1.65051 Communicated 10 March 1965 by LARS GARDING and LENNART CARLESON

Quasi-analytic vectors

By A. E. NUSSBAUM

1. Introduction

If S is a symmetric operator in a Hilbert space **H** and x is an element in **H** which belongs to $\bigcap_{n\geq 1} D(S^n)(D(A))$ denotes the domain of an operator A acting in **H**, then the sequence of real numbers $\mu_n(x) = (S^n x/x), n = 0, 1, 2, \ldots$, is of positive type in the following sense: Given any finite sequence of complex numbers $(\alpha_0, \alpha_1, \ldots, \alpha_n)$, then

$$\sum_{i=0}^{n}\sum_{j=0}^{n}\alpha_{i}\bar{\alpha}_{j}\mu_{i+j}(x) = \left\|\sum_{i=0}^{n}\alpha_{i}S^{i}x\right\|^{2} \ge 0.$$

Hence the sequence $(\mu_n(x))$ is a Hamburger moment sequence (cf. [9]). That is, there exists a bounded positive Radon measure ν on the real line such that

$$\mu_n(x) = \int_{-\infty}^{\infty} t^n d\nu(t) \quad \text{for} \quad n = 0, \ 1, \ 2, \ \dots$$

The moment sequence is said to be determined if the measure ν is uniquely determined. Accordingly we shall call the vector x a vector of uniqueness for S or a determining vector for S in case the moment sequence $((S^n x | x)), n = 0, 1, 2, ...$ is determined. Now, T. Carleman has shown that a Hamburger moment sequence (μ_n) is determined if $\sum_{n=1}^{\infty} \mu_{2n}^{-1/2n}$ diverges (cf. [2]). If $\mu_n = (S^n x | x)$, this means that

$$\sum_{n=1}^{\infty} \frac{1}{\|S^n x\|^{1/n}} = \infty.$$

A vector $x \in \bigcap_{n \ge 1} D(S^n)$ such that

$$\sum_{n=1}^{\infty} \frac{1}{\|S^n x\|^{1/n}} = \infty$$

will be called a quasi-analytic vector for S. Thus a quasi-analytic vector for S is a vector of uniqueness for S. In [7] E. Nelson has introduced the notion of an analytic vector for S. A vector x in $\bigcap_{n\geq 1} D(S^n)$ is called an analytic vector for S if

$$\sum_{n=0}^{\infty} \frac{\|S^n x\|}{n!} t^n < \infty \quad \text{for some} \quad t > 0;$$

that is, in case there exists a constant p>0 such that $||S^n x|| \le p^n n!$ for $n=1, 2, \ldots$. Since $n! \le n^n$, it follows that

$$\sum_{n=1}^{\infty} \frac{1}{\|S^n x\|^{1/n}} \ge \sum_{n=1}^{\infty} \frac{1}{pn} = \infty.$$

Thus every analytic vector for S is a fortiori a quasi-analytic vector for S and hence a vector of uniqueness for S.

E. Nelson has shown [7], using Stone's theorem, that a closed symmetric operator S is self-adjoint if and only if it has a dense set of analytic vectors. In § 2 we shall prove by completely different methods the following theorem: Let S be a closed symmetric operator in a Hilbert space **H** and D_0 the set of all vectors of uniqueness for S. Let D_0 be the vector space spanned by the vectors $\{S^kx\}, k=0, 1, 2, \ldots; x \in D_0$. Then S is self-adjoint if and only if D_0 is dense in **H**. As a corollary we obtain Nelson's theorem and the theorem that a closed symmetric operator is self-adjoint if and only if it has a total set of quasi-analytic vectors.

In § 3 we derive various permutability theorems for symmetric operators and in § 4 we apply the results of § 2–3 to obtain various theorems of the two parameter moment problem. Further applications will be considered in another publication.

2. The main theorem

Theorem 1. Let S be a closed symmetric operator in a Hilbert space \mathbf{H} . Let D_0 be the set of all vectors of uniqueness for S and \tilde{D}_0 the vector space spanned by the vectors $\{S^k x\}, k = 0, 1, 2, ...; x \in D_0$. Then S is self-adjoint if and only if \tilde{D}_0 is dense in $\mathbf{H}.(1)$

Proof. If S is self-adjoint, then S has a dense set of analytic vectors and hence a dense set of vectors of uniqueness (and hence also a dense set of quasi-analytic vectors).

By a theorem of M. Naimark (cf. [13] p. 4) S has a self-adjoint extension in the extended sense. That is, there exists a Hilbert space H_1 , which contains H as a Hilbert subspace and a self-adjoint operator T in H_1 which extends S (i. e. Sx = Tx for all $x \in D(S)$) and which is minimal in the following sense: If $E(\sigma)$ is the canonical spectral measure of T, then the set $\{E(\sigma)x\}$ where x ranges over H and σ over all the Borel sets of the real line R, is total in H_1 (i. e. the vector space spanned by $\{E(\sigma)x\}$ is dense in H_1).

If x is any element in $\bigcap_{n\geq 1} D(S^n)$, then

$$(S^n x \mid x) = (T^n x \mid x) = \int_{-\infty}^{\infty} t^n d || E(t) x ||^2.$$

If $x \in D_0$, then the polynomials are dense in $L_2(v_x)$, where v_x is the measure $v_x(\sigma) = ||E(\sigma)x||^2$ on the real line (cf. [8], [9] and [11] Theorem 10.40). Let now

⁽¹⁾ If $x \in D_0$, $S^k x$ does in general not belong to D_0 . (Cf. discussion following Theorem 3.)

x be a fixed element in D_0 and σ a Borel set on the real line. Let χ_{σ} be the characteristic function of σ with respect to the real line and choose a sequence of polynomials (p_n) such that $p_n(t) \to \chi_o(t) t^k$ in the L_2 -norm of $L_2(v_x)$. Now,

$$\int_{-\infty}^{\infty} |p_n(t) - \chi_{\sigma}(t) t^k|^2 d \|E(t) x\|^2 = \|p_n(T) x - E(\sigma) T^k x\|^2 = \|p_n(S) x - E(\sigma) S^k x\|^2.$$

Hence $p_n(S) x \to E(\sigma) S^k x$ strongly in \mathbf{H}_1 . Since $p_n(S) x \in \mathbf{H}$ for all n, it follows that $E(\sigma) S^k x \in \mathbf{H}$. We have proved that $E(\sigma) D_0 \subset \mathbf{H}$ for all Borel sets σ on the real line. Suppose now that D_0 is dense in **H**. Since $E(\sigma)$ is bounded it follows that $E(\sigma)\mathbf{H} \subset \mathbf{H}$ for all Borel sets σ . Hence $\mathbf{H}_1 = \mathbf{H}$ and therefore T is a selfadjoint extension of S in **H**.

Suppose that $S \neq T$, then there exists another self-adjoint extension T_1 of S in **H** which is different from *T*. Let $E_1(\sigma)$ be the canonical spectral measure of T_1 . Let x be a fixed element in D_0 , Then the measures $||E_1(\sigma)x||^2$ and $||E(\sigma)x||^2 = v_x(\sigma)$ are identical. Let σ be a fixed Borel set on the real line and choose a sequence of polynomials (p_n) such that $p_n(t) \rightarrow \chi_{\sigma}(t) t^k$ in the L_2 -norm of $L_2(v_x)$. Then

$$\begin{split} \int_{-\infty}^{\infty} |p_n(t) - \chi_{\sigma}(t) t^k|^2 d \, \|E_1(t) \, x\|^2 &= \int_{-\infty}^{\infty} |p_n(t) - \chi_{\sigma}(t) \, t^k|^2 d \, \|E(t) \, x\|^2 \\ &= \|p_n(T_1) \, x - E_1(\sigma) \, T_1^k \, x\|^2 = \|p_n(T) \, x - E(\sigma) \, T^k x\|^2 \\ &= \|p_n(S) \, x - E_1(\sigma) \, S^k x\|^2 = \|p_n(S) \, x - E(\sigma) \, S^k x\|^2 \to 0. \end{split}$$

Hence
$$E_1(\sigma) \, S^k x = E(\sigma) \, S^k x$$

$$E_1(\sigma) S^k x = E(\sigma) S^k x$$

 $E_1(\sigma) u = E(\sigma) u$ for all $u \in \tilde{D}_0$. and therefore

From this follows, since \tilde{D}_0 is dense in **H** by hypothesis, that $E_1(\sigma) u = E(\sigma) u$ for all $u \in \mathbf{H}$. Hence $E_1(\sigma) = E(\sigma)$ and therefore $T_1 = T$. This contradiction shows that S = T.

Corollary 1. A closed symmetric operator S in a Hilbert space **H** is self-adjoint if and only if it has a total set of vectors of uniqueness.

Since every quasi-analytic vector for S is a vector of uniqueness for S we have as an immediate corollary.

Theorem 2. Let S be a closed symmetric operator in a Hilbert space **H**. Then S is self-adjoint if and only if S has a total set of quasi-analytic vectors. (Cf. Corollary 2.)

Remark. In the proof of Theorem 1 the property of a vector x to be a vector of uniqueness for the operator S was used only to deduce that the polynomials are dense in $L_2(v_x)$, where v_x is the measure $v_x(\sigma) = ||E(\sigma)x||^2$ and $E(\sigma)$ is the canonical spectral measure of a self-adjoint extension T in the extended sense as described in the proof of Theorem 1. Now, it is not difficult to show that a vector $x \in \bigcap_{n \ge 1} D(S^n)$ has the property that the polynomials are dense in $L_2(v_x)$ if

and only if the closed subspace $\mathbf{M}_0(x)$ of \mathbf{H} spanned by the vectors $\{S^k x\}, k=0, 1, \ldots$, reduces S to a self-adjoint operator. A vector x with this property will be called an extremal vector for S. Thus, a closed symmetric operator S in a Hilbert space \mathbf{H} is self-adjoint if and only if it has a total set of extremal vectors. Furthermore we state here without proof that an extremal vector x for a closed symmetric operator S in \mathbf{H} is a vector of uniqueness for S if and only if the self-adjoint operator $S_{\mathbf{M}_0(x)}$ to which $\mathbf{M}_0(x)$ reduces S is the closure of its restriction to the linear manifold spanned by the vectors $\{S^k x\}, k=0, 1, 2, \ldots$.

Whether or not a vector $x \in \bigcap_{n \ge 1} D(S^n)$ is a vector of uniqueness for S depends solely upon the moment sequence $\mu_n(x) = (S^n x | x), n = 0, 1, 2, ...$ (cf. proof of Theorem 3). In contrast, whether or not a vector $x \in \bigcap_{n \ge 1} D(S^n)$ is an extremal vector for S does not only depend upon the moments $\mu_n(x) = (S^n x | x)$. In fact, if $x \in \bigcap_{n \ge 1} D(S^n)$ is not a vector of uniqueness for S, there always exists a self-adjoint operator T in $\mathbf{M}_0(x)$ (the closed subspace of H spanned by the vectors $\{S^k x\}, k=0, 1, 2, ...\}$ such that $(S^n x | x) = (T^n x | x)$ for all n. For this reason we do not consider extremal vectors in this paper.

Let S be a symmetric operator in a Hilbert space **H**. Let D_0 be the set of all determining vectors for S, D_1 be the set of all quasi-analytic vectors for S and D_2 the set of all analytic vectors for S. Then $D_2 \subset D_1 \subset D_0$. D_2 is a linear set but D_0 is not. However, D_1 and D_0 are clearly both closed under the operation $x \to cx$, where c is a scalar. It is possible on the other hand to construct linear sets of quasti-analytic vectors which will in general contain properly the analytic vectors D_2 . For example, the set E of all vectors $x \in \bigcap_{n \ge 1} D(S^n)$ such that $\overline{\lim_{n \to \infty}} (||S^n x||^{1/n}/n) < \infty$ is linear and $D_2 \subset E \subset D_1$.

Theorem 3. If x is a vector of uniqueness for the symmetric operator S in the Hilbert space **H** and if B is a bounded operator in **H** such that $Bx \in \bigcap_{n \ge 1} D(S^n)$ and $S^n Bx = BS^n x$ for n = 1, 2, 3, ..., then Bx is a vector of uniqueness for S. (This condition is satisfied in particular if $BS \subset SB$; i.e. permutes with S.)

Proof. According to H. Hamburger ([6 (a)] and [6 (b)]) a necessary and sufficient condition that a moment sequence (μ_n) be determined is that at least one of the two equalities

$$\lim_{n \to \infty} \left[\min_{\alpha_0 = 1} \sum_{i=0}^n \sum_{j=0}^n \alpha_i \alpha_j \mu_{i+j} \right] = 0$$
$$\lim_{n \to \infty} \left[\min_{\alpha_0 = 1} \sum_{i=0}^n \sum_{j=0}^n \alpha_i \alpha_j \mu_{i+j+2} \right] = 0$$

is valid where the α_i are real numbers. From this follows that a vector $x \in \bigcap_{n \ge 1} D(S^n)$ is a vector of uniqueness for S if and only if at least one of the two equalities

$$\lim_{n \to \infty} [\min_{\alpha_i} || (I + \alpha_1 S + \alpha_2 S^2 + ... + \alpha_n S^n) x ||^2] = 0$$
$$\lim_{n \to \infty} [\min_{\alpha_i} || (I + \alpha_1 S + \alpha_2 S^2 + ... + \alpha_n S^n) Sx ||^2] = 0$$

is valid where the α_i are real numbers. If one of the above equalities holds for a given vector $x \in \bigcap_{n \ge 1} D(S^n)$ and B is a bounded operator in **H** and that $Bx \in \bigcap_{n \ge 1} D(S^n)$ and $S^n Bx = BS^n x$ for n = 1, 2, ..., then it clearly also holds for Bx instead of x, because

$$\| (I + \alpha_1 S + \ldots + \alpha_n S^n) Bx \|^2 = \| B(I + \alpha_1 S + \ldots + \alpha_n S^n) x \|^2$$

$$\leq \| B \|^2 \| (I + \alpha_1 S + \ldots + \alpha_n S^n) x \|^2$$

and similarly

 $\|(I + \alpha_1 S + \ldots + \alpha_n S^n) SBx\|^2 \leq \|B\|^2 \|(I + \alpha_1 S + \ldots + \alpha_n S^n) Sx\|^2.$

Theorem 3 is not valid anymore if the hypothesis that B is a bounded operator is dropped. In fact, it is in general false if we take for B the operator S, because if (μ_n) , $n=0, 1, \ldots$ is a determined moment sequence, then in general the moment sequence $\nu_n = \mu_{n+2}$, $n=0, 1, 2, \ldots$ is not determined.

The theorem remains true, however, if we drop the requirement that B is bounded but assume that x is a quasi-analytic vector for S. More precisely we have the following.

Theorem 4. If x is a quasi-analytic vector for the symmetric operator S in the Hilbert space **H** and if A and A^+ are two operators in **H** which are adjoint to each other (i.e. they satisfy the relation $(Ay|z) = (y|A^+z)$ for every $y \in D(A)$ and every $z \in D(A^+)$) and if $x \in D(A^+A)$, $Ax \in \bigcap_{n \ge 1} D(S^n)$ and $S^nAx = AS^nx$ for n = 1, 2, 3, ..., then Ax is a quasi-analytic vector for S.

Proof.

$$||S^{n}Ax||^{2} = (S^{n}Ax|S^{n}Ax) = (S^{2n}x|A^{+}Ax) \le ||S^{2n}x|| ||A^{+}Ax||.$$

If x=0 there is nothing to prove. We may therefore assume that x=0. Since a vector x is quasi-analytic for S if and only if cx, c=0, is quasi-analytic for S, the vector y = (1/||x||)x is quasi-analytic for S and

$$\sum_{n=1}^{\infty} \frac{1}{\|S^n Ax\|^{1/n}} \ge \sum_{n=1}^{\infty} \frac{1}{\|S^{2n}y\|^{1/2n}} \cdot \frac{1}{\|\|x\| A^+ Ax\|^{1/2n}}.$$

To show that Ax is a quasi-analytic vector for S it is therefore sufficient to show that

$$\sum_{n=1}^{\infty} \frac{1}{\|S^{2n}y\|^{1/2n}} = \infty.$$

Now $||S^ny||^{1/n}$ is monotonically increasing with *n*. This can be verified directly, but it also follows from the well-known fact that if ν is a bounded positive measure on a space X such that $\nu(X) = 1$, then $||f||_p = (\int_X |f(x)|^p d\nu(x)^{1/p}$ is a monotonically increasing function of $p, p \ge 1$, for any ν -measurable function f.

If
$$\sum_{n=1}^{\infty} \frac{1}{\|S^{2n}y\|^{1/2n}}$$

were convergent, then

$$\sum_{n=1}^{\infty} \frac{1}{\|S^{2n+1}y\|^{1/2n+1}}$$

would be convergent by the comparison test and it would follow that

$$\sum_{n=1}^{\infty} \frac{1}{\|S^n y\|^{1/n}}$$

is convergent. Hence

$$\sum_{n=1}^{\infty} \frac{1}{\|S^{2n}y\|^{1/2n}} = \infty.$$

Corollary 2. If x is a quasi-analytic vector for S and p(t) a polynomial, then p(S)x is a quasi-analytic vector for S.

Corollary 3. A vector $x \in \bigcap_{n \ge 1} D(S^n)$ is quasi-analytic for S if and only if

$$\sum_{n=1}^{\infty} \frac{1}{\|S^{2n}x\|^{1/2n}} = \infty \quad \left(or \ equivalently \quad \sum_{n=1}^{\infty} \frac{1}{\|S^{2n+1}x\|^{1/2n+1}} = \infty \right).$$

3. Permutability theorems for symmetric operators

Theorem 5. Let S and T be symmetric operators in a Hilbert space **H** and let D_0 be the set of all vectors x in **H** which are vectors of uniqueness for both S and T and which are in the domain of the operators T^nS^m , S^mT^n for n = 1, 2, ..., m = 1, 2, ... and such that $T^nS^mx = S^mT^nx$ for all n and m. If D_0 is dense in **H**, then S and T are essentially self-adjoint and \overline{S} and \overline{T} permute. (\overline{S} denotes the closure of S. \overline{S} and \overline{T} permute means that their spectral resolutions permute.)

Proof. If D_0 is dense in **H**, \overline{S} and \overline{T} are self-adjoint by Theorem 1. Let $E(\sigma)$ and $F(\sigma)$ be the spectral resolutions of \overline{T} and \overline{S} , respectively. Let x be a fixed element in D_0 and σ and τ Borel sets on the real line. Then there exist two sequences of polynomials (p_n) and (q_n) with real coefficients such that

 $p_n(T) x \to E(\sigma) x$ and $q_n(S) x \to F(\tau) x$

(cf. proof of Theorem 1). Hence

$$(E(\sigma)x \mid F(\tau)x) = \lim_{n \to \infty} (p_n(T)x \mid q_n(S)x) = \lim_{n \to \infty} (q_n(S)x \mid p_n(T)x = (F(\tau)x \mid E(\sigma)x).$$

Therefore $((E(\sigma)F(\tau) - F(\tau)E(\sigma))x|x) = 0$ for all $x \in D_0$. Since D_0 is dense in H, it follows that

$$((E(\sigma) F(\tau) - F(\tau) E(\sigma)) x | x) = 0 \quad \text{for all} \quad x \in \mathbf{H}$$

But this implies by the polarization identity that $E(\sigma) F(\tau) - F(\tau) E(\sigma) = 0$; i.e. $E(\sigma) F(\tau) = F(\tau) E(\sigma)$ for all Borel sets σ and τ .

ARKIV FÖR MATEMATIK. Bd 6 nr 10

Theorem 6. Let T and S be symmetric operators in a Hilbert space \mathbf{H} and D a set of vectors in \mathbf{H} which are quasi-analytic for both T and S and which are in the domain of the operators $T^n S^m$, $S^m T^n$ for n = 1, 2, ..., m = 1, 2, ..., and such that $T^n S^m x = S^m T^n x$ for all n and m. If the set $\{T^n S^m x\}$, $n = 0, 1, ..., m = 0, 1, ..., x \in D$ is total in \mathbf{H} , then \overline{T} and \overline{S} are self-adjoint and they permute.

Proof. Let D be the vector space spanned by the set of vectors $\{T^nS^mx\}$, $n=0, 1, \ldots, m=0, 1, \ldots, x \in D$. If $y \in D$, then y = Ax, where A is an operator of the form $A = \sum_i a_i T^{n_i}S^{m_i}x$, $x \in D$. Let $A^+ = \sum_j \bar{a}_i T^{n_i}S^{m_i}$. Then Theorem 4 applies and shows that y is a quasi-analytic vector for T and S. Thus every vector y in \tilde{D} is quasi-analytic for T and S and $T^nS^my = S^mT^ny$ for $n=1, 2, \ldots, m=1, 2, \ldots$. Hence, if \tilde{D} is dense in H it follows from Theorem 5 that \overline{T} and \overline{S} are self-adjoint and that \overline{T} and \overline{S} permute.

Theorem 7. Let T and S be symmetric operators in a Hilbert space H and Da set of vectors x which are in the domain of the operators T^nS , ST^n for n=0, 1, 2, ... such that $T^nSx=ST^nx$ for n=1, 2, ..., and such that (S+iI)x is a vector of uniqueness for T. Let \tilde{D} be the vector space spanned by the vectors $\{T^nx, T^mSx\}, n=0, 1, ..., m=0, 1, 2, ..., x \in D$. Suppose that \tilde{D} is dense in H, then \tilde{T} is self-adjoint and \tilde{T} permutes with \tilde{S}_1 , where S_1 is the restriction of S to the vector space \tilde{D}_1 generated by the vectors $\{T^nx\}, n=0, 1, 2, ..., x \in D$. $(\tilde{T} \text{ per$ $mutes with } \tilde{S}_1$ means that $E(\sigma)\tilde{S}_1 \subset \tilde{S}_1 E(\sigma)$ for all Borel sets σ on the real line, where $E(\sigma)$ is the canonical spectral measure of \tilde{T} .)

Proof. If $x \in D$, then

$$(T^{n}(S+iI)x|(S+iI)x) = (T^{n}Sx|Sx) + (T^{n}x|x), \quad n = 0, 1, 2, \dots,$$

is a determined moment sequence. Hence clearly $(T^nSx|Sx)$ and $(T^nx|x)$, n=0, 1,..., are determined moment sequences. Hence, since \tilde{D} is dense in \mathbf{H} , \overline{T} is self-adjoint by Theorem 1. Let $E(\sigma)$ be the spectral resolution of \overline{T} , x be an element in D, σ a fixed Borel set on the real line and k a non-negative integer. Since

$$(T^n Sx | Sx) + (T^n x | x) = \int_{-\infty}^{\infty} t^n d || E(t) Sx ||^2 + \int_{-\infty}^{\infty} t^n d || E(t) x ||^2, \quad n = 0, 1, ...,$$

is a determined moment sequence there exists a sequence of polynomials (p_n) such that if χ_{σ} is the characteristic function of σ , then

$$\int_{-\infty}^{\infty} |p_n(t) - \chi_{\sigma}(t) t^k|^2 d \|E(t) Sx\|^2 + \int_{-\infty}^{\infty} |p_n(t) - \chi_{\sigma}(t) t^k|^2 d \|E(t) x\|^2$$

= $\|p_n(T) Sx - E(\sigma) T^k Sx\|^2 + \|p_n(T) x - E(\sigma) T^k x\|^2 \to 0$

(cf. proof of Theorem 1). That is,

$$p^n(T) x \to E(\sigma) T^k x$$

and $Sp_n(T) x = p_n(T) Sx \to E(\sigma) T^k Sx = E(\sigma) ST^k x.$

That is $p_n(T) x \to E(\sigma) T^k x$ and $\bar{S}_1 p_n(T) \to E(\sigma) \bar{S}_1 T^k x$.

Hence $E(\sigma) T^k x \in D(\bar{S}_1)$ and $\bar{S}_1(E(\sigma) T^k x = E(\sigma) \bar{S}_1 T^k x$ since \bar{S}_1 is closed. From this follows that $E(\sigma) y \in D(\bar{S}_1)$ and $E(\sigma) \bar{S}_1 y = \bar{S}_1 E(\sigma) y$ for all $y \in D(\bar{S}_1)$; i.e. $E(\sigma) \bar{S}_1 \subset \bar{S}_1 E(\sigma)$.

Corollary 4. If every vector in D_1 is also a vector of uniqueness for S, then \overline{S} is self-adjoint and \overline{T} and \overline{S} permute.

Proof. If every vector in D_1 is a vector of uniqueness for S, then \overline{S} is selfadjoint by Theorem 1. D_1 is then also a dense set of determining vectors for \overline{S}_1 . Hence \overline{S}_1 is self-adjoint. But $\overline{S}_1 \subset \overline{S}$ and hence $\overline{S}_1 = \overline{S}$.

Corollary 5. Let T and S be symmetric operators in a Hilbert space \mathbf{H} and Da set of vectors x which are in the domain of the operators T^nS , ST^n for n=0, 1, 2, ... such that $T^nSx = ST^nx$ for n = 1, 2, ..., and such that x is quasi-analytic for T. Let \tilde{D} be the vector space spanned by the vectors $\{T^nx, T^mSx\}, n=0, 1, ...,$ $m=0, 1, ..., x \in D$. Suppose that \tilde{D} is dense in \mathbf{H} , then \overline{T} is self-adjoint and \overline{T} permutes with \tilde{S}_1 , where S_1 is the restriction of S to the vector space \tilde{D}_1 generated by the vectors $\{T^nx\}, n=0, 1, 2, ..., x \in D$.

Proof. The Corollary is an immediate consequence of Theorem 4 and Theorem 7.

4. Two parameter moment problems

Let $(\mu(n, m))$, n, m = 0, 1, 2, ..., be a two parameter sequence of real numbers. We wish to find sufficient conditions so that the sequence $(\mu(n, m))$ be a moment sequence; that is, may be represented by an integral

$$\mu(n, m) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} t^n s^m d\nu(t, s), \quad n, m = 0, 1, 2, \ldots,$$

where ν is a bounded positive Radon measure on \mathbb{R}^2 . (Cf. [9] and [4].) An obvious necessary condition is that $(\mu(n, m))$ be of positive type, denoted by $\mu(m, n) \gg 0$, in the following sense: Given any finite sequence $((n_i, m_i))$, $i = 1, 2, 3, \ldots, k$ of pairs of non-negative integers and a sequence (α_i) , $i = 1, 2, \ldots, k$, of complex numbers, then

$$\sum_{j=1}^k \sum_{i=1}^k \alpha_i \bar{\alpha}_j \mu(n_i+n_j, m_i+m_j) \ge 0.$$

R. B. Zarhina [14] has shown (using the well-known theorem of Hilbert that not every non-negative polynomial in two variables can be written as a sum of squares of polynomials) that this condition is not sufficient. In this section we shall apply the results of § 3 to obtain various sufficient conditions for a two parameter sequence $(\mu(n, m))$ of positive type to be a moment sequence. These conditions had previously been obtained by A. Devinatz [4] and G. I. Eskin [5] by different methods. All the results of this section can be extended to *n*-parameter sequences for n > 2. The proofs are identical with those for n = 2.

Let $(\mu(n, m))$ be a two parameter sequence of positive type. We associate with $(\mu(n, m))$ a reproducing hernel space **H** in the well-known fashion (cf. [1]): Let \mathbf{H}_0 be the linear space which consists of all functions f(n, m), n, m = 0, 1, 2, ... of the form $f(n, m) = \sum_{i=1}^{k} \alpha_i \mu(n + n_i, m + m_i)$. If g(n, m) is another such function, i.e. $g(n, m) = \sum_{i=1}^{l} \beta_i \mu(n + \bar{n}_i, m + \bar{m}_i)$, we introduce into \mathbf{H}_0 a bilinear form by setting $(f|g) = \sum_{i=1}^{k} \sum_{j=1}^{l} \alpha_i \bar{\beta}_j \mu(n_i + \bar{n}_j, m_i + \bar{m}_j)$. It is not hard to verify that (f|g) is well defined; i.e. independent of the particular representations of f and g and that is actually it an inner product on \mathbf{H}_0 . \mathbf{H}_0 can be completed to a Hilbert space \mathbf{H} such that the elements in \mathbf{H} are also double sequences (h(n, m)), n, m = 0, 1, 2, ..., of complex numbers and such that $(\mu(n, m))$ is a reproducing kernel for \mathbf{H} . That is, if $h \in \mathbf{H}$ then

$$h(r, s) = (h | \mu_{(r, s)}),$$

where $\mu_{(r,s)}$ is the function $\mu_{(r,s)}(n,m) = \mu(n+r,m+s)$, n,m=0, 1, 2, ... (for details cf. [1] and [3]).

Let $T_1(T_2)$ be the linear operator in **H** whose domain $D(T_1)(D(T_2))$ consists of all $h \in \mathbf{H}$ such that $h_{(1, 0)}(h_{(0, 1)})$ belongs to **H**. (If $h \in \mathbf{H}$, we denote by $h_{(r, s)}$ the double sequence $h_{(r, s)}(n, m) = h(n+r, m+s)$.) Then T_1 and T_2 are closed operators and $T = T_1^*$ and $S = T_2^*$ are symmetric operators in **H**. Furthermore, T(S) is the closure of its restriction to \mathbf{H}_0 (for details cf. [1], [3]). If T and Shave self-adjoint extensions H_1 and H_2 respectively, which permute, then $(\mu(n, m))$ is a moment sequence. Indeed, let $E_1(\sigma)$ and $E_2(\sigma)$ be the spectral resolutions of H_1 and H_2 respectively and $\mu_0 = \mu_{(0, 0)}$, then

$$\mu(n, m) = (\mu_{(n, m)} | \mu_0) = (H_1^n H_2^m \mu_0 | \mu_0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} t^n s^m d || E_1(t) E_2(s) \mu_0 ||^2$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} t^n s^m d\nu(t, s).$$

If the operators T and S are both self-adjoint and permute, then the sequence $(\mu(n, m))$ is a determined moment sequence; i.e. the measure ν representing $(\mu(n, m))$ is uniquely determined (cf. [4] p. 487).

The following lemma will be needed.

Lemma 8. Let S be a closed symmetric operator in a Hilbert space **H** and T a self-adjoint operator in **H** which permutes with S and suppose that T and S are both real with respect to a conjugation J in **H** (cf. [11] p. 360). Then S has a self-adjoint extension \tilde{S} in **H** which permutes with T.

Proof. If $x \in \mathbf{H}$ we denote the element Jx by \bar{x} . Let $E(\sigma)$ be the spectral resolution of T. If x is any element in \mathbf{H} we denote by $\mathbf{M}(x)$ the closed sub-

space of **H** generated by the vectors $\{E(\sigma)x\}$, where σ ranges over all the Borel sets on the real line. $\mathbf{M}(x)$ is the set of all elements y of the form y = f(T)x, where $f \in L_2(v_x)$ and v_x is the measure $v_x(\sigma) = ||E(\sigma)x||^2$ (cf. [11] p. 243). Let \mathbf{H}_i and \mathbf{H}_{-i} be the deficiency spaces of S; i.e. $\mathbf{H}_i(\mathbf{H}_{-i})$ is the set of vectors x in $D(S^*)$ such that $S^*x = ix(S^*x = -ix)$. Since S is a real transformation with respect to J, the mapping $x \to \bar{x}$ is an isometric mapping of \mathbf{H}_i onto \mathbf{H}_{-i} . Now choose a family $(\varphi_i)_{i \in I}$ of distinct vectors in \mathbf{H}_i such that $\mathbf{H}_i = \sum_{i \in I} \oplus \mathbf{M}(\varphi_i)$ (\oplus denotes orthogonal direct sum). Then $\mathbf{H}_{-i} = \sum_{i \in I} \oplus \mathbf{M}(\bar{\varphi}_i)$. Let U be the mapping on \mathbf{H}_i which maps the element $x = \sum_{i \in I} x_i, x_i \in \mathbf{M}(\varphi_i), x_i = f_i(T)\varphi_i$ onto the element $\sum_{i \in I} f_i(T) \bar{\varphi}_i$. Now,

$$\|f_{i}(T)\varphi_{i}\|^{2} = \int_{-\infty}^{\infty} |f_{i}(t)|d\| E(t)\varphi_{i}\|^{2} = \int_{-\infty}^{\infty} |f_{i}(t)|^{2}d\| E(t)\overline{\varphi}_{i}\|^{2} = \|f_{i}(T)\overline{\varphi}_{i}\|^{2},$$

since $E(\sigma)\bar{\varphi_i} = E(\sigma)\varphi_i$ (this is true because T is real with respect to J cf. [11] p. 362). Hence U is an isometric mapping of \mathbf{H}_i onto \mathbf{H}_{-i} . Since each $\mathbf{M}(\varphi_i)$ reduces $E(\sigma)$ (cf. [11] p. 243) it follows that $E(\sigma) U = UE(\sigma)$ for all Borel sets σ . Finally, let $D(\tilde{S}) = D(S) + (I - U) \mathbf{H}_i$ (+ denotes direct sum) and define \tilde{S} as the operator whose domain is $D(\tilde{S})$ and which maps the element $\tilde{x} = x + (I - U)\varphi$, $x \in D(S), \varphi \in \mathbf{H}_i$ into the element $S^*x = Sx + i(I + U)\varphi$. \tilde{S} is a self-adjoint extension of S which permutes with T (for details on the Cayley transform of a symmetric operator cf. [11] and [12]).

Theorem 9. (G. I. Eskin [5]). Let $(\mu(n, m))$, n, m = 0, 1, 2, ..., be a two parameter sequence of real numbers such that $\mu(n, m) \gg 0$. Suppose that for every fixed m_0 the one parameter moment sequence

$$(\mu(n, 2(m_0+1)) + \mu(n, 2m_0)), \quad n = 0, 1, 2, ...,$$

is determined, then $(\mu(n, m))$ is a two parameter moment sequence. If in addition the moment sequence $(\mu(2n_0, m))$, m = 0, 1, 2, ..., is determined for each n_0 , then the moment sequence $(\mu(n, m))$ is determined.

Proof.

$$\begin{aligned} \mu(n, 2(m_0+1)) + \mu(n, 2m_0) &= (T^n S^{m_0+1} \mu_0 | S^{m_0+1} \mu_0) + (T^n S^{m_0} \mu_0 | S^{m_0} \mu_0) \\ &= (T^n (S+iI) S^{m_0} \mu_0 | (S+iI) S^{m_0} \mu_0). \end{aligned}$$

Let $D = \{S^{m_0}\mu_0\}, m_0 = 0, 1, 2, ..., and apply Theorem 7. Since the vector space <math>\tilde{D}$ spanned by the vectors $\{T^nS^{m_0}\mu_0\}, n, m_0 = 0, 1, 2, ..., \text{ is precisely } \mathbf{H}_0, \text{ it follows that } T \text{ is self-adjoint and that } T \text{ permutes with } S. Since T \text{ and } S \text{ are real operators with respect to the conjugation } J \text{ which maps an element of } \mathbf{H} \text{ into its complex conjugate, it follows from Lemma 8 that } S \text{ has a self-adjoint extension } \tilde{S} \text{ which permutes with } T, \text{ This proves the first part of the theorem. If <math>\mu(2n_0, m) = (S^m T^{m_0}\mu_0|T^{m_0}\mu_0), m = 0, 1, 2, ..., \text{ is a determined moment sequence, then the set } \{T^{m_0}\mu_0\}, n_0 = 0, 1, ..., \text{ is a set of determining vectors for } S \text{ and } S \text{ is self-adjoint by Theorem 1.}$

J. A. Shohat and J. D. Tamarkin have proved the following theorem in their book [9] p. 21: Let $(\mu(n_1, n_2, \ldots, n_k))$ be a k-parameter sequence of real numbers of positive type and suppose that $(\mu(n_1, n_2, \ldots, n_k))$ is a k-parameter moment sequence. Let

$$\lambda(2n) = \mu(2n, 0, \ldots, 0) + \mu(0, 2n, 0, \ldots, 0) + \ldots + \mu(0, 0, 0, \ldots, 2n)$$

and suppose that

$$\sum_{n=1}^{\infty}\lambda(2n)^{-1/2n}=\infty,$$

then the moment sequence $(\mu(n_1, n_2, \ldots, n_k))$ is determined.

Using the results of § 3 (specifically Theorem 6) we can prove the following very much stronger sesult.

Let $(\mu(n_1, n_2, ..., n_k))$ be a k-parameter sequence of real numbers of positive type and suppose that

$$\sum_{n=1}^{\infty} \lambda_i (2n)^{-1/2n} = \infty \text{ for } i = 1, 2, ..., k$$

where $\lambda_1(n) = \mu(n, 0, 0, ...), \ \lambda_2(n) = \mu(0, n, 0, ..., 0), \ ..., \ \lambda_k(n) = \mu(0, 0, 0, ..., n)$ then $(\mu(n_1, n_2, ..., n_k))$ is a determined k-parameter moment sequence.

We shall prove the theorem for k=2.

Theorem 10. Let $(\mu(n, m))$, n, m = 0, 1, 2, ..., be a two parameter sequence of real numbers such that $\mu(n, m) \ge 0$. Suppose that

$$\sum_{n=1}^{\infty} \frac{1}{\mu(2n,0)^{1/2n}} = \infty, \qquad (1)$$

then $(\mu(n, m))$ is a two parameter moment sequence. If in addition

$$\sum_{m=1}^{\infty} \frac{1}{\mu(0, 2m)^{1/2m}} = \infty,$$

then the moment sequence $(\mu(n, m))$ is determined.

Proof. $\mu(n, 0) = (T^n \mu_0 | \mu_0)$. (1) implies that μ_0 is a quasi-analytic vector for T. Hence $S^m \mu_0$ is a quasi-analytic vector for T for m = 0, 1, 2, ..., by Theorem 4. Let $D = \{S^m \mu_0\}, m = 0, 1, 2, ...$ and apply Corollary 5. It follows that T is self-adjoint and that T permutes with S. The remainder of the proof is identical with the proof of Theorem 9.

Theorem 11. (A. Devinatz [4]). Let $(\mu(n, m))$, n, m = 0, 1, 2, ..., be a two parameter sequence of real numbers such that $\mu(n, m) > 0$ and such that $(\mu(2n_0, m))$, m = 0, 1, 2, ..., is a determined moment sequence for each n_0 . Suppose furthermore that the one parameter moment sequence

$$(\mu(n, 2m_0) + \mu(n, 0)), \quad n = 0, 1, 2, \ldots$$

is determined. Then $(\mu(n, m))$ is a determined moment sequence.

Proof.
$$\mu(n, 2m_0) + \mu(n, 0) = (T^n S^{m_0} \mu_0 | S^{m_0} \mu_0) + (T^n \mu_0 | \mu_0).$$

Since (2) is determined for each m_0 , it follows that $S^{m_0}\mu_0$ is a vector of uniqueness for T for every m_0 . Hence T is self-adjoint by Theorem 1. The assumption that $\mu(2n_0, m) = (S^m T^{n_0}\mu_0 | T^{n_0}\mu_0), m = 0, 1, 2, ...,$ is determined for each n_0 implies that $T^{m_0}\mu_0$ is a vector of uniqueness for S for each n_0 . Hence S is self-adjoint by Theorem 1. Let $E(\sigma)$ be the spectral resolution of T, σ a fixed Borel set on the real line and m_0 and k two fixed non-negative integers. Since

$$(T^{n}S^{m_{0}}\mu_{0} | S^{m_{0}}\mu_{0}) + (T^{n}\mu_{0} | \mu_{0}) = \int_{-\infty}^{\infty} t^{n} d || E(t) S^{m_{0}}\mu_{0} ||^{2} + \int_{-\infty}^{\infty} t^{n} d || E(t) \mu_{0} ||^{2} + \int_{-\infty}^{\infty} t^{n} d || E(t) ||^{2} + \int_{-\infty}^{\infty} t^{n} d ||^{2} + \int_{-\infty}^{\infty} t^{n}$$

 $n=0, 1, 2, \ldots$, is a determined moment sequence, there exists a sequence of polynomials (p_n) such that

$$\begin{split} \int_{-\infty}^{\infty} |p_n(t) - \chi_{\sigma}(t) t^k|^2 d \| E(t) S^{m_0} \mu_0 \|^2 + \int_{-\infty}^{\infty} |p_n(t) - \chi_{\sigma}(t) t^k|^2 d \| E(t) \mu_0 \|^2 \\ &= \| p_n(T) S^{m_0} \mu_0 - E(\sigma) T^k S^{m_0} \mu_0 \|^2 + \| p_n(T) \mu_0 - E(\sigma) T^k \mu_0 \|^2 \to 0. \end{split}$$

 $p_n(T) \mu_0 \rightarrow E(\sigma) T^k \mu_0$

That is,

 $S^{m_0}p_n(T)\mu_0 = p_n(T)S^{m_0}\mu_0 \rightarrow E(\sigma)T^kS^{m_0}\mu_0.$

and

 S^{m_0} is self-adjoint and hence closed. Therefore

$$E(\sigma) T^k \mu_0 \in D(S^{m_0})$$
 and $S^{m_0} E(\sigma) T^k \mu_0 = E(\sigma) T^k S^{m_0} \mu_0$

for $m_0 = 0, 1, 2, \ldots$.

From this follows that

$$E(\sigma) T^k S^{m_0} \mu_0 = S^{m_0} E(\sigma) T^k \mu_0 \in D(S)$$

and

$$SE(\sigma) T^{k} S^{m_{0}} \mu_{0} = S^{m_{0}+1} E(\sigma) T^{k} \mu_{0} = E(\sigma) T^{k} S^{m_{0}+1} \mu_{0}$$

for $k, m_0 = 0, 1, 2, \ldots$.

Hence $E(\sigma)g \in D(S)$ and $SE(\sigma)g = E(\sigma)Sg$ for all $g \in \mathbf{H}_0$.

From this follows, since S is the closure of its restriction to \mathbf{H}_0 , that $E(\sigma)g \in D(S)$ and $SE(\sigma)g = E(\sigma)Sg$ for all $g \in D(S)$. That is,

$$E(\sigma) S \subset SE(\sigma)$$

for all Borel sets σ .

ACKNOWLEDGEMENT

This work was in part supported by National Science Foundation Grants N.S.F. GP-2089 and G-17932.

Department of Mathematics, Washington University, St. Louis, Missouri, U.S.A.

REFERENCES

- 1. ARONSZAJN, N., Theory of reproducing kernels, Transactions of the American Mathematical Society, vol. 68, 337-404 (1950).
- 2. CARLEMAN, T., Les fonctions quasi-analytiques, Gauthier-Villars, Paris (1926).
- 3. DEVINATZ, A., Integral representations of positive definite functions, Transactions of the American Mathematical Society, vol. 74 56-77 (1953), Errata, p. 536.
- DEVINATZ, A., Two parameter moment problems, Duke Mathematical Journal, vol. 24, 481– 498 (1957).
- 5. ESKIN, G. I., A sufficient condition for the solvability of a multidimensional problem of moments, Dokl. Akad. Nauk SSSR 133 540-543 (1960). (Russian); translated as Soviet Math. Dokl.
- 6. HAMBURGER, H. L., Über eine Erweiterung des Stieltjesschen Momentenproblems, Mathematische Annalen, (a) vol. 81 (1920), pp. 235-319, (b) vol. 82, 120-164 (1921).
- 7. NELSON, E., Analytic vectors, Annals of Mathematics, vol. 70, 572-615 (1959).
- 8. RIESZ, M., Sur le problème des moments et le théorème de Parseval correspondant, Acta Litterarum ac Scientiarum (Szeged) vol. 1, 209-227 (1922-23).
- 9. SHOHAT, J. A., and TAMARKIN, J. D., The Problem of Moments, New York (1943).
- 10. NAIMARK, M., Self-adjoint extensions of the second kind of a symmetric operator, Bulletin (Izvestiya) Acad. Sci. USSR, math. series vol. 4, 53-104 (1940).
- 11. STONE, M. H., Linear transformations in Hilbert space, New York (1932).
- 12. Sz. NAGY, B. v., Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Berlin (1942).
- 13. Sz. NAGY, B. v., Prolongements des transformations de l'espace de Hilbert qui sortent de cet espace, Appendix to the book "Leçons d'analyse fonctionelle", Budapest (1955).
- 14. ZARHINA, R. B., On the two-dimensional problem of moments, Dokl. Akad. Nauk SSSR 124, 743-746 (Russian) (1959).

Tryckt den 27 juli 1965

Uppsala 1965. Almqvist & Wiksells Boktryckeri AB