,2,...,q, (3.7)
Fy@)=Fyly), |z—y|=n, =€l (3.8)
IFn(Z)—FN(y)I<l<1V\§in§1lﬂ»—ocul/ﬁ, l—yl|<n. - (3.9)

Let %~ be an increasing function in C*(0, co) such that

0, 7<%
h(r)= ) .
- ,1‘?5.
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For every », 1<y<gq, we now define a function @, on I'y as follows:

(0, £€A(0,a,)

_ |§‘“v|)
W) —gt@nh ((5=21)., e p)
P (E)=19(0) —gla.), E€A(B., ) (3.10)
bv— v 1-h ; N €A s
(4(5,) g(a))( (Iﬂ—ﬂl) geA(p, f)
0, £€A(p,0).

Then we define ¢ by =2, ¢,. '
We shall see that this definition of ¢, makes sense, i.e if I'y intersects itself
(3.10) gives only one value for ¢, at that point. It is clear that

n < Min1<v<q+1 (bv - av),

and hence the arcs A(«x, o) and A(B,, f’) do not intersect. Let a,<z<b,
and assume that &=Fy(z) is such that ¢,(&)=0, ie. |[é—a|>3]|B —al
It follows from (3.9) that we must have z—a,>7, and this implies that for
any y<a, we have xt—y >y, and thus Fy(x)+ Fy(y), by (3,8). Similarly, if we
choose an x such that £=Fy(x) satisfies |é—a,|<$%|B —o |, it follows that
b,—x>5, and thus Fy(z)+ Fy(y) for all y>b, The case when b<z<b' can be
handled in the same way, and it follows that the definition (3.10) is consistent.
It also readily follows that the definition of ¢ can be extended consistently by
the same formulas to a small neighbourhood of Iy, and that ¢ is differentiable
to all orders there. Thus @(Fy(x))€ Bs.

We shall show that lims,g||g — @(Fy)) |i+p=0. Put A(x)=g(z) — p(Fy(z)). Then
we observe that for all z

|Az)] < 35. (3.11)

In fact, for »=1,2,...,q¢+1,

v—1
| A@) | = lg(@) = 3. (96) — 9@ | =| 3 9(@) ~gbe-2)) | <5,

=1
by (3.6). Furthermore, if b, ; <x<b, we have
9@ —g(@)[<6, and |g(Fy(@)=@(Fx(@)]<5,
which proves (3.11).

As Mx)=0 outside I' it follows that [*,|A(z)[*dz—0, as 6—0. It is thus
enough to prove that

J=f f | Mz +t)— A ()| t] > Pdadt—0, 6—0.
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We find - J<2 f dxf | p(Fy @+ 1)) = p(Fy () Pe] 2t
—o0 1t <o

+2f dxf lg(x+ty—g(z) |>|¢| 2 7dt
- |tj <o

+f dxf | Az +t) — A=) B¢ 2 Pde =T, + Ty + T,
-0 t|=d

o
By (3.11) J3<f dxf 360%|¢|"2"7dt < Const. §'77.
a |t1=6

By the definition of g

b+6
ngzf f |#| ?dt < Const. 6'7.
a-d J|t|<8
Hence it suffices to prove that lims,oJ, =0, or which is the same thing, that

oo z+0
lim f do f |p(Fy(2)— p(F (1) (y — 2) > Pdy =0. (3.12)

60
If a,<ex<y<bh, 1<v<q+1, we have

|@(Fy ()~ ¢(Fy (4))| <Const. | Fy (z) — Fy (y)|- (3.13)
For in the case when 1<y<gq, we find by (3.10) and (3.7)
l¢p(Fx (@)~ @(Fr )| =g (Fy (@) — @0 (Fy (9))]

<|g(b,) — g(a,) | - Max h’(r)-u—vl-v%yll <n-MiLx B (r) | Fx(x)— Fy(y)l-

Similarly, for yv=¢+1

l Eg (g(bv) - g(av)) I é _
Fy(x))— o(F < : Fy(z)— Fy(y)| < —|Fy Fu(y)).
| @(Fx () — @(Fy ()| < 18—F| | Fy () )] [6-8 || (2) ®)]

Now, if a,<x<b,, and a,<y<b,, where 1<y<pu<g+1, we find, using (3.10)
and (3.13)

|p(Fy(2)) — ¢(Fx )| <|@(Fy (2)) — @(Fx (b))
u-1
+i=%1|¢(FN (@) — p(Fy (b3)) | + | o(Fx(an) — p(Fn (y)) |
<Const. | Fy(x) — Fy(b,)| + ZE;I g(a;) — g(b;)| + Const. | Fy(a,) — Fy (y)|

<Const. {| Fy(x)— Fy(b,)| +y—z+|Fy(a,) — Fn ()|} (3.14)
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In the same way we find that if z<a, or b,<z<a,,, for some ¥ <y, the term

| Fy(x)— Fy(b,)| in (3.14) should be replaced by zero, and if y>b" or b, ; <y<a,

for some p>v, the term | Fy(a,) — Fy(y)| should be replaced by zero.
Substituting (3.13) and (3.14) in (3.12) we thus find

b’ z+8 g+1 b, b,
7y < Const. {f dz f (=) dy+ 3 f de f | Py @)~ Fyy)Fy—2)*dy
a-96 T v=1 J @, z

o0

g+l b,
- czl a ,FN(x)_FN(bv)lzde; (y_x)—2~pdy

q+1 b'u 2 L7 o p
+ 2| 1 Fxlen) - Fuy)lPdy| (y—x)? Pde
u= (l'u oo

=Const. {J,; +J o+ 15+ 4}

Here J,, <Const. §'77,
oo 0 oo

and 1o < f dxf S+t —fi(@)[Fe2 v,
-0 0i=1

which tends to zero with & because of (3.4). If we apply (3.5) to Jy; and J ,
we find respectively 4

q+1 (b,
J 3 <Const. Ks 2, dx <Const. K;(b'—a);
v=1J @y

b

g+1
J14 <Const. Ks 2, ”dy <Const. K;(b' —a).

r=1, 2,
These inequalities prove that lims,oJ,=0, and hence that g€ B;.

We shall now show that this implies that By=B;.,(R). We assume that C
is a bounded linear functional on B, (R) which annihilates Bg, and we shall
prove that C=0.

From the preceding it follows that for every interval (—A4, A4) there is
a function a(z) in By such that a(x)=1 on (—A4, A) and a(x)=0 outside
(—A-—1, A+1). In fact, for every interval I m(I — E5) >0, for otherwise I would
be a strong set of uniqueness for B, ,(R), which is impossible. We can thus
construet the function a with a bounded derivative.

We now define a new bounded linear functional, C;, by

Opg>=<C,ag>, g€BI,(R).
Obviously, C, also annihilates B, and if ¢g(x)=0 outside (— A4, A) we have
Cpg>=<C,9>.

C, is a distribution with compact support, and thus Cj(z) is differentiable.
Moreover, it g€B; and g{z)=1 on (—A—-1, A+1), we find

0, (0)=<Cy, 1y =(Cy, 9> =0.
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It follows that the function C,(u)/iu is continuous everywhere. Also

| aspur)
|ut=1

and thus f (L+|u?)

6 (u)

du <2f |u| 77| 0, (u) [Pdu < oo,
lu]>1

(u)

du < oo,

Hence there is a function ¢(z) in Bl_p(R) whose Fourier transform is Ol (w)/tu,
and one sees easily that ¢(z)=0 outside (—4—1, A-+1).

Let k(x) be an arbitrary bounded function, such that k(x)=0 outside Fg, ,
for some n and outside a compact interval. Then choose a similar function,
k(z), such that k(x)=0 outside some Fg , and on (—4—1, 4+1) and

fw (k(x) + k&, (x))dx=0.

It follows from the first part of the proof that g(x)= f*. (k(f)+ k,(f))d¢ belongs
to Bs, and thus {(C,,¢>=0. On the other hand, the Parseval formula yields

Crg>= f 0, (w) §u) du= fw O, (w) (k(w) + ky(w)) /iudu

- —27zf°° c(x) (k(x) + &y (x)) de = —27400 o(x) k(z) da.

— o0

As n and k are arbitrary this implies that c(x)=0 almost everywhere outside
Es. But Eg is a strong set of uniqueness for B;_,(R), and thus c¢(x)=0, and
hence also €|, =0. Moreover, A is arbitrary, and thus {C, ¢>=0 for every dif-
ferentiable ¢ with compact support. Hence C'=0, which proves Theorem 4.

Before applying these results to A(R) we shall generalize Theorem 4 slightly.
We define a class of weight functions as follows.

Definition 3. 4 function h{x) on R is said fo belong to the class W if it is con-
tinuous, even, non-negative, increasing for x>0,

fw (1 + zh(x)) "dx < oo,
0

N
and f h(~)dm< oo,
0 T
For every h€ W we define a space B,(R) as the set of functions f(z) on E
for which

uf||2~j mﬁf et 0)— ) P20 dadt < oo,

Then B, (R)= Bi:, (R) for h(z)=|zf, 0<p<]1.
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It is easily seen that

f(u) |*du < Const. ||f|[3, (8.15)

f (14 || R(w))
where the constant is independent of k, and hence also

1 co
Max |12 < 5. [ 1w ldu = Const 11

It follows as before that B,(R) is a Banach algebra, and Theorem 4 easily
extends to this case. It also follows that B, (R)< A(R) for all £ in W.

The bounded linear functionals on A(R) are those distributions on R whose
Fourier transforms are bounded. We denote by D(R) the set of all functions
c(x) on R such that (1+|u|)é(w) is bounded. Then we can define sets of uni-
queness and strong sets of uniqueness for D(R) exactly as in Definitions 1
and 2.

If E* is defined as on p. 82, it follows from the remark following the
proof of Theorem 1 that a set E is not a strong set of uniqueness for D(R) if
Co(I - E*) < Cy(I) for some interval I, and it follows from Theorem 2 that E is
a strong set of uniquenesss for D(R) if for some p, 0<p <1, O, (I —E*)—=C,(I),
for all intervals 1.

Theorem 3 has the following counterpart for A(R).

Theorem 5. Let S={f.};° be a subset of A(R) satisfying (3.2) and (3.3). For S to
generate A(R) it is mecessary that every set of points x€R where for each i
limy g (f; (x + k) — f, (x))/h = O uniformly, is a strong set of uniqueness for D(R).

The proof is the same as that of Theorem 3.
In the other direction Theorem 4 gives the following corollary.

Theorem 6. Let S={f;}° be a set of real-valued functions in A(R) satisfying (3.2)
and (3.3). Then S generates A(R) if the following three conditions are satisfied:

(8) Es1is a strong set of uniqueness for D(R);
(b) for each i there is an h,€ W such that f;€ Bu, (R);
(e) for each i the modulus of continuity, w,, of f; satisfies w () =o0(8/h; (1/8)).

Proof. We assume that S satisfies the conditions stated. Let Iy (u) = Min; <y h; (u).
Then Il is also in W, for
%0 N )
f (M +uHHy@) 'du< > f 1+ uh;(w) du.
i-1Jo

0

It is clearly no restriction to assume that the series on the right is bounded. If
171l = f=e | f(u)|du it follows from the Schwarz inequality and (3.15) that

|71l <Const. [|£lsv, (3.16)
where the constant is independent of N.
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We can also assume that
S, < oo,
N
and that S (82 <K 8/Hy(1/6),
1

where K, is independent of N and lims o Ks;=0. It is now easy to see that
the proof of Theorem 4 applies to this case almost without change. Thus, with
the notations used there, we can make | g—@(Fy)||y arbitrarily small, and
then the theorem follows by (3.16).

An amusing consequence of Theorem 6 is that a function f in A(R) together
with its complex conjugate generates A(R) if f separates points on R, f is
Hoélder continuous of order p for some p>3}, and f is nowhere differentiable.
We give an example of such a function (in A(T) for simplicity).

Let r(x)=>%_,a" cos b"x+ C, where b is an integer, b ' <a<b7?, p>1} and C
is so large that 7(x)>0 for all x. It is well known that r is nowhere differen-
tiable, and one can easily prove that r satisfies a Holder condition of order p.
If we put f(z)=r{x)e”, f satisfies all conditions, and thus f and f generate

(T).

On the other hand, there are C*™ functions, f, which separate points on 7T
and are never zero although f and f do not generate A(T). (Cf. Katznelson-
Rudin [8], where the existence of such functions is proved in a somewhat
different way.)

Let E be any closed, totally disconnected set on T such that Cy (T — E) < Cy(T).
Such sets exist, for one can construct 7 —E as the union of sufficiently small
intervals containing the rational points. It is easy to construct a strictly mono-
tonic O function a(x) such that a’'(z)=0 for x € E, ¢(0)=0, and a(27)=2x. Then
if we put f(z)=exp (a(z)), f and f do not generate A(T) by Theorem 5.

4. Generators in B (R), p>2

We shall first study B,(R). If f€B,(R), { exists and belongs to L*(R). We
can thus renorm the space by putting

1g= [ Iepacs [ 11 P

and it is then easily seen that B,(R) is a Banach algebra.
For the sake of simplicity we only study finite systems of generators.

Theorem 7. Let S={f;}\ be a set of real-valued functions in B, (R), satisfying (3.2)
and (3.3). A necessary and sufficient condition for S to generate B, (R) is that the set
Ej, where f{x)=0 for i=1, 2, ..., N, has Lebesgue measure zero.

Proof. The necessity is obvious. Here we do not need the hypothesis that
the functions f; are real-valued, nor that S is finite.
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Suppose now mEs=0. Then, if Eg is the union of K and the set where for
some 4 f;(z) does not exist, Es is also of measure zero. Choose a >0, and let
K be a compact set: contained in the complement of Eg, such that for every
z€K there is an f;€S with |f( x)|>¢5

Let g(x)= f*. k(t)dt, where k is a bounded function which is zero outside K
and has the property that [ k(f)dt=0. Clearly g€ B,(R). We shall show that
g € By (the subalgebra generated by S8).

As x describes the extended line, the N-tuple F(x)={f; (%)} describes a closed
Jordan curve, ', in R¥. As on p. 87 it is easy to prove by means of the
Weierstrass approximation theorem that any function ¢(F(x)), where ¢(§)=
P(&®, ..., EV) belongs to €' in a heighbourhood of I', is in Bs. Thus it is
enough if we can find a sequence, {@,}>, of C* functions, such that as n—>co

|l guFanlaes [ (re) -3 ED oz

We can determine bounded functions, y;, such that

k(z) = Z'Vz ft (),

and y;(x)=0 outside K. By Lebesgue’s theorem on dominated convergence it
suffices if we can construct the functions @n so that for i=1, ..., N

iy 00 (F(@)

n->00 5(2)

=; ()

boundedly, for almost all .

For each y; there is a sequence of step functions which converges boundedly
to y; almost everywhere, and thus it is no restriction to assume that the func-
tions y, are step functions such that

f_w 121 ;i (@) f; (x)dz=0.

We let {av}{", a,<a,.1, be the set of all points of discontinuity of the y;,¢=1, ..., N.
Then, for all ¢, y;(x)=0 for x<a, and z>a,. We put y;(x)=b;,, a, <T<a,.1,
and we denote the point F(a,) on I' by a,= (aP, ..., ). We then define a
function @(&)=@(E?, ...,E") on T by

(&) zizlbiv (&P —aP)+¢,, for E=Fy(x), a,<x<a,1,, v=1,...,m—1,

and @(§)=0 for £=Fy(z), x<a, or z>ay,.
N T N
Since  @(&) — @(o) :ig:lbiv (ED — @) —‘_—élbiv (f: (@) — f; (@)= L i:z1 yi(£) fi () dt

for @, <z <a,,;, it follows that the constants ¢, can be chosen so that ¢ is
continuous on I.
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Now let & be an increasing function in C*(0, o) such that

h(r):{o, r<i

1, r>%.

For every positive integer n such that 1/n <3} Min,., [0, — .| we modify the
function ¢ by putting

P (8) = (@(8) — (o)) - h(n|& — o) + (o)

on the intersection of the ares (a,_;, o) and (&, & 1) with the ball |&— a|<1/n,
forv=1,...,m (we put ag=0, ot,;.1 =0), and ¢, (&) = @(&) elsewhere on I'. It is then
easily seen that ¢,(£) is extendable by the same definition to a C® function
defined in a meighbourhood of T', and thus ¢, (F)€ Bs.

If £€(a, ®i1) and @, (&)= (@(&) — p(x)) - h(n|&—a,|) + @(a,) we find for all 4

o, ) @ b
§5<ff)=b.-v-h(n|§*ocvl)+(¢(§)—<p(av))'h(n|£~ml)-n'1§§j;|-
Here h'(n|&—o,|)=0 for |£—a,|>2/3n, and since |@(£) — @(o)| < Const. |£—a,|,
we have |@(£)—g@(o)| B (n|&—a|)-n<Const. for all n. Hence |dp,(£)/06”| is
uniformly bounded as n—> oo, and lim,_.&p,(£)/05® =b;,. This proves that
the function g€ B;.

Since the number ¢ is arbitrary, and mEs=0, it is now obvious that every
function in B,(R) can be approximated by functions in Bs, i.e. Bs=DB,(R),
which proves the theorem.

We now turn to the spaces By.,(R), 0<p<1, and we renorm them by
putting

1= [ tp@taes [ [ irwso- r@pleda

To prove that these spaces are Banach algebras we need the following lemma.

Lemma 1. If f€ By, , (R), 0<p <1, the modulus of continuity, w, of f satisfies

(8) < Const. - || flzp - 6*P? for 0<p<1,

and () <Const.+||f|l;- 6 log 1/6 for p=1.
Proof. flx)= él;zfj; f(u) e du.
Hence, for >0, |f(z+6)—f(z)] S%f | fw)] | €% — 1] du
s (1 dus L ol d
< - .
2 [ altfelans L[ )
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For all p>0

1 i
[ tas{ [ apetiwrad{[ i)
lu|>1/6 lul>1/6 |u|>1/8

<Const. * || f |24, - 6P

For p<1

1/8 16 [ (16 t
6f fu ]f(u)ldu<6{f lulz“’lf(u)lzdu} {f | "du}
—-1/8 —-1/4 -1/6

<Const. || f|lz+p - 6172,

which proves the lemma in this case, and for p=1

1/ R 1/0 3 " N
6f |u||f(u)|du<6” (1+|“|)|u|2|f(u)|2du} {f o(l*lul)"ldu}
e 16 y

< Const. - ||f|ls- 6 log (1+1/6).
This proves the lemma.
Theorem 8. B; ., (R), 0 <p <1, is a Banach algebra.

Proof. We introduce the notation
I(f)=f f |f(x +)—f(x) 2] ¢] P dadt.

Let f and g belong to By, ,(R). As before Max,|f(z)| <Const. || f|lz-5, so it is
enough to prove that e.g.

I(f'g) <Const. || {85 |3 »-

But I(/'g)<2f°° |f'(z)[*de f " ot —g@) ]

+2f f lg@+t) B F(@+e)—f () Pe] ! P dadt,
and by Lemma 1 we find
I(f'g) <Const. ||g|3, f |f'(x)[?dz + 2 Max, |g(x) [P I(f') < Const. || fl2+5 ||9]1Z+ 5,

which proves the theorem.

It was proved by Beurling [2] and Broman [3] that if a function / belongs
to B,(T), 0<p<1, the Fourier scries of f converges, except possibly on a set
of (1—p)-capacity zero, and the sum equals the derivative of the primitive
function of f. The proof in [3] extends easily to B, (R).
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If f€B;.,(R), its derivative f' is in B,(R), and it follows that f'(x) exists
and equals its Fourier integral except on a set of (1— p)-capacity zero.

Theorem 9. Let S={f}¥ be a set of real-valued functions in Bs,,(R), 0<p<1,
satisfying (3.2) and (3.3). For S to generate By, , (R) it is necessary that Cy_, (Es)=0,
and if, tn addition, the derivatives f;, i=1,..., N, are continuous, this condition is
also sufficient.

Proof. If Cy_, (Es)>0, 0<p<1, there is a measure y with support contained
in By and with finite energy integral, i.e.

f_ ||| () [P < oo

For p=1 one finds similarly, using the kernel log”1/7, that there is a measure
p with

f“ (Lt [u) | ) Pdu < oo

Then, as in Theorem 3, the function iui(u) is the Fourier transform of a non-
zero bounded linear functional, C, on By, (R). If f is a polynomial in elements
of 8, it follows, after an application of Egoroff’s theorem, as in Theorem 3
that {C, f>=0, which proves that S does not generate B,,,(R). Here we have
neither used the reality, nor the finiteness of S.

Now we assume that ), ,(Es)=0, and that f;/,4=1,..., N, are continuous.
Let g be an arbitrary C*° function with compact support. Such functions are
dense in By.,(R) and it is thus enough to show that g€ Bs.

We let I be an open interval which contains the support of g, and for every
positive integer n we denote by K, the subset of I where >/, |f/(x)|<1/n.
Then InEs=N5.,K,. Since Eg is closed, it is easy to see that we can find
open sets O, K,<O0,cI, such that lim, ., Ci-,(0,)=Ci ,(I N Es)=0. (See
Carleson [5], p. 22). We can also assume that O, consists of a finite number
of intervals, since K, is compact.

We denote by u, the equilibrium distribution of 0, with mass C;_,(0,), and
by U, the corresponding (1 — p)-potential. Then 1-U, () vanishes everywhere
on 0,, and is positive outside O,.

We can then choose a C* function, #,, with support in I—0,, so that

" mwa- | gv.mas
and define a function

gn (x)= fr k, (t)dt,

by kn () =9¢'(2) (1 = Un () + 770 (2)-
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It is easily seen that k,€B,(R), and since g,(x)=0 outside I it follows that
92 € By, (R). We shall show that lim,oe||g —¢x|lzsp =0. It suffices to show that
lim, o0 || 9" — Kn ||, = 0.

We first observe that for any M >0 lim, . [ U, (x)dz=0. Indeed,

0 M dx
f Un (x) dx = fd‘un (t) f ITT——D < Const. Olvp (On),
— M| t|

which can be made arbitrarily small. It follows that we can choose 7, so that
limy o || 7], =0, and thus it is enough to show that lim,, .| ¢ U,|,=0. As

J‘ 9" (2)2U, (x)*da <Const.f U, (x)dz,

— 1

it suffices to prove that lim,,. I(¢'U,)=0. We choose ¢>0, and then M >0 so
large that for all n U, (x)<¢ for |x|>M. We find

I(g'Uy) < 2f f lg' @+ ) | U, (x4 8)— Up () ||+ P dadt

’ 2f |Unta) |2dxf lg’ (@+8)—g' (@) [*| 8] *dt

M

< Const. I(U,) -+ Const. f U, (x)dx+ 2621 (g)

-M

M
U, (x)dx + Const. &* <Const. (C;_, (0,)+ &%),
M

< Const,. fUn () dpn () + Const. f

which proves the assertion. Hence g€ By if ¢,€ Bs for all n.

Thus, from now on we can assume that g is a function in Bs., (R) such
that g’ is continuous and ¢'(x)=0 outside a set I— 0,.

Every point in the support of ¢’ has an open neighbourhood where for some
i |f{(x)]>8>0 for some &, and thus the support can be covered by a finite
number of such intervals, {w,}{.

We can multiply g by any C” function which is constant on O,, and still
remain in the class considered. Hence, by a partition of unity, we can reduce
the problem to the cases when g(x)==0 on only one interval w;, or when the sup-
port of g’ is contained in two non-intersecting intervals, w, and w,, say. It is
enough to consider the second case, and we assume that f;(z)>8>0 on w,
and f;(x)>8>0 on w,. :

As before, F(x)={f,(x)}Y maps R onto a closed Jordan curve I' in R”. We
shall show that, given ¢>0, there is a function ¢ which belongs to C* in a
neighbourhood of I', such that ||g—@(F)|lz:p <e.

We start by defining functions h;, i=1, 2, by k;(x)=¢'(x)/f; (x), for xE€w;,
and h;(x)=0 elsewhere. We show that k€ B,(R). In fact, |k, (z)| <Const./d,
and, if  and y belong to w;,
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1 ’ ’ ’ ’ 4 ’
|3 (@) = b ()| < o Max [ @) |9'@) —9'(9)| + Max |g' )| | fit) — i) [},
Tewi €wi
and if x is in w; and y belongs to neither w, nor w,
1 ’ 1 ! !
|b@) k)| < 519’ @ = 519'@ —g' )],

which proves the assertion, since either of these alternatives holds for |z —y]|
sufficiently small.

It is easy to see, e.g. by means of convolutions with positive kernels having
compact support, that we can find continuously differentiable functions, y;, such
that

2= pillo<e,

and Max |k (z) — y: (@) | <&,
and such that the support of y; is contained in w;, We can also assume that
f 71 @) fi @) da— f (@) dz.

We denote h;—v; by A;, and we shall show that

9" =v1 1= atells <l 2 fill+ || 45 fo]l < Comst. .

o0
Since f |4 fi Pda <&*-Max f; (z)? mow;,
—oo Tewi

it suffices to prove that I(4,f;/)<Const.e®. We choose M >0 so large that
w;<(—M, M), i=1, 2. As A, (x)=0 outside w;, we find that

I(liﬁ)<fm f{(x)zdxfw |2 (z+8) = A (@) [P ¢ [P dt
2M

—oQ

-l—f f,-'(x)zdxf | A (z+2)— A () 2|87 de
|z|>2M |El>M
+f f [Ai(@+ )P fi(x+8)— fi (@) 2| ¢] ' P dadt
-0 -0
< Max f] ()2 - I(A;) + 4€* f f,'(x)zdx-f |t|"2~7de + 2 I(f;) < Const. .
lzl<2M —o0 |t|>M
Now we define a function ¢ on I' by

P (F(z))= f 0O+ ROk0)
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Because of the choice of y; and v,, ¢(F(z))=0 outside a compact interval, and
thus @(£) is continucus on T’

Since f; is monotonic on ;, we can extend ¢ to small neighbourhoods of
the images of w;, and w, by defining ¢ to be constant sufficiently near to I'
on the hyperplanes &9 =, (), ¢ € w; > w;, 1 =1, 2. Everywhere outside the intervals
;, p(F(x)) is constant, and hence we can extend ¢ continuously to a neighbour-
hood of I' by putting it equal to a constant in a small neighbourhood of each
of the two remaining arcs of T

On the image of w; we clearly have

op(F () _
85(1)

Vz (x)r

and all other derivatives are zero. Since y;(x) is continuously differentiable, and

1/f;(x) is continuous on w;, it follows that @ has continuous second derivatives

on I', and because of the way we extended ¢, also in a neighbourhood of T.
Now it is easy to see that ||g —@(F)||s+, <Const.e. Indeed, we have

dp(F , ’
i(d?(ﬂ)z 71 (@) (@) Ty, (2) f2 (@),

and it follows from the construction that

fw lg(x)— ¢(F(x)) [*dz < Const. &2,

and that

(g ="00) <210 1)+ 2105y < Comst.

To complete the proof we need only observe that for all C* functions o,
@(F)€ Bs, which is easily proved as before by the Weierstrass approximation
theorem (Whitney [16], p. 74).

For the sake of completeness we also treat the spaces B, (R), p>3. We put

p=2k+gq, where k is an integer and 0<g<2. If ¢g=0 we renorm the space
by '

b= | lapaes [~ 12 s

and if ¢>0 we put

Ilf||%=f_ | f) 2 e+ f : fw |19+ )~ 1 (@) | ¢~ .

If f€B,(R), p=2k+gq, the derivatives up to order k—1 have absolutely
integrable Fourier transforms, and thus these derivatives are continuous and
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bounded. It follows easily, by means of the Leibniz formula for the derivatives
of a product, that these spaces are also Banach algebras.

Theorem 10. Let S be a set of real-valued functions tn B, (R), p>3, satisfying
(3.2) and (3.3). For S to generate B, (R) it is necessary and sufficient that the set Es be

empty.

Sketch of proof: Since the proof does not involve any new ideas we only give
a brief sketch. (Cf. also Theorem B.)

The necessity of the condition is obvious, since convergence in B, (R), p>3,
implies uniform convergence of the first derivatives.

To prove the sufficiency, we assume that Es=¢, and we let ¢ be a C%
function whose support is contained in an interval, w, such that for some f€S,
f@)=6>0 in w.

We then write g(x)=1y(f), prove that y*(f)€B,(R), and approximate y*(f)
in B,(R) with a continuously differentiable function a(f), which can be modi-
fied so that it is the k-th derivative with respect to f of a function A(f) in
B,(R). Then we prove that A(f) approximates g, and finish by showing that
A(f) € Bs.
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