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Invariant sets under iteration of rational functions
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Introduction

The theory of the iteration of a rational function R(z) developed by Fatou [5-6]
and Julia [9] treats the sequence of iterates {R,(z)} defined by

Ryz) =z, R\(2) = R(2), Bpa(2) = Ry(R,(2), n=0,1,2,
A fundamental role is played here by the set F of those points of the complex plane
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H. BROLIN, Inrariant sets under i{teration of rational funetions

wheve {&,(z)} is not normal. In the general theory a number of properties of F are
deduced. Fatou and Julia have established the possible structures F can have. These
structures depend in a very complicated way on the coefficients of R(z). But very
little is known about what the possible structures are even for the simplest classes,
e.g. the second and the third degree polynomials with real coefficients. The aim of
this thesis is to continue the general investigations concerning F, and to examine
the structure of F for the polvnomials mentioned above.

Nince there exists no modern survey on this subject, we shall devote most of Chapter
I to a treatment of the known properties of F and of the theory needed in what fol-
lows. A list of references for these known theorems is added at the end of the paper.
Furthermore, in Chapter I we solve a problem, treated by Fatou under special condi-
tions, concerning the Lebesgue measure of F on a line and in the plane under as-
sumptions which imply that F is totally disconnected.

In Chapter 1, we consider polynomials. We examine the structure of F for poly-
nonials of the second and the third degree. Certain results concerning the second
degree polynomials and the polynomial 23 + p, p real, have already been established
by Myrberg [10-19]. :

In Chapter III, we define a mass distribution u, by placing the mass k™" at the
k" roots of the equation P,(z)—z,=0, where P(z) is & polynomial of degree k and z,
any point in the plane with at most two exceptions. We prove that u,->u*, under
weak convergence, where u* is the equilibrium distribution of F with respect to the
logarithmic potential. In proving this, we also establish that the logarithmic capacity
of F is positive. Finally, by regarding P(z) as a transformation 7' on F we prove
that 7" preserves u* and that 7 is strongly mixing.

The subject of this paper was suggested by Professor Lennart Carleson to whom
the author is deeply grateful for his generously given advice and never failing interest.

Chapter 1. Main results concerning the iteration of rational functions
1. Definitions

In the investigations of this paper we will use the extended complex plane with
the usual topology and the following notation, for a set £.

CE is the complement of E,

£ is the closure of E,

¢ £ is the boundary of £,

d(E,, E,) is the distance between the sets E, and E,.

Henceforth R(z) will always denote a non-linear rational function and P(z) a non-
linear polynomial. The sequence of iterates {R,(z)} to be studied is defined by

Ry(z)=2, R,(z)=R(2), R,,(z)=Ry(R,(2)), n=0,1,2, ...

Definition 1.1. If w= R, (2) we say that w is a successor of z and z is a predecessor of
w, in both cases of order n.

Since the fixpoints of the iterates play an important part in iteration theory, we
need the following definition.
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Definition 1.2. If R, (%) =a and R,(x) 4o when p<n, we say that « is a fixpoint of
order w. The derivative Ry(x) is called the multiplier of .

The successor of a fixpoint of order n is a new fixpoint of order n. Furthermore,
the set {x, R(a), Ry(«), ..., R,_(a)} is called a cycle of order n and all fixpoints of
an n-cvele have the same multiplier R, (a) since Ry (x)==][}75 R'(R{)).

Definition 1.3. A fixpoint « (or @ cycle) of order n is called attractive, indifferent,
or repulsive according us |Ry(a)] <1,=1, or =1, respectively. If R, (x)=e"""79,
where p and g are integers, we say thut « (or the cycle) is rationally indifferent.

In this paper a Mobius transformation of w = R(2) is a transformation of the follow-
ing form
(z, w)—(Lz, Lw),

where L is linear. It is easy to see that the fixpoints and their multipliers are left
invariant by this transformation. Finally, we need the following definition.

Definition 1.4. A set E is said to be invariant under R(z) if R(E)=E, and completely
invariant if R_(E)=E = R(E), where R_(z) denotes the inverse function of R(z).

Remark. If nothing else is said, R_,(z) always means all the inverse branches

and R%(z) one branch.

2. The set F
We shall now introduce that set which is the principal object of our investigations.

Definition 2.1. The set F consists of those points at which the sequence {R,(2)} is
not normal, in the sense of Montel.

This implies that CF is an open set. Hence the
Lemma 2.1. The set F is closed.

Before characterizing ¥ we must prove the
Theorem 2.1. F==¢.

Proof. Suppose, on the contrary, that F=¢. Then {E,(z)} is normal in the whole
extended plane and there exists a subsequence { R, (z)} with a rational limit function
g(z). By considering the equations R(z) —z=0 and R,(z) —2=0 it is easy to see that
there exist at least two different cycles. Thus ¢(z) is not constant. Suppose that g(z)
is of degree s. Choose p >s. From {R,, _,(z)} we then extract a subsequence which tends
to a rational function h(z) of degree ¢>0. Thus R,(k(z)) =g¢(z), where the degree of
R,(h(z)) is >s, which contradicts the hypothesis.

We shall now start our investigation of the properties of F.

Theorem 2.2. The set consisting of the repulsive and rationally indifferent fixpoints
ts @ subset of F.
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Proof. It is sufficient to consider fixpoints of order one.

() Let a be a repulsive fixpoint of order one, and for simplicity take o - 0. Hence,
in a neighbourhood of the origin,

R(z) = ayz+a,z2+ ..., where |ay| > 1.
Since R.(z)~afz+ ...
and lim |a,|* = .
n-—>o

it is easily seen that {R,(z)} cannot be normal at o« --0.

(b) Suppose now that « =0 is a rationally indifferent fixpoint of order one. It is
sufficient to consider the case where R’(a)-- 1, for when R’(x) ~¢*™ 79 we consider
R,(z) and its iterates. Hence, in a neighbourhood of the origin,

B, (z) =z+n-a,20 4
and evidently {R,(z)} cannot be normal at o ~0.
Theorem 2.3. The set F is completely invariant under R(z).

Proof. It is evident that if {R, (z)} converges uniformly in a neighbourhood of
¢, then {R, ,(2)} and {R, .,(2)} converge uniformly in neighbourhoods of R(Z)
and R_({), respectively. Thus, if {R,(z)} is normal at a point { it is also normal at
the points R(Z) and R_,({). This implies that CF is completely invariant under
R(z) and then F has the same property.

This theorem has the following corollary.

Corollary 2.1. The set F does not change, if we replace R(z) by any ilerate R,(z).

Lemma 2.2, Let £ be an arbitrary point in F. Then in every neighbourhood of
the functions {R,(z)} omit at most two values. Moreover, the exceptional poinis, if
any, are independent of { and do not belong to F.

Proof. If the lemma is not true, then there exist arbitrarily small neighbourhoods
of { in which each R,(z) in the sequence {R,(z)} omits at least three values. Hence
{R,(2)} is normal at { (for example see Hille [8] p. 248), which contradicts the as-
sumption (€ F.

Consider the possibility of exceptional points. Suppose that there exists one excep-
tional point . Then a can have no predecessors other than itself. By a Mébius trans-
formation we can move @ to oo, and then the transformed function must be a poly-
nomial.

Suppose now that there exist two exceptional points a and 4. Then the following
two cases are possible.

1°. @ has no predecessors other than itself and b has no other predecessors than
itself.

2°. @ and b make up a cycle of order two, and all their predecessors coincide with
a or b. By a Mébius transformation we can move ¢ and b to 0 and oo. Clearly, in the
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first case the transformed function must be of the form Mz where M is a constant,
and in the second ease of the form Mz *.

From this we conclude that the exceptional points depend only on R(z) for by
considering the transformed functions above, we see that the exceptional points
are attractive fixpoints of order one or two. Thus, the following quite trivial lemma
completes the proof.

Lemma 2.3, The sequence {R,(z)} is normal at an attractive fixpoint « of any order,
l.e. xECPF.

As we know, the set F is closed. It is, however, now possible to prove a much
stronger result, namely

Theorem 2.4, The set F is perfect.

Proof. Since F is closed it is sufficient to prove that F is dense in itself.
We first observe that every €F has at least one predecessor (* such that
Z*¢Us R,(£). This is evidently true when £ is not a fixpoint. If £ is a fixpoint of

order n, then { is in the n-cycle {, (|, 5, ..., £,_;} and { has at least one predecessor,
{"n, such that {==(" ,. Otherwise the equation R,(z) — =0 has a multiple root z=Z,
i.e. B,({)=0 and { is an attractive fixpoint. Furthermore, {* ,=(,,v=1,2, ..., n—1,

for otherwise £ ={,, some ». Thus we can take >”, to be £*.

Let £ € F and choose {* as above. Since F is completely invariant, £* € F. By Lemma
2.2 we conclude that { is an accumulation point of the predecessor of {*, i.e. an ac-
cumulation point of the set F. Thus, F is dense in itself and theorem is proved.

Having established Theorem 2.4 we use it to prove the converse of Lemma 2.2.

Theorem 2.5. Let z be any point in the plane with at most two exceptions. Then a
point [ belongs to F if and only if { is an accumulation point of the predecessors of z.

Proof. The necessity follows from Lemma 2.2, Suppose that { satisfies the condition
supposed to be sufficient. Choose a point € F. Then 7 is an accumulation point of
the predecessors of 7, i.e. of points in F. Since F is perfect it follows that (€ F,
which was to be proved.

We shall make use of the following corollary in later sections.

Corollary 2.2. If g€ F and P, is the set of predecessors of q, then F :I—’;.

Proof. This follows irﬁmediately from Theorem 2.4 and 2.5.
We end this first characterization of F with the

§
Theorem 2.6. If the sed F contains interior points, then F is identical with the extended
plane.

Proof. Suppose that G€ F is an interior point. Then there exists a neighbourhood
O of { such that Oc F:Then any point z different from the exceptional points of
Theorem 2.5 has prede(tssors in 0, which implies that z € F. Furthermore, it is easy
to see that exceptional points cannot exist in this case.
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Remark. In 1918 Latté constructed a rational function for which the corresponding
set F consists of the whole plane. Thus, this case can really occur. (For example see
Cremer [3], p. 199.)

3. On critical points

As we have already mentioned, in this paper we shall be concerned chiefly with
finding the properties of the set F. In these investigations, however, the critical
points of the inverse functions {R_,(2)} will be of great importance. Therefore we
have to discuss their relationship to iteration theory.

Definition 3.1. If the equation RB,(z)—c=0 has a multiple root, then c is called a
critical point of the inverse function R_,(z). Henceforth C will denote the set of critical
points of all functions {R_,(2)}.

We begin by establishing two simple but important results.

Lemma 3.1. The critical points of R_,(z) consist of the critical points of R_;(2) and
their successors of order 1,2, 3, ..., n—1.

Proof. Divide the equation R,(z)=c as follows:
R, \(x)=c (3.1)
R(z)==. (3.2)

Equation (3.2) has a multiple root if and only if x is one of the critical points of
RB_,(2). By (3.1) the successors of order n—1 of these points are critical points of
R_,(z). Now treat the equation R,_,(v)=c in the same way as R, (z) =c. Repeating
this procedure n —1 times will complete the proof.

It is quite trivial that the critical points of R_,(z) are the first. order successors
of the zeros of R’(z). This fact yields the following lemma.

Lemma 3.2. If R(z) is of degree d, then N, the number of critical points of B_,(2),
satisfies the tnequality N <2(d—1).

In this paper a domain always means an open connected set. We need the follow-
ing definition. ' ' ' .

Definition 3.2. 1. The immediate attractive set A*(a) of a first order attractive fiz-
point « is the maximal domain of normality of {R,(z)} which contains «. The attractive
set A(o) of o is defined by

A(a)={z | lim R,(2)=a}.
2. Let {x} be an attractive cycle of order n. Then the immediate atiractive set A*({ot})
of the cycle is defined by
A*({ak}) = stA:(“kL
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where Aj(w,) ts the maximal domain of normality containing ay, and the attractive set
A({ar}) of the cycle is defined by

A({o}) ={z|{o} s the cluster set of {R,(2)}}.

Remark. From the definition of A*(x) it is obvious that if z€A4*(a), then
lim, , ., B,(2) = a. Furthermore, by Corollary 2.2 it is easy to see that 04(a)=F.

The foliowing theorem establishes the influence of the critical points on the number
of attractive fixpoints.

Theorem 3.1. If {a,} is an atlractive cycle, then there exists ot least one critical point
¢ of R_,(z), such that ¢ € A*({o)}).

Proof. Suppose first that o is an attractive fixpoint of order one. Then choose a
nelghbourhood U of a such that U < 4*(«) and an inverse branch R*;(z) which satlsfles

R*,(x)=o. Further, introduce the functions {R%.(2)} defined in U by R*,(z)=
R%,(R* ,_1)(2)). Thus, if no critical point of R_,(z) belongs to A*(«), then the functions
{R%.(2)} are meromorphlc in U. Since each R*,(z) omits at least three values in U,
for example the set F, {R*,(z)} is normal in U. That, however, contradicts the fact
that « is a repulsive fixpoint of the function R*,(z).

If o belongs to an attractive cycle {a, oy, &, ..., &,}, then we define the functions
{R n(2)} by

Ry(a) =0y, R¥s(a)=ap_q, ..., B j(a) =0

Now we use the same argument as above and the theorem is proved.

It is evident that the indifferent fixpoints must be considered as exceptional points
in the iteration theory. In characterizing the set F, however, we cannot omit the
rationally indifferent fixpoints, which have the same influence on the structure of
F as do the attractive fixpoints. But since a complete treatment of these exceptional
points takes more space than the general case and does not involve any special dif-
ficulties, we will without proof summarize some of their properties, namely those of
importance for the following.

Theorem 3.2. 1°. If « is a rationally indifferent fizpoint, then there exists an im-
mediate atiractive set A*(«) which is a union of maximal domains where R, (z) is normal,
each of which has « as a boundary point.

2°. A*(a) contains at least one critical point of B_,(2).
3°. The number of indifferent fixpoinits is finite.

4. The set F is homogenous

We shall now prove an equivalent definition of ¥, which was the start point of
Julia’s investigations.

Theorem 4.1. The set F is identical with the closure of the set of repulsive fixpoints.
We shall need the following lemma in the proof.
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Lemma 4.1. Every € F is an accumulation point of fixpoints.

Proof of Lemma 4.1, Let J€F. + oo, be ditferent from the poles and the critical
points of R_,(z). Then there exists a neighbourhood U of { where the d? inverse
branches of R_,(z) are bounded, holomorphic and have different ranges. Choose
three of these branches R (z), R“’(~) and R‘s’( 2).

Now suppose, on the contrary, that R,(z) —z=0, every z€ U, and every ». This
implies that

R,(z)# RU(z). Ry(z)* ROU(z), Rulz)+R%(z).
if z€U, every n. Otherwise R, ,(z)=2 for some z€U. We introduce the functions

R R RYG) - RS R RGO
PO R B B RG) B - B Y

Each function ¢,(z) omits in U the values 0, 1, co. Thus the sequence {g,(z)} is
normal in U. But
. R%() - R(e)
R,(z)=R%,(2) + Q2 PV
(2) (2} + Qz) eal) — Q)

and we conclude that {R,(z)} is normal in U, contradicting { € F. Thus, the lemma is
proved.

Proof of Theorem 4.1. By Theorem 3.1 and 3.2 the number of attractive and
indifferent fixpoints is finite. Since the repulsive fixpoints belong to ¥ an application
of Lemma 4.1 proves the theorem.

By using the previous theorem, we get a simple proof of the following fundamental
result concerning F'.

Theorem 4.2. Let E be a closed set containing none of the exceptional points of Theorem
2.5. If LEF, then there exists for every neighbourhood U of { an N such that E< Ry(U).

Proof. According to Theorem 4.1 it is sufficient to consider the repulsive fixpoints.
Let £ be a repulsive fixpoint of order n and choose a neighbourhood U of { such that

U< R(U)< Ryp(U)< ...< B, (U)<

We see from Theorem 2.5 that every z€ E belongs to some R,,(U), and since E is
closed we can extract a finite subcovering from {R,,(U)}. If we then choose N equal
to the largest index used in this covering, we get E< Ry(U), and the theorem is
proved.

Since F is invariant under R(z) this theorem yields the

Theorem 4.3. If D is any domain such that DN F = F*==¢, then there exists an mteger
N such that F = R,(F*).

Remark. Instead of the formulation above we might say that F is “rationally
homogenous’.
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5. On limit functions of the iterates {R,(s)} in the complement of F

Henceforth @ and G, will always denote maximal domains, where {R,(z)} is normal.

Lemma 5.1, If the number of limit functions of {R,{(z)} is finite, then every limif
function is a constant.

Proof. f lim, , . R, (z)=f(z), uniformly, in some G,, then lim, . R, ,(z) =
R, (f(z)). According to the assumption there exist integers » and X such that
Ry(f(2)) = By y{f(z)). We conclude that f(z) is a constant.

Theorem 5.1. If lim, . R, (z)=a, uniformly, in a domain D and if ag¢F, then a
s an attractive fixpoint.

Proof. 1f D, =R, (D), then the sequence {D,,} converges uniformly to z:-a.
Thus there exist two domains D“rq and D,(p such that D,‘p < Day. By taking

h=apq— % Ba=0n—0p

we get. for zEDxp"q,
lim Rg,(2)= lim Rupyp(2)=a.

n—yoC n—>o0

Observing that
Bhip,(z) = Ru(Bp,(2)) (5.1)

we obtain, by taking limits in (5.1),
a=R,{a).

Thus, a is a fixpoint of order k. Since ¢ ¢ F it cannot, however, be a repulsive or
rationally indifferent fixpoint. Moreover, if a is an indifferent fixpoint, not rational,
then

Rnh(a):a5 |R;1h(a)| =1

and no constant limit function can exist in a neighbourhood of z—=a. We conclude
that a must be an attractive fixpoint and the theorem is proved.

A more difficult problem has been to decide whether non-constant limit functions
can exist. It was finally proved in 1942 by Carl Ludwig Siegel [20] that this case
actually can occur. In the next section we shall establish a condition due to Fatou,
which excludes the possibility of non-constant limit functions. Other results needed
are stated in the following theorem.

Theorem 5.2. If lim,, ., R, (2)={(z) in a domain G and if f(z) is not constant and

(G) =G*, then there exists a subsequence which converges to the limit function F(.z) =z
in G*. Furthermore, there exists an iterate R,(z), which maps G* one to one onto iself.

Proof. Since {R.(z)} is normal in G*, we can extract from the subsequence
{R,,VH-,,V(Z)} another subsequence {R, (2)} ={Rum,(2)} which tends uniformly to

v +17 Ry

a function F(z) on every compact subset of G*. Observing that
Ry, —n(Rui(2)) = R, (2) (5.2)
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we obtain, by taking the limits in (5.2),
F(f(=)) =f(2)

and we conclude that F(z)=z.

Now if z,€G*, there exists an iterate REi(z) such that R,(z,)€G*. If R(G*)=G,,
then G, N G*==¢. Since G, and G* are maximal domains of normality of {&,(z)},
we have G,c G*.

It remains to prove that the mapping is one to one. Since lim,_, o, B, (2) =2, the
assumption R,(z,)=R,(z,) implies

zy= lim R, (z,)= lim R, _(By(z))= lim R, (z))=z,
and the theorem is proved.

Remark. A domain such as G* is called a singular domain.

6. On the inverse functions {R_,(z)} of the iterates {R,(z)}

Clearly, a more detailed investigation of F has to make use of Theorem 2.5. Then
a good knowledge of the behavior of the inverse functions {R_,(2)} is needed. There-
fore this section is devoted to these functions.

We begin, however, by treating the following closely related question.

Let a be any point in the plane other than the exceptional points of Theorem 2.5,
and form the set P, of predecessors of a. Let P, be the derived set of P, and in-
clude a in P, when a has an infinite number of predecessors which coincide with a.
If a € F then by Theorem 2.4 and 2.5 F =P, and if a¢ F then at least F<P,. The
question now is whether or not F =P, can occur when a¢ F. The following result
holds.

Theorem 6.1. F= P, if and only if a does not belong to the set of attractive fixpoints
or to a singular domain.

Proof. Consider two points @ and b such that bEP, and b¢ F. Let {a_, } be a
sequence of predecessors of a such that lim,_, . a_, =b. Since b¢ F, the sequence
{R,,(2) —a} is normal in a neighbourhood U of b.

We can extract a subsequence {R,:(z)—a} which converges uniformly in U.
Since R, (a_,:) —a=0 we conclude that

lim R, (b) —a=0.

Thus a is an accumulation point of the successors of b. Moreover, since b ¢ F, it follows
that a¢ F.

Hence, if b belongs to a domain where the iterates { R,(z)} have only constant limit
functions, then by Theorem 5.1 a is an attractive fixpoint of some order. If, however,
b belongs to a domain where there exist non-constant limit functions, then by
Theorem 5.2 & belongs to a singular domain. The necessity is obvious from Theorem
5.2 and the properties of attractive fixpoints.
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We shall now consider the inverse functions {E_,(z)} which are algebraic functions.
Before proving some fundamental lemmas we recall that C denotes the set of critical
points of the functions {R_,(2)}.

Lemma 6.1. Any infinite set of branches {R%} (2)}, meromorphic in a domain D, 1s
normal in D.

Proof. By considering the equation R(z)—z=0 it is easy to see that there exists
at least one fixpoint « different from the exceptional points of Theorem 2.5. This
point o has two predecessors a_, and «_, of order one and two such that
afo_yFo_,Fa. If ag¢D, then each function R(_”}p(z), A,>2, evidently omits the
values «, a_, and a_, in D, and thus {R‘_"}p(z)} is normal in D. If « € D, then by
considering the equations R(z) —z=0 and R,(z) —z=0, it is easy to see that there
exists at least one more fixpoint § of order one or a cycle (yy, y,) of order two, in
both cases different from the exceptional points (cf. Baker [8]). We can repeat the
discussion concerning «, and consequently there remains only the case where all
the fixpoints mentioned above belong to D. But then we can divide D into a finite
number of overlapping subsets, such that {R‘f}p(z)} is normal in each of these sets.

Since this implies the normality of {R®} (z)} in all D, the lemma is proved.

Lemma 6.2. If the domain D is simply connected and if DN C=4¢, then the set of
functions {R_,(2)} ts a normal family in D.

Proof. This follows immediately from Lemma 6.1.

Lemma 6.3. Let E be a closed set whick contains no accumulation point of the suc-
cessors of a point outside F. If E,=R_,(E), then the sequence {E,} converges uniformly
to F.

Proof. Suppose that the lemma is false. Then there exists a sequence of increasing
integers {,} and a sequence of points {z™} outside an e-neighbourhood U of F
such that R, (2™)=£™, where &€ E. Evidently {™} has an accumulation point

z®, also outside U. Thus {R (2)} is normal in a neighbourhood of 2. Tt is then
easy to see that there exists a subsequence of {Rln(z)} which, according to uniform

convergence and the fact that £ is closed, in z® tends to a point £ € E. This con-
tradicts our assumption and so the lemma is proved.
We now state the main result of this section.

Theorem 6.2. Let {R®) (2)} be any infinite set of inverse branches, which are mero-

morphic in a domain D. We suppose that D is not a subset of a singular domain and
that F is mot identically equal to the whole plane. Then {R®) (2)} is normal in D and

every convergent subsequence of { R} (2)} tends to a constant.

" Proof. By Lemma 6.1 {R? (2)} is normal in D. Furthermore, it is evident that

there exists a domain D,< D such that D, satisfies the conditions of Lemma 6.3.
Thus, in D, the values of the functions {R?, (2)} converge uniformly to F, ie. to
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a set containing no interior points. Since the convergent subsequences tend to
meromorphic functions, thev must be constants and the theorem is proved.

It is now possible to prove the theorem mentioned earlier concerning the non-
existence of singular domains.

Theorem 6.3. If the set C does not divide the plane, then there exist no singular domains.

Proof. Suppose, on the contrary, that there exists a singular domain G*, although
(' does not divide the plane. Furthermore, let G*, be any of the non-singular domains
R_,(G*). If we choose 2’ €G* and " €G*| we can, according to the assumption, find
a simply connected domain D containing z* and z” and such that DN C =4.

In D the functions {R_,(z)} make a normal family. Since G* is a singular domain
there exists a subsequence {R"}, (z}}, which in a neighbourhood of 2’ tends to a non-
constant limit function. In a neighbourhood of =", however, {R") (z)} tends to a
constant. This is impossible and the theorem is proved.

However, we can state a more useful condition, which also can be used to prove
a theorem concerning the values of R,(z) on F.

Theorem 6.4, If F N (==, then there exist no singular domains.

Proof. Suppose there exists a singular domain G* and that ¢ divides the plane.
Since there always exist non-singular domains, by Theorem 4.2 any neighbourhoods
of a point [ € ¢G* contain non-singular components. Thus we can choose 2/, 2" and
D as in the proof of Theorem 6.3 and then use the same argument.

Theorem 6.5. If FNC =4, then for each k>1 there exists an integer h such that
| Ra(z)| >k>1if zEF and n>h.

Proof. If d(F,C)=8>0, we cover F by a finite number of circles D, with radii
of length r <. Set D= {J D, and suppose that F is bounded. The functions {R_,(2)}
are meromorphic in D, and thus constitute a normal family. According to Theorem 6.4
no singular domains can exist, so then all limit functions are constants. Consequently
we conclude that the functions {R.,(z)} converge uniformly to zero in D,. This
implies that for each k> 1, there exists an integer A such that

|R_.(z)|<k™*, if 2€D, n=h, ie. |Rn(z)|>k, if z€F, n>h,
which was to be proved.

Remark. 1f R, (z)—a in a domain then it follows that a €C, ([6], pp. 60-61.)

Thus if FnC=¢, then by Theorem 5.1 and 6.4 the limit functions of {R, (z)}
are attractive fixpoints.

7. On the structure of the complement of F

In this section we shall discuss how the set F divides the plane. We need the follow-
ing theorem.

Theorem 7.1. The number of simply connected domains, which are completely in-
vartant under R(z) is at most 2.

For the proof we need the following lemma.
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Lemma 7.1, If the domain D is simply connected and completely invariant wnder u
rational function R(z) of degree d, then D contains at least d 1 critical points of R_(z).

Remark. 1t is always understood that the eritical points have to be repeated as
many times as their order indicates.

Proof of Lemma 7.1. We can omit the two quite trivial cases where D is identical
with the whole plane and where D has only one boundary point. Suppose further
that z:= oo ¢ D.

If a€ D, then D contains the d roots of the equation R(z) « -0. Evidently there
exists a Jordan curve y sufficiently close to ¢ D fory_, -~ U R*¥(y) to enclose all these
roots. From the argument principle it follows that the curve y_; is generated by d
inverse branches, which are permuted cyclically when z runs through v d times. Thus
y must enclose at least d -1 critical points of R_,(z) and the lemma is proved.

Proof of Theorem 7.1. We know that if R(z) is a rational function of degree d,
then E_;(z) has at most 2(d - 1) critical points. The conclusion of the theorem now
follows from Lemma 7.1.

We now consider the possible number of components (¢, of CF, i.e. the number
of maximal domains of normality of {R,(2)}.

Theorem 7.2, If the number of disjoint components of CF is finite, then it ix either
1or2.

Proof. If the number N of disjoint components of CF is finite, it follows that every
component (7, must be completely invariant under some iterate R,(z). Furthermore,
if N2, then every component is simply connected, or else there exists at least one
multiply connected component , which contains a closed curve separating boundary
points of another connected domain G,2@G,. The theorem then follows from Theo-
rem 7.1. '

To get further information about the components of CF we now return to
the immediate attractive set A*(x) and the attractive set A(a), and consider
their connectivity. We recall that A*(x) denotes the largest connected set contain-
ing the first order attractive fixpoint a where lim, . R,(z)=a and that 4(a) -
{z|lim,, 5 o R,(2) =}

Theorem 7.3. The immediate attractive set A*(«) is either simply connected or of
infinite connectivity.

Proof. Since a is a first order attractive fixpoint there exists a circular disk o
with o as centre and such that for z€w

| R(z) —o| <k|z—a|, 0<k<I,
Ifw_,=R_,(w), then
OCW_1Cw <. Cw_, <.

Let E, be the largest connected subset of w_, which contains «. Hence

EcH,c..cl,<...
and it follows that
A¥a) = lim E,.

n—> ol
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Suppose now that A4*(«) is multiply connected, i.e. that some £, is multiply con-
nected. Then the boundary of E, consists of ¢ disjoint closed curves. For simplicity
we assume that 2= oc€ E,. We may a]so assume that ¢o N C=¢. If the boundary
curves are denoted by y %, o, v, then R, (")) =¢m, v=1, 2, .., q. Thus, if
J€5",, we have - 11’,1( )6()() Let 7, describe a curve arc outside o w thh terminates
at a point n, €F. Then it follows that 7 deseribes a curve arc inside ¢}, terminating
at a point n€ F. Thus we conclude that each 9%, encloses points belonging to F

In an analogous way it is then possible to prove that if ¢E, , ; consists of ¢”
closed cuuea, eaoh enclo\mu points belonging to F, then the same holds for ¢E, _,
with ¢" replaced by ¢"? BV induction the theorem then follows.

Since F=cA(x )*(A( 3) =(A(y)=..., where «, f§, v ... are attractive fixpoints, this
theorem has the following corollary.

Corollary 7.1. Suppose that « is an attractive fixpoint of order one and that A*(x)=
A(x) is not simply connected. Then if there exist first order attmctwe fixpoints 3, v, ...
other than o, AXP)==A(B), A*)EA(y), ... and each A(f), A . consists of simply
connected components.

8. The structure of F, when the number of attractive fixpoints is > 2

The last sections of the first chapter will be devoted to a more detailed investiga-
tion of the structure of F. We begin here by proving that under quite general condi-
tions F consists of Jordan curves. The number of these curves can be either one or
infinity.

Theorem 8.1. If R(z) has two first order attractive fixpoints o and § and if A*(a)=
A(a) and A*(p)=A(p), then F is a Jordan curve.

Proof. From Theorem 7.3 and Corollary 7.1 it follows that both A(a) and A(f)
are simply connected. If the degree of R(z) is d then, by Lemma 7.1, both 4(x)
and A(f) contain d -1 critical points and consequently there exist no attractive or
rationally indifferent fixpoint other than « and §. Since F 0 C =¢, then, according to
Theorem 6.5, given £>1, we can find an integer A such that

|Ru(z)| >k>1 for z€F, n=>h.
It is no restriction to suppose that k=1, i.e.
|R'(z)] >k>1 for z€F (8.1)

and to take « =0 and f§ = . We can choose two Jordan curves y and w in the follow-
ing way (for example see the proof of Theorem 7.3)

(i) y< A(0) and w< A (o).
(i) The critical points belonging to 4(0) are inside y and those belonging to 4( o)
are outside w.
(i) y_y = R_,(y) encloses y and w encloses w_; = R_;(w).

By Lemma 6.3 the sequences {y_,} and {w_,} of the predecessors of y and » both
tend uniformly to F.
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Now consider the Jordan curves {y_,}. To get a parametric representation of them
we proceed as follows. Map the doubly connected domain D bounded by v_; and
v_y conformally and one to one onto a circular ring bounded by C; and C,. Let a
radius r of C, cut C; at @ and C, at b. The inverse mapping function maps the =ubare
1, Of r onto an are 445 which consequently cuts y_; and y_, at right angles. By letting
» run through the circular ring we get a corresponding covering of ) by orthogonal
trajectories 4,5 By successively mapping these trajectories by E_,(z) we get a cover-
ing of the domains between the curves (y_,, ¥_3), (¥_3, ¥_4)s ..., 80 that it corresponds
to every point on every y_, one and only one orthogonal trajectory, i.e. an are that
cuts »_, at right angles.

Let y_, have the parametric form z =z,(t), 0 <t <1 and z(0) —z(1). Then give every
v, @ parametric form such that points on the same trajectory have the same f-value.
If the maximal length of the trajectories between y_, and y_,,y is {,,,, then by
(8.1)1,,,<k™'-1,, and we obtain

lim z,(¢) =z(f), uniformly.

n-~—>x
Since {z,(t)} are continuous functions it follows that z(t) is continuous and thus
F = {2(t)|0<t<1} is a continuous curve.

It remains to prove that z=z(f) is simple. Suppose that { =z(t;) =z(f,) and that
f,==t;. Then there exist two different trajectories 4, and J,, which terminate at [.
Hence 1, and 1, together with y_, bound a simply connected domain £ and 7,< €,
t,<t<t,, whence {z(f)|t, <t<t,}<QU {{}. We now observe that we can treat the
carves {c_,} in the same way as {y_,}, i.e. w_, has a parametric form y-y,(!) and
lim, , o y,(t) =y(t), uniformly, where F = {y(t)|0<¢<1}.8Since {y(t)]0=<t<<1}NQ=4¢
we obtain that {z(t)|t, <t <t,} ={l}. Thus ¢ is not a double-point. We conclude that
F is a Jordan curve, which is what we wished to show.

Theorem 8.2, Suppose that

(i) the number of attractive fixpoints is = 2,
(i) one and only one of them, g, has A*(B)=A(f),
(1) FNnl=¢.

Then F contains an infinite nwmber of Jordan curves.

Proof. From Theorem 7.3 and Corollary 7.1 it follows that the assumptions imply
the existence of at least one .attractive fixpoint « such that 4*(x)3=A4(a) and such
that 4*(a) is simply connected. Let ¢4*(a) =¥, and let R%;(z) be the branches of
B_,(z) for which R_,(A*(x))< A*(«). Then R*,(F,)=F, and furthermore R(F,)=F,.
Thus by using R*,(z) instead of R_,(z) we can prove, as in the proof of Theorem 8.1,
that F, is a Jordan curve. By then taking all the predecessors of F, we get an infinite
number of Jordan curves that belong to F.

Remark 8.1. Fatou [6], pp. 300-303 proved that F is a Jordan curve, if R(z) has a
first order attractive fixpoint « and a first order rationally indifferent fixpoint g
such that 4*(«)=A(«) and A*(B)=A(p). In this case § must satisfy B'(f)= +1 and
R"(B)=+0, i.e. A*(p) consists of only one maximal domain of normality of {E,(2)}.
See Fatou [5], pp. 191-221 and Julia [9], pp. 223-237.
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It is. however, possible to get more detailed information about the Jordan curves
in Theorem 8.1 and 8.2. The next section shows that these curves do not have tan-
gents at any point.

9. On the existence of tangents to the curves that lie in F

Theorem 9.1. Let o be an attractive first order fixpoint of R(2). Suppose that A*(a)
ix simply connected and that F, 0N C =, where F,=-¢A*(a). Then, if F, is not a circle
or a straight line F, does not have a tangent at any point.

IFor the proof we need the following important lemma.

Lemma 9.1. Let o be an attractive first order fixpoint of R(z). If A*(a) is simply
connected and if ¢A*(x)=F, is an analytic Jordan curve or arc, then F, is either a
cirele or an arc of a circle (straight line or a segment).

Proof. As usual R(z) is of degree d. We begin by mapping 4*(«) conformally and
one to one onto || <1 and so that z =<t =0. Let the inverse mapping function be
z=-h(t). Since F is an analytic Jordan curve or arc, k(t) is meromorphic in |#| <r,
where r, >1. Moreover, if @ ={t||t|] =1} then F,~h(w). Furthermore, R(z) maps

A*(a) onto itself ¢ times. Thus
h_y(B(h(t)) = @(t) 9.1)
maps the unit disk onto itself ¢ times. Then @(f) must be a Blaschke product, i.e.

7P g,

@ty =A -t e |A]=1, 1<p<g<d. (9.2)
o -,

We wish to prove that h(t) is a rational function. From (9.1) we get
R(h(t) = h(p(t)). (9.3)

For |t| = r>1and r<r; we have |g(t)| >k- ||, where k>1 is a constant independent
of r,. Since {t||t| <kr,}<{p(t)||t| <r.}, by (9.3) we can continue h(t) analytically
to |¢| < kr,. where any singularities of h(t) are poles. For if ¢_,(t) has a critical point
in 1< |t| <kry,let ¢ move along a closed path in 1< |t| <kr, such that the critical
point is inside the path. Assume that the path starts and ends at ¢, €. Then a
branch ¢®(f) moves along a path in 1< [t] <r; from ¢%i(t,) =1, €w to ¢®(ty) =1, € w,
where t, <=t,. But R(h(p_,(t)) =h(t) and thus for each t,€ v we have R(h(t,)) = R(h(t;)) =
h(ty) and we conclude that A(f) has no algebraic singularities in |¢| <kr;. Thus, by
(9.3), we can continue A(t) analytically to the whole plane. '

Consider the behaviour of A(f) at = co. Suppose first that ¢(t) has some finite
poles, ie. g(t)==A4t% If ¢(t) has a pole at z=b, then in a neighbourhood O of 2= oo
one branch ¢®(t) takes its values in a neighbourhood U of z=b. Thus,A(t) = R(h(¢™1(t))
has the range R(R(U)) in O, i.e. k(t) has at most a pole of finite order at ¢t = co.

It remains to study the behaviour of h(t) at t = co, when @(f) = At2. We can take
A =1 and thus we have the functional equation

R(A(t)) =h(t9). (9.4)
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Suppose that A(f,) = «, where t,==0. Thus, by (9.4)
h(t") = Ru(h(ty)) = Bn(o) = .
If O satisfies 67" =1, then
RL(08)™) = Ro(h(0t,)) = . (9.5)

It follows from (9.5) that « has an infinite number of predecessors h(ff,) on an arc
containing . These predecessors have « as an accumulation point, which is impos-
sible since « is an attractive fixpoint. Thus, h(¢) =« has no roots other than £=0.
Since, however, this equation has roots £==0 when o« has predecessors other than
itself, we conclude that « can have no predecessor other than itself. By a Mébius
transformation we move « to z= co. Then the transformed function will be a poly-
nomial P(z). From the discussion above we conclude that A() has only one finite
pole, namely ¢=0. Thus in [¢] >1, A(t) has no singularities.

Now set max |h(t)|= M(r).
|t|=r

Since in (9.2) ¢ =d, we get from (9.4)
M) <B-(M(r)’, (9.6)

where B is a positive constant. Choose 1>1 and an integer m such that 1> B and
M(2) <A™ Then by (9.6)
MA)<B- A< @9)™+

m+1

and M(ld”)<B1+d+...+d"‘l (d”)m (Ad")

Thus we conclude that h(t) has at most a pole of order m+1 at t=co and A(t) is a
rational funection.
We now consider the possible cases:

(@) h(t) is a linear function. Then F, is a circle or a straight line and the lemma is
proved in this case.

() h(t) is of degree p>2. Let the complement of the unit disk in the t-plane be
o, and set h{w,)=D. By (9.3)

R (h(£)) = k(g t))-

Since ¢@,(¢)— oo in w, we have

lim R,(z)=h(co) =4,

If now h(t) is of degree 2, then A*(x) N D=¢. Thus f=a and we obtain 4*(«)=D,
i.e. FU A*(«) is equal to the extended plane.

Moreover, we assert that A(t) is of degree 2. Let 2y € F be no critical point of k_,(2).
If h(t) is of degree p>2 then 2, has the p predecessors {,, to, t , ... on w. Move z along
the normal to F at z,. Then the corresponding ¢-values move along the normals to
 at ty, to, ty , ..., respectively. If p>2, then there exists a z€A*(«) to which at least
two ¢-values in |t| <1 correspond. That is impossible and thus the degree of A(t) is 2.
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By a Mobius transformation, we move the endpoints of ¥ to 2=0 and 2z = co.
Then map A*(x) onto Im ¢>0 instead of |¢| <1 and so that z=0-¢=0 and z=
o0 ¢+t = oo, Thus we conclude that h(t) = A2 and consequently F is a segment. That
completes the proof.

Proof of Theorem 9.1. We may assume that A*(a)=A(a). If A*(a)=FA(a), then in
our proof below, we merely replace F with F, and R_,(2) with R%,(z), where R”,(2)
is the restriction of R_,(z) to A*(a).

Let D be a domain such that DN C=¢ and « ¢ D. By Lemma 6.2 all the functions
{R_,(z)} make a normal family in D. Moreover, by Theorem 6.2, every convergent
subsequence of {R_,(z)} tends to a constant, which is a point in F. By Theorem 6.1,
such a subsequence corresponds to every point in F.

Let (€ F and let {R®, (z)} be a sequence which converges to { in D. Furthermore,
let {* be an accumulation point of the successors {{,,} ={R,,({)} of {. Since CnNF=¢
we can deform D so that {*€ D. Thus if {,,—*, m — oo, then R_,(,,) —{ =0 for every
m, where {R_,(z)} is extracted from {R%, (z)}. Set

R.n)—C

m R)= ——7 . 9.7
fn(2) B () 9.7)
The functions {f,(z)} are univalent in D and f,({,) =0 fu({,)=1. We obtain by a
distortion theorem by Koebe (see for example Hille [8], p. 351), that {f,,(z)} is normal
in D. Extract a subsequence {f,, (z)} which tends uniformly to ¢(z) in D. Obviously,

@(z) is univalent and # constant in D. By (9.7)
B_,(2) (=t ((2) + &1, (2))s

where the constants u,, — 0, y—>co, and &, (z) = 0 uniformly in D.
If DN F=vy then take z€y such that z 4={*. Consider

lim arg (E_,,(2) = {)- . (9.8)

It lim, , ., arg p,,, =0 and arg ¢(z) =y, then 6 +v is one of the limits of (9.8). Hence,
for (9.8) to have a unique limit, it is necessary that arg ¢(z) be constant when 2z
moves along y. Thus, the image y* =@(y) must be a straight line. Since g(z) is univalent,
y must be an analytic arc. By Theorem 4.3, there exists an integer N such that F =
R,(y). Thus if y is analytic, then F is analytic and it follows from Lemma 9.1 that
F is a circle or a straight line.

Since ¢ was arbitrary, no points of F have tangents, except when F is a circle or
a straight line. Thus the theorem is proved. :

10. The structure of F when the number of attractive fixpoints equals 1

As usual a set is said to be totally disconnected if all its components are single
points. The following theorem, stated by Fatou, shows that the set F can have this
structure under quite general conditions. Fatou only outlined the proof, but we
shall give a detailed proof here, since both the theorem and some details of the proof
will be of great importance in our investigations.
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Theorem 10.1. If « is a first order aftractive fixpoint of a rational function R(z)
and if C< A*(a) then the set F is totally disconnected.

Proof. From the assumption we conclude that there exists no attractive or rationally
indifferent fixpoint other than « and that A*(a)=A(a). Thus A(a)=CF and CF
is a connected set. For simplicity we move « to z= oo by a Mobius transformation.
According to the assumption, it is possible to cover F by a simply connected closed
set E, such that

E,NC=¢, 2dE,NF=¢.

If CEy=B then B< A(o0). Since R,(B) tends uniformly to z= oo there exists an

integer p such that
R (B)cB if n=p.
Now set R, (2) =p(z)
and consider the iterates {p,(z)}. Since every inverse branch is holomorphic in £,
we can use the same arguments as in the proof of Theorem 6.5. Thus, {p_,(2)} is
normal in E, and every convergent subsequence tends to a constant. Furthermore,
the funections {p’ ,(z)} tend uniformly to zero in E, and thus there exists an integer
h such that
|pa(z)| <k<1

if z )€ B, and n=>h. Set Pr{z) =h(z),
where the degree of h(z) is m =d” " if d is the degree of R(z). By mapping E, by the

inverse function k_,(2) we obtain m simply connected sets {¥,}. Because of the
choices of E, and h(z) these sets satisfy

FcUE,=E,<E,; E,nE,=¢, if v+pu.
r=1

Map E, by h_l(z) and then E,=h_,(E,) by h_,(2) and 8o on. After n such mappings
we obtam m" simply connected closed sets { ,,} satisfying

FCL_JIE,.,=E,,CE,,‘IC...CE0; E,NEun,+¢, if v+pu.

If the boundaries {0E,,} have the lengths {I,,} the condition |hl(2)] <k<1,
2 €K, implies

Ly <kBlp-yyu< ... <kl (10.1)
and lim !,,=0 for every ».
n—»00

Thus, every component of F is a single point and the proposition is established.

We shall denote by m, and m, Lebesgue measure on a line and in the plane respec-
tively. It is now natural to ask if it is possible to obtain results concerning m, F and
my F under the conditions of Theorem 11.1. Fatou gave some results but we can now
give a more complete solution.
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Theorem 10.2. If o is a first order attractive fixpoint. of a rational function R(z)
and if C< A*(a), then F is totally disconnected and we also have

(1) MZF:O’
(ii) my F =0 if F<L, where L is a straight line.

Proof (i). We use the same coverings {E,};° of F as in the proof of Theorem 10.1
and introduce a new sequence of sets {0,} defined by

0n=EnHEn+l (102)

To prove the theorem it is sufficient to show that there exists a flxed number >0
independent of », such that
My Oy

> A
myE, A

As in (10.2) we introduce

m
On=E,,—UEu+1u, where Eq.p.<E,, u=12..m
#=1

My Oy
my B,

and Any=
In forming the sets {E,} we used a function k(z) satisfying

0<K,<|k(z)| <K <oo, 2€EE,, (10.3)
where K, and K, are constants, and also

MEw)=Em-10, MOn)=O0w-1y, (10.4)
where for simplicity, we keep the index ». If

max |2 )| =¥ (w)| and min [7'@)| =% (zn)]|

we get from (10.4) that

m2 > I h'(z,,,,) I2 mz O(n 1),;

Any=
my,E |h(CM)| sz(n l)v

After repeating this procedure n times we obtain

my0p " K@) o o |F () [
v >ms Eo k=1|h’(CkV) |2 Elllh (Ckv) |2

A

To verify the existence of a 4>0, such that A,,>4 for all » and v, it is
sufficient to prove that the product

= [ e
LW (105)
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is uniformly bounded for all ». But a sufficient condition for (10.5) to be uni-
formly bounded is that the series

_ S W) —H (Cw)]
SS2 WG

is uniformly bounded for all . On account of (10.3) we get
S<K, 5 W (en) =K (Ew)|
and since h'(z) is a rational function
S<E, 3 o Cul

According to the proof of Theorem 11.1 the length I, of 0F,, satisfies I,, <1, k",
where 0 <k <1 (see (10.1)). Hence we get

= 0 00
S<Ky D |2n—Cm| <Kg 3 1, <Kg Zlk"<K7<oo.
n=1 n=1 n=
We have thus proved that there exists a A>0 such that
My Oy
My By,

-

for all » and ». But then we obtain

mn
> m, 0y,
m20n_u=1 2 2
B >A.
2 Zlszm’
p—

Since 0,=E,— E,,, we have

my By =my0p+my By 1 >A-my By +my B,

and » my b, <(1—-Amy, B, <..<(1—-A)""m, E,.
Thus my F< im my B, < lim (1-2)"my, E,=0

and the first part of the theorem is proved.
(ii) Suppose now that F< L where L is a straight line and let
' E,NL=L; EunnL=w., O,0L=a,.
We then define in analogy to the proof of (i)

l — ml anv
ny
m1 Wy
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and again we have to verify the existence of a 1>0 such that 1,,>4 for all n and .
We estimate 4,, in the following way

(1)
m An
. 1( U ) my “(1}3 | h,(zkv) I my 731)— 1yv

m, wnv_ my Way ml aEnv |h (Ckv | ny (aE(n—l)v),

where y3)_1,, = h(al)). We can now repeat this mapping and if we estimate
m,yoy by d(@E,, 0E,)=d, in the last step we get
5 d m | B (2 |
Y - 1 . ; = . - X
my(@8o) 11| (Cw)| k=1 | B (S|

The remaining part of the proof then follows as in the proof of (i). We only replace
my, by m,.

Chapter II. On the iteration of polynomials
11. General results

For polynomials the point at infinity has a special character. This follows from the
following theorem.

Theorem 11.1. If P(z) is a polynomial of degree d, then

(1) 2= oo ts an attractive fixpoint of order 1.
(il) 2= oo s a critical point of P_,(z) of order d —1.
(iii) A*(o0)=A(o0).

Proof. Let the polynomial be
2y =0g2 0y 12 a2 tay

and move z= oo to w=0 by the Mébius transformation 2, =1/w,, z=1/w. The trans-
formed function then has the form

wd

d a-1
a, W' +a, w4 Lty

w, = (11.1)

By (11.1) we conclude that w =0 is a fixpoint of order 1 and a zero of dw,/dw of order
d—1. Since all predecessors of z= oo coincide with z= oo, it follows that 4*(cc)=
A(oo) and the theorem is proved.

Henceforth the the set F will correspond to a polynomial of degree d, if nothing
else is said. The fact that a polynomial always has z= co as an attractive fixpoint
yields the

Corollary 11.1. The set F is bounded and not equal to the whole plane, ie. F
contains no inlerior poinis.

For simplicity we introduce the
Definition 11.1. C, is the set of finite critical points of P_(z)
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Theorem 11.2. The set F is connected if and only if A(c0)N C;=¢.

Proof. Sufficiency. Let D={z||z| >R} be such that P(D)< D< A(co). Thus, if
z moves around 2D d times, then the d inverse branches of P_,(z) permute cyclically.
If P_(D)=D_,, then
DcD_c..cD_,cA(c0).

Since D_, is simply connected for every n and A(oo) =lim, , ., D_, we conclude that
A(oo) is simply connected. Thus F =0A4( o) is a connected set.

Necessity. If A(oo) N 03¢ then there exists an N, such that D_, contains at least
one finite critical point for every n>N. Thus D_, is multiply connected for n >N
and by Theorem 7.3, A( o) is then of infinite connectivity. Thus F =08A4(o) is dis-
connected and the theorem is proved.

Corollary 11.2. If C,c F, then F is a connected set and A(oo) is simply connected.

Since a polynomial always has z= cc as an attractive fixpoint the Theorems 8.1,
10.1, and 10.2 can be reformulated.

Theorem 11.3. If a polynomial P(z) has a finite first order attractive fixpoint o such
that ;< A*(a), then F is a Jordan curve.

Theorem 11.4. If P(z) is a polynomial such that C;< A(o0), then
(i) F is totally disconnected.

(ii) my F=0.

(iii) m, F =0 if F<L where L is a straight line.

12. On the iteration of polynomials of the second degree with real coefficients
Let the polynomial be t, =at? +2bt +¢, (12.1)

where a, b, ¢ are real numbers. By a Mébius transformation of the form ¢, =2z, /a —b/a,
t=zla —bja, we get from (12.1)
2, =22—p, _ (12.2)

where p:bg—b—ac. Thus we can consider the simpler function (12.2) instead of

(12.1). The polynomial P(z) =22 —p has the finite first order fixpoints ¢ and ¢, and
the inverse function P_,(z) has the only finite critical point ¢,. These are

=3+@E+tot =3~ G +pt ;= —p.

We will be concerned chiefly with the problem of finding the structure of F for
each real value of p. Certain results have here also been established by Myrberg
(see [10-11, 13, 16-17, 19]). We need the following lemma.

Lemma 12.1. ¢, ¢ A(oo) if and only if —}<p<2.

Proof. If p< —}, then 2* —p> ||, « real, and thus P,(¢,) oo, i.e. ¢; € A(o0). Con-
sider p> —}. Then ¢ is real and P,(x) — oo if 2 >¢. Since P(c,) >¢q for |p| >g, it fol-
lows that c¢,€A4(cc) when p>2. Furthermore, if —}<p<2, then |p|<gq and it
follows that |P,(c,)| <q for every n, i.e. ¢, § A(co).
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Theorem 12.1. Let P(z) =22 —p be a polynomial with p real.

10 If —}<p<2then F is connected. Furthermore, F is a Jordan curve if and only
if —1<p<} and F is the real interval [ -2, 2] if p=2.

20, If p<<—} then F is totally disconnected and m, F =0.

3°. If p>2 then F ts real and totally disconnected. Furthermore, F<[—q, q] and
my F=0.

Proof. 1°. Since ¢, ¢.4(oc) when —1<p<2, it follows from Theorem 11.2 that ¥
is connected. Furthermore, P(z) has one finite attractive fixpoint ¢; if and only if
—}<p<}, and only for p= —}, P(z) has a rationally indifferent fixpoint which
satisfies Remark 8.1. Since F is symmetric with respect to the real axis and since
for $<p<2, tqand g, €F and are real F is not a Jordan curve. Thus, by Theo-
rem 11.3 and Remark 8.1, # is & Jordan curve if and only if —}<p<$. Finally,
if p=2, then ¢=2 is repulsive and thus 2€F. Since ¢,=—2 and P(—2)=2 we
conclude that ¢, € . By Corollary 11.2 F is connected and since the interval [ -2, 2]
is completely invariant under P(x) =22 —2, we obtain that F=[—-2, 2].

2°, If p<—1% then by Lemma 12.1 ¢, €4(oc). It follows from Theorem 11.4 that
F is totally disconnected and that m, F =0.

3°. Now consider p>2. By Lemma 12.1 ¢;€4(o0) and thus from Theorem 11.4
it follows that F is totally disconnected. For p>2, ¢ is a repulsive fixpoint and hence
g€ F. Consider the set P, of predecessors of g, i.e.

P,={g, tVprg +VptVptg..}.
Since @®=p+q, 2<q<p

it follows that P, is a real point set and that P,=[—q, q]. By Corollary 2.2, F =P,
and hence F<[—gq,¢]. On account of Theorem 11.4, m; F =0 and the theorem is
proved.

We shall now prove the last assertion, i.e. that m; F =0 for p>2 by using explicite
estimates. This proof will also give an upper bound of the Hausdorff dimension of F.

Explicit construction of F, p>2.

We introduce the set E,=[-—gq, ¢]. Then by Theorem 12.1, F< E,. Now map
E, by the inverse function P_,(x) = + (x +p)}. Then map the inverse image by P_,(x)
and so on. This gives us a sequence of coverings {E,} of F such that

Fc...cE,, <E,c...CkE,

Set’ q/=’(1’_9)*- If E1=U:2’=1 Wiy, t’hen 6011:{"‘1, —Q'L wm:[q’: Q‘] &l’ld If
E,= U2 0y, then : :

w21=[_q’ “(P+ql)*]= T Wy w22=[_(p_ql)%, ‘9']= T Wy

wil w12
é W] w22 ! é wa3 w24
ses aanae. -.............f— eescgevsscen n o4 0s0e o .
-q —(Pp+¢R -(@-9¢R -¢ 0 q (p-g)F (+a} ¢
Fig. 12.1.
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Observe that since g € F the endpoints of the intervals belong to #. After » mappings
we get

28
E,= U o
y=1
and evidently F=NE,.
n=1

Thus F is a generalized Cantor set on the real axis, symmetric with respect to the
origin. We shall now estimate the lengths of the intervals {®,.}.

Lemma 12.2. Let {E,} be the coverings of F obtained by the mapping process described
above. If E,=U2, 0, and m 0, =7y, then given p>2 there exist two constants A
and k, 0<k <1, such that r,, << Ak" for every v.

Proof. We shall prove the assertion by induction. Thus suppose that there exist
constants 4 and %, where 0 <k <1, such that for every »

rw<A-F, u<n—L. (12.3)

We have to prove that 4 and k can be chosen so that (12.3) holds and so that (12.3)
implies that
Ty <A-k", every v.

Since P(wn,) =W -1y, Where P(x) =22 —p, it follows that
2 |x7w| Ty = Tn-1us T € Wy

Thus the existence of & is evident for |2,,| >}. By symmetry it is sufficient to con-
sider the intervals on the positive real axis. Hence, after mapping w,, twice by
P(x), we get
’ 4%y Tn—1y0 Tny = Tn—2p- (12.4)

We keep the index » for simplicity. Now it is easy to see that if x,, <}, then
B> (P+ ) >V2 ' (12.5)

{see Fig. 12.1). Thus by (12.4) and (12.5), the existence of k is evident for z,, >}. It
remains to investigate the values of p for which ¢’ <} and then the intervals {w,,}
such that

o <[q, 1]. (12.6)
After an a-fold mapping of w,. by P(x), we obtain

2% @y, - Zn—1p* +vs " Tn—a+lwny = T(n—aw- (127)

Consider the product
@=2° ':Iix(n~k)v-
From (12.6) it follows that w, <[¢, (p—(p+¢)})}]. Now set
©ns = [Y0r Yol Oen-ion= [t Y], k=1,2,..., (a—1).
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Wpy (i)(n——Q)'p w(n_m,
0 ¢ yy FTm Yo Y2 Tm-2w Y1 Tn-1w 4
Fig. 12.2.
a—-1 a—-1
Then Q=21 %1 >2"Yyy 1w (12.8)
k=0 k=1

If we put y,=q—¢, then
Y=Yi—qg=(@@— e -p>q—2q-¢
> g~ 29" e
Since ¢<p, e=q—p+yi<yi and
> q—(29) 7 4. (12.9)
We now associate with every interval w,, an integer a,, satisfying
2™ yi<4, (12.10.
g™ > 1. (12.11)
Thus, since g>2, we get form (12.9)
ve>3 k=1,2, .., a, 1 (12.12)

Choose a=a,, in (12.8). By (12.11) and by (12.12)
Ay — 1 9 Qv —1
Q> 2y, IT o> 14 (2—) - (12.13)
k=1 q

Since we consider ¢'<} we have ¢<2.05. Moreover, by {12.10) and (12.11)
@y, > 3. Inserting these estimates in (12.13) yields

Q*>24. (12.14)
Now return to formula (12.7). By putting a —a,, and using (12.14) we get

:r(n—d"v)v< A - k" (12.15)

Tny p————
" Q V2.4 - ko

Thus, the existence of k is evident if the integers a,, are uniformly bounded. This,
however, is easily verified. For since y,>q' for every w,,, we have a,, <b, where

29 () =14 (12.16)
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Hence, by taking k= ()
it follows from (12.15) that r,, <A4-k". Finally, we choose 4 such that
Ta <A (3", n=1,2,...,[b].

Thus the induction argument is also valid for x,,<}. Moreover, it is easy to see
that when ¢'<} we can take k=(2)""" even if x,,>}. We can also take k=(3)"°

when ¢’ <V/3, but for g’ >1 it is simpler to take k=1/2¢'.
Having established the lemma above, we can now use some details from the proof
to give an upper bound of the Hausdorff dimension of F. We recall that

g=3+E+p)t, ¢ =(-9} 2<¢<p.

Thus limg=oco, limg¢g = co,

D>r0 P>

limg=2, limg¢ =0.

p>2 p—>2
Theorem 12.2. Let a(p) denote the Hausdorff dimension of F for a fixed p.

log 2

1°. If p=2+V2 )
fr V2 then oc(p)<10g oW

log 2
exp (— 60(log ¢'/5)%) +1og 2

2°. If p<6  then a(p)<
Remark. We shall later prove that the logarithmic capacity of F is positive for
each p.

Proof. 1°. We use the same coverings of F as in the proof of Lemma 13.2 and
introduce

an ar
mm(En) zvzl =2 Zl 505
- y2n=lig

where the symbol m,(E,) is a slight abuse of notation. Since 71y, =2%, 7'ns
and x,,>¢" we get
2" a )
ma(E)=2. z M< — *m, E. _).
n =0 (2 x"v)“ (2q )a oc( n 1)

An n-fold application of this procedure gives

[ 2 " (-4
m(E,) < ((2q_)‘") “(29).

Since p>2+V2, then g’>1 and thus

log 2
log 2¢"

a(p) <oy(p)=
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2°. By Theorem 10.2 there exists for each p a 1>0 such that
 m B, <K(1-2)", (12.17)
where K is a constant. Thus, by Hélder’s inequality and (12.17)

2n

2n
ma(En) < ( Z Tm»)“ ( Z 1)1-9: — (m’l En)u . 2n(1—ac) < K*- [(1 - l)o: . 21—0:]71
r=1 r=1

log 2
and we have x{p) < ay(p)= -

(12.18)

Hence we have to consider 4. Using our notation from Lemma 13.4, we get as in
Theorem 10.2, that

1 >q,l. ﬁ Tyev 2.‘!:.1\7_1”’6” ﬁ (1 _lxk_”_ﬂ’&l)>
YT kY 4 k<1 Ykei-n Yy
r /N-1 1 n
=2 (H f"—) (1 - rk,). (12.19)
9 \k=1Yxv q k=N .

On account of Lemma 12.2, we have 7,, <A(3)"?, where b is determined by (12.16).
Furthermore, it is easy to see that we can choose 4 =2¢. By (12.19)

1 N-1 7 NN-1
Any >+ ,x"”>%(§) I 2w, (12.20)
2¢ (" 1
298 12.21
7 T- @™ 2 4220

For (12.21) to hold it is sufficient that

if

b'Iog———‘il———

’ — 1/b

e A0
log 3

Ng)-

Since p<6, we have ¢<3. By (12.16), 1/g'2=2-(2¢)° 2. A simple calculation gives
N(g') <1062 From (12.16) it follows that b <% log 5/¢’. Thus, by taking

(4 (10 LY’ ¢
N——[ > (log 5)]+1 (12.22)

the estimate (12.20) holds. Hence in (12.20) it remains to consider the product
TIE-L «;,. If here x4, <}, we use the estimate (12.13). If k> ay,, then
K

H Ty > (2’ 4)} L9 %y
1

p=k—ap,+

130



ARKIV FOR MATEMATIK. Bd 6 nr 6

and if k<ay,, then

k
[l,>@ " q.
#=1

N-1
It follows that T 2e>q - (¥ 2 (12.23)
k=1

Anp > (ql)z ) (l_ >ex — 60| lo, *‘,) )
ny I P g 5 :

"2
We choose A=exp (ﬁ 60(10g %) )

log 2
ql 2 ’
exp (— 60(log g) ) +log 2

if p<6. Our theorem is thus proved.

We end our discussion about second degree polynomials by observing that since
the only critical point ¢, is real, the set C cannot divide the plane. Thus, Theorem 6.3
yields the

in (12.18), i.e. o(p) < ay(p) <

Theorem 12.3. If P(z)=22—p, p real, then the iterates {P,(2)} kave only constant
limit functions in their domains of normality.

13. On the iteration of polynomials of the third degree with real coefficients

Let the polynomial be
' t, =at®+ b2 +ct+d, (13.1)

where a, b, ¢ and d are real numbers. By a Mobius transformation of the form

z b z b
b= —, b= —
: et 3a’ et 3a
we get from (13.1)
2=tz +pz+tr, (13.2)

where the sign of 2% is the same as the sign of a and where

b 28° be
+C, r=|a|*(§;+§,—7? 3a+ ).

2

_ b
P="3

a
Thus we can consider the simpler function (13.2) instead of (13.1).

Case A: P(z) = + 2* +pz.
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First consider the polynomial z, = —2® + pz. By the M6bius transformation z; =iw,,
z=1w, we get the transformed function w, =w?+pw. Hence in Case A it is sufficient

to consider the polynomial
P(z) =28+ pz. (13.3)

P(z) has three finite first order fixpoints g¢,, ¢, and ¢, and P_,(2) has two finite critical
points ¢, and ¢,. These are

A — 3
=0, ¢,¢,= 1 (1 —p)}, €1, Cp = i—gp (-‘32) (13.4)

Furthermore, we shall need the fixpoints of order two of (13.3), i.e. those roots of
the equation
(2 +p2)* +p(2* +p2) —2=0

which are not fixpoints of order one. A simple calculation gives the following three
cycles:

2 N
ttm oD Gt (5 (1)) - - -a e

Lemma 13.1. If |p| <1 then ¢,, c,€A*(0).

Proof. Since ¢, =0 is an attractive fixpoint for |p| <1 and a rationally indifferent
one for |p| =1, at least one critical point belongs to A*(0) (see Theorem 3.1 and 3.2).
But since ¢, = —c, and A*(0) is symmetric with respect to the origin, 4*(0) must
contain both ¢, and c,.

Lemma 13.2. ¢,, ¢, € A(0) if and only if |p| >3.

Proof. Suppose first that p<0. Then, for z>g¢,, we have P(x)>z and hence
P, (x)—>+ oo. Analogously, for x <gq,, we have that P, (x)—>— oo. Thus ¢;, ¢, €A4(0)
if |¢;| >gp, i.e. when p< —3. If —~3<p<0, then |c,| <g, and |P,(c,)| = |Pa(co)| <q.
for every n, i.e. ¢;, ¢, ¢ A( o).

Suppose now that p>0. Since ¢;, ¢; = +i(2p/3)(p/3)} and P(iy)=1(—y>+py) we
have to consider the behavior of c1, c;= + (2p/3) (p/3)! under the iterates of P*(y)=
—y3+py. Since we have P*(y)+y =0 for y=0 and y= =+ (p+1)}, it follows that for
every n, ]P* a)| < p+1)* if |e1] <(p+1)}, i.e. when 0<p<3. Now if p>3, then
fer| > (p+ )} and it is easy to see that P,,(c;)>P,,_ 2(cl) and that P,, (c))<
Py, y(c;). By the Mobius transformation iP(z)=P*(y), tz=y, P*(y) can be trans-
formed to P(z) =2%+ pz. Then, on account of (13.5), P*(y) has no real fixpoint { of
order two such that |{| > (p+ l) when p>3.

Thus we conclude that P,,(c;) = -+ o and that P,, +1(cl)—> oo. Clearly P,,(cs)—
— oo and Py, 4(cz) = + oo and the lemma is proved.

We shall also need the following bound on the set F.

Lemma 13.3. F< {z|z| <(1+|p|)t}.

Proof. If |z] >(k(1+|p]|)}, k>1, then |P(z)| =|23+pz| >k|z|. Thus |P,(2)|>
k*|z| and we have |P,(z)| > oo, i.e. zEA(oo)

132



ARKIV FOR MATEMATIK. Bd 6 nr 6

Remark. By (13.4) and (13.5) there exists for each p a repulsive fixpoint £, i.e.
{€F, such that |{| —(1+|p|)}.

Theorem 13.1. Let P(z) =2z% + pz be a polynomial with p real.

1°. If |p| <3 then F is connected. Furthermore, F is a Jordan curve if and only if
|p| <1, F is the real interval | -- 2, 2] if p — —3, and finally, F is the imaginary interval
[ -2, 2] if p=3.

2°. If |p| >3 then F is totally disconnected and m, F 0. Furthermore, if p< --3
then F s real and F<[—gq,, q,] and if p>3 then F is purely imaginary and F<
[_Cl) Cl]

Proof. 1°. If |p| <3 then by Lemma 13.2 ¢,, c,4 A(oc) and hence by Theorem 11.2
F is connected. Moreover, P(z) has one and only one finite attractive fixpoint, g, = 0,
if and only if |p| <1. By Lemma 13.1 ¢,, ¢, € 4*(0) for |p| <1 and then it follows from
Theorem 11.3 that F is a Jordan curve when |p| <1. Furthermore, if |p|>1 then

P_i(¢:)={0,+V —p}<F and hence by the symmetry F is not a Jordan curve. Thus,
F is a Jordan curve if and only if |p| <1. Finally, if p= —3 then ¢, =2€ F and ¢, =
—2€PF. Since the interval [ - 2, 2] is completely invariant under P(z), it follows from
Theorem 11.2 that F - [ —2, 2]. Analogously, if p= -3 then F —[ —2i, 24]. :

2°. Suppose now that |p| >3. By Lemma 13.2 ¢, ¢c,€A(oo) and thus, according
to Theorem 11.4, the set F is totally disconnected. We then have to verify that F
lies on the appropriate intervals.

(a) Suppose that p< —3 and consider the equation 23+ pz —x where z is real and
lz| <(1 —p)t. This equation has the discriminant D>0 when p< -3 and thus the
equation has three distinet real roots. Since ¢,~(1 —p)} € F when p< —3 we con-
sider the set P, of the predecessors of ¢,. From Lemma 13.3 and from the discussion
above it follows that the set P, is real and that P, <[ —gq,, ¢,]. By Corollary 2.2
F=P, and hence F is real and F<[-—g,, g,]. Thus, by Theorem 11.4 m, F=0 if
p<—3. .

(b) Suppose now that p>3. We can proceed analogously to (a). Since [, =
(—1—p)t€F we form P, and it follows that P, <[ -, {;]. Thus F<[—¢,, £,] and
by Theorem 11.4 m, F=0if p>3.

Since the set of critical points C is either real or purely imaginary and since the
point at infinity is a first order attractive fixpoint, the set C' cannot divide the
plane. Then Theorem 6.3 yields the

Theorem 13.2. If P(z)==2%+ pz, where p is real, then the iterates {P,(z)} have only
constant limit functions in their domains of normality.

Case B: P(z)=2z3+7.

If |r| <2V/3/9, then P(2)=z3+r has three rcal first order fixpoints q;, ¢s, ¢s
satisfying

§GB<0<r<g,<gq; 0<r<2—9‘/3— (13.6)

gy <g<r<0<gq,; —gg—g<r<0. (13.7):
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Here ¢, and g, are repulsive and g, is attractive. If |r| ~2V/3/9, then two of these
fixpoints coincide and this point is a rationally indifferent fixpoint, while the other
fixpoint is repulsive. If |r| >:%/3/9 then there exists only one real first order fix-
point, namely
2V3 2V/3
g3 <0, when r>TV; ¢,>0, when r<——g—. (13.8)

This fixpoint is always repulsive. The inverse function P_,(z) has one finite critical
point ¢; =r and we have the

Lemma 13.4. ¢, € 4(c) if and only if |r| >2V3/9.

Proof. If r>2l/§/9 then by (13.8), P(z) >z for >0. Since ¢, =7, P,(c;) = oo when
r>2V3/9. Analogously, if r< —2V/3/9 then by (13.8), P,(c;)—>— co. Finally, it
follows immediately from (13.6) and (13.7) that for every =n, P,(c,)€[q;, q;] when
|»| <2V3/9.

For the following theorem see also Myrberg [19].

Theorem 13.3. Let P(z) =2 +r be a polynomial with r real.

1°. F is a Jordan curve if and only if |r| <2V§/9.
20 If |r| >2V/3/9 then F is a totally disconnected set and m, F 0.

Proof. 1°. From Theorem 3.1 and Lemma 13.4 it follows that there exists one and
only one attractive fixpoint, g,, if and only if |r| <2V3/9. Furthermore, for r=
i2V§/9 the fixpoints + V§/3 satisfy P'(+ V§/3)= +1 and P"(X V§/3):§:O, Thus,
by Theorem 11.3 and Remark 8.1, F is a Jordan curve if and only if || <2 V/3/9 for:

2°. Suppose now that |r| >2)/3/9. Then, according to Lemma 13.4 and Theorem
11.4, F is totally disconnected and m, F =0.

Case C: P(z)= —z3+r.

The polynomial P(z)= —2z3+r has for each r only one real first order fixpoint q.
This is attractive, rationally indifferent, or repulsive, according as |r| <4 V3/9,
|r| =4V3/9, or |»| >4V3/9. Moreover, if 4V3/9<|r| <4V/6/9 then P(z) has four
real fixpoints of order two {y, &,, &5, £, satisfying

416

Li<l<g<r<i;<i,, l<r<~§— (13.9)
4/6
Li<8y<r<g<ly<{,, ——9V—<r<—1.

For |r| =4V€/9, {1 £y and &y, &, coincide and are rationally indifferent fixpoints.
The inverse function P_(z) has only one finite critical point ¢, =r and we have the
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Lemma 13.5. ¢, € A(oo) if and only if |r| >4V6/9.

Proof. By symmetry it is sufficient to consider »>0. If r<1 then it follows that
0<P,(r) <1 for every n, i.e. ¢; § A( o). If r>1, then P,,(r) >P,, 4(r)>r and Py, ,(r) <
P,, 4(r)<0. Thus by (13.9) P,,(r)—C, and Py, (r) >, if 1<r<4)/6/9, and we have
¢, ¢ 4(0). Since for r>4V€/9, P(z) has no real fixpoints of order two Py,(r)—>+ oo
and P,,_,(r)—>— oo, i.e. ¢; EA(0).

Theorem 13.4. Let P(z) = —2z%+r be a polynomial with r real.

1o, If |r| <4li 6/9, then F is connected. Furthermore, F is a Jordan curve if and
only if |r|<4V3)9.
20, If |r| >4 l/6/9, then F is totally disconnected and my F =0.

Proof. By Lemma 13.5 and Theorem 11.2 F is connected only when |7| <4V6/9.
If 4V3/9<|r|<4l/6/9 then ¢, {,, ¢€F and are real so by symmetry F is no
Jordan curve. However, P(z) has one and only one attractive first order fixpoint, ¢,
if and only if |r| <4V/3/9. For |r| =4¥/3/9, ¢ is rationally indifferent and does not
satisfy Remark 8.1. Then, by Theorem 11.3, F is a Jordan curve if and only if
[7] <4V3/9. Finally, if |7 >4V6/9 then, by Lemma 13.5 and Theorem 11.4, F is
totally disconnected and m, F =0.

Since ¢, is real, we have, analogously to the Theorems 12.3 and 13.2,

Theorem 13.5. If P(z)= + 28+, where r is real, then the tterates {P,(z)} have only
constant limit functions in their domains of normality.

Case D: P(z)= t 28 +pz+r, p0, r=+0.

In the cases 4, B, C the critical points were distributed so that either ;< A( o)
or C, N A(o0)=¢. With the aid of general results it was then possible to determine
the structure of . We are not going to state detailed conditions under which
C{< A(eo) or €N A(oo)=¢ in case D. By using known algebraic formulas and the
methods of this paper, it is easy to decide whether or not a given nurnerical example
satisfies one of the conditions above. We illustrate this with the following simple
case.

Theorem 13.6. Let P(z)=2%—pz+r be a polynomial, where pSO and r are real.
1f 27r2 > 4(p+ 1)3, then the set F is totally disconnected and my F =0.

Proof. By assumption, the equation 23— (p+1)z+r=0 has the discriminant D=
4(p+1)®*—27r2<0 and consequently there exists only one real fixpoint g of order
one. This point can be explicitly expressed by a known algebraic formula, from
which'it is easy to see that either ¢<0<r or r<0<gq. The inverse function P_,(z)
has two finite critical points, namely ¢;, c,= * (2p/3) (p/3)* +r. Our assumption
implies that if >0, then ¢;, ¢,>0 and if r<0, then ¢,, ¢,<0. Now consider r>0.
Then P(x)>z if 2>0 and thus P,(c;), P,(cs) = + oo, i.e. ¢;, ¢, € A( o). Analogously, if
r <0 then P(z) <2 when x <0 and P,(c,), P,(c,) = — oo, i.e. ¢;, ¢, € A( o). The theorem
then follows from Theorem 11.4.
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However, there exist functions P(z) = + 2% +pz+r such that C; N A(o0)==¢ and
C, N CA(oo) f¢. 1f for such a function we can prove that there exist finite attractive
or rationally indifferent fixpoints, then the general results are applicable. If, however,
C, N CA(oo)< F, then there seems to be no results concerning the structure of F.
We shall now establish a general result for such third degree polynomials. Further-
more, we shall prove that two different structures can occur.

Theorem 13.7. Let P(z) be a polynomial of the third degree und let P_,(z) have the
finate critical points ¢, and ¢y. If ¢, € F and ¢, € A( o) then F contains an infinite number
of single point components. .

Proof. We observe that the assumption implies that there is no finite attractive or
rationally indifferent fixpoint. As in the proof of Theorem 10.1 we can cover ¥ by
a simply connected closed set By such that 0B, N F=¢ and P,(c,)§ B, n==0,1,2, ...
Moreover, we first suppose that P (CE,)< CE,. Since ¢, ¢ E,, there exists an inverse
branch of P_,(z), e.g. P®(2), which is holomorphic in E,. Consider the functions
{P?,(2)} defined by P®,(z)=P%(P®, 1(z)). By repeating the argument in the
proof of Theorem 10.1, we see that {P®,(2)} is normal in E, and that the convergent
subsequences tend to constants.

Now map E, by the functions {P®,(z)}. The images satisfy P%,(Eo)< P%, _1\(K,),
n=1,2,3, ... .1f aP¥,(E,) has the length I®),, then, according to the properties of
{P®,(2)}, lim, _, o !®), ==0. Thus the component of F, which belongs to all {P®,(E,)}, is
a single point. Hence, by taking its predecessors, we get an infinite number of single
point components of F.

It remains to prove that we need not assume P(CE,)< CEy; the choice of K,
does not guarantee that this assumption is satisfied. But since CEy< A(co) the
uniform convergence of {P,(CE,)} to z-= oo implies the existence of an integer &
such that P, (CE,)< CE, if n=h. Clearly, that is sufficient for our proof to work.

Remark. Tt seems to be an open question whether this theorem is valid for an
arbitrary polynomial which satisfies €N A{cc)=d, C;N CA(0)+¢ and C;N
CA(co) F.

We are now going to prove that Theorem 13.7 is the most general possible under
the given assumptions. First we prove the

Theorem 13.8. Let P(z) be a polynomial of the third degree and let P_,(2) have the
finite critical points c, and c,. If ¢, i3 a repulsive fixpoint of order one, i.e. ¢, € F, and
¢y € A( o), then F is totally disconnected.

Remark. An example is the polynomial P(z) =18(2® --222 + 2. In fact, ¢, = P(1)=0
and P(0)=0, |P'(0)| =18; ¢, =P(}) =5€ A4 (). ’

) Proof of Theorem 13.8. As in the preceeding proof we cover F by a simply con-
nected closed set E,such that 0E,N F=¢ and P,(c,)€ECE,, n=0,1,2,.... We add
further the assumption P(CE,)< CE,. Let the inverse branches be distributed so
that

o (PY (), P4 @), ¢, (PR, P ()

Then P®(z) is holomorphic in E, Now map E, by P_,(z). The branches P!}(z)
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and P, (z) permute cyclically as z runs through 9E, twice. Put P} (E,) U P%(Ey) =
E®? and P®)(E,) = EP, which thus are simply connected sets such that

E{PcE, EP<E, E"?0NEP=¢.
Since ¢; is both a critical point and a repulsive fixpoint, it follows that
P& (c;)=c, €EP; PY(c,)=P%(¢;) = €EBT?, (13 10)

where evidently P'(()=0. We map E{"® and E{® and their successively obtained
images by the three inverse branches. After an n-fold mapping, we get a number of
simply connected closed sets {E%’} such that

FcUEQ<UEY,, n=12,...;
EQNEY=¢ if v+u.

If we denote the length of 8% by I%we have to prove that I3’ —0 for every ».

First consider the functions {P®), (z)}, defined by P®, (z) = P®; (P%,_1)(2)). These
functions are holomorphic in E; and thus it follows, as in the proof of Theorem
13.7, that if P®,(E,)=EY, then

lim I&=0. (13.11)

From (13.10) we see that EY —c,. Now consider the sets {E%-®} defined by
E}? = PO(ED ) U PE(ED,). (13.12)

These sets are simply connected and E$?<EL%, n=2, 3, .... According to
(13.11) and (13.12), we obtain that I$'?-—>0.

It is evident that for every =, each inverse branch P}(z) is holomorphic in
U, EY~ EY. After making the usual arguments concerning normal families and
their limit functions, it follows that, for every », I —0.

Finally, the assumption P(CE,)< CE, can be excluded by the same argument as
in the proof of Theorem 13.7. Thus the theorem is proved.

Remark. Fatou conjectured ([6], p. 84) that if a critical point belongs to F, then F
cannot be totally disconnected. Qur Theorem 13.8, however, gives a counter-example
to this.

We have now seen that if P(z) is & polynomial of the third degree and is such that
the critical points ¢, € F and ¢, € 4( o0), then the set F contains one-point components,
and furthermore can be totally disconnected. It is thus natural to ask whether the
assumptions above always imply that F is totally disconnected. The answer is in
the negative, as the following example shows.

Example. 1f P(z) = (3 V§/2)(23 + 322 4 22) then P_,(2) has the critical points¢, = —1€F
and ¢,=1€4(oc). Moreover, the set F contains both an infinite number of single
point components and an infinite number of connected components. This can be
seen as follows.
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Since P(—1)=0, P(0)=0 and |P’(0)| =3V/3 we conclude that ¢, € F. Furthermore,
since P(z) has no positive, real fixpoint of order one, P,(c;) —> oo, i.e. ¢, € A(o0). Sup-
pose then that ¢, is a critical point of the branches P%(z) and P®(z). Then we sce
that ‘

PYT—1,00U PE[—1,0]=[—1,0] and P[—1,0]=[—1,0].

Thus the closed interval [—1, 0] is completely invariant under P(z) if we use
only the branches P%(z) and P%(z). It follows that [ -1, 0]< F. Hence F contains
an infinite number of connected components, namely [ —1, 0] and its predecessors.
By Theorem 13.7, F contains an infinite number of single point components. Such

a component is the repulsive first order fixpoint ¢=34(—9—(9 +8V/3)). By taking
its predecessors, we get an infinite number of point components.

Chapter III. Asymptotic distribution of predecessors
14. Definitions

Let E be a bounded closed set in the z-plane and let x be a positive mass distri-
bution on E of finite total mass. The logarithmic potential to be considered is then
defined by

1
u(z)= L log E:ﬂd”(o'

We also consider the energy integral

1
I(,u) - ffmlog |z——?| dlu(é.) d[u(Z)

and set V= inf I(u).

o E)=1
Then we define the capacity y(E) of E by
y(B)=e".

The carrier of a mass distribution y is denoted by S,. In this chapter, we will only
consider polynomials of the form

PQR)=2+ a2 14 ... +a, k=2, (14.1)
and their iterates {P,(z)}. Thus the set F will correspond to a polynomial of the form
(14.1).

15. The capacity of the set F
Lemma 15.1. y(F)=1.

Proof. Let E, be a simply connected closed set such that CE,< A(oo) and P(CEy)<
CE,, i.e. Fc E,. Furthermore, we may assume that 8E, is a Jordan curve and that
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6EynC,--¢. Now sct P_,(E,)—=E,. Then Fc E,<E, ,, »n—1,2,.., and ¢K,—>
GA(c0)=F.
Let g,(z, oo) be the Green’s function for the complement of E, singular at infinity.
If y(E,)--e ¥, then at z— oo,
gu(2,00) = log|z| + ¥, +o(1). (15.1)

By making the substitution 2—P(z) in (15.1), we get at z— oo
1 vV
£ 9n(P(2), o) = log 2]+ k"+ o(l).

Since P(E,,;)—E, and P_,(E,)=E,,, and since the Green’s function is unique, we
conclude that
1
Jn11(2, 00) = P gn(P(2), ).
Thus V,,; - V,/k and by repeating the procedure above, we get V,.,- V,/k". Now,

by Tsuji [21] p. 57, 79
p(F)= lim y(E,)=1lim e ""=1
and the lemma is proved.

Denote the equilibrium distribution of F by u*, i.e. u*(F):-1 and I(u*)- V. The
following important lemma holds.

Lemma 15.2. S‘u. —F.

For the proof of this lemma we need two more lemmas.

Lemma 15.3. y(F - 8,¢) —0.

Proof of Lemma 15.3. Since F = 0 A4( oo) this is the Theorem III: 31 in Tsuji {21] p. 79.

Lemma 15.4. Let f(z) be a mapping on the bounded closed set E satisfying the
inequality |f(z)) - {(z;)| < M|z, —2,|, where M is constant. If y(E) =0, then p(f(£)) - 0.

Proof of Lemma 15.4. We shall here use the transfinite diameter as an equivalent

notion of capacity. See Tsuji |21], pp. 71-75. Given ¢>0, there exists an N such
that for n > N and any points w, € f(E), w,—f(z;), 1 —1,2,3, ..., n,

l...n B (;) L...n < (;)
iHI [, — w,| <M* - tH; |22, <e?.
Hence the transfinite diameter of f(E) equals 0 and the lemma is proved.
Proof of Lemma 15.2. Suppose on the contrary, that F--S,.=F;=¢. Then by
Lemma 15.3, y(F,)=0. Choose a closed subset H of F,. Since S,. is closed and
S,e N H=¢, we have d(H, S,.)—=26>0. Let 2,)€H and set Cs={z||z --2,| <4} and
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CsN F,—F}. Since FY< F and C5N S,. =4, it follows that F} is perfect. Moreover,
since F}< F,, we have y(F})=0. Now, according to Theorem 4.3, there exists an
integer N such that F —Py(Ft). Thus by Lemma 154, y(F)—0. This contradicts
our Lemma 15.1 and the lemma is established.

The following lemma has no connexion with the iteration theory but will be of
use later.

Lemma 15.5. Let K and H be two closed sets such that Ec H and y(E)—e ¥ >0.
Furthermore, let {u,} be a sequence of distributions on H with unit mass such that
o —> 1, weakly, where u distributes unit mass on H.

If u,(2) denotes the logarithmic potential with respect to u, and u* denotes the equili-
brium distribution of E, then suppose

1° lim, o u,(2) 2V if zEE.

20. S#. =E.

The assertion is that p--u*.

Proof. By Fatou’s lemma and assumption 1°

lim fun(z)dlu"‘(z)>f lim u,(z)du*(z)= V. (15.2)
E E 5 e

n-»00 n—o0

Let u*(z) be the equilibrium potential corresponding to u*, so that u*(z) <V every-
where. Then by Fubini’s theorem

lim fu"(z)d,f(z)= lim fu‘(:) dun(l)<V. (15.3)

By (15.2) and (15.3)
u(z) < lim u,(2) =V,

n—>00

except on a set where 4i*=0. Since S,.=F, the neighbourhoods of each point
2, € E contain points where %(z) < V. Since

u(zg) < lim u(z) <V,

22

we have u(z) <V, every z€ E. The uniqueness of u* then implies that u—u* and the
lemma is proved.

16. Mass distributions produced by iteration of polynomials

We now return to the polynomial P(z)-=2*+a, 2"+ ...+a, and introduce a
sequence {u,} of mass distributions defined as follows:
Ho Places the mass 1 at a fixed point z, in the plane except the exceptional points
of Theorem 2.5.

4, places the mass k! at the k predecessors of order 1 of z,.

/;,, places the mass k—" at the k" predecessors of order n of z,.
We shall need the following
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Lemma 16.1. Every weakly convergent subsequence extracted from {u,} tends to a
distribution of unit mass on F.

Proof. If 2, is not an attractive fixpoint and does not belong to any singular domain,
then by Theorem 6.1, the lemma holds. Henee suppose that z; is an attractive fix-
point. If then O is an arbitrary neighbourhood of F, there evidently exists an integer
N such that CO contains exactly p predecessors of order n of z,, if »>N. Thus
p(CO)=p-k", n=N and u,(CO)— 0 and the lemma holds in this case too.

There remains the case where z, belongs to a singular domain G*. By Theorem 5.2,
however, there exists an iterate P,(z), which maps G* one to one onto itself. Thus
2o has only one predecessor P*,(z,) belonging to G*. Since the other predecessors of
order h, {P%,(z)}, do not belong to a singular domain, we can proceed in the same
way as above and the lemma is proved.

We can now state the main theorem of this chapter.

Theorem 16.1. If {u,} is the sequence of mass distributions defined above and u*
denoles the equilibrium distribution of F, then lim, , o, u, = u*, weak convergence.

Proof. We shall prove that the assumptions of Lemma 15.5 are satisfied.

1°. Let E be a closed simply connected set such that CE< A(oo). Thus, if z, is
an attractive fixpoint, not exceptional, or belongs to a singular domain, all its
predecessors are in E. Furthermore, if O is an £-neighbourhood of z= co, then there
exists an integer N such that every predecessor of order n >N of any point w€ CO
belongs to E.

Extract a weakly convergent subsequence {u, } from {u,} and suppose that u, —u,
where by Lemma 16.1 u(F)=1. Since F is bounded in the case of a polynomial, and
since F is completely invariant under P(z), it follows that

|P.2)| <M, z€F every n. (16.1)
The predecessors of order n, of z, are the roots of the equation P, (z) —2,=0. Let
these roots be zy, 2,, .... 2,5, and take n,>N, i.e. so that {z,,}{‘""c E. Hence
g
| Py (2) — 29| = 131|z—z,,|. : (16.2)

If 2€ F, then by (16.1) and (16.2)
K™
1leog |z—z|<M,

1 1 M
d — S S 16.3
an k™ ,; log |z — 2] k™ (16:3)

However, (16.3) can be written as a potential, namely
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M
Uy, (2) = f logl |dﬂn,(:) ]71
and thus lim u,(2)>0, z€F.

Since by Lemma 15.1, y(F) =1, i.e. V=0, the sequence {u, } satisfies the assumption

° of Lemma 15.5.

2° The assumptlon 2°, 8yu=F, was proved in Lemma 152. Thus, by Lemma
15.5 p,, —u*, weak convergence

But the same argument can be used for every convergent subsequence extracted
from {u,} and consequently

lim p,=pu*; weak convergence.
n-=>w

Remark 16.1. Let {u,(-, w)} be the mass distributions produced by the start point
w. Then if we allow w to be a function of n, we get a sequence {u,(-, w,)}. It follows
from the proof of Theorem 16.1 that if w, varies in a bounded domain, then u, (-, w,)—>
n*, weakly.

17. Ergodic and mixing properties of polynomials

Since F is completely invariant under the corresponding polynomial P(z), we can
regard P(z) as a transformation 7' of F onto itself. Adler and Rivlin [1] have con-
sidered the transformation 7', which corresponds to the Chebyshev polynomial of
degree n for the interval [—1, 1]. They proved that T preserves the equilibrium
distribution u* of [ —1, 1] and that the sequence {T',} is strongly mixing. We shall
now prove a similar theorem for the more general set F. (For definitions see Halmos

(73)
Theorem 17.1. T preserves the measure u*. Furthermore, T is strongly mizing.

Proof. If EC F, then it follows from Theorem 16.1 that y*(T-1E)=u*(E), ie. T
preserves the measure p*.
To establish that 7' is strongly mixing, we have to prove.

Lim LI(T" 2)g(2) dp(2) = Lf(Z) dp*(2) '.L!I(z) dy* 2), (17.1)

where f(z), g(z) ELA(F, u*). Let {u,(-,w,)} be the mass distributions defined in Re-
mark 16. 1 Cover F by a flnlte number of squares {Q,};~; with small diameters and
sach that u*(0@;)=0, j=1,2,..., k. Given £>0, we assert that there exists an N
such that for n >N

| en(@s wa) — (@) <&, §=1,2,....k ~ (17.2)
uniformly in |w,| <M. For if this is not true, then for every n there exists a square
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@; for which (17.2) does not hold. But since the number of squares is finite, this
implies the existence of a square @, and a subsequence {#tn, (@, w, )} such that

Hn, (@, W, )+ p*(Q,) which contradicts Remark 16.1.

If {€F and has the predecessors {{®),} of order », then it follows that for any
function g(z), which is constant on each square,

lim Z g(C%) ke ng(z)dM*(Z)

n—o p=1

uniformly in (€ F. This yields for functions f(z) and g(z) which are constant on each
square

lim f(T” )9(z)du* (z)A hm hm Zf DG e m) "

n—>o0

= lm lim 3 f(¢%) k" 3 g(c‘fzmm)k*"=Lf<z)du*<z)- Lg(z)du*(z»

7> 00 m—>0 (69, fixea)

By a standard approximation argument (17.1) holds for f(2), g(z) €LA(F, u*) and the
theorem is proved.
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