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A fix-point theorem with econometric background

Part I. The theorem

By Herman 0. A. WoLp

The theorem provides a new approach to a problem that has originated in
econometrics, namely the statistical estimation of parameters of so-called inter-
dependent systems. We formulate the problem generally as one of orthogonal
projection in Hilbert vector space, an interpretation based on the definition of
interdependent systems in terms of conditional expectations; [5-7]. The subspace
on which the vectors are projected is spanned by vectors some of which are
given, whereas others—and this is a nonlinear feature of the problem—are un-
known and to be determined by the projection. The problem is solved by an
iterative least squares procedure that rests on a new application of the principle
of contraction mapping.

Part T presents the fix-point theorem and the ensuing iterative procedure.
Part 11 gives illustrations and comments, taking up three specifications of the
components of the given vectors y, z: (i) As vectors in Euclidean space R,;
(il) as random variates, making ¥, z a multivariate random distribution; (iii) as
statistical data, interpreted as a sample from the distribution under (ii). Ex-
tensions in various directions are briefly outlined. It is emphasized that the
assumptions of the approach broaden the scope of interdependent systems.

For the mathematical groundwork utilized in Part I, see [2 and 4], and,
especially as regards contraction mapping, [3].

*

From October 1963 onwards some twenty numerical experiments with the itera-
tive procedure have been carried out at the Computing Centre of the Royal Poly-
technic Institute of Norway, Trondheim. I wish to express my deep gratitude to
Mr. H. Michalsen, Programming Consultant, and Mr. N. Sanders, Director of the
Computing Centre, for their valuable help in the numerical work. My theoretical
work on the present paper has to a large extent been carried through at the Univ.
of Wisconsin when visiting for six months 1964 at the Mathematics Research Center
and the Social Systems Research Institute. I feel greatly indebted to numerous
friends and colleagues for valuable discussions and comments. For specific amend-
ments of the first draft of Part I, I am indebted to Professor T. H. Hildebrandt,
Univ. of Michigan; Professor J. Karamata, Univ. of Geneva and Univ. of Wisconsin;
and Prof. L. Rall, Univ. of Wisconsin.
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H. 0. A. WOLD, A fix-point theorem with econometric background. I
1. We consider a linear vector space H" with elements

Ty
="' |={x, ..., 2,}; x€H,

Ln

where the components z; belong to a Hilbert space H with real-valued inner
products (x;, ;). We define spaces H and H" as metrie; thus

d(xi, x;c)= ”xi“xk” =(xi_xk5 xi_xk:)% (1)
is the distance between two elements z;, x, in H, and we take
Dz, y) = max (|lz;= s ]|, -, |22 = 9al) (2)

to be the distance between two vectors {z,,..., %} and {y,....,yn} in H". As
is well known, H and H" are complete in the metrics (1) and (2); [3, 4].

2. Let Y=1Yp cos Yn}, n=2 (3)
be a fixed vector in H"; let
z={2p, e, Zm}, m>1 4)
be a fixed vector in H™; let H(z) be the subspace of H spanned by the com-
ponents =z, ...,z,; and let H"(z) be the subspace of H" spanned by vectors
the components of which belong to H(z),
w={ug, o, Un}; w€H(z), u€H"(2).

Given a set of entries 7, k, to be called positions, say

i=1; k=p, (1), p;(2),....p,(ky)
i=2; k=py(1), py(2), ..., p5(ky) (5)

i=a; k=p.(1), Pa(2);--sPalka)
the matrix [I=[ms], i=1,...,a; k=1,...,b
is called a position matrix if
=0 for k+p,(1),...,pk); i=1,...,a

whereas m;, may take nonzero values in the positions (5).
We shall represent y in the form

y=Bu+lz+e, w€H"(2) (6)
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subject to the following assumptions 2a-e. We see that P and I' are position
matrices, with positions specified by (8 b-¢) and (9 b), whereas (10)—(11) specifies
the numerical values of the elements f;,, 4, in these positions.

2a. The vector u is to be specified later, and z is the fixed vector (4).

2b. The representation of each component y; involves a prescribed selection
of components u, and z, as follows,

?/i=Z}Llﬂijuj_‘_ZIrcn:l')/ikzk:Ei; i=1,...,n, (7)

Bu=0 for j+p,
where p=p:(1), 0:(2), ..., & (1) Jisn—1, (8a-c)
p+1t; hence f,;=0;
yik:O for k:l:q’

and }
g=q(1),q:(2),...,q:(k); k;<m.

(9 a-b)

2e. Let H;=H;(u, 2,) be defined as the subspace of H spanned by the ele-
ments u,, z, specified in (8 b) and (9b). Since u€ H"(2),

H,cH(z) i=1,...,n.
Writing v ={yr, ..y} =PBu+T2 (10)

we define each component y/ as the projection of y; on H;. Hence

y €H"(2)
with =y +e; yr€H, &1H, i=1,..,mn (11)
2d. The matrix I-B
is assumed to be nonsingular.
2e. Finally, we assume
k;>1 for at least one ¢ (i=1,...,n). (12)

3. Let y and z remain fixed. Taking
u € H" (2)

to be an arbitrary vector in H"(z), the projection (10) defines a mapping of
H"(z) into itself, say Aw, where A4 is the mapping operator defined by

Au=PBu+T=. (13)
211



H. 0. A. WOLD, A4 fix-point theorem with econometric background. I
Lemma. For the transformation (13) to be a contraction mapping,
D(Au, Av)<aD(u,v), a<l (14)
it s sufﬁcient'that no component y; belongs to H,.

Proof. We consider first the special case when representation (6) for each i
involves just one element u, and one element z,. The contraction principle (14)
then is equivalent to the inequality

max; || 85 u, + i 2o — BV v, — iV 2|2 <o maxly [Ju—u®; of<1, (15)

where the superseripts indicate that the projection (10) gives coefficients that
depend upon %, and w,, respectively. Accordingly, we shall show

Q*=N/D<o? o<1, (16)

where, with some change of notation for easy writing, the numerator is given by
N=max], || Bi %+ Vin 2a— BivVp — Vio %I (17)

and the denominator D =max], ||u;— v (18)

We adopt two simplifying devices which involve no loss of generality:
(i) We take 4, and », to belong to the orthogonal complement of z, in H(z),

Up, ¥, ©H(2)O2,; 1=1,..,n. (19)
To see that this involves no restriction, let u, and v, be arbitrary in H"(2).
Then two elements u,, v, that satisfy (19) are uniquely determined by the de-
compositions

Up=Up+ Ay 2gs Up=UptAy2g,
where Uy, Vp L 2.

Hence Au,= Au, and Av,= Av,. This gives, in obvious notation,
D D D »

o DU Av) _ Ddup Av) _ Dlduy, vy
D(uy, vy) ” upy— Uyt (A~ 43) 2 ” D(uy, vp) + " (A= 22) 24 “

Writing @' (0) for the value taken by @' when A, =12,=0, we infer
Q<@0)=¢ (20)

showing that it will suffice to consider elements u,, v, that satisfy (19).
(ii) We normalize the components y; so as to have unit norms,

lyll=1 i=1,...,n (21)
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and assume

1=1,...,n
= = =1; Y 22
el =Tl =l =1; {;~) 7" @2
Thus prepared, let for z given by (4) and for arbitrary u,v€H"(z)
Yi=PBuuptBovptyz, + 65 0 Luy, vy 2 (23)

be the projection of y; on the subspace spanned by u,, v,, z,. The general theory
of orthogonal projection gives

1 (U up) (Wi 0p) (Y5 29)

1 (up,vy) O
(yi,up) 1 (up,vp) O
(v up) (tp, ) o [l e 10 =02
is Yp P> “p
0 0 1
(Y1 2q) Y 0 1

Hence the following relation, which is pivotal in the proof,

(1, up)_z + Y1 ) — 2 (45> ) (Y15 ) (4, V) _
1 (uy, vp)z

1— (i, 29" — || 6:]|*= 0. (25)

Our interest will focus on nearly coincident vectors =, v; that is, vectors with
(ui, v;) = 1. We write for brevity
Ay=1~(u,v), i=1,...,n,
Hence A=0, 1=1,...,n.
For the denominator in (25) we obtain

1—(uy, v,)2=2A, [1 —A?p] <2A,.

The squared norm that appears in the demominator (18) is
(R 1= (s — v, s — 0;) =2 [1 — (i, v)] =2 A, (26)

Next some preparatory reduction of the numerator (17). The general formulas
for orthogonal projection in Hilbert space give the coefficient vector

{ﬂfu’ Via) = [{up’ 2} [p, za]]_l {(?/i, ), (Y1 24)} (27)
and the projection component
(Au)z = ﬁiu up + yiu Zq = [uzn za] {ﬂim yzu} (28)

As an example of the reductions to follow we note
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H. 0. A. WoLD, 4 fix-point theorem with econometric background. I

((Au)i, (Av):) = [(Yi> %), (Y5 24)] [{“p’ za} [y, za]]_l
{um za} [vp, 2] [{%; zq} (Vs zq]T1 {(?/z’a %)s (Y Zq)}

D ¥p 0
(u O’U ) 1] {(yi, vp)? (yi’ zq)}

= (Ys> Up) (Y1 Vp) (U, V) + (¥, za)z- (29)

=¥ wp)s (:24)] [

Forming the squared norm that appears in the numerator (17), we obtain

| (Au— Ao), || = ((Au), (Au)) — 2 ((Au);, (4Av),) + ((Au);, (dv),)

=y up) + (¥ vp) =2 (i, %p) (Yi> Vp) (U, Vp)- (30)
Making use of (25),

” (Au — Av); ”2 = (1 = (up, 0)*) (L~ 1, 25)" ” & “
A
—28, (1-52) (1= = oI a
Turning now to @® as defined by (16)-(18), we obtain by (26) and (31)

max, 1A p/2) yl’ q) ”61 ”2)
max( s D)

Q2

< (maxi1 Ay) max 1 (1~ (¥, 2¢) 2 - ”51'"2)

max (A, ..., Ay)
Hence, since all A, are contained among A, ..., A,,
Q@ <maxly (1 — (i 29)" — || 6: ). (32)

On the assumptions of the lemma ¥; does not belong to H;. Hence
[8:1>0, say [&]*>c>0,

which establishes (14) with
e=V1-c<l. (33)

The lemma is proved in the special case of one %, and one z,.
Proceeding to the general case, the lemma will be established if we can again
show (15), this time interpreting the terms as vector products, as follows,

(1) = S, (1) @ = S'Y; (V)
Bit’ up = Zjil i Ups  Pir v = ZL ij” Ups

(%) — Nk (%) () (v)
Yi1 24 —zk. 1y1k 295 Vil 2¢= k 1 Vik Zq-
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Without impairing the generality, we adopt the following normalizations and
assumptions: (i) The two vectors u,, v, are of dimensionality j;. (ii) We impose (19),
(21), (22a) and (22¢), all of which allow straightforward extension to the general
case (34). (iii) Making use of a standard device in transformation theory, [1], we
assume in generalization of (22) that w, and v, have been subjected to two linear
transformations that make

ol =1, max{lowll<l; a=1,....4 (35 a-b)
(Un(ay, Up(ry) = (Uptay, Vory) =03 @+b; a,b=1,....74 (36 a—b)
(Upay, Up(e)) = fo* Oap a,b=1,...,74 (37)
where § is Kronecker’s delta, and f,, ..., f;; are scalar factors.

On the appropriate vector interpretation, (23)-(25) extend to the general case.
In (24) the determinants are to be interpreted as partitioned. The inner pro-
ducts either become vectors, for example

{(yi’ up)}7 P =pi(1)’ vees Py (71)

instead of (y;, u,); or matrices, for example the j;xj; diagonal matrix

(W), Vo5))], 2=2: (1), ..., p: (Ji)

instead of (up,v,). The unit in the middle of the denominator matrix becomes
the diagonal matrix [(u,q,), %yr)], and similarly in the numerator matrix. On this
interpretation, relation (24) extends to the general case, and making use of (37)
we obtain the following generalization of (25),

2 2_
> (Y )"+ (3 v9)" = 2 (1 %) (Y1, V) (20, ) - %: . ; i 20— || 6; 2. (38)
P

(Vs p) — (U, vp)z

This relation gives, making use of (35b) in the third inference,

%((?/iaup)2+(yi:vp)2_"2(yi:up)(?/i:vp (4, ¥p)) Z D

(max D,) > % (max [1 — (up, v,)%]) Z
A,
=2(mgx 8 (1-57)) 0-Z ozt~ 13
<2(1-2 (402"~ || i]]*) max A, (39)

Formula (26) remains the same. In (27)-(29) the vector interpretation calls
for no formal change. Instead of (29) we obtain in the general case
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H. 0. A. WOLD, A fix-point theorem with econometric background. I
((Au)i, (A0)) = 25 Wi 2e))P+ 250 20 W1 Upr) Ui Vo) (Upcay » Voy)
a=1
and (30) generalizes as follows,

” (Au— Av); “2 =2 (¥ up(a))z + 2y ”p(«z))z
-2 g; (Y1, Upy) (Ui Vo)) (Upays Vo)

In virtue of (37) this gives
“ (Au— Av),; ”2 = Zp [(y;, up)2 + (v, ”p)z = 2y, up) (Y1, V) (Up, ¥p)]. (40)

Forming now @?, making use of (26) and (40), we obtain

Q* = max;., zp [(y: up)z + (¥ ”p)2 = 2(yi,up) (Y1, vp) (Up, vp)]
2max (A, ..., Ay) '

By (39), the numerator is bounded upwards by the maximum of 2 A, multiplied
by the maximum of the last member in (38). This conclusion links up with
the argument in (32), and so the rest of the proof is a straightforward exten-
sion of (33). We obtain relation (14), specified as in (33) with 0<c<|4,;|%
The lemma is proved.

4. Theorem. Let y and z be given wvectors (3)~(4), and let the relation (6) be

subject to the specifications 2a-d, where B, I' are position matrices with unknown
positional coefficients Py, yi. Then there exists one and only one representation

y=By* +Tz2+e; y*<H"(2), &lyhz, (41)
with y*=By*+Tz {42)

The vector y* is uniquely determined by the following iterative procedure, where the
initial vector y'® can be chosen arbitrarily in H"(z),

{3/ B(>y< )+I()Z+8( )5 Elg )J—y(ﬂ)’zqa
1 1 0, 1 y .
y( B()y()+|()z ) I oo

_I;2$ 1 l‘(z (2 5(2 1) z
y ¢ y(> )Z € )7 ’i) yp [t &4
2 (2 1 2 > .

y() B )y() F()Z, 7/—“1,...,”,

....................

y - B(S) y(371) + P(s) 2+ 8(8), ggs)_Lyg*D’ zq, (43)
y(s) - B(s) y(s—l) +T® z, 7:’ veey, g
y* =lim,_, ., y*©. )
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If we disregard the exceptional case when the elements
Ypr % with p=pi(1), ..., 2 (G);  g=a: (1), ..., gs (k) (45)

are linearly interrelated for some fiwed t(i=1,...,n), the matrices are B, T are
uniquely determined by

B=lim,, . BY; TI'=lim,,. . (46 a~b)

Proof. Up to (45) the theorem follows from our lemma as an immediate
corollary of the gemeral fix-point theorem of contraction mapping: The equation

y*=Ay* (47)

has one and only one solution in H"(z), and the solution is given by the iterative
procedure (43)-(44). For the sake of completeness we recapitulate the proof,
following [3].

Let 4 be an arbitrary vector in H"(z). Set y®=Ay®; y@=Ay® = A42y®,
and in general let y®=Ay“ D= A°y® We shall show that the sequence y®
satisfies the Cauchy criterion. In fact, for any ¢>s

Dy®,y®)=D(4*y®, A'y®) <o Dy, y* )
<@’ [Dy®y®) + D P, y®) + ..+ Dy 0,y )
<@ DO,y (I+ata®+ ..+t ) <D (H®, y®)/(1—a).  (48)

Since a<1 this quantity is arbitrarily small for sufficiently large s. Hence the
sequence y is fundamental, and since H"(z) is complete it follows that lim,_, ., %
exists, We set y*=lim,_ . ¥®. Then by virtue of the continuity of the mapping
A we infer Ay*=Alim,_, , y® =lim,_, ., Ay® =lim,_, , <™ =y*.

Thus, the iteration (43) converges, and thereby the existence of a fix-point y*
is proved. We shall now prove its uniqueness. If Ay*=y*, Ay™* =y, then
D*, y**) <aD(y*, y**), where a<1; this implies D(y*, y**)=0; that is, y* =y**.

The general fix-point theorem thus ensures the limiting relation (44). It
remains to prove (46a-b). These relations readily follow if we disregard the
case when the variables (45) are interrelated. First, the inner products

"2, 0" 9", 4" y) (49)
will be uniquely determined by the limiting element y*. Second, writing
y=PB*y*+T*z+e" Ly 2
for the orthogonal projection of y on the linear manifold spanned by y* and z,
the ensuing normal equations will give us B* and I'* in terms of the inner
products (y;, 2), (2;,2;) and (49), and in the case under consideration the coef-

ficients B, yi; will for every i be uniquely determined. Finally, the resulting
B* and I'* will be the limits of B® and I'®, giving
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=B T=T"

since the elements of matrices B and I' are continuous functions of y*. The
theorem is proved.

Remark. Once the limiting vector y* has been obtained by (44), Gram’s
criterion ‘can be used to find out for any fixed i whether or not the elements
(45) are linearly interrelated. Forming the (j; + k) x (j; + k;) matrix or inner prod-
ucts of the elements (45), the criterion for linear independence is that the
matrix should be of rank j;+ k..

As to criteria that can be applied prior to the iterative procedure, we note
that the following obvious and very simple conditions are necessary for linear
independence.

di=k;; d=zg;+k i=1,...n, (50)

where d; is the dimensionality of vector z,[¢=g¢;(1), ..., ¢; (k;)], and d the dimen-
sionality of vector 2.

5. The iterative procedure (43) can be exploited for further information on
the representation (41)-(42). We note:

(i) According to assumption 2d the matrix (I —PB) is nonsingular. Hence our
theorem gives as an immediate corollary

y*=Qz with Q={wu}=I—-B)'I". (51)

Further we note the following formula, which follows from (42) by iterated
substitutions of the right-hand member into itself,

y* =Tz+Blz+...+B 'Tz+Py" (52)

It is instructive to compare with the following relation, which follows by sub-
stitution from the iterative formula (43),

y(s) — F(s) 2+ B(s) F(sfl) 2.+ B(s) B(s—l) . B<2) 1-\(1) 2+ B(s) B(sll) . B(l) Z/(O)~ (53)

In case all eigenvalues of (I — B) lie inside the periphery of the unit circle, (51)
gives

y =lim;, (C2+Ble+...+ B T2)=T2z+Blz+...+ PTz+.... (54)

The limiting relation ® ->y* is then a matter of term by term convergence in
(53) and (54).
The following inner products involving u; are readily obtained from (51),
W ) =281 O (2 20
(y:*, yk) = Ztrln=1 Wig (zm yk)> (55 a—c)
Wy ) =220 -1 O Wy (20: %),

where 1, k=1, ..., n.
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As to the exceptional case when assumption 2d is not fulfilled, we note that
if (I—PB) is singular, the representation (41)-(42) will not be unique. In fact,
let in this case A be an eigenvalue of (I—P) and y® the corresponding eigen-
vector, giving

I-ByP=2y?=y?|| Tz

where ||y®|| is an arbitrary positive number. Hence y allows a plurality of
representations of type

y=Q%z with Q®=21"1]y®| . (56)

Further we note that (56) may be interpreted as a plurality of representations
of type (41), say
y=PB*y +T"z+e
with B*=0; T*=21"1[y?|T=
(ii) Having obtained the limiting element y*, the orthogonal complement &
will be given by
e=y—y". (57)

As to inner products that involve ¢, we know from (11)

is :0; = 1 9 =ves Y4 ki 3
(e zi) 7= (1), oo, g (k) } (58 ab)
(e ¥p)=0; p=p:i(1), ..., 0 (),
for 1=1,...,n. Hence
(Sz,yl*)=0a 7':1, '-':n (59)

since we know from (42) that y is linear in the elements yj,2, that appear in
(58). According to (51), the inner products (59) are the same as

(81 21 Wi 2a)=0; i=1,...,n.
By (57),

(&5 21) = (Y1, 2) — (?/7, k),
(&6 &) = Wi y2) — (U1 )
(&1, y2) = (i ¥%) — (W7, yi)s
(1 &) = (%1 ¥2) — Wsr ¥E) — 55 9) + (0 9h),

(60 a—d)

where ¢,k=1,...,n. According to (59), formula (60c) simplifies for i=k. For-
mula (60d), too, becomes simpler for i=k:

lecl®=lgell® =Nl i=1,....n. (61)
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