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A fix-point theorem  with econometr ic  background  

Part II. Illustrations. Further developments 

B y  HEnlVIAN O. A.  WOLD 

6. An  illustration. We take y and  z to be vectors with n = 2 and m = 4 components,  
and specify the representat ion (41)-(42) as follows, giving it in the developed 
form (7), 

Yi = ill2 Y~ + ~11 Zl + ~lZ z2 + ~1 (62 a - b )  
Y~ = fi21 Y~ + ~23z3 ~- ~]24Z4 • ~2 

with slLy'~,  z v z2; r za, z~ 

and * * ] Yl = fl12 Y~ + Yn zl + ~12 z2 (63 a-b)  

f Y~ = fl21 Yl + Y23 za + ~24 z4 

We shall consider four interpretat ions of our fix-point theorem as applied to 
this system of relations. The four versions of the vectors y, z are: 

A. The basic specification as vectors with components  in Hilbert  space H; 
B. Vectors in Eucl idean space R~, with inner products  interpreted as angular  

cosines; 
C. Vectors of random variatcs; t ha t  is, mult ivar iate  probabi l i ty  distributions, 

with inner products  interpreted as theoretical covariances; 
D. Multivariate observations,  in the form of t ime series or cross section data ,  

with inner products  interpreted as observed covariances. 

7. Version A. Given the vectors 

Y = {Yl' Y2}' Z = {Zl, Z2, Z3, Z4} (64 a~b) 

the problem is to determine the vectors 

y* = {y*, y~} (65) 
and the coefficients 

fl12' ~211' 712; fl21' Y23,734 (66) 

so as to satisfy the following relationships: First, writing 
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H. O. A. WOLD,  ~4 f ix-point theorem with econometric background. I1 

A y  1 - �9 - -  f l 1 2  Y2 + ~11 zl + 712 z2 

Ay2 = f121Y* + 723z3 + 724z4 f (67 a-b) 

A y  1 is the projection of Yl on the space H 1 spanned by y~,zl,  z2, and A y  2 is 
the projection of Y2 on the space H 2 spanned by y~,za, z4; second, A y  1 and A y  2 
coincide with y~ and y~, respectively, giving 

, , } AYl = Yl - fl12 Y2 + 711 Zl ~- 7122:2 

AY2 = Y~ = ~21 Y~ + 723 z3 + 724 za 
(68 a-b) 

We specify those inner products of the components y,, zk that  are required 
for solving the problem by the iterative procedure (43), namely the two squared 
norms 

(Yl, Yl)= 111.75; (Y2,Y2)= 101 (69) 

and in Table 1 the eight mixed products (y~,zk) and the ten different products 
(z. zk). 

Table 1 

k = l  k = 2  k = 3  k = 4  

( Y l ,  Zk) 35 17.5 32 13 
(Y2 ,  zk )  19 22 38 12 
(Z 1, zk) 22 2 5 3 

(Z 2, zk) 2 6 11 1 

(Z 3, zk) 5 11 22 2 
(z 4, z~) 3 1 2 6 

We note that  the inner product (Yl, Y2) is redundant for the procedure. 
As is readily verified, the selective indices (8 b)-(9 b) and the vectors y , z  thus 

specified satisfy the conditions (50) of our procedure. In the present case, 

?'1=72=1, k l = k  2=2,  d = 4  (70) 

The iterative procedure converges, and we quote the following results: 

(a) The coefficients fl, 7 as given in the limit (46) by the iterative procedure, 

fl12=0.5; 711=712:1;  /~21=0.4; ~223:724=1 (71) 

(b) We see from (71) that  the matrix ( I - ~ ) i s  nonsingular. Hence (51)gives 
the vector y* in the following form, with coefficients obtained in terms of the 
limiting values (71), 

y* = 1.25 (z 1 + z2) + 0.625 (z a + za) 

y~ = 0.5 (z 1 + z2) + 1.25 (z a + za) / (72 a-b) 

We note that  the eigenvalues of ( I -  ~) lie inside the unit circle; they are 
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_+ (0.2)�89 H e n c e  the  e x p a n s i o n  (52) is v a l i d ,  a n d  g ives  t h e  s a m e  coef f ic ien ts  coi~ 
as  (72 a - h ) .  

(c) F i n a l l y ,  t h e  i nne r  p r o d u c t s  t h a t  i n v o l v e  y* or  e~. C a l c u l a t e d  in  a c c o r d a n c e  
w i t h  f o r m u l a s  (55)-(61), t h e  ensu ing  p r o d u c t s  a re  p r e s e n t e d  in  

Table 2 

k = l  k = 2  k=3 k=4 

( Y l ,  zk )  35  17 .5  35  10  

(Y2, zk) 22 19 38 12 
( Y l ,  Yk) 9 3 . 7 5  8 2 . 5  - -  - -  

(Y2, Yk) 8 2 . 5  83  - -  - -  

( e l ,  Zk) 0 O -- 3 3 

(e2, zk) - 3 3 0 0 
(el, y~) 0 0 . * * * * * 

(Yl, Yl ) (Y2, y2) (Yl, Y~ ) (e2, y*) 0 0 
9 3 . 7 5  83  8 2 . 5  

( e l ,  Yk) 18 * 

(e2, yk) * 18 (el, Q) (e2, e2) (e I , e 2) 
18 18 , 

N o n e x i s t i n g  en t r i e s  a re  b a r r e d  in  T a b l e  2. B ig  zeros  re fe r  to  i n n e r  p r o d u c t s  
t h a t  b y  (58)-(59) a re  necessa r i ly  e q u a l  to  zero;  sma l l  zeros  a r e  p r o d u c t s  t h a t  
h a p p e n  to  be  ze ro  in t h e  p r e s e n t  specia l  case. T h e  t h r e e  s ta rs  (*) m a r k  i nne r  p rod-  
uc t s  t h a t  c a n n o t  be  e v a l u a t e d  s ince  (Yl, Y2) has  n o t  been  specif ied.  

8. Vers ion  B.  I n  (62)-(63)  each  c o m p o n e n t  y~ = Y~t (i = 1, 2) a n d  z~ = zkt (k = 1, 2, 3, 4) 
is n o w  a v e c t o r  in E u c l i d e a n  space  Rh (t = 1 . . . . .  h). W e  choose  h = 6, a n d  spec i fy  
t h e  vec to r s  as s h o w n  in  T a b l e  3 a. 

Table 3a. Vers ion  B:  G i v e n  vec to r s .  Table 3b. D e d u c e d  vec to r s .  

t y~t y2~ zlt z~t zat z4t y~t y2*t elf e2t 

1 - 5  --2 - 4  0 0 0 - 5  - 2  0 0 

2 6.75 6.5 1 1 1 1 3.75 3.5 3 3 
3 - 1.25 - 2.5 0 O 0 - 2 - 1.25 - 2.5 0 0 
4 0.75 3.5 1 1 2 0 3.75 3.5 - 3 0 
5 3.75 0.5 2 0 1 1 3.75 3.5 0 - 3 
6 - 5  - 6  0 - 2  - 4  0 - 5  •  0 0 

T h e  p r o b l e m  is to  c o n s t r u c t  t w o  v e c t o r s  Yl,* y~* in  a c c o r d a n c e  w i t h  (62)-(63).  
To  p a r a p h r a s e ,  we seek  * * * yi,Y2 such  t h a t  Yl is t h e  o r t h o g o n a l  p r o j e c t i o n  of Yl 

�9 Z * on  t h e  space  s p a n n e d  b y  Y2, 1,z2 a n d  y~ is t h e  p r o j e c t i o n  of  Y2 on  t h e  space  
s p a n n e d  b y  y~, z3, za. 
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Version B coincides with A, inasmuch as the inner products in (69) and Table 1 
are nothing else than the corresponding products of vectors in Table 3a. Hence 
the iterative procedure (43)-(44) gives precisely the same results in version B as 
have been presented for version A; see (71)-(72) and Table 2. In  addition, we 
obtain from (63) and (51) the vectors y~,y*, and from (62) the vectors Q, e2; 
these results of the iterative procedure are shown in Table 3b. 

For version B we have used very simple vectors zat, e~t. Thanks to the simple 
specification of the vectors z~t,e~t it can be readily checked tha t  the represen- 
tat ion of vectors y~,ye~ in the form (62)-(63) is unique, in accordance with our 
theorem. 

Vectors y~t, Yet give (Yl, Ye) = 91.5 (73) 

By (60), this gives @1, Ye) = (e2, Yl) = (Q, ~2) = 9 (74) 

In  version A the inner product  (y~, Ye) has not yet  been specified. Now if we 
supplement version A by  assuming (73), this will again give us (74). The three 
missing inner products in Table 2 will thereby be specified. 

9. Version C. We rewrite (62)-(63) with different notation for the vectors 
y, y*, z: 

(75) 

with v* = ~12 v~ + r l ,  $~ + 71e ~2 

J (76) 

We shall interpret (75)-(76) as relations between random variates ~1, ~2, ~1, ~2, ~3, ~a 
tha t  are subject to a joint probabil i ty distribution such that  the second order 
moments  are given by  the corresponding inner products; in symbols, 

(y~,y~)=E(~); (y~,yk)=E(~k); (y~,zk)=E(~k); etc. (77) 

We specify the second order moments  so as to give the same inner products as 
in Illustration A, tha t  is, by  (69)and Table 1. The problem now is to deter- 
mine the random variates ~/~,~/~ and the parameters  (66) so tha t  (75a) will be 
the theoretical regression of ~/1 upon ~/~, ~1, ~2 and (75 b) the theoretical regression 
of ~/2 upon ~]~, ~a, ~ and at  the same time, in accordance with (76), the residual- 
free par t  of the regression (75a) will coincide with ~/~ and the residual-free par t  
of the regression (75b) will coincide with ~ .  

The iterative procedure (43)-(44) applies, and on the appropriate interpretation 
in terms of random variates the results are again given by (71)-(72) and Table 2. 

In  version C, thus far, we have not specified the mixed second order moment  
E(~11~2)=(y1, y2). I f  E(~h~/2 ) is specified by (73) we obtain (74) and thereby the 
missing items in Table 2. 

The theoretical regression (75a-b) being based on the joint probabil i ty distri- 
bution of the variates ~/i,~k we note that  the iterative procedure covers the 
general case when the regression is defined as linear moment  regression; see 
Ref. 9. Less general definitions will be covered as special cases. With reference 
to the general representation (41)-(42) dealt with by  our theorem, we quote 
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two definitions of l inear regression (i)-(ii) t ha t  are special cases of linear m o m e n t  
regression (iii). 

(i) N o r m a l  distribution. The joint  p robabi l i ty  dis t r ibut ion of the six var ia tes  
74, ~k is a mul t ivar ia te  normal  distr ibution.  Hence  the regressions (75) are s tr ict ly 
linear, and  

7" = E(7417",  = 7" + (78) 
1-1 k - 1  

The dis t r ibut ion of the result ing var ia tes  74, k will likewise be jo int ly  normal .  

(ii) L i n e a r  predictors. More general ly  than  (i), it is assumed tha t  the theoret-  
ical regressions (41) are str ict ly linear in the sense of (78), bu t  the dis tr ibut ion 
of 7~,~k need not  be normal ,  nor  will it follow tha t  the dis t r ibut ion of the 

* 6 result ing 7~, k is normal .  The residual-free pa r t  of the regression (41) is for each 
i said to be a (linear) eo ipso predictor of 7~, or brief ly a predictor of 7~. For  
a review of regression analysis f rom the point  of view of predictors,  with special 
regard to mul t i re la t ion models, see Refs. 5-7.  

(iii) Linear  moment  regression. Given the produc t  momen t s  of 74,~*, ~ the co- 
efficients fl, y of the m o m e n t  regression (41) make  the var iance  of ~4 the smallest  
possible for each i. The regression need not  be s t r ic t ly  linear in the sense of 
(78), nor  need the joint  dis t r ibut ion of ~4, ~k be normal .  

10. Version D. I n  (62)-(63) we now interpre t  each componen t  y~,zk as a t ime 
series, say 

Y4 = Y41 . . . . .  YiT; Zk = Z~I . . . . .  Zkr (79) 

where i = l ,  2 and /~ = 1, 2, 3, 4. The problem is to determine the coefficients fl, ~, 
and  two t ime series 

y ~  * , .  �9 , �9 
= Yll . . . . .  YlT,  Y2 =Y2I . . . . .  Y2T (80) 

SO tha t  (62a) gives the least  squares  regression of Yl on y~,z l ,  z2 and ( 6 2 b ) t h e  
. 

least  squares  regression of y~ on Yl ,za, z4, a t  the same t ime as the residual-free 
pa r t  of regression (62 a) coincides with y~', and the residual-free pa r t  of regression 
(62b) wi th  y~'. 

Thus  specified, version D is a l together  equivalent  to version B, taking h = T 
to be the dimension of the Eucl idean space Rh. New aspects  of the problem 
emerge if we adop t  the specification of version C, let (62)-(63) be a mult i-  
relat ion stochastic model  (75)-(76), and  in terpre t  the observed t ime-series (79) 
as genera ted  in accordance with the theoret ical  model  (75)-(76). To follow up  
this in te rpre ta t ion  we rewrite (62) with different no ta t ion  for the coefficients 
fl, ~ and  the residual e, 

Ylt = b12 Y2*t + g11Zlt + g12 Z2t +elt  ] 
Y2t=b21 * I (81) Y~t + g23 zat + g24 z4t ~- e2t 

and similarly for (63), 
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Table 4a, V e r s i o n  D :  G i v e n  t i m e - s e r i e s ,  o b t a i n e d  b y  a r t i f i c i a l  s a m p l i n g .  

t Y l t  Y2t $It Z2t Z3t z4t 

1 - 2 . 4 2  . 8 2  - 2 . 0 7  1 . 0 1  2 . 6 3  - , 0 7  

2 - . 0 3  . 4 3  , 4 7  - . 3 3  - 2 . 1 4  - 1 . 1 1  

3 7 . 5 6  8 . 8 5  - . 0 9  2 . 0 5  3 . 6 4  1 . 5 3  

4 2 . 0 1  4 . 4 6  . 0 6  1 . 2 5  2 . 0 6  - . 0 6  

5 - 4 . 8 8  - 4 . 0 1  . 8 2  - . 6 1  - . 8 1  - 1 . 4 8  

6 7 . 5 6  6 . 4 6  . 8 2  . 9 7  1 . 5 3  1 . 9 2  

7 - 1 . 9 3  - 4 . 6 9  2 . 2 1  - 1 . 3 1  - 2 . 0 6  - . 7 3  

8 - 1 . 1 5  - . 3 4  . 0 5  . 1 5  . 3 3  - . 5 9  

9 9 . 0 1  6 . 1 2  4 . 4 7  . 9 6  1 . 7 6  . 5 5  

1 0  2 . 2 6  2 . 6 3  . 1 8  . 4 7  . 6 5  . 4 8  

1 1  - 3 . 0 4  - 3 . 5 5  - 1 . 0 6  - . 7 6  - . 9 0  . 2 7  

1 2  - 7 . 0 2  - 5 . 9 9  - 2 . 2 9  - 1 . 2 7  - 2 . 8 9  - 1 . 3 3  

1 3  - 6 . 8 0  - 6 . 7 0  - 3 . 8 6  - 1 . 8 7  - 3 . 8 1  . 5 9  

1 4  - 3 . 7 5  - 1 . 7 5  - 3 . 7 5  . 4 5  1 . 0 2  - . 8 3  

1 5  1 . 6 6  1 . 9 5  - . 0 8  . 7 0  1 . 7 0  . 3 6  

1 6  - 3 . 3 6  - 2 . 2 8  - 1 . 3 4  - . 4 1  - . 8 5  - . 3 6  

1 7  1 . 7 1  3 . 7 4  . 2 8  . 6 8  1 . 6 3  1 . 6 5  

1 8  5 . 1 6  3 . 3 6  2 . 1 7  . 5 7  1 . 3 7  . 7 6  

1 9  - 4 . 5 3  - 1 . 7 2  - 4 . 1 5  - . 2 5  - 1 . 4 6  - . 4 8  

2 0  3 . 8 0  - 1 . 9 7  3 . 0 5  - 1 . 4 9  - 2 . 1 1  2 . 0 0  

2 1  - 1 . 5 4  - 3 . 5 4  . 9 1  - 1 . 3 0  - 1 . 9 5  . 8 2  

2 2  8 . 2 3  9 . 5 5  1 . 5 2  2 . 3 6  4 . 1 4  . 5 8  

2 3  . 0 9  - 5 . 1 1  . 7 8  - 1 . 3 0  - 2 . 6 8  - 1 . 4 1  

2 4  1 . 2 3  4 . 1 6  - . 3 2  1 . 2 1  2 . 1 3  . I 4  

2 5  . 0 7  - -  . 9 3  . 2 6  - . 1 9  . 0 3  . 1 8  

2 6  - 4 . 3 5  - 4 . 2 6  - 1 . 5 6  - . 9 7  - 1 . 8 0  - . 2 9  

2 7  - 2 . 2 9  - 1 . 9 5  . 4 4  - . 2 3  - . 5 5  - 1 . 3 4  

2 8  6 . 7 3  5 . 4 6  3 . 0 0  1 . 6 0  3 . 7 5  . 1 0  

2 9  7 . 2 8  7 . 0 3  4 . 9 6  1 . 1 6  2 . 5 7  1 . 2 2  

3 0  - 4 . 9 3  - -  2 . 7 3  - 2 . 6 9  - . 5 0  - 1 . 0 7  . 0 1  

3 1  1 . 0 6  2 . 3 6  . 6 9  . 8 4  1 . 5 1  - , 6 5  

3 2  - 8 . 1 9  - 1 0 . 3 5  - 2 . 0 7  - 2 . 0 3  - 3 . 4 9  - 1 . 7 8  

3 3  - . 9 4  - 2 . 2 9  --  , 7 4  - . 9 8  - 1 . 9 3  . 8 8  

3 4  - 6 . 2 7  - 4 . 9 1  - 3 , 6 7  - . 5 7  - 1 . 9 3  - 2 , 1 7  

3 5  --  . 6 1  - 4 . 7 9  1 . 0 8  - . 7 1  - . 4 8  - 1 . 2 4  

3 6  2 . 3 3  - . 8 8  - . 2 7  - . 3 9  - . 4 1  . 8 3  

3 7  - 1 . 0 1  3 . 0 0  - 2 . 5 1  . 6 9  . 3 2  . 2 5  

3 8  7 . 7 4  8 . 2 5  3 . 3 8  1 . 5 7  2 . 5 4  . 6 4  

3 9  --  1 . 8 6  - 3 . 6 5  - 1 , 7 7  - -  1 . 1 3  - 1 . 8 7  1 . 0 5  

4 0  2 . 3 4  - . 2 8  . 9 9  . 3 1  1 . 2 4  - . 5 1  
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Table  4b .  E x p e c t e d  e n d o g e n o u s  v a r i a b l e s ,  a n d  c o r r e s p o n d i n g  r e s i d u a l s :  

T h e o r e t i c a l  v s .  e s t i m a t e d  v a l u e s .  

t ~l*t I)~t Yl*t Y2*t 8lt ~2t elt e2~ 

1 .27  2 .67  .81 3 . 6 0  - 2 .69  - 1 .86  - 3 .23  - 2 .78  

2 - 1 .86  - 3 .99  - 2 .06  - 4 .73  1.83 4 . 4 2  2 .03  5 .16  

3 5 .69  7 .45  5 .28  7 .63  1 .88  1 .40  2 .28  1 .22  

4 2 . 8 8  3 .15  2 .69  3 .32  - .87 1 .30  - 0 . 6 8  1 .14  

5 - 1 . 1 6  - 2 . 7 4  - 0 . 7 9  - 2 . 8 7  - 3 . 7 2  - 1 . 2 6  - 4 . 0 9  - 1 . 1 4  

6 4 . 4 0  5 .21  4 .07  4 . 7 2  3 .16  1 .25  3 .49  1 .74  

7 - .61 - 3 . 0 3  - 0 . 3 1  - 3 . 8 2  - 1 . 3 2  - 1 . 6 5  - 1 . 6 2  - 0 . 8 7  

8 .08  - .22 .29 - .20  - 1 .23  - .12  - 1 .44  - 0 . 1 4  

9 8 .23  5 .61  7.41 4".72 .78 .51 1 .60  1 .40  

10 1 .52  1 .74  1 .50  1 .52  .74  .88  0 .76  1.11 

11 - 2 . 6 7  - 1 . 7 0  - 1 . 9 4  - 1 . 7 5  - .37 - 1 . 8 5  - 1 . I 0  - 1 . 8 0  

12 - 7 . 0 9  - 7 . 0 6  - 6 . 2 7  - 7 . 1 1  .07  1 .06  - 0 . 7 5  1 .12  

13 - 9 . 1 9  - 6 . 9 0  - 7 . 9 5  - 7 . 1 3  2 .39  .20  1 .15  0 .43  

14 - 4 .00  - 1 .40  - 3 .19  - .39  .25  - .34  - 0 .56  - 1 .36  

15 2 . 0 6  2 .89  2 .22  3 .07  - .41 - .94  - 0 .56  - 1 .12  

16 - 2 . 9 4  - 2 . 3 8  - 2 . 4 1  - 2 . 3 7  - .42  .10  - 0 . 9 5  0 .09  

17 3 .25  4 . 5 8  3 .30  4 .41  - 1 .53  - .84  - 1 .59 - 0 .67  

18 4 . 7 5  4 .03  4 . 5 2  3 . 5 8  .40  - .67  0 .64  - 0 .22  

19 - 6 . 7 1  - 4 . 6 2  - 6 . 0 1  - 4 . 2 9  2 .18  2 . 9 0  1 .48  2 .57  

2 0  1 .88  .65  2 .09  - .81  1 .92  - 2 . 6 2  1.71 - - 1 . 1 6  

21 - 1 . 1 9  - 1 . 6 0  - .69 - 2 . 3 8  - .35 - 1 . 9 4  - 0 . 8 5  - 1 . 1 6  

22  7 .79  7 .84  7 .06  7 .96  .44  1.71 1 .17  1 .59  

23  - 3 . 2 1  - 5 . 3 7  - 2 . 8 2  - 5 . 9 6  3 .30  .27  2 .91  0 . 8 5  

2 4  2 .53  3 .28  2 . 4 5  3 .53  - 1 .30  .88  - 1 .22  0 .63  

2 5  .22 . 30  .54  .13 - .14  - 1 .23  - 0 .47  - 1 .06  

26  - 4 . 4 6  - 3 . 8 7  - 3 . 7 3  - 3 . 9 8  .11 - .39  - 0 . 6 2  - 0 . 2 8  

27  - .91 - 2 . 2 5  - .71 - 2 . 3 7  - 1 .37 .31 - 1 .58  0 .42  

28  8 .16  7 .12  7 .68  7 .15  - 1 .42  - 1 .66 - 0 .95  - 1 .69  

29  10 .01  7 .79  9 .18  6 .91  - 2 . 7 3  - .76  - 1 .90  0 .12  

3 0  - 4 . 6 6  - 2 . 9 2  - 3 . 8 9  - 2 . 7 4  - .28  .19 - 1 . 0 4  0 .01  

31 2 . 4 5  1 .85  2 . 3 4  1 .93  - 1 .39 .51 - 1 .28  0 .43  

32  - 8 .42  - 8 .64  - 7 .19 - 8 .59  .24  - 1.71 - 1 .00  - 1 .76  

33 - 2 . 8 1  - 2 . 1 7  - 2 . 2 8  - 2 . 7 3  1 .87  - .11 1 .34  0 .44  

3 4  - 7 .86  - 7 .25  - 7 .07  - 6 .73  1 .59  2 . 3 4  0 .80  1 .82  

35  - .61 - 1 . 9 6  - .11 - 2 . 0 2  - .01 - 2 . 8 3  - 0 . 5 0  - 2 . 7 7  

36  - .56  .19  - .14  - .08  2 .88  - 1 .07 2 .47  - 0 . 8 0  

37 - 1 .91 - .19 - 1 .75  - .02  .90  3 .19  0 .74  3 .02  

38 8 .17  6 .44  7 .28  5 .85  - .43  1.81 0 .46  2 . 4 0  

39 - 4 . 1 4  - 2 . 4 7  - 3 . 3 0  - 2 . 7 7  2 . 2 8  - 1 . 1 8  1 .44  - 0 . 8 8  

4 0  2 .08  1.56 2 .26  1 .66  .26  - 1 .84  0 .08  - 1 . 9 4  

2 2 7  
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�9 �9 } Ylt = b12Y2t + gll  Zlt ~- gl2Z2t 
, ( S 2 )  

Y2t = b21 Y*t + g23 zst § g24 z~t 

I n  th is  nota t ion ,  corresponding theore t ica l  and  empir ica l  concepts  will be repre-  
sented  b y  Greek  and  L a t i n  le t te r s  respect ively .  

The  t ime-ser ies  (79) used in version D are  shown in Table  4 a .  1 The  series 
have  been cons t ruc ted  so as to form an  ar t i f ic ia l  sample,  wi th  T = 40, of a j o in t  
p r o b a b i l i t y  d i s t r ibu t ion  for the  var iab les  ~1,~2, ~1,~,  ~3, ~4- The d i s t r ibu t ion  is 
m u l t i v a r i a t e  no rma l  wi th  zero means,  

E(V]l ) = E(~2) = E(~I) : E(~2) : E(~8) = E(~4) = 0 

and  wi th  var iances  and  covar iances  specified in accordance  wi th  (69), (73) a n d  
Table  1. 

A p p l y i n g  the i t e r a t ive  e s t ima t ion  procedure  (43)-(44) to  the  model  (75) and  
the  d a t a  in Table  4a ,  we ob ta in  the  resul ts  r epo r t ed  in Tables  4 b  and  5. I n  
Table  5 we have  inc luded the  theore t ica l  s t anda rd  errors of the  p a r a m e t e r  esti-  
ma tes  as ca lcu la ted  on the basis  of the  subsequent  la rge-sample  fo rmula  (102). 
The la rges t  abso lu te  dev ia t ion  be tween  theore t ica l  and  e s t ima ted  p a r a m e t e r s  
occurs for ~1~, b u t  we see t h a t  the  dev ia t ion  is less t h a n  twice the  s t a n d a r d  
error.  The  larges t  re la t ive  dev ia t i on  occurs for ~23, where the  dev ia t i on  is 3.3 
t imes  the  s t a n d a r d  error.  

Table 5. The f ix-poin t  e s t ima t ion  (43)-(46) as app l i ed  to  mode l  (75) and  the  
d a t a  in Table  4b .  

Relation (75 a) 
^ .  - . ~  

Parameter 
~ . Standard 

Theoretical Estimated error 

Relation (75b) 
^ �9 

Parameter 
, Standard 

Theoretical Estimated error 

fllz -~ .5 .563 .11 fl21~ .4 .269 .09 
Y11---- 1 .917 .13 ~ 2 a ~  1 1.391 .12 
~12 ~ 1 .374 .36 724~ 1 .891 .18 

As to  the  convergence of the  i t e r a t ion  procedure  (43), the  calcula t ions  repor t -  
ed in Table  5 were carr ied  on un t i l  all  p a r a me te r s  were s table  wi th  accuracy  
.00001. This  h a p p e n e d  in the  n in th  i te ra t ion ,  showing t h a t  the  speed of conver-  
gence was fa i r ly  rapid .  

The  f ix-poin t  app roach  opens up  a hos t  of p rob lems  to explore  abou t  i ts  
sampl ing  proper t ies .  F o r  the  m o m e n t  we leave i t  a t  this,  the  l imi t ed  purpose  
of i l lus t ra t ion  (62) and  the four  versions A - D  being to p rov ide  a numer ica l  
i l lus t ra t ion  of the  i t e ra t ive  p rocedure  (43), and  to check t h a t  i t  works  in ac- 
cordance wi th  the  t heo ry  in P a r t  I .  W e  proceed to  some comments  on the fix- 
po in t  approach,  wi th  special  r egard  to i ts  scope and  to  a compar ison  wi th  o ther  
aspects  of i n t e rdependen t  systems.  

1 The computational work in generating the artificial sample was perfmaned by Mr. K. Revan- 
kar, and in applying the fix-point estimation by Mr. H. Michalsen. 
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11 .  C o m m e n t s  

In  the literature on interdependent systems the structural form of the system 
is usually defined in terms of current endogenous variables ~ and predetermined 
variables ~, say 

= ] ~  + F~ + s* (83) 

where the notation is chosen so as to emphasize the similarity and difference 
relative to interdependent systems (41) as dealt with in the present paper, e The 
system 

~2 = fl21 ~1 + ~2~ ~3 + ~'~, ~4 + e~* } (84) 

We see from (51a) that  
of the versions (41) and 

is the special case of (83) tha t  corresponds to the system (62) that  serves as 
illustration in sections 7 to 10. 

We repeat that  the fix-point procedure (43)-(46) for the estimation of inter- 
dependent system is not based on (83) but  on the respecified version (41) of 
the structural form. The versions (41) and (83) of the structural form have 
numerically the same parameters; hence the estimation problem is precisely the 
same for the two versions. Thus when the parameters  /~, ~ have been estimated 
by  the fix-point procedure (43)-(46), the resulting parameters  may  also serve 
as estimates for the version (83). I t  will be noted that  the residuals s* in (83) 
are linear expressions of the residuals s in (41), 

~* = ( I -  ~)~ (ss) 

the reduced form of the system is the same for both 
(83) of the structural form, namely, 

= ~ ~- 6 = ( I  -- ~ ) - I  F ~  + e (86) 

To put  it otherwise, the respecified version (41) of the structural form has the 
same residual elements s 1 . . . . .  s~ as the reduced form (86), but  this is in general 
not so for the customary version (83) of the structural form. 

In  the following brief comments on the fix-point approach, section 11.1 fo- 
cusses upon the position of the approach relative to other estimation techniques, 
whereas section 11.2 deals with the rationale of version (41)re la t ive  to the 
customary version (83) of the structural form. 

11.1 We shall bring into relief two fundamental  differences between the fix-point 
iteration (43) relative to other techniques for the estimation of interdependent 
systems: (i) The fix-point method stays with the structural form (41), making 
no use of the reduced form (86); (ii) The fix-point method broadens the scope 

2 The reader  is assumed to be oriented in the l i terature on in te rdependent  systems.  In i t i a ted  
by  T. Haave lmo  in 1943, Ref. 12, the  approach  rapidly came to the fore. Refs. 13, 18 are funda-  
menta l  works  on the theoretical  side, l~efs. 15, 17 on the  applied side. Refs. 14, 21 are recent  
t ex tbook  t rea tments .  For  the compar ison of in terdependent  sys tems  vs. causal  chains, and  for 
fu r the r  references, see l~efs. 6, 7. 
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of interdependent systems, inasmuch as the properties (58a-b) of the residuals 
are more general than the assumptions imposed on the residuals in the current 
theory of interdependent systems. 

11.1.1. A key feature of the theory of interdependent'  systems, emphasized 
ever since its beginnings, is tha t  the parameter  estimation will in general be 
inconsistent if performed by ordinary least squares regression (OLS; Refs. 12, 18). 
Much of the theory has been concerned with the development of consistent 
estimation techniques, among those the methods of limited information maximum 
likelihood (LIML; Refs. 8, 18), full information maximum likelihood (FIML; 
l~efs. 11, 18), and two stage least squares regression (TSLS; Ref. 26). The LIML, 
FIML, TSLS and related estimation methods are known to work when applied 
to small size systems, and as is equally well known they meet with severe diffi- 
culties when it comes to medium size and large size systems. As emphasized by  
L. Klein, Ref. 16, the common source of these difficulties is tha t  all of the 
methods at  issue involve an auxiliary, prerequisite estimation of the reduced 
form of the system. In  the reduced form each relation will in general involve 
all the predetermined variables of the entire model; hence for medium size and 
large systems the relations of the reduced form will make veritable " m a m m o t h  
regressions", to quote L. Klein's apt  description (Ref. 16; the oral discussion). 
The statistical t reatment  of these mammoth  regressions and the reverse trans- 
formation back to the structural form will be marred by a complex of inter- 
vowen difficulties where collinearities, autocorrelations and shortage of degrees of 
freedom are main ingredients. 

The fix-point method (43)-(46) is not touched by these difficulties since it 
works all the time on the structural form. As a mat ter  of fact, my  principal 
incentive for a fresh approach to the estimation problem of interdependent sy- 
stem was to avoid the passage to the reduced form. What  makes this possible 
is tha t  the respecifieation (41) of the customary structural form (83) gives the 
estimation problem a new twist, inasmuch as it takes the form of the fix-point 
problem (42). The lemma in section 3 shows that  the transformation Au tha t  
defines the fix-point is a contraction mapping, so as a corollary to the general 
fix-point theorem of contraction mapping, l~ef. 3, the fix-point (42)and thereby 
the solution to the estimation problem is provided by  the iteration (43)-(44). 

11.1.2. According to the current theory of interdependent systems, in the rest 
of this paper  to be referred to as the classic theory, each residual ~ . . . . .  ~* is 
assumed to be uncorrelated with all predetermined variables ~1 . . . . .  ~m of the 
entire system. We see that  relations (85) imply that  on the classic assumptions 
not only each ~* . . . . .  en but also each residual s~, ...,Sn of the respecified struc- 
tural  form (41) will be uncorrelated with all of the predetermined variables. Now 
according to (58a-b) the fix-point method (43)-(46) will give residuals s~ . . . . .  e~ 
each of which is uncorrelated with some but  in general not all of the predeter- 
mined variables. For illustration, reference is made to model (75) and Table 2, 
where Q is correlated with ~3 and ~4, and s 2 correlated with ~1 and ~2. 

Thus with regard to the properties of the residuals, the fix-point approach 
constitutes a generalization of the current theory of interdependent systems, an 
extension that  will be referred to as generalized interdependent (GEID) systems. 
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The theoretical foundations of the fix-point method (43)-(44) may  be summar- 
ized as follows. 

a. We seek a representation 
= ~* + s (87) 

such tha t  ~* is linear in the predetermined variables, 

v* = ~ mk r (s8) 
k ~ l  

and such that  the structural form (41) is exactly satisfied by  ~*, giving 

~?* = ~ ]*  § F~ (89) 

b. Relation (89) constitutes the fix-point formulation of the estimation problem. 
We note tha t  no residuals ~ or e* enter in this formulation. 

c. According to the lemma in section 3 and the ensuing theorem in section 
4, the fix-point ~* specified by  (89) will under general conditions exist, be unique, 
and be delivered by the iteration (43)-(44). 

The resulting residuals ~ will for each i, according to (58), be uncorrelated 
with those variables ~* and ~q tha t  occur in the ith relation of the structural 
form (41). We see tha t  this makes as many  noncorrelation properties as there 
are coefficients in the right-hand members of the structural form. Otherwise ex- 
pressed, the noncorrelation properties are the same in number  as the product 
moments  of type 

(~, V*), (~, ~q) i = 1, . . . ,  n (90) 

where as before ~*, ~q are the variables that  occur in the right-hand member 
of the i th relation of the structural form. 

d. Owing to the uniquness of the parameters  fl, ~ delivered by  the fix-point 
method (43)-(46) it will in general not be possible to impose more noncorrelation 
properties upon the residuals than those given by (58). Thus if the reduced 
form (86) involves more coefficients than the structural form (41), and this is so 
if the system is overidentified (see Ref. 14), one or more of the residuals ~ will 
in general be correlated with one or more of the predetermined variables ~k. 
Again the Situation is illustrated by  system (75), which is overidentified, and 
where e I is correlated with ~a and ~4. 

e. An equivalent restatement of the situation in overidentified systems is as 
follows: There are nm product moments  (~]~, ~k), whereas the moments (90) are 
fewer in number. The moments (90) will determine the parameters  of the model, 
and thereby all of the product moments  (~, ~k). Hence there are one or more 
moments  (~, ~k) tha t  are uniquely determined by  the moments  (90). Thus if we 
interpret the product moments (~, ~k) as points in a Euclidean space Ram , the 
moments  (90) will form a space, say R*, which has lower dimensionality than 
Rn,, Each point  in R* will provide complete specification of all parameters  fl, 
of the system. 

f. The argument  a-e  may  be developed as follows. 
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Definition. I f  the moments (90) are less than nm in number, we distinguish 
between classic (CLID) and generalized (GEID) interdependent systems (41)ac- 
cording as each residual st is assumed to be uncorrelated with (a) all of the 
predetermined variables ~k, or (b) only those variables U*, ~q that  occur in the 
i th relation of the system. 

The extension from CLID to G E I D  systems has deepgoing implications for 
the theory of interdependent systems. We do not propose to take up here a 
general discussion of the rationale of this extension. The following comments 
will be limited to more or less immediate conclusions regarding similarities and 
differences between the two types of system. 

g. The fix-point method (43)-(46) applies to CLID systems, since these con- 
stitute a special case of GEID systems. 

Any just identi/ied interdependent system (see Ref. 14) is a CLID system. 

h. The FIML, LIML, TSLS and other methods based on the classic assump- 
tions are consistent when applied to CLID systems. 

When applied to the population (probability distribution) defined by  a CLID 
system, the TSLS method will coincide with the fix-point method (43) if we take 
~(0) to be the first stage of the TSLS procedure. The second stage of the TSLS 
method will then coincide with ~(1), and the iteration (43) will stop in the second 
step, giving U(1)=U *. 

I f  applied to the sample, not to the population, the fix-point estimate (44) 
will in general not be the same as the corresponding TSLS estimate. 

j. The FIML, LIML, TSLS and other estimates based on the reduced form 
and the classic assumptions will in general be inconsistent when applied to GEID 
systems. 

Illustration. We return to model (75) and the corresponding population as 
defined by the product moments (U~, Uk), (U, ~k), (~, ~k) specified in (69) and Table 1. 
Applying the TSLS method to this population, we obtain 

UI= .816 ~ + .921 ~1 - .382 ~2+Ul 
(91) 

U~ .587 U~ +.833 ~a +.451 ~4 +u2 J 
Comparing with the true values (71) we see that  the inconstistency of the TSLS 
estimates is quite considerable. The worst case is the coefficient of ~2, where 
the TSLS estimate deviates by - 1 3 8 % .  

k. We shall say tha t  an interdependent system (41) is invariant to inversion 
if the system allows interchange of the current endogenous variables from the 
right to the left member,  subject to the corresponding algebraic transformation 
of parameters  and residuals. In  the current theory of interdependent systems, 
the structural form is often treated as invariant  to inversion; whether and why 
this is permissible is not quite clear from the literature. We note that  GEID 
systems in general are not invariant  to inversion, neither w. r . t .  the parameters,  
nor w. r . t ,  the residuals. CLID systems are invariant to inversion w. r . t ,  the 
parameters,  but  in general not w. r . t ,  the residuals. 
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Again returning to the system (62), the following two illustrations refer to 
the model (75) as specified in the population, not  the estimate (81)as obtained 
from the sample. 

Illustration 1. Let  us interchange ~]1 and ~2 in system (75), without change 
of the moments in (69) and Table 1. Applying the fix-point method (43) after 
the inversion we obtain the following estimates, 

~1 = .859 ~ + .074 ~a + .946 ~4 + ~ 

~2 = .986 ~ '  - .282 ~-1 + .233 ~2 + ~2 J 
(92) 

We see tha t  the model is far from invariant to inversion. In  case of invariance 
the coefficient of, say, ~* should be (.4) 1= 2.5, and the coefficient of ~1 should 
be - 2 . 0 .  The coefficients of ~2, ~a, ~4 should not as here be positive. 

Illustration 2. If  (75) were a CLID system, that  is, if both s 1 and s 2 were 
uncorrelated with all of ~1, ~2, ~a, ~a, would the coefficients of the system (92) be 
obtained from (75) by  formal inversion? In  CLID systems (75) the coefficients 
are invariant to inversion in this sense (so tha t  the coefficient of, say, ~ in (92) 
would be 2.5). Well to note, we must  not expect that  the residuals participate 
in the inversion; if they did, we should have 

v~ 1 = - 2 . 5 % ;  v ~ 2 = - 2 Q  (93) 

whereas CLID systems (75) in actual fact give 

~ql = ~1; ~2 = Q (94) 

We see tha t  the situation in this respect is the same as when a G E I D  system 
is t ransformed from the structural form (41) to the reduced form (86), inasmuch 
as the two forms have the same residuals e. 

11.2. The notions 

(i) realizable models, and 
(ii) minimum.delay models 

make categories of fundamental  relevance for the rationale of forecasting models 
(l~efs. 23, 24, 32). We shall now in all brevity comment upon interdependent 
systems from the point of view of these notions. 

11.2.1. Classic (83) vs. respeci/ied (41) interdependent systems 

When written in the customary version (83), an interdependent system in 
general is not realizable. A case in point is system (84) if fl124=0 and /~214= 0. 
In  fact, if we interpret the model as describing a filter with input and output  
variables, we see from the right-hand members that  ~h,~2, ~1, ~2, ~a,~4 are input 
variables, and from the left-hand members tha t  ~1, ~]2 are output  variables. Hence 
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~a and ~2 represent both input and output,  a situation that  is not technically 
realizable. 

When written in the respecified form (41) an interdependent system is realiz- 
able. In  system (75), for example, all input variables ~*,~*, ~ ,  ~2, ~a, ~4 are pre- 
determined variables o r -  cf. (88)--linear combinations of the predetermined 
variables, whereas ~1, ~z are output  variables. This is a perfectly realizable situ- 
ation. 

I t  is instructive to note tha t  the residuals e* of the classic version (83) 
may  be smaller than in the respecified version (41). In  model (75), for example, 
we infer from Table 3b  

(~2(ea) = a2(e2) = 3 (95) 

whereas (84) gives, as is readily verified, 

a2(e~) =2.25; 2 �9 a (e2) = 2.28 (96) 

To paraphrase, if we could use the classic version ( 8 4 a ) t o  forecast ~1 for 
given ~1~, and at  the same time use (84b) to forecast ~2 for given ~1 (a situ- 
ation tha t  clearly is not realizable) it would be possible to obtain smaller fore- 
casting error variances than if we use (75a) to forecast 71 for given ~ and use 
(75b) to forecast ~2 for given ~ .  

11.2.2. Interdependent systems vs. causal chains. 

A multirelation system (83) is called a causal chain, or a recursive system if 
the position matr ix  ~ is subdiagonal, that  is, if 

fl~k=0; k~>i, i = l  . . . . .  n (97) 

The notion of minimum delay replaces and extends the engineering notion of 
minimum-phase, Ref. 23; whereas the minimum-phase concept applies only to 
unirelation models, the minimum-delay concept applies both to unirelation and 
multirelation systems. The notion of minimum delay will here be applied in the 
following situation: 

Suppose we know the past  values of the endogenous variables, say 

~h~ with s = t - l , t - 2  . . . .  (98) 

and the past  and present values of the predetermined variables ~1 . . . . .  ~m- On 
the basis of (98) and the predetermined variables we form a sequence of con- 
ditional forecasts of the current endogenous variables ~1, . . . . .  Unt, in symbols, 

Pred ~,t = L ( P r e d  vh_l.t . . . . .  Pred r/u; ~1 . . . . . .  ~ms) (99) 

where i = l , . . . , n ; s < ~ t ,  and L is a linear expression formed in accordance with 
the given model. The model is called minimum delay if the error of the forecast 
(99) has the smallest possible variance for i =  1 , . . . ,n .  
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We note: (i) For causal chain systems the parameters can be specified so that  
the model is minimum delay. (ii) An interdependent system (41) in general is 
not minimum delay. 

As to (i), reference is made to the recent work of E. A. Robinson, Refs. 23, 
24. As to (ii), we see that  the statement is true since the forecast (99)does not  
exploit the information that  may lie in the current residuals e~t, e2t, ...,ei-l.t. 

12.  F u r t h e r  d e v e l o p m e n t s  

The results in sections 3-5 can be extended in several directions. The sub- 
sequent statements do not aim at the greatest possible generality, and the proofs 
will only be briefly indicated. 

12.1. Sampling properties o/the/ix-point estimates 
The fix-point method (43)-(46) provides simultaneous estimation of the para- 

meters fi, ~ and the expectations ~/*. The sampling properties of the ensuing esti- 
mates involves several groups of problems; hereunder: 

(i) Consistency of the parameter estimates b, g. 
(ii) Large-sample standard errors and sampling covariances of the parameter 

estimates b, g. 
(iii) Large-sample standard deviations and product moments of the estimated 

expectations y*. 
(iv) Consistency, large-sample standard errors and sampling eovariances of the 

estimated expectations y*. 

In dealing with the problems under (i)-(iv) it makes for simplicity that  the 
fix-point estimates (44) may  in the limit be regarded as least squares regressions, 

y~=~b~,y*§247 i ~ l , . . . , n  (100) 
P q 

with the limiting expectations y* as ordinary explanatory variables. 
As to (i) we see that  the consistency of ordinary regression estimates, Ref. 

28, readily extends to the fix-point estimates. The fix-point estimates b, g are 
determined by the sampling product moments (Y~,Yk), (y~,zk), (z~,zk). Thus if the 
sample is ergodic in the sense that  each of these product moments tends to the 
corresponding product moment in the population, it follows that  the estimates 
b, g tend to the parameters fi, ~ tha t  define the population. 

As to (ii) we note that  the estimates y* involve sampling errors of the same 
order or magnitude as those in b~ and g~q. Hence in (100) the terms b~y~ will 
have to be treated as twin terms 

* * (101) 

On the assumption that  all residuals s~,sk~ are uncorrelated for s:~t, the re- 
sulting matrix of large sample variances and covariances of b, g is 

E[T(a-  ~) (a -  ~)'],,~ ~(e*) ( 1 X X ' )  -I (102) 
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where we have used the abridged notation 

* Z " a={biv,g,q}; x={y~p,  ~q), x~=[x~, . . . . .  X,T]; i = [ x ~ ]  (103) 

and T is the number  of observations in the sample. 
Formula (102) allows extension to the case of autocorrelated residuals st. The 

ensuing deductions are of the type given for ordinary least squares regression 
by H. Wold, Refs. 27, 31, for the case of exogenous explanatory variables, and 
by E. Lyttkens,  Refs. 19, 20, for the case of exogenous and/or endogenous va- 
riables. 

I t  will be noted tha t  (102) coincides with H. Theil 's large-sample formula for 
the standard errors of TSLS estimates for the parameters  of CLID systems, 
Ref. 26. The following formula for the large-sample standard errors of TSLS 
estimates of CLID parameters  is asymptotical ly equivalent to the formula given 
by H. Theil, Ref. 26, and has been obtained by U. Norldn by a different line 
of argument,  

E[T(a  - ~) (a - ~)'] ~ s (ei(~)) ~X(1) X(1) (104) 

where the matrix X(1) involves the first stage estimates of ~*, and ei(e)* are the 
second stage residuals as transformed in accordance with (85). 

The problems under (iii)-(iv) are related to those under (i)-(ii), lead to similar 
deductions, and are on the whole simpler. The ensuing formulas will be reported 
elsewhere, in connection with Monte Carlo studies of the sampling properties of 
the fix-point method (43)-(46). An interesting aspect is the distinction between 
two situations, namely (a) when the observations Zn . . . . .  Znt of the predetermined 
variables are the same in the various replications of the sample, and (b) when 
the observations of the predetermined variables are generated anew for each re- 
plication. 

12.2. Interdependent systems that involve identities 

By definition, a relation between random variables is called an identity if it 
is deterministic (residual-free), and the coefficients are known a priori. Any 
identity that  involves one or more current endogenous variables can be used 
to eliminate one of these variables from a model which includes the identity. 

The lemma and theorem of Par t  I have been given for interdependent sys- 
tems in the standard form (41), which does not involve identities. The 1emma 
and theorem allow straightforward extension to systems that  involve one or more 
identities. We shall here consider a special case tha t  illustrates the following 
features: 

(i) For GEID systems, but  not for CLID systems, the numerical specification 
will in general depend upon which endogenous variable we choose to eliminate 
by  the use of an identity. (ii) The choice specifies the variable in the identity 
tha t  is assumed to be determined by  the other variables, and this causal spec- 
ification is par t  of the subject mat ter  specification of the entire model. (iii) The 
multiplicity of different versions of the model resulting from different choices of 
variables to be eliminated increases quite rapidly with the number  of identities. 
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Illustration. Systems of the following type are standard material  in the lite- 
rature on interdependent systems, 

*~ = Big ~ + y,a ~ + ~ ~ + e* (105) 

where ~1~ = consumption, ~ = investment, ~1 =gross  national product. 
We respecify the behavioural relations ( I05a-b)  in accordance with (41), 

T]i = Big gig ~- ~"g3 ~3 -~ 794 ~'4 -}- Ei 
(106 a-b)  

and correspondingly for the identi ty (105c), 

~ * = , 1 " §  giving e=~-~*=ec+e~ (106c) 

The identity (105c) with (106c) allows us to eliminate any  of the three endo- 
genous variables ~],~]c,r h. Eliminating ~], we obtain 

(107) 

or alternatively, ' * ' ' -{- ' ]  

, , q _  , . , q_ (108) 

I f  instead we eliminate ~c we obtain 

(109) 

or alternatively, = fl'%*,,, �9 + r~',,,'~l + r~',,,'~2 + ~'",,, } (110) 

Thirdly, elimination of ~ leads to systems analogous to (109)-(110). 
The fix-point method applies to (107)-(110) as well as the third pair of sys- 

tems. For version (107) the mapping (13) reads 

(Au)c = flc(U c -~ ui) -~ ~cl ~1 "~ ~c2 ~2 I 

(Auh = fl~(uc + u~) + ~,g~ $a + ~g4 ~4 J 
(111) 

a n d  f o r  ( 1 0 9 ) ,  (Au)u - ut =flc'Uy + ~c;~l + ~c2~2 1 ,, + . . . .  j (112) 
(Auh=fl~ uy r~3~+r~4~4 

When eliminating a variable from a system by  the use of an identity, the 
ensuing versions of the system may  or may  not be numerically equivalent. In  
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the present case, for example, systems (107) and (108) are equivalent, whereas 
(108) and (110) are not. As to this last point, we note regarding (108) that ~1 
and ~2 in general will be uncorrelated with el and correlated with e2, which implies 
that e = ~ § ~ in general will be correlated with ~1 and ~e" In  (110), on the other 
hand, e" will be uncorrelated with ~1 and ~2, in contrast to our conclusion 
regarding the residual in (108). 

12.3. Various extensions 

12.3.1. Generalization o/ the lemma 

In  section 3 the lemma has been proved on the assumption that  each relation 
of the system involves a nonvanishing residual ~. The lemma extends to certain 
systems where one or more e~ vanish, a simple case being the following. 

Given a system (41) where the position matrix ~ picks out just one variable 
yp for each relation, we shall say that the variables Yl . . . . .  Yn form a loop o/ 
interdependence if the relation for Yl involves y* and the relation for y~ involves 
y ' 1 ( i = 2  . . . . .  n); more generally, the variables y~ will be said to form a loop of 
interdependence if the above condition is fulfilled after a suitable renumbering. 
Then for the lemma to be valid it is sufficient that  the variables Yl,-..,Yn form 
a loop of interdependence, and as least one of the residuals ~ has positive norm, 

The above extension of the lemma requires only a slight change in the argu- 
ment (30)-(33) if we adopt the following vector distance instead of (2), 

[ n ] 1/2 

n(x,Y)~li~ld2(x~,Yi) I (113) 

To repeat from s~ction l, the Hilbert space H under consideration is assumed 
to have real-valued inner products. Making use of standard arguments, the lemma 
and the theorem extend to the case of complex-valued inner products. 

12.3.2. Systems with nonlinear/eatures 

The fix-point method is distribution-free in the same sense as ordinary least 
squares regression, since each step in the iteration (43) is distribution-free. Hence 
in a linear system (43) the fix-point method allows us to perform nonlinear 
transformations of the variables, introducing for example y~ or log Yi instead 
of y~. In  this respect the fix-point method is similar to the TSLS method, and 
different from the FIML method. 

As to nonlinearities in the coefficients, a situation like 

Yl = fly* + fl~Zl + 

can be handled by a Lagrange multiplier ~, 
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T h e  f i x - p o i n t  y* will  be long  to  t h e  l inea r  space  (88). To  assess  t h e  r e q u i s i t e  
coef f ic ien ts  n u m e r i c a l l y ,  we  m u s t  solve  a p o l y n o m i a l  e q u a t i o n  s y s t e m  in  s eve ra l  
va r i ab le s .  

N o n l i n e a r i t i e s  in t h e  f o r m  of p r o d u c t s ,  q u o t i e n t s  etc .  of v a r i a b l e s  i n v o l v e  m o r e  
ser ious di f f icul t ies ,  for  e x a m p l e  

*Z Yl = ~Y2 I § ~ 

W e  see t h a t  t h e  f i x - p o i n t  f o r m u l a t i o n  (42) he re  i n v o l v e s  a t r a n s f o r m a t i o n  (13) 
t h a t  is n o n l i n e a r  a n d  a c c o r d i n g l y  does  n o t  t r a n s f o r m  t h e  l i nea r  space  (88) i n t o  
i tself .  U n d e r  f a v o u r a b l e  c i r c u m s t a n c e s  we m a y  seek  for  a p p r o x i m a t e  so lu t ions  
b y  su i t ab le  l inea r iza t ions .  F o r  e x a m p l e ,  wr i t i ng  

z l = m ( l  §  (114) 

a n d  s imi l a r ly  for  t h e  o t h e r  va r i ab le s ,  we see t h a t  if t h e  d i s t r i b u t i o n  of e a c h  
v a r i a b l e  is c losely  c o n c e n t r a t e d  a r o u n d  i ts  m e a n ,  we can  l inear ize  t h e  p r o d u c t  
in (114) b y  o m i t t i n g  t h e  t e r m  t h a t  i n v o l v e s  t h e  p r o d u c t  of  t w o  f ac to r s  ~. 
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