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A fix-point theorem with econometric  background 

Part I. The theorem 

By HERMAN O. A. WOLD 

The theorem provides a new approach to a problem tha t  has originated in 
econometrics, namely the statistical estimation of parameters  of so-called inter- 
dependent systems. We formulate the problem generally as one of orthogonal 
projection in Hilbert  vector space, an interpretation based on the definition of 
interdependent systems in terms of conditional expectations; [5-7]. The subspace 
on which the vectors are projected is spanned by  vectors some of which are 
given, whereas o thers - -and  this is a nonlinear feature of the problem--are  un- 
known and to be determined by  the projection. The problem is solved by  an 
iterative least squares procedure tha t  rests on a new application of the principle 
of contraction mapping. 

Par t  I presents the fix-point theorem and the ensuing iterative procedure. 
Pa r t  I I  gives illustrations and comments, taking up three specifications of the 
components of the given vectors y, z: (i) As vectors in Euclidean space Rh; 
(ii) as random variates, making y, z a multivariate random distribution; (iii) as 
statistical data, interpreted as a sample from the distribution under (ii). Ex- 
tensions in various directions are briefly outlined. I t  is emphasized tha t  the 
assumptions of the approach broaden the scope of interdependent systems. 

For the mathematical  groundwork utilized in Par t  I, see [2 and 4], and, 
especially as regards contraction mapping, [3]. 

From October 1963 onwards some twenty numerical experiments with the itera- 
t i re  procedure have been carried out at  the Computing Centre of the Royal  Poly- 
technic Inst i tute  of Norway, Trondheim. I wish to express my deep gratitude to 
Mr. H. Michalsen, Programming Consultant, and Mr. N. Sanders, Director of the 
Computing Centre, for their valuable help in the numerical work. My theoretical 
work on the present paper  has to a large extent been carried through at the Univ. 
of Wisconsin when visiting for six months 1964 at the Mathematics Research Center 
and the Social Systems Research Insti tute.  I feel greatly indebted to numerous 
friends and colleagues for valuable discussions and comments. For specific amend- 
ments of the first draft  of Par t  I, I am indebted to Professor T. H. Hildebrandt,  
Univ. of Michigan; Professor J.  Karamata ,  Univ. of Geneva and Univ. of Wisconsin; 
and Prof. L. Rall, Univ. of Wisconsin. 
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1. W e  consider  a l inear  vec to r  space H n wi th  e lements  

X =  ={X 1 . . . . .  Xn}; xeH,  

n 

where the  components  x~ belong to a H i lbe r t  space H wi th  rea l -va lued  inner  
p roduc t s  (xi, xk). W e  define spaces  H and  H n as  metr ic ;  thus  

d(xi, xk)= II x , - x k l l  = (x,-xk, x , - x ~ ) ~  (I) 

is the  d is tance  be tween  two e lements  xi, xk in H,  and  we t ake  

D(x,y)=max ( { IX l -y l l l  . . . .  , I l x = - y = l l )  (2) 

to  be the  d is tance  between two vectors  {x I . . . . .  x=} and  {Yx . . . . .  Yn} in H n. As 
is wen known,  H a n d  H n are  comple te  in the  metr ics  (1) and  (2); [3, 4]. 

2. Le t  y = { y ~  . . . . .  y~}, n>~2 (3) 

be a f ixed vec tor  in H=; le t  

z -  {z~ . . . . .  ~m}, m > 1 (4) 

be a f ixed  vec tor  in Hm; le t  H(z) be the  subspace  of H spanned  b y  the  com- 
ponents  z 1 . . . . .  zm; and  let  H ~(z) be the  subspace  of H" spanned  b y  vectors  u 
the  components  of which belong to H(z), 

U = { i l l  . . . . .  Un}; US e l l ( z ) ,  u e H  n (Z). 

Given a set of e n t r i e s  i, k, to  be cal led positions, say  

i = 1 ;  k = p l ( 1 ) ,  p1(2) . . . . .  p l ( k i )  

i = 2 ;  k = p 2 ( 1 ) ,  p2(2) . . . . .  p2(k2) (5) 

i=a; k = p a ( 1 ) ,  pa(2)  . . . .  ,pa(k~) 

the  m a t r i x  l~=[~t~k], i = 1  . . . . .  a ;  k = l  . . . . .  b 

is called a position matrix if 

~ k = 0  for k # p ~ ( 1 )  . . . . .  p~(k~); i = 1  . . . . .  a 

whereas  ~rik m a y  t ake  nonzero values  in the  posi t ions  (5). 
W e  shall  represent  y in t he  form 

y=~3u+Fz+~, uEH~(z) (6) 
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subject to the following assumptions 2 a-e. We see that  ]3 and F are position 
matrices, with positions specified by (Sb-c) and (9 b), whereas (10)-(11) specifies 
the numerical values of the elements fl~, 2~q in these positions. 

2 a. The vector u is to be specified later, and z is the fixed vector (4). 

2 b. The representation of each component y~ involves a prescribed selection 
of components u~ a~d zq, as follows, 

(7) 

where 

and 

fl i j=0 for j=~p, ] 

p = p , ( 1 ) , p , ( 2 )  . . . . .  P,(ji); J i ~ < n - l '  I (Sa-c) 
p~ : i ;  hence f l i ,=0;  

~ k = 0  for k 4 q ,  / 
(9 a-b) J q=q,(1),  q,(2) . . . . .  q,(k,); k , < m .  

2e. Let  Hi=H~(up ,  zq) be defined as the subspace of H spanned by the ele- 
ments up, zq specified in (8 b) and (9 b). Since u E H n (z), 

H i g H ( z )  i = l  . . . . .  n. 

Writing y* = (y~ . . . . .  y* }  = ~ u  + Fz 

we define each component y~ as the projection of yi on Hi. Hence 

y* E H ~ (z) 

with Y~=Y*+Si; y*EHi, s~AH~ i = l  . . . . .  n. 

(,o) 

(11) 

2 d. The matrix 

is assumed to be nonsingular. 

2 e. Finally, we assume 

k~>~l for at least one i ( i = l  . . . . .  n). (12) 

3. Let  y and z remain fixed. Taking 

to be an arbitrary vector in H'~(z), the projection (10) defines a mapping of 
H = (z) into itself, say Au,  where A is the mapping operator defined by 

A u  = ~ u  § Fz. (13) 
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Lemma. For the trans/ormation (13) to be a contraction mapping, 

D(Au, Av)<~D(u,v) ,  ~ < 1  (14) 

it is su//icient that no component y~ belongs to H~. 

Proo/. We consider first the special case when representation (6) for each i 
involves just one element up and one element zq. The contraction principle (14) 
then is equivalent to the inequality 

A- ( u )  ~ ~ ( v )  , ,  (v )  <Z2 m a x ~ l  [[fl~)up-y,1 ~q-t+~l "W-y,1 zqll 2<~ max~_lHui--vi[[2; ~2<1,  (15) 

where the superscripts indicate tha t  the projection (10) gives coefficients tha t  
depend upon u v and v,, respectively. Accordingly, we shall show 

Q2=N/D<~2,  ~2<1, (16) 

where, with some change of notation for easy writing, the numerator  is given by  

N = max~=i HfliuUv+yiuZq-fl, vvp-y~vzqH 2 (17) 

and the denominator D = m a x L 1  II~,-v~ll 2. (18) 

We adopt  two simplifying devices which involve no loss of generality: 
(i) We take uv and v v to belong to the orthogonal complement of zq in H(z), 

up, vp ~ H(z)Qzq; i=  l . . . . .  n. (19) 

To see tha t  this involves no restriction, let u~ and v~ be arbi trary in H~(z). 
Then two elements u v, vp tha t  satisfy (19) are uniquely determined by  the de- 
compositions 

u~=u~+~z~ ,  v'~=vp+2~z~, 

where u~, v~ • zr 

Hence Aup=Au'v and Avp=Av" v. This gives, in obvious notation, 

Q,= D(Au" v, Av'p)_ D(Aup, A%) = D(Aup, A%) 

D(u'v, v'v) II u p -  up + ( x , -  ~ )  ~ II D(u~, v~) + II (X~- X:) ~0 II" 

Writing Q' (0) for the value taken by Q' when +~x = +~2 = 0, we infer 

Q' ~< Q' (0) = Q (20) 

showing tha t  it will suffice to consider elements up, vp tha t  satisfy (19). 
(ii) We normalize the components y~ so as to have unit norms, 

Ily, II = 1; i = 1  . . . . .  ~ (21) 
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and  assume 

{~ = 1 . . . . .  n (22) 
Ilu, II = IIv, II = II~ll = 1; 1, . , m .  

Thus prepared,  let for z given b y  (4) and  for a rb i t r a ry  u, v E H n (z) 

y i = f l = u p + f l v % + T z p + ~ i ;  6~• vp, zq (23) 

be the project ion of y~ on the subspace spanned by  uv, vp, zq. The general  theory  
of or thogonal  project ion gives 

1 (Yi, Up) (y. vp) (Yi,%) 
(y. up) 1 (u~,, vp) 0 

(y~, vp) (up, v~) 1 0 

(y~, %) 0 0 1 

1 (up, vv) 

(uv, vp) 1 

0 0 

0 

0 ~>0. 

1 

(24) 

Hence the following relation, which is p ivota l  in the proof,  

(y~, up) 2 + (y~, vp) 2 - 2 (y~, up) (y .  vp) (up, vp) 
1 - (up, vv) ~ - 1 - (y~, zq) 2 - II 6i II 3/> o. (25) 

Our interest  will focus on near ly  coincident vectors  u, v; t h a t  is, vectors  with 
(u~, v~) ~ 1. We write for b rev i ty  

Hence  

A t = l - ( u . v ~ ) ,  i = l  . . . . .  n, 

Ai~>0, i = 1  . . . . .  n. 

For  the  denomina to r  in (25) we obta in  

~<2Ap. 

The  squared norm t h a t  appears  in the  denomina to r  (18) is 

[[ u~ - v~ II ~ = (u, - v ,  u ~ -  vi) = 2 [1 - (u,, v~)] = 2 A,. (26) 

Nex t  some p r e p a r a t o r y  reduct ion of the  numera to r  (17). The  general  formulas  
for or thogonal  project ion in Hi lber t  space give the  coefficient vector  

{fl,~, 7~} = [{up, zo} [up, zq]] -1 {(y,, ~p), (y.  zq)) (27) 

and  the  project ion componen t  

(Au) ,  = fl~u up + 7 ~  zq = [up, %] {fl~u, 7~u}. (28) 

As an  example  of the reduct ions to follow we note  

213 



l i t .  O. A. WOLD, A fix-point theorem with econometric background. I 

((Au)~, (Av),) = [(y,, up), (y,, zq)] [{up, zq} [up, %33 -1 

{up, zq} [vp, zq] [{vp, zq} [v~, %]] 1 {(y,, vp), (y,, zq)} 

=[(y ,  up), (y~zq) ] [ (UP'oVP) : ] { (y,, vp), (y,,zq) } 

= (y,, up) (y,, vp) (up, v~) .4- (y~, zq) 2. (29) 

F o r m i n g  the  squa red  n o r m  t h a t  appea r s  in the  n u m e r a t o r  (17), we ob ta in  

II (Au- Av), I1' = ( (Au) .  (Au),) - 2 ((Au),, (Av),) .4- ((Au),, (Av),) 

= (y .  up) ~ -4- (y~, vp) ~ - 2 (y. up) (y~, vp) (up, vp). (30) 
Making  use of (25), 

l[ (Au - Av), II ~ = (1 - (up. vp) 2) (1 - y,, zq) 2 - II 8, II ~) 

=2Ap ( 1 - ~ )  (1 - (y,, z . )2-  II ~,ll~). (31) 

Turn ing  now to  Q2 as def ined b y  (16)-(18),  we o b t a i n  b y  (26) a n d  (31) 

(y. o) - II ~, II 2) Q~ _ max~_l Av (1 - Ap/2)  (1 - z ~ 

m a x  (A 1 . . . . .  An) 

~< (max~_l A,)  max~_l (1 - (y ,  zq) ~ - II ~,11 ~) 
m a x  (A 1 . . . . .  An) 

Hence ,  since all Ap are  c o n t a i n e d  a m o n g  A 1 . . . . .  An, 

Q2 ~< max~_l (1 - (y,, zq) ~ -  ]18, I1~). (32) 

On the  a s sumpt ions  of the  l e m m a  Yi does no t  belong to  H,.  H e n c e  

II~tll~>o, say  II~,l l~>c>0, 

which  establishes (14) w i th  

= V1 - c < 1. (33) 

The  l e m m a  is p r o v e d  in the  special case of one  up a n d  one zq. 
P roceed ing  to  the  genera l  case, t he  l e m m a  will be es tabl i shed if we can aga in  

show (15), this  t ime  in te rp re t ing  the  t e rms  as vec to r  p roduc t s ,  as  follows, 

(..) ~ = ~?k, .(u) zq; 7~y ) zq = ~k, (') z- | (34) 
~tl  ~q /*--*k=l yik k=l ~ik q.j 
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Withou t  impair ing the generali ty,  we adop t  the following normalizat ions and  
assumptions:  (i) The  two vectors  up, vp are of dimensional i ty  j~. (ii) We impose (19), 
(21), (22 a) and  (22 c), all of which allow s t ra ight forward  extension to the  general  
case (34). (iii) Making use of a s t andard  device in t r ans fo rmat ion  theory,  [1], we 
assume in general izat ion of (22) t h a t  up and vp have  been subjected to two linear 
t rans format ions  t ha t  make  

II~p,~)l[=l, maxllvp,a, ll<l; a = l  . . . . .  j~ (35 a -b )  

(%(~), %(0)) = (vp(.), vp(b~) = 0; a # b; a, b = 1 . . . . .  j~ (36 a -b)  

(Up(a), Up(b)) =/a"  (~ab a ,  b = 1 . . . . .  ?'i (37) 

where ~ is Kronecker ' s  delta, a n d / 1  . . . .  ,/j~ are scalar factors.  
On the  appropr ia te  vec tor  in terpreta t ion,  (23)-(25) ex tend  to the general  case. 

I n  (24) the de te rminan ts  are to be in te rpre ted  as part i t ioned.  The inner pro- 
ducts  ei ther  become vectors,  for example  

{ (y .%)} ,  p = p ~ ( 1 )  . . . . .  p~ (]~) 

ins tead of (y~, up); or matrices,  for example  the ]i • diagonal  ma t r ix  

[(Up(a), Vp(b))] , p = p i  (1) . . . . .  Pi (ii) 

ins tead of (up, vp), The uni t  in the middle of the  denomina to r  ma t r ix  becomes 
the  diagonal  ma t r ix  [(up(~), up(0))], and  similarly in the numera to r  matr ix .  On this 
in terpreta t ion,  relat ion (24) extends  to the general case, and  making  use of (37) 
we obta in  the  following general izat ion of (25), 

(y .  up) 2 + (y~, vp) 2 - 2 (y~, up) (y~, vp) (up, vp) _ ~ Np = 
p p Dp (y''zo) -11 'll2 (38) 

This relat ion gives, making  use of (35 b) in the th i rd  inference, 

~v ((y" up)~ + (y~' vp)2 - 2 (y~, up) (y~, vp) (up, vp)) = .  Dp Dp 

~< 2 (1 - ~ (y~, %)2 _ II 8, II 2) m a x  A. .  (39) 
q p 

Formula  (26) remains  the  same. In  (27)-(29) the  vector  in te rpre ta t ion  calls 
for no formal  change. In s t ead  of (29) we obta in  in the general  case 
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( ( A u ) , ,  ( A v ) i )  yakS:__1 (Yt, Z q ( a ) ) 2 + ~ =  1 t ,  = " ~b = 1 (Y" %(~) ) (Yi, v,(b)) (U,(a), v,(~) ) 

a n d  (30) general izes as follows, 

11 (Au  - Av)~ It 2 = ~.~ (y~, %(,,)2 + ~ (y~, %(~))~ 

- 2 ~ (Yi, Up(a)) (Y~, %(b)) (up(a), %(b)). 
a b 

I n  v i r tue  of (37) this  gives 

II(Au-Av)~lls=~[(y.%)~+(y~,%)~-2(y~,up)(y~,vp)(uv, vp)]. (40)  
P 

F o r m i n g  n o w  @, m a k i n g  use of (26) a n d  (40), we ob t a in  

Q2 m a x ~  ~v  [(y~, u~) 2 + (y~, vp) 2 - 2 (y,,up) (y~, v~) (uj,, vp)] 

2 m a x  (A 1 . . . . .  An) 

B y  (39), t he  n u m e r a t o r  is b o u n d e d  upwards  b y  the  m a x i m u m  of 2 Ap mul t ip l ied  
b y  the  m a x i m u m  of the  las t  m e m b e r  in (38). This  conclus ion links up  wi th  
the  a r g u m e n t  in (32), a n d  so the  rest  of the  proof  is a s t r a igh t fo rward  exten-  
sion of (33). W e  ob ta in  re la t ion  (14), specified as in (33) wi th  0 < c ~ II ~ II 2. 
The  l e m m a  is p roved .  

4. Theorem. Let y and z be given vectors (3)-(4), and let the relation (6) be 
subject to the specifications 2 a-d,  where ~,  I' are position matrices with unknown 
positional coe//icients fliv, 9%. Then there exists one and only one representation 

y = ~ y * § 2 4 7  y * ~ H n ( z ) ,  s~Ly*,zq (41) 

with y* = 13y* + Pz.  (42) 

The vector y* is uniquely determined by the ]ollowing iterative procedure, where the 
initial vector y(O) can be chosen arbitrarily in H n (z), 

y = ~(1) y(0) + pa)  z + e (1) s(~) • ~ (o) i ~ p  ~ Zq, 

ya) = ~(1)  y(0) + 1~(1) z, i = 1, .. , n ;  

y = ~(2) y(1) + F~2) z + e (2), _(~) ~ .(1) _ ,~ A- bSp ~ ~,q~ 

y(e) = ~(2) y(1) + F(z) z, i = 1 . . . . .  n; 

. . . . . . . . . . .  ~ . . . . . . . .  

y = ~(s) y(~ 1) + I~(s) Z + e (s), ~(s) ! ~,(s 1) 

y<~) = ~<~) y<~-x) + F<S) z, i . . . . .  n;  
(43) 

y* = lims_. ~ y(S). (44) 
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I /  we disregard the exceptional case when the elements 

y*,zq with p = p ~ ( 1 )  . . . . .  p~(j,); q=q~(1)  . . . . .  q~(lc~) (45) 

are linearly interrelated /or some /ixed i ( i =  1 . . . . .  n), the matrices are ~, F are 
uniquely determined by 

~ D(S) o(s)  l i m s _ ~  ~ . l i m s ~ p  ; F = (46a-b)  

Proof. Up to (45) the theorem follows f rom our l e m m a  as an immedia te  
corollary of the  general f ix-point  theorem of contract ion mapping:  The equat ion  

y* = Ay* (47) 

has one and  only one solution in H n (z), and the  solution is given by  the i te ra t ive  
procedure (43)-(44). For  the  sake of completeness we recapi tu la te  the  proof,  
following [3]. 

Le t  y(0) be an a rb i t r a ry  vector  in Hn(z). Set y(1)=Ay(~ y(2)=Ay(1)=A2y(~ 
and in general  let y(S)=Ay(S-1)=ASy(O)" We shall show t h a t  the  sequence y(S) 
satisfies the  Cauchy criterion. I n  fact,  for any  t > s 

D' ty  (~), y(t)) = D (A s y(0), A t y(0)) < as D (y(0), y,-S)) 

<~ ~s [D(y(O), y(1)) + D (y(1), y(2)) + . . .  + D (y,-S -1), y(t--s))] 

s D o (0) o (1)/ + a t - s  1) ~<a (V , y  J ( 1 + ~ + ~ 2 + . . .  -~SD(y(~ (48) 

Since ~ < 1 this quan t i ty  is a rb i t rar i ly  small  for sufficiently large s. Hence  the  
sequence y(S) is fundamenta l ,  and  since H n (z) is complete  it follows t h a t  l i m s _ ~  y(S) 
exists, We set  y* = l i m s _ ~  y(S). Then  by  vir tue of the  cont inui ty  of the  mapp ing  
A we infer Ay* = A lims-~oo y(S) = l i m s _ ~  Ay (s) = lims_~ ~ y(S+l) = y*. 

Thus, the i terat ion (43) converges, and  the reby  the  existence of a f ix-point  y* 
is proved.  We shall now prove  its uniqueness. I f  Ay* =y*, Ay** ** = y , then  
D * ** ( y , y  ) = 0; t h a t  is, y** (y ,y  )<~D(y*,y**) ,  where ~ < 1 ;  this i m p l i e s D "  * **" y*= 

The general  f ix-point  theorem thus  ensures the  l imit ing relat ion (44). I t  
remains  to prove  (46a-b) .  These relat ions readi ly  follow if we disregard the  
case when the  variables (45) are interrelated.  First ,  the inner products  

�9 Z * * (y , ), (y , y ), (y*, y) (49) 

will be uniquely de termined by  the  l imiting e lement  y*. Second, writ ing 

y = ]3* y* + F* z + ~*, e* • y*, z 

for  the or thogonal  project ion of y on the  linear manifold  spanned b y  y* and  z, 
the  ensuing normal  equat ions  will give us ]3* and  F* in t e rms  of the  inner 
products  (y~, zk), (zj, zk) and  (49), and  in the  case under  considerat ion the  coef- 
ficients fl*, ~'q will for every  i be uniquely  determined.  Finally,  the  result ing 
]3* and  F* will be the  limits of ~(8) and  r (s), giving 
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]3=]3*; P = P *  

since the elements of matrices ]3 and F are continuous functions of y*. 
theorem is proved. 

The 

Remark. Once the limiting vector y* has been obtained by  (44)~ Gram's  
criterion c a n  be used to find out for any fixed i whether or not the elements 
(45) are linearly interrelated. Forming the (j~ + kt) • (?'~ + k~) matrix or inner prod- 
ucts of the elements (45), the criterion for linear independence is tha t  the 
matr ix  should be of rank ?i + k~. 

As to criteria tha t  can be applied prior to the iterative procedure, we note 
tha t  the following obvious and very simple conditions are necessary for linear 
independence. 

d~=k~; d~>j~+k~ i = l  . . . . .  n, (50) 

where d~ is the dimensionality of vector zq [q=qt (1) . . . . .  q~ (/ci)], and d the dimen- 
sionality of vector z. 

5. The iterative procedure (43) can be exploited for further information on 
the representation (41)-(42). We note: 

(i) According to assumption 2d the matr ix  ( I - ] 3 )  is nonsingular. Hence our 
theorem gives as an immediate corollary 

y* = ~ z  with ~) = {(D~k} = ( I -  13) -1 r .  (5l) 

Further  we note the following formula, which follows from ( 4 2 ) b y  i terated 
substitutions of the right-hand member into itself, 

y * = F z + ] 3 F z + . . . + ] 3  ~ 1 F z +  ]3~y*. (52) 

I t  is instructive to compare with the following relation, which follows by sub- 
stitution from the iterative formula (43), 

y(S)= r(s) Z + ]~(s) F(s  1) Z _{_ . . .  + ]~(s) ]~(s-1) . . .  ]~(2) r (1)z  + ]~(s) ]3(s - l )  . . .  ]3(1)y(O). (53)  

In  case all eigenvalues of ( I -  ]3) lie inside the periphery of the unit circle, (5I) 
gives 

y * = l i m s _ , : c ( F z + ] 3 F z + . . . + ] 3 ~ F z ) = F z + ] 3 F z + . . . +  ]3~Fz+  . . . .  (54) 

The limiting relation y(S)_> y ,  is then a mat ter  of term by  term convergence in 
(53) and (54). 

The following inner products involving y* are readily obtained from (51), 

(y*, ~k) = 5Y-1 (D,~ (zo, zk), 

(Y*, Yk) = ~'2=1 (D~ (Za, Yk), (55 a-c) 

(Y~, Y~) = ~ , b = l  (Dia (Dab (Zb, Zk), 
where i, k = 1, ..., n. 
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As to the exceptional case when assumption 2 d is not fulfilled, we note that  
if ( I - ] 3 )  is singular, the representation (41)-(42) will not be unique. In fact, 
let in this case ~t be an eigenvalue of ( I - ~ )  and y(~) the corresponding eigen- 
vector, giving 

where Ilyr is an arbitrary positive number. Hence y allows a plurality of 
representations of type 

y = ~ ( ~ ) z  with  ~ (~ )=2-~ l ly (~ ) l l r~ .  (56) 

Further we note tha t  (56) may be interpreted as a plurality of representations 
of type (41), say 

y = ~ * y * + F *  z + e  

with ]3*=0;  F * = 2  -llly(~)llr~. 

(ii) Having obtained the limiting element y*,  the orthogonal complement 
will be given by 

~ y - y*.  (57) 

As to inner products that  involve s~, we know from (11) 

for i = l , . . . , n .  Hence 

(ei, % )  =0;  q =q~ (1) . . . . .  qi (]ci), / 
(58 a - b )  

(e~,y*)=O; p=p~(1) ,  .,P~(i3, J 
f 

* (59) ( . y ~ ) = 0 ;  i = l  . . . . .  n 

since we know from (42) that  y* is linear in the elements * y~, zq that  appear in 
(58). According to (51), the inner products (59) are the same as 

By (57), 
(e~, ~ - 1  to~ Za) = 0; i = 1 . . . . .  n. 

(~i, zk)= (y~, zk) -  (y~, zk), 

(~,, Yk) = (Y .  Y~) - (Y *, Yk),  
(e~, y*) = (y. * * Yk) - (Y*, Y~), 

�9 ~- * * 
(ei, ek) = (y,,  Yk) - (Y~, Y k ) , -  (Y*, Yk) (Y, , Yk) ,  

(60 a-d) 

where i ,  k - ~  1 . . . . .  n .  According to (59), formula (60 c) simplifies for i = k. For- 
mula (60d), too, becomes simpler for i = k :  

ll ,ll  =lly,II 2-11y?ll i = 1  . . . . .  n. (61) 
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