Quasi-analytic vectors

By A. E. Nussbaum

1. Introduction

If S is a symmetric operator in a Hilbert space \mathbf{H} and x is an element in H which belongs to $\bigcap_{n \geqslant 1} D\left(S^{n}\right)(D(A))$ denotes the domain of an operator A acting in \mathbf{H}, then the sequence of real numbers $\mu_{n}(x)=\left(S^{n} x \mid x\right), n=0,1,2, \ldots$, is of positive type in the following sense: Given any finite sequence of complex numbers $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$, then

$$
\sum_{i=0}^{n} \sum_{j=0}^{n} \alpha_{i} \bar{\alpha}_{j} \mu_{i+j}(x)=\left\|\sum_{i=0}^{n} \alpha_{i} S^{i} x\right\|^{2} \geqslant 0 .
$$

Hence the sequence $\left(\mu_{n}(x)\right)$ is a Hamburger moment sequence (cf. [9]). That is, there exists a bounded positive Radon measure y on the real line such that

$$
\mu_{n}(x)=\int_{-\infty}^{\infty} t^{n} d v(t) \quad \text { for } \quad n=0,1,2, \ldots
$$

The moment sequence is said to be determined if the measure ν is uniquely determined. Accordingly we shall call the vector x a vector of uniqueness for S or a determining vector for S in case the moment sequence $\left(\left(S^{n} x \mid x\right)\right), n=0,1,2, \ldots$ is determined. Now, T. Carleman has shown that a Hamburger moment sequence (μ_{n}) is determined if $\sum_{n=1}^{\infty} \mu_{2 n}^{-1 / 2 n}$ diverges (cf. [2]). If $\mu_{n}=\left(S^{n} x \mid x\right)$, this means that

$$
\sum_{n=1}^{\infty} \frac{1}{\left\|S^{n} x\right\|^{1 / n}}=\infty
$$

A vector $x \in \bigcap_{n \geqslant 1} D\left(S^{n}\right)$ such that

$$
\sum_{n-1}^{\infty} \frac{1}{\left\|S^{n} x\right\|^{1 / n}}=\infty
$$

will be called a quasi-analytic vector for S. Thus a quasi-analytic vector for S is a vector of uniqueness for S. In [7] E . Nelson has introduced the notion of an analytic vector for S. A vector x in $\bigcap_{n \geqslant 1} D\left(S^{n}\right)$ is called an analytic vector for S if

$$
\sum_{n=0}^{\infty} \frac{\left\|S^{n} x\right\|^{n}}{n!} t^{n}<\infty \quad \text { for some } \quad t>0
$$

that is, in case there exists a constant $p>0$ such that $\left\|S^{n} x\right\| \leqslant p^{n} n$! for $n=1$, $2, \ldots$. Since $n!\leqslant n^{n}$, it follows that

$$
\sum_{n=1}^{\infty} \frac{1}{\left\|S^{n} x\right\|^{1 / n}} \geqslant \sum_{n=1}^{\infty} \frac{1}{p n}=\infty .
$$

Thus every analytic vector for S is a fortiori a quasi-analytic vector for S and hence a vector of uniqueness for S.
E. Nelson has shown [7], using Stone's theorem, that a closed symmetric operator S is self-adjoint if and only if it has a dense set of analytic vectors. In § 2 we shall prove by completely different methods the following theorem: Let S be a closed symmetric operator in a Hilbert space H and D_{0} the set of all vectors of uniqueness for S. Let \tilde{D}_{0} be the vector space spanned by the vectors $\left\{S^{k} x\right\}, k=0,1,2, \ldots ; x \in D_{0}$. Then S is self-adjoint if and only if \tilde{D}_{0} is dense in H. As a corollary we obtain Nelson's theorem and the theorem that a closed symmetric operator is self-adjoint if and only if it has a total set of quasi-analytic vectors.

In $\S 3$ we derive various permutability theorems for symmetric operators and in $\S 4$ we apply the results of $\S 2-3$ to obtain various theorems of the two parameter moment problem. Further applications will be considered in another publication.

2. The main theorem

Theorem 1. Let S be a closed symmetric operator in a Hilbert space \mathbf{H}. Let D_{0} be the set of all vectors of uniqueness for S and \tilde{D}_{0} the vector space spanned by the vectors $\left\{S^{k} x\right\}, k=0,1,2, \ldots ; x \in D_{0}$. Then S is self-adjoint if and only if \tilde{D}_{0} is dense in H. ${ }^{1}$)

Proof. If S is self-adjoint, then S has a dense set of analytic vectors and hence a dense set of vectors of uniqueness (and hence also a dense set of quasi-analytic vectors).

By a theorem of M. Naimark (cf. [13] p. 4) S has a self-adjoint extension in the extended sense. That is, there exists a Hilbert space H_{1}, which contains \mathbf{H} as a Hilbert subspace and a self-adjoint operator T in \mathbf{H}_{1} which extends S (i.e. $S x=T x$ for all $x \in D(S)$) and which is minimal in the following sense: If $E(\sigma)$ is the canonical spectral measure of T, then the set $\{E(\sigma) x\}$ where x ranges over H and σ over all the Borel sets of the real line R, is total in \mathbf{H}_{1} (i. e. the vector space spanned by $\{E(\sigma) x\}$ is dense in \mathbf{H}_{1}).

If x is any element in $\bigcap_{n \geqslant 1} D\left(S^{n}\right)$, then

$$
\left(S^{n} x \mid x\right)=\left(T^{n} x \mid x\right)=\int_{-\infty}^{\infty} t^{n} d\|E(t) x\|^{2}
$$

If $x \in D_{0}$, then the polynomials are dense in $L_{2}\left(v_{x}\right)$, where v_{x} is the measure $\boldsymbol{v}_{x}(\sigma)=\|E(\sigma) x\|^{2}$ on the real line (cf. [8], [9] and [11] Theorem 10.40). Let now
${ }^{\text {(1) }}$) If $x \in D_{0}, S^{k} x$ does in general not belong to D_{0}. (Cf. discussion following Theorem 3.)
x be a fixed element in D_{0} and σ a Borel set on the real line. Let χ_{σ} be the characteristic function of σ with respect to the real line and choose a sequence of polynomials $\left(p_{n}\right)$ such that $p_{n}(t) \rightarrow \chi_{0}(t) t^{k}$ in the L_{2}-norm of $L_{2}\left(v_{x}\right)$. Now,

$$
\int_{-\infty}^{\infty}\left|p_{n}(t)-\chi_{\sigma}(t) t^{k}\right|^{2} d\|E(t) x\|^{2}=\left\|p_{n}(T) x-E(\sigma) T^{k} x\right\|^{2}=\left\|p_{n}(S) x-E(\sigma) S^{k} x\right\|^{2}
$$

Hence $p_{n}(S) x \rightarrow E(\sigma) S^{h} x$ strongly in \mathbf{H}_{2}. Since $p_{n}(S) x \in \mathbf{H}$ for all n, it follows that $E(\sigma) S^{k} x \in \mathbf{H}$. We have proved that $E(\sigma) \check{D}_{0} \subset \mathbf{H}$ for all Borel sets σ on the real line. Suppose now that \tilde{D}_{0} is dense in \mathbf{H}. Since $E(\sigma)$ is bounded it follows that $E(\sigma) \mathbf{H} \subset \mathbf{H}$ for all Borel sets σ. Hence $\mathbf{H}_{1}=\mathbf{H}$ and therefore T is a selfadjoint extension of S in \mathbf{H}.

Suppose that $S \neq T$, then there exists another self-adjoint extension T_{1} of S in \mathbf{H} which is different from T. Let $E_{1}(\sigma)$ be the canonical spectral measure of T_{1}. Let x be a fixed element in D_{0}, Then the measures $\left\|E_{1}(\sigma) x\right\|^{2}$ and $\|E(\sigma) x\|^{2}=\nu_{x}(\sigma)$ are identical. Let σ be a fixed Borel set on the real line and choose a sequence of polynomials $\left(p_{n}\right)$ such that $p_{n}(t) \rightarrow \chi_{\sigma}(t) t^{t}$ in the L_{2}-norm of $L_{2}\left(v_{x}\right)$. Then

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left|p_{n}(t)-\chi_{\sigma}(t) t^{k}\right|^{2} d\left\|E_{1}(t) x\right\|^{2} & =\int_{-\infty}^{\infty}\left|p_{n}(t)-\chi_{\sigma}(t) t^{k}\right|^{2} d\|E(t) x\|^{2} \\
& =\left\|p_{n}\left(T_{1}\right) x-E_{1}(\sigma) T_{1}^{k} x\right\|^{2}=\left\|p_{n}(T) x-E(\sigma) T^{k} x\right\|^{2} \\
& =\left\|p_{n}(S) x-E_{1}(\sigma) S^{k} x\right\|^{2}=\left\|p_{n}(S) x-E(\sigma) S^{k} x\right\|^{2} \rightarrow 0 .
\end{aligned}
$$

Hence

$$
E_{1}(\sigma) S^{k} x=E(\sigma) S^{k} x
$$

and therefore

$$
E_{1}(\sigma) u=E(\sigma) u \quad \text { for all } \quad u \in \tilde{D}_{0}
$$

From this follows, since $\tilde{D}_{\mathbf{0}}$ is dense in \mathbf{H} by hypothesis, that $E_{1}(\sigma) u=E(\sigma) u$ for all $u \in \mathbf{H}$. Hence $E_{1}(\sigma)=E(\sigma)$ and therefore $T_{1}=T$. This contradiction shows that $S=T$.

Corollary 1. A closed symmetric operator S in a Hilbert space \mathbf{H} is self-adjoint if and only if it has a total set of vectors of uniqueness.

Since every quasi-analytic vector for S is a vector of uniqueness for S we have as an immediate corollary.

Theorem 2. Let S be a closed symmetric operator in a Hilbert space \mathbf{H}. Then S is self-adjoint if and only if S has a total set of quasi-analytic vectors. (Cf. Corollary 2.)

Remark. In the proof of Theorem 1 the property of a vector x to be a vector of uniqueness for the operator S was used only to deduce that the polynomials are dense in $L_{2}\left(v_{x}\right)$, where ν_{x} is the measure $\nu_{x}(\sigma)=\|E(\sigma) x\|^{2}$ and $E(\sigma)$ is the canonical spectral measure of a self-adjoint extension T in the extended sense as described in the proof of Theorem 1. Now, it is not difficult to show that a vector $x \in \bigcap_{n \geqslant 1} D\left(S^{n}\right)$ has the property that the polynomials are dense in $L_{2}\left(v_{x}\right)$ if

A. E. NUSSBAUM, Quasi-analytic vectors

and only if the closed subspace $\mathbf{M}_{0}(x)$ of \mathbf{H} spanned by the vectors $\left\{S^{k} x\right\}, k=0,1, \ldots$, reduces S to a sell-adjoint operator. A vector x with this property will be called an extremal vector for S. Thus, a closed symmetric operator S in a Hilbert space \mathbf{H} is self-adjoint if and only if it has a total set of extremal vectors. Furthermore we state here without proof that an extremal vector x for a closed symmetric operator S in \mathbf{H} is a vector of uniqueness for S if and only if the self-adjoint operator $S_{\mathbf{M}_{0}(x)}$ to which $\mathbf{M}_{0}(x)$ reduces S is the closure of its restriction to the linear manifold spanned by the vectors $\left\{S^{k} x\right\}, k=0,1,2, \ldots$.

Whether or not a vector $x \in \bigcap_{n \geqslant 1} D\left(S^{n}\right)$ is a vector of uniquenss for S depends solely upon the moment sequence $\mu_{n}(x)=\left(S^{n} x \mid x\right), n=0,1,2, \ldots$ (cf. proof of Theorem 3). In contrast, whether or not a vector $x \in \bigcap_{n \geqslant 1} D\left(S^{n}\right)$ is an extremal vector for S does not only depend upon the moments $\mu_{n}(x)=\left(S^{n} x \mid x\right)$. In fact, if $x \in \bigcap_{n \geqslant 1} D\left(S^{n}\right)$ is not a vector of uniqueness for S, there always exists a self-adjoint operator T in $\mathbf{M}_{0}(x)$ (the closed subspace of \mathbf{H} spanned by the vectors $\left.\left\{S^{k} x\right\}, k=0,1,2, \ldots\right)$ such that $\left(S^{n} x \mid x\right)=\left(T^{n} x \mid x\right)$ for all n. For this reason we do not consider extremal vectors in this paper.

Let S be a symmetric operator in a Hilbert space H. Let D_{0} be the set of all determining vectors for S, D_{1} be the set of all quasi-analytic vectors for S and D_{2} the set of all analytic vectors for S. Then $D_{2} \subset D_{1} \subset D_{0} . D_{2}$ is a linear set but D_{0} is not. However, D_{1} and D_{0} are clearly both closed under the operation $x \rightarrow c x$, where c is a scalar. It is possible on the other hand to construct linear sets of quasti-analytic vectors which will in general contain properly the analytic vectors D_{2}. For example, the set E of all vectors $x \in \bigcap_{n \geqslant 1} D\left(S^{n}\right)$ such that $\varlimsup_{n \rightarrow \infty}\left(\left\|S^{n} x\right\|^{1 / n} / n\right)<\infty$ is linear and $D_{2} \subset E \subset D_{1}$.

Theorem 3. If x is a vector of uniqueness for the symmetric operator S in the Hilbert space \mathbf{H} and if B is a bounded operator in \mathbf{H} such that $B x \in \bigcap_{n \geqslant 1} D\left(S^{n}\right)$ and $S^{n} B x=B S^{n} x$ for $n=1,2,3, \ldots$, then $B x$ is a vector of uniqueness for S. (This condition is satisfied in particulav if $B S \subset S B$; i.e. permutes with S.)

Proof. According to H. Hamburger ([6 (a)] and [6 (b)]) a necessary and sufficient condition that a moment sequence $\left(\mu_{n}\right)$ be determined is that at least one of the two equalities

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[\min _{\alpha_{0}=1} \sum_{i=0}^{n} \sum_{j=0}^{n} \alpha_{i} \alpha_{j} \mu_{i+1}\right]=0 \\
& \lim _{n \rightarrow \infty}\left[\min _{\alpha_{0}=1} \sum_{i=0}^{n} \sum_{j=0}^{n} \alpha_{i} \alpha_{j} \mu_{i+j+2}\right]=0
\end{aligned}
$$

is valid where the α_{i} are real numbers. From this follows that a vector $x \in \bigcap_{n \geqslant 1} D\left(S^{n}\right)$ ls a vector of uniqueness for S if and only if at least one of the two equalities

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[\min _{\alpha_{i}}\left\|\left(I+\alpha_{1} S+\alpha_{2} S^{2}+\ldots+\alpha_{n} S^{n}\right) x\right\|^{2}\right]=0 \\
& \lim _{n \rightarrow \infty}\left[\min _{\alpha_{i}}\left\|\left(I+\alpha_{1} S+\alpha_{2} S^{2}+\ldots+\alpha_{n} S^{n}\right) S x\right\|^{2}\right]=0
\end{aligned}
$$

is valid where the α_{i} are real numbers. If one of the above equalities holds for a given vector $x \in \bigcap_{n \geqslant 1} D\left(S^{n}\right)$ and B is a bounded operator in \mathbf{H} and that $B x \in \cap_{n \geqslant 1} D\left(S^{n}\right)$ and $S^{n} B x=B S^{n} x$ for $n=1,2, \ldots$, then it clearly also holds for $B x$ instead of x, because

$$
\begin{aligned}
\left\|\left(I+\alpha_{1} S+\ldots+\alpha_{n} S^{n}\right) B x\right\|^{2} & =\left\|B\left(I+\alpha_{1} S+\ldots+\alpha_{n} S^{n}\right) x\right\|^{2} \\
& \leqslant\|B\|^{2}\left\|\left(I+\alpha_{1} S+\ldots+\alpha_{n} S^{n}\right) x\right\|^{2}
\end{aligned}
$$

and similarly

$$
\left\|\left(I+\alpha_{1} S+\ldots+\alpha_{n} S^{n}\right) S B x\right\|^{2} \leqslant\|B\|^{2}\left\|\left(I+\alpha_{1} S+\ldots \div \alpha_{n} S^{n}\right) S x\right\|^{2}
$$

Theorem 3 is not valid anymore if the hypothesis that B is a bounded operator is dropped. In fact, it is in general false if we take for B the operator S, because if $\left(\mu_{n}\right), n=0,1, \ldots$ is a determined moment sequence, then in general the moment sequence $\nu_{n}=\mu_{n+2}, n=0,1,2, \ldots$ is not determined.

The theorem remains true, however, if we drop the requirement that B is bounded but assume that x is a quasi-analytic vector for S. More precisely we have the following.

Theorem 4. If x is a quasi-analytic vector for the symmetric operator S in the Hilbert space \mathbf{H} and if A and A^{+}are two operators in \mathbf{H} which are adjoint to each other (i.e. they satisfy the relation $(A y \mid z)=\left(y \mid A^{+} z\right)$ for every $y \in D(A)$ and every $z \in D\left(A^{+}\right)$) and if $x \in D\left(A^{+} A\right), A x \in \bigcap_{n \geqslant 1} D\left(S^{n}\right)$ and $S^{n} A x=A S^{n} x$ for $n=1,2,3, \ldots$, then $A x$ is a quasi-analytic vector for S.

Proof.

$$
\left\|S^{n} A x\right\|^{2}=\left(S^{n} A x \mid S^{n} A x\right)=\left(S^{2 n} x \mid A^{+} A x\right) \leqslant\left\|S^{2 n} x\right\|\left\|A^{+} A x\right\|
$$

If $x=0$ there is nothing to prove. We may therefore assume that $x \neq 0$. Since a vector x is quasi-analytic for S if and only if $c x, c \neq 0$, is quasti-analytic for S, the vector $y=(1 /\|x\|) x$ is quasi-analytic for S and

$$
\sum_{n=1}^{\infty} \frac{1}{\left\|S^{n} A x\right\|^{1 / n}} \geqslant \sum_{n=1}^{\infty} \frac{1}{\left\|S^{2 n} y\right\|^{1 / 2 n}} \cdot \frac{1}{\| \| x\left\|A^{+} A x\right\|^{1 / 2 n}} .
$$

To show that $A x$ is a quasi-analytic vector for S it is therefore sufficent to show that

$$
\sum_{n=1}^{\infty} \frac{1}{\left\|S^{2 n} y\right\|^{1 / 2 n}}=\infty
$$

Now $\left\|S^{n} y\right\|^{1 / n}$ is monotonically increasing with n. This can be verified directly, but it also follows from the well-known fact that if ν is a bounded positive measure on a space X such that $v(X)=1$, then $\|f\|_{p}=\left(\int_{X}|f(x)|^{p} d v(x)^{1 / p}\right.$ is a monotonicałly increasing function of $p, p \geqslant 1$, for any ν-measurable function f.

If

$$
\sum_{n=1}^{\infty} \frac{1}{\left\|S^{2 n} y\right\|^{1 / 2 n}}
$$

were convergent, then

$$
\sum_{n=1}^{\infty} \frac{1}{\left\|S^{2 n+1} y\right\|^{1 / 2 n+1}}
$$

would be convergent by the comparison test and it would follow that

$$
\sum_{n=1}^{\infty} \frac{1}{\left\|S^{n} y\right\|^{1 / n}}
$$

is convergent. Hence

$$
\sum_{n=1}^{\infty} \frac{1}{\left\|S^{2 n} y\right\|^{1 / 2 n}}=\infty
$$

Corollary 2. If x is a quasi-analytic vector for S and $p(t)$ a polynomial, then $p(S) x$ is a quasi-analytic vector for S.

Corollary 3. A vector $x \in \bigcap_{n \geqslant 1} D\left(S^{n}\right)$ is quasi-analytic for S if and only if

$$
\sum_{n=1}^{\infty} \frac{1}{\left\|S^{2 n} x\right\|^{1 / 2 n}}=\infty \quad\left(\text { or equivalently } \quad \sum_{n=1}^{\infty} \frac{1}{\left\|S^{2 n+1} x\right\|^{1 / 2 n+1}}=\infty\right)
$$

3. Permutability theorems for symmetric operators

Theorem 5. Let S and T be symmetric operators in a Hilbert space \mathbf{H} and let D_{0} be the set of all vectors x in \mathbf{H} which are vectors of uniqueness for both S and T and which are in the domain of the operators $T^{n} S^{m}, S^{m} T^{n}$ for $n=1,2, \ldots, m=1,2, \ldots$ and such that $T^{n} S^{m} x=S^{m} T^{n} x$ for all n and m. If D_{0} is dense in H, then S and T are essentially self-adjoint and \bar{S} and \bar{T} permute. (\bar{S} denotes the closure of S. \bar{S} and \bar{T} permute means that their spectral resolutions permute.)

Proof. If D_{0} is dense in \mathbf{H}, \bar{S} and \bar{T} are self-adjoint by Theorem 1. Let $E(\sigma)$ and $F(\sigma)$ be the spectral resolutions of \bar{T} and \bar{S}, respectively. Let x be a fixed element in D_{0} and σ and τ Borel sets on the real line. Then there exist two sequences of polynomials $\left(p_{n}\right)$ and $\left(q_{n}\right)$ with real coefficients such that

$$
p_{n}(T) x \rightarrow E(\sigma) x \quad \text { and } \quad q_{n}(S) x \rightarrow F(\tau) x
$$

(cf. proof of Theorem 1). Hence

$$
\left(E(\sigma) x \mid F^{\prime}(\tau) x\right)=\lim _{n \rightarrow \infty}\left(p_{n}(T) x \mid q_{n}(S) x\right)=\lim _{n \rightarrow \infty}\left(q_{n}(S) x \mid p_{n}(T) x=(F(\tau) x \mid E(\sigma) x)\right.
$$

Therefore $((E(\sigma) F(\tau)-F(\tau) E(\sigma)) x \mid x)=0$ for all $x \in D_{0}$. Since D_{0} is dense in H, it follows that

$$
((E(\sigma) F(\tau)-F(\tau) E(\sigma)) x \mid x)=0 \quad \text { for all } \quad x \in \mathbf{H}
$$

But this implies by the polarization identity that $E(\sigma) F(\tau)-F(\tau) E(\sigma)=0$; i. e. $E(\sigma) F(\tau)=F^{\prime}(\tau) E(\sigma)$ for all Borel sets σ and τ.

Theorem 6. Let T and S be symmetric operators in a Hilbert space H and D a set of vectors in \mathbf{H} which are quasi-analytic for both T and S and which are in the domain of the operators $T^{n} S^{m}, S^{m} T^{n}$ for $n=1,2, \ldots, m=1,2, \ldots$, and such that $T^{n} S^{m} x=S^{m} T^{n} x$ for all n and m. If the set $\left\{T^{n} S^{m} x\right\}, n=0,1, \ldots$, $m=0,1, \ldots, x \in D$ is total in \mathbf{H}, then \bar{T} and \bar{S} are self-adjoint and they permute.

Proof. Let \tilde{D} be the vector space spanned by the set of vectors $\left\{T^{n} S^{m} x\right\}$, $n=0,1, \ldots, m=0,1, \ldots, x \in D$. If $y \in \tilde{D}$, then $y=A x$, where A is an operator of the form $A=\sum_{i} a_{i} T^{n_{i}} S^{m_{i}} x, x \in D$. Let $A^{+}=\sum_{j} \bar{a}_{i} T^{n_{i}} S^{m_{i}}$. Then Theorem 4 applies and shows that y is a quasi-analytic vector for T and S. Thus every vector y in \tilde{D} is quasi-analytic for T and S and $T^{n} S^{m} y=S^{m} T^{n} y$ for $n=1,2, \ldots$, $m=1,2, \ldots$. Hence, if \tilde{D} is dense in \mathbf{H} it follows from Theorem 5 that \bar{T} and \bar{S} are self-adjoint and that \bar{T} and \bar{S} permute.

Theorem 7. Let T and S be symmetric operators in a Hilbert space \mathbf{H} and D a set of vectors x which are in the domain of the operators $T^{n} S, S T^{n}$ for $n=0$, $1,2, \ldots$ such that $T^{n} S x=S T^{n} x$ for $n=1,2, \ldots$, and such that $(S+i I) x$ is a vector of uniqueness for T. Let \tilde{D} be the vector space spanned by the vectors $\left\{T^{n} x, T^{m} S x\right\}, n=0,1, \ldots, m=0,1,2, \ldots, x \in D$. Suppose that \tilde{D} is dense in \mathbf{H}, then \bar{T} is self-adjoint and \bar{T} permutes with \bar{S}_{1}, where S_{1} is the restriction of S to the vector space \tilde{D}_{1} generated by the vectors $\left\{T^{n} x\right\}, n=0,1,2, \ldots, x \in D .(\bar{T}$ permutes with \bar{S}_{1} means that $E(\sigma) \bar{S}_{1} \subset \bar{S}_{1} E(\sigma)$ for all Borel sets σ on the real line, where $E(\sigma)$ is the canonical spectral measure of \bar{T}.)

Proof. If $x \in D$, then

$$
\left(T^{m}(S+i l) x \mid(S+i I) x\right)=\left(T^{n} S x \mid S x\right)+\left(T^{m} x \mid x\right), \quad n=0,1,2, \ldots
$$

is a determined moment sequence. Hence clearly ($T^{n} S x \mid S x$) and ($\left.T^{n} x \mid x\right), n=0$, $1, \ldots$, are determined moment sequences. Hence, since \tilde{D} is dense in \mathbf{H}, \bar{T} is self-adjoint by Theorem 1. Let $E(\sigma)$ be the spectral resolution of \bar{T}, x be an element in D, σ a fixed Borel set on the real line and k a non-negative integer. Since

$$
\left(T^{n} S x \mid S x\right)+\left(T^{n} x \mid x\right)=\int_{-\infty}^{\infty} t^{n} d\|E(t) S x\|^{2}+\int_{-\infty}^{\infty} t^{n} d\|E(t) x\|^{2}, \quad n=0,1, \ldots,
$$

is a determined moment sequence there exists a sequence of polynomials (p_{n}) such that if χ_{σ} is the characteristic function of σ, then

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left|p_{n}(t)-\chi_{\sigma}(t) t^{t^{k}}\right|^{2} d\|E(t) S x\|^{2}+\int_{-\infty}^{\infty}\left|p_{n}(t)-\chi_{\sigma}(t) t^{k}\right|^{2} d\|E(t) x\|^{2} \\
&=\left\|p_{n}(T) S x-E(\sigma) T^{k} S x\right\|^{2}+\left\|p_{n}(T) x-E(\sigma) T^{k} x\right\|^{2} \rightarrow 0
\end{aligned}
$$

(cf. proof of Theorem 1). That is,

$$
p^{n}(T) x \rightarrow E(\sigma) T^{k} x
$$

and

$$
S p_{n}(T) x=p_{n}(T) S x \rightarrow E(\sigma) T^{k} S x=E(\sigma) S T^{k} x
$$

That is

$$
p_{n}(T) x \rightarrow E(\sigma) T^{k} x \quad \text { and } \quad \overline{S_{1}} p_{n}(T) \rightarrow E(\sigma) \overline{S_{1}} T^{k} x
$$

Hence $E(\sigma) T^{k} x \in D\left(\bar{S}_{1}\right)$ and $\bar{S}_{1}\left(E(\sigma) T^{k} x=E(\sigma) \bar{S}_{1} T^{k} x\right.$ since \bar{S}_{1} is closed. From this follows that $E(\sigma) y \in D\left(\bar{S}_{1}\right)$ and $E(\sigma) \bar{S}_{1} y=\bar{S}_{1} E(\sigma) y$ for all $y \in D\left(\bar{S}_{1}\right)$; i.e. $E(\sigma) \overline{S_{1}} \subset \overline{S_{1}} E(\sigma)$.

Corollary 4. If every vector in \tilde{D}_{1} is also a vector of uniqueness for S, then \bar{S} is self-adjoint and \bar{T} and \bar{S} permute.

Proof. If every vector in \tilde{D}_{1} is a vector of uniqueness for S, then \bar{S} is selfadjoint by Theorem 1. \tilde{D}_{1} is then also a dense set of determining vectors for \bar{S}_{1}. Hence \bar{S}_{1} is self-adjoint. But $\bar{S}_{1} \subset \bar{S}$ and hence $\bar{S}_{1}=\bar{S}$.

Corollary 5. Let T and S be symmetric operators in a Hilbert space \mathbf{H} and D a set of vectors x which are in the domain of the operators $T^{n} S, S T^{n}$ for $n=0$, $1,2, \ldots$ such that $I^{n} S x=S T^{n} x$ for $n=1,2, \ldots$, and such that x is quasi-analytic for T. Let \tilde{D} be the vector space spanned by the vectors $\left\{T^{n} x, T^{m} S x\right\}, n=0,1, \ldots$, $m=0,1, \ldots, x \in D$. Suppose that \tilde{D} is dense in \mathbf{H}, then \bar{T} is self-adjoint and \bar{T} permutes with \bar{S}_{1}, where S_{1} is the restriction of S to the vector space \tilde{D}_{1} generated by the vectors $\left\{T^{n} x\right\}, n=0,1,2, \ldots, x \in D$.

Proof. The Corollary is an immediate consequence of Theorem 4 and Theorem 7.

4. Two parameter moment problems

Let $(\mu(n, m)), n, m=0,1,2, \ldots$, be a two parameter sequence of real numbers. We wish to find sufficient conditions so that the sequence $(\mu(n, m))$ be a moment sequence; that is, may be represented by an integral

$$
\mu(n, m)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} t^{n} s^{m} d v(t, s), \quad n, m=0,1,2, \ldots
$$

where v is a bounded positive Radon measure on R^{2}. (Cf. [9] and [4].) An obvious necessary condition is that $(\mu(n, m))$ be of positive type, denoted by $\mu(m, n) \geqslant 0$, in the following sense: Given any finite sequence $\left(\left(n_{i}, m_{i}\right)\right), i=1,2$, $3, \ldots, k$ of pairs of non-negative integers and a sequence $\left(\alpha_{i}\right), i=1,2, \ldots, k$, of complex numbers, then

$$
\sum_{j=1}^{k} \sum_{i=1}^{k} \alpha_{i} \bar{\alpha}_{j} \mu\left(n_{i}+n_{j}, m_{i}+m_{j}\right) \geqslant 0
$$

R. B. Zarhina [14] has shown (using the well-known theorem of Hilbert that not every non-negative polynomial in two variables can be written as a sum of squares of polynomials) that this condition is not sufficient.

In this section we shall apply the results of $\S 3$ to obtain various sufficient conditions for a two parameter sequence $(\mu(n, m))$ of positive type to be a moment sequence. These conditions had previously been obtained by A. Devinatz [4] and G. I. Eskin [5] by different methods. All the results of this section can be extended to n-parameter sequences for $n>2$. The proofs are identical with those for $n=2$.

Let $(\mu(n, m))$ be a two parameter sequence of positive type. We associate with ($\mu(n, m)$) a reproducing hernel space \mathbf{H} in the well-known fashion (cf. [1]): Let $\mathbf{H}_{\mathbf{0}}$ be the linear space which consists of all functions $f(n, m), n, m=0, \mathbf{1}$, $2, \ldots$ of the form $f(n, m)=\sum_{i=1}^{k} \alpha_{i} \mu\left(n+n_{i}, m+m_{i}\right)$. If $g(n, m)$ is another such function, i.e. $g(n, m)=\sum_{j=1}^{1} \beta_{j} \mu\left(n+\bar{n}_{j}, m+\bar{m}_{j}\right)$, we introduce into \mathbf{H}_{0} a bilinear form by setting $(f \mid g)=\sum_{i=1}^{k} \sum_{j=1}^{1} \alpha_{i} \bar{\beta}_{j} \mu\left(n_{i}+\bar{n}_{j}, m_{i}+\bar{m}_{j}\right)$. It is not hard to verify that $(f \mid g)$ is well defined; i.e. independent of the particular representations of f and g and that is actually it an inner product on $\mathbf{H}_{\mathbf{0}}, \mathbf{H}_{\mathbf{0}}$ can be completed to a Hilbert space \mathbf{H} such that the elements in \mathbf{H} are also double sequences $(h(n, m)), n, m=0, \mathbf{1}, 2, \ldots$, of complex numbers and such that $(\mu(n, m))$ is a reproducing kernel for \mathbf{H}. That is, if $h \in \mathbf{H}$ then

$$
h(r, s)=\left(h \mid \mu_{(r, s)}\right)
$$

where $\mu_{(r, s)}$ is the function $\mu_{(r, s)}(n, m)=\mu(n+r, m+s), n, m=0,1,2, \ldots$ (for details cf. [1] and [3]).

Let $T_{1}\left(T_{2}\right)$ be the linear operator in \mathbf{H} whose domain $D\left(T_{1}\right)\left(D\left(T_{2}\right)\right)$ consists of all $h \in \mathbf{H}$ such that $h_{(1,0)}\left(h_{(0,1)}\right)$ belongs to \mathbf{H}. (If $h \in \mathbf{H}$, we denote by $h_{(r, s)}$ the double sequence $h_{(r, s)}(n, m)=h(n+r, m+s)$.) Then T_{1} and T_{2} are closed operators and $T=T_{1}^{*}$ and $S=T_{2}^{*}$ are symmetric operators in H. Furthermore, $T(S)$ is the closure of its restriction to \mathbf{H}_{0} (for details cf. [1], [3]). If T and S have self-adjoint extensions H_{1} and H_{2} respectively, which permute, then ($\mu(n, m)$) is a moment sequence. Indeed, let $E_{1}(\sigma)$ and $E_{2}(\sigma)$ be the spectral resolutions of H_{1} and H_{2} respectively and $\mu_{0}=\mu_{(0,0)}$, then

$$
\begin{aligned}
\mu(n, m)=\left(\mu_{(n, m)} \mid \mu_{0}\right)=\left(H_{1}^{n} H_{2}^{m} \mu_{0} \mid \mu_{0}\right) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} t^{n} s^{m} d\left\|E_{1}(t) E_{2}(s) \mu_{0}\right\|^{2} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} t^{n} s^{m} d v(t, s)
\end{aligned}
$$

If the operators T and S are both self-adjoint and permute, then the sequence $(\mu(n, m)$) is a determined moment sequence; i.e. the measure v representing ($\mu(n, m)$) is uniquely determined (cf. [4] p. 487).

The following lemma will be needed.
Lemma 8. Let S be a closed symmetric operator in a Hilbert space \mathbf{H} and T a self-adjoint operator in \mathbf{H} which permutes with S and suppose that T and S are both real with respect to a conjugation J in \mathbf{H} (cf. [11] p. 360). Then S has a self-adjoint extension \tilde{S} in \mathbf{H} which permutes with T.

Proof. If $x \in \mathbf{H}$ we denote the element $J x$ by \bar{x}. Let $E(\sigma)$ be the spectral resolution of T. If x is any element in \mathbf{H} we denote by $\mathbf{M}(x)$ the closed sub-

A. E. NUSSBAUM, Quasi-analytic vectors

space of H generated by the vectors $\{E(\sigma) x\}$, where σ ranges over all the Borel sets on the real line. $\mathbf{M}(x)$ is the set of all elements y of the form $y=$ $f(T) x$, where $f \in L_{2}\left(v_{x}\right)$ and ν_{x} is the measure $\boldsymbol{\nu}_{x}(\sigma)=\|E(\sigma) x\|^{2}$ (cf. [11] p. 243). Let H_{i} and H_{-i} be the deficiency spaces of S; i.e. $\mathbf{H}_{i}\left(\mathbf{H}_{-i}\right)$ is the set of vectors x in $D\left(S^{*}\right)$ such that $S^{*} x=i x\left(S^{*} x=-i x\right)$. Since S is a real transformation with respect to J, the mapping $x \rightarrow \bar{x}$ is an isometric mapping of \mathbf{H}_{i} onto \mathbf{H}_{-i}. Now choose a family $\left(\varphi_{i}\right)_{i \in I}$ of distinct vectors in \mathbf{H}_{i} such that $\mathbf{H}_{i}=\sum_{i \in I} \oplus \mathbf{M}\left(\varphi_{i}\right) \quad(\oplus$ denotes orthogonal direct sum). Then $\mathbf{H}_{-i}=\sum_{i \in I} \oplus \mathbf{M}\left(\bar{\varphi}_{i}\right)$. Let U be the mapping on H_{i} which maps the element $x=\sum_{i \in I} x_{i}, x_{i} \in \mathbf{M}\left(\varphi_{i}\right), x_{i}=f_{i}(T) \varphi_{i}$ onto the element $\sum_{i \in I} f_{i}(T) \bar{\varphi}_{i}$. Now,

$$
\left\|f_{i}(T) \varphi_{i}\right\|^{2}=\int_{-\infty}^{\infty}\left|f_{i}(t)\right| d\left\|E(t) \varphi_{i}\right\|^{2}=\int_{-\infty}^{\infty}\left|f_{i}(t)\right|^{2} d\left\|E(t) \bar{\varphi}_{i}\right\|^{2}=\left\|f_{i}(T) \bar{\varphi}_{i}\right\|^{2}
$$

since $E(\sigma) \bar{\varphi}_{i}=E(\sigma) \varphi_{i}$ (this is true because T is real with respect to J cf. [11] p. 362). Hence U is an isometric mapping of \mathbf{H}_{i} onto \mathbf{H}_{-4}. Since each $\mathbf{M}\left(p_{i}\right)$ reduces $E(\sigma)$ (cf. [11] p. 243) it follows that $E(\sigma) U=U E(\sigma)$ for all Borel sets σ. Finally, let $D(\tilde{S})=D(\tilde{S})+(I-U) H_{i}(\dot{+}$ denotes direct sum) and define \tilde{S} as the operator whose domain is $D(\tilde{S})$ and which maps the element $\tilde{x}=x+(I-U) \varphi$, $x \in D(S), \varphi \in H_{i}$ into the element $S^{*} x=S x+i(I+U) \varphi$. \tilde{S} is a self-adjoint extension of S which permutes with T (for details on the Cayley transform of a symmetric operator cf. [11] and [12]).

Theorem 9. (G. I. Eskin [5]). Let $(\mu(n, m)), n, m=0,1,2, \ldots$, be a two parameter sequence of real numbers such that $\mu(n, m) \gg 0$. Suppose that for every fixed m_{0} the one parameter moment sequence

$$
\left(\mu\left(n, 2\left(m_{0}+1\right)\right)+\mu\left(n, 2 m_{0}\right)\right), \quad n=0,1,2, \ldots
$$

is determined, then $(\mu(n, m))$ is a two parameter moment sequence. If in addition the moment sequence $\left(\mu\left(2 n_{0}, m\right)\right), m=0,1,2, \ldots$, is determined for each n_{0}, then the moment sequence $(\mu(n, m))$ is determined.

Proof.

$$
\begin{aligned}
\mu\left(n, 2\left(m_{0}+1\right)\right)+\mu\left(n, 2 m_{0}\right) & =\left(T^{n} S^{m_{0}+1} \mu_{0} \mid S^{m_{0}+1} \mu_{0}\right)+\left(T^{m} S^{m_{0}} \mu_{0} \mid S^{m_{0}} \mu_{0}\right) \\
& =\left(T^{m}(S+i I) S^{m_{0}} \mu_{0} \mid(S+i I) S^{m_{0}} \mu_{0}\right)
\end{aligned}
$$

Let $D=\left\{S^{m_{0}} \mu_{0}\right\}, m_{0}=0,1,2, \ldots$, and apply Theorem 7. Since the vector space \tilde{D} spanned by the vectors $\left\{T^{n} S^{m_{0}} \mu_{0}\right\}, n, m_{0}=0,1,2, \ldots$, is precisely H_{0}, it follows that T is self-adjoint and that T permutes with S. Since T and S are real operators with respect to the conjugation J which maps an element of \mathbf{H} into its complex conjugate, it follows from Lemma 8 that S has a self-adjoint extension $\tilde{\mathcal{S}}$ which permutes with T, This proves the first part of the theorem. If $\mu\left(2 n_{0}, m\right)=\left(S^{m} T^{m_{0}} \mu_{0} \mid T^{m_{0}} \mu_{0}\right), m=0,1,2, \ldots$, is a determined moment sequence, then the set $\left\{T^{n_{n}} \mu_{0}\right\}, n_{0}=0,1, \ldots$, is a set of determining vectors for S and S is self-adjoint by Theorem 1 .
J. A. Shohat and J. D. Tamarkin have proved the following theorem in their book [9] p. 21: Let ($\mu\left(n_{1}, n_{2}, \ldots, n_{k}\right)$) be a k-parameter sequence of real numbers of positive type and suppose that $\left(\mu\left(n_{1}, n_{2}, \ldots, n_{k}\right)\right.$) is a k-parameter moment sequence. Let

$$
\lambda(2 n)=\mu(2 n, 0, \ldots, 0)+\mu(0,2 n, 0, \ldots, 0)+\ldots+\mu(0,0,0, \ldots, 2 n)
$$

and suppose that

$$
\sum_{n=1}^{\infty} \lambda(2 n)^{-1 / 2 n}=\infty
$$

then the moment sequence ($\mu\left(n_{1}, n_{2}, \ldots, n_{k}\right)$) is determined.
Using the results of § 3 (specifically Theorem 6) we can prove the following very much stronger sesult.

Let $\left(\mu\left(n_{1}, n_{2}, \ldots, n_{k}\right)\right)$ be a k-parameter sequence of real numbers of positive type and suppose that

$$
\sum_{n=1}^{\infty} \lambda_{i}(2 n)^{-1 / 2 n}=\infty \quad \text { for } \quad i=1,2, \ldots, k
$$

where $\lambda_{1}(n)=\mu(n, 0,0, \ldots), \lambda_{2}(n)=\mu(0, n, 0, \ldots, 0), \ldots, \lambda_{k}(n)=\mu(0,0,0, \ldots, n)$ then $\left(\mu\left(n_{1}, n_{2}, \ldots, n_{k}\right)\right)$ is a determined k-parameter moment sequence.

We shall prove the theorem for $\boldsymbol{k}=2$.
Theorem 10. Let $(\mu(n, m)), n, m=0,1,2, \ldots$, be a two parameter sequence of real numbers such that $\mu(n, m) \gg$. Suppose that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\mu(2 n, 0)^{1 / 2 n}}=\infty \tag{1}
\end{equation*}
$$

then $(\mu(n, m)$) is a two parameter moment sequence. If in addition

$$
\sum_{m=1}^{\infty} \frac{1}{\mu(0,2 m)^{1 / 2 m}}=\infty,
$$

then the moment sequence $(\mu(n, m))$ is determined.
Proof. $\mu(n, 0)=\left(T^{n} \mu_{0} \mid \mu_{0}\right)$. (1) implies that μ_{0} is a quasi-analytic vector for T. Hence $S^{m} \mu_{0}$ is a quasi-analytic vector for T for $m=0,1,2, \ldots$, by Theorem 4. Let $D=\left\{S^{m} \mu_{0}\right\}, m=0,1,2, \ldots$ and apply Corollary 5 . It follows that T is self-adjoint and that T permutes with \mathcal{S}. The remainder of the proof is identical with the proof of Theorem 9.

Theorem 11. (A. Devinatz [4]). Let $(\mu(n, m)), n, m=0,1,2, \ldots$, be a two parameter sequence of real numbers such that $\mu(n, m) \gg 0$ and such that $\left(\mu\left(2 n_{0}, m\right)\right.$), $m=0,1,2, \ldots$, is a determined moment sequence for each n_{0}. Suppose furthermore that the one parameter moment sequence

$$
\left(\mu\left(n, 2 m_{0}\right)+\mu(n, 0)\right), \quad n=0,1,2, \ldots
$$

is determined. Then $(\mu(n, m))$ is a determined moment sequence.

Proof

$$
\mu\left(n, 2 m_{0}\right)+\mu(n, 0)=\left(T^{m} S^{m_{0}} \mu_{0} \mid S^{m_{0}} \mu_{0}\right)+\left(T^{m} \mu_{0} \mid \mu_{0}\right)
$$

Since (2) is determined for each m_{0}, it follows that $S^{m_{0}} \mu_{0}$ is a vector of uniqueness for T for every m_{0}. Hence T is self-adjoint by Theorem 1. The assumption that $\mu\left(2 n_{0}, m\right)=\left(S^{m} T^{n^{n}} \mu_{0} \mid T^{n_{0}} \mu_{0}\right), m=0,1,2, \ldots$, is determined for each n_{0} implies that $T^{n_{0}} \mu_{0}$ is a vector of uniqueness for S for each n_{0}. Hence S is selfadjoint by Theorem 1. Let $E(\sigma)$ be the spectral resolution of T, σ a fixed Borel set on the real line and m_{0} and k two fixed non-negative integers. Since

$$
\left(T^{m} S^{m_{0}} \mu_{0} \mid S^{m_{0}} \mu_{0}\right)+\left(T^{m} \mu_{0} \mid \mu_{0}\right)=\int_{-\infty}^{\infty} t^{n} d\left\|E(t) S^{m_{0}} \mu_{0}\right\|^{2}+\int_{-\infty}^{\infty} t^{n} d\left\|E(t) \mu_{0}\right\|^{2}
$$

$n=0,1,2, \ldots$, is a determined moment sequence, there exists a sequence of polynomials $\left(p_{n}\right)$ such that

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left|p_{n}(t)-\chi_{\sigma}(t) t^{k}\right|^{2} d\left\|E(t) S^{m_{0}} \mu_{0}\right\|^{2}+\int_{-\infty}^{\infty}\left|p_{n}(t)-\chi_{\sigma}(t) t^{k}\right|^{2} d\left\|E(t) \mu_{0}\right\|^{2} \\
&=\left\|p_{n}(T) S^{m_{0}} \mu_{0}-E(\sigma) T^{k} S^{m_{0}} \mu_{0}\right\|^{2}+\left\|p_{n}(T) \mu_{0}-E(\sigma) T^{k} \mu_{0}\right\|^{2} \rightarrow 0
\end{aligned}
$$

That is,

$$
p_{n}(T) \mu_{0} \rightarrow E(\sigma) T^{k} \mu_{0}
$$

and

$$
S^{m_{0}} p_{n}(T) \mu_{0}=p_{n}\left(T^{\prime}\right) S^{m_{0}} \mu_{0} \rightarrow E(\sigma) T^{k} S^{m_{0}} \mu_{0}
$$

$S^{m_{0}}$ is self-adjoint and hence closed. Therefore

$$
E(\sigma) T^{k} \mu_{0} \in D\left(S^{m_{0}}\right) \quad \text { and } \quad S^{m_{0}} E(\sigma) T^{k} \mu_{0}=E(\sigma) T^{k} S^{m_{0}} \mu_{0}
$$

for $m_{0}=0,1,2, \ldots$.
From this follows that

$$
E(\sigma) T^{k} S^{m_{0}} \mu_{0}=S^{m_{0}} E(\sigma) T^{k} \mu_{0} \in D(S)
$$

and

$$
S E(\sigma) T^{k} S^{m_{0}} \mu_{0}=S^{m_{0}+1} E(\sigma) T^{k} \mu_{0}=E(\sigma) T^{k} S^{m_{0}+1} \mu_{0}
$$

for $k, m_{0}=0,1,2, \ldots$.
Hence $E(\sigma) g \in D(S)$ and $S E(\sigma) g=E(\sigma) S g$ for all $g \in \mathbf{H}_{0}$.
From this follows, since S is the closure of its restriction to \mathbf{H}_{0}, that $E(\sigma) g \in D(S)$ and $S E(\sigma) g=E(\sigma) S g$ for all $g \in D(S)$. That is,

$$
E(\sigma) S \subset S E(\sigma)
$$

for all Borel sets σ.

ACKNOWLEDGEMENT

This work was in part supported by National Science Foundation Grants N.S.F. GP-2089 and G-17932.

[^0]
REFERENCES

1. Aronszajn, N., Theory of reproducing kernels, Transactions of the American Mathematical Society, vol. 68, 337-404 (1950).
2. Carleman, T., Les fonctions quasi-analytiques, Gauthier-Villars, Paris (1926).
3. Devinatz, A., Integral representations of positive definite functions, Transactions of the American Mathematical Society, vol. 74 56-77 (1953), Errata, p. 536.
4. Devinatz, A., Two parameter moment problems, Duke Mathematical Journal, vol. 24, 48l498 (1957).
5. Eskin, G. I., A sufficient condition for the solvability of a multidimensional problem of moments, Dokl. Akad. Nauk SSSR 133 540-543 (1960). (Russian); translated as Soviet Math. Dokl.
6. Hamburger, H. L., U̇ber eine Erweiterung des Stieltjesschen Momentenproblems, Mathematische Annalen, (a) vol. 81 (1920), pp. 235-319, (b) vol. 82, 120-164 (1921).
7. Nelson, E., Analytic vectors, Annals of Mathematics, vol. 70, 572-615 (1959).
8. Riesz, M., Sur le problème des moments et le théorème de Parseval correspondant, Acta Litterarum ac Scientiarum (Szeged) vol. 1, 209-227 (1922-23).
9. Shohat, J. A., and Tamarkin, J. D., The Problem of Moments, New York (1943).
10. Natmark, M., Self-adjoint extensions of the second kind of a symmetric operator, Bulletin (Izvestiya) Acad. Sci. USSR, math. series vol. 4, 53-104 (1940).
11. Stone, M. H., Linear transformations in Hilbert space, New York (1932).
12. Sz. Nagy, B. v., Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Berlin (1942).
13. Sz. Nagy, B. v., Prolongements des transformations de l'espace de Hilbert qui sortent de cet espace, Appendix to the book "Leçons d'analyse fonctionelle", Budapest (1955).
14. Zarhina, R. B., On the two-dimensional problem of moments, Dokl. Akad. Nauk SSSR 124, 743-746 (Russian) (1959).

[^0]: Department of Mathematics, Washington University, St. Louis, Missouri, U.S.A.

