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Lorentz- invariant  M a r k o v  processes  in 

relativistic phase  space 

By R. M. DUDLEY 

1. Introduction 

This paper deals with certain " random motions" permit ted by  the special theory 
of relativity; that  is, with probabili ty measures on sets of trajectories on which 
speeds are less than or equal to the speed c of light (which we take equal to 1 
throughout). We deal with classes of such measures indexed by  possible initial states, 
related to each other by  the Lorentz group (implying certain invariance conditions 
for individual measures). 

The definition of " s ta te"  as mentioned above is governed by  the Markov pro- 
perty,  i.e. that  given the present state, further knowledge of past  states should be 
irrelevant to the prediction of future states. I t  is known that  position is insufficient 
for this purpose (see e.g. Theorem 11.3 below), and it seems natural  to include the 
velocity in specifying the state. Indeed, velocities must  exist at  almost all times 
since position is a Lipschitzian function of time, and the existence of velocities is 
generally incompatible with the Markov property of a position process. 

We distinguish between speeds strictly less than 1 and those equal to 1, and do 
not consider processes in which both occur (except in Theorem 11.3). This corre- 
sponds to the physical distinction between particles of positive or zero rest mass. 
Invar iant  processes of speed 1 turn out to be essentially uninteresting (see w 11) in 
that  they cannot change direction. 

We are left, then, with processes of speeds almost always strictly less than 1. 
For these processes, we can introduce the relativistic "proper t ime" on each trajec- 
tory (see w 6 below). The possible "4-velocities", i.e. derivatives of space-time posi- 
tion with respect to proper time, then lie in a three-dimensional hyperboloid ~ /wi th  
a symmetric, Lorentz-invariant Riemannian structure (see w 7). :Because of our in- 
variance assumptions, the velocity process is itself Markovian (Theorem 3 .2)and  
defined by a "convolution" semigroup on ~/. 

Such convolution semigroups have fortunately been completely classified by  Tutu- 
balin [1 ]. We thus arrive at  an explicit description of all the processes which concern 
us, in Theorem 8.2, the main theorem of the paper. There are two extreme possi- 
bilities: on the one hand, "Brownian motions" in ~ (a one-parameter family indexed 
by  a diffusion constant), which yield (the only) processes in which velocity is a 
continuous (but, of course, not differentiable) function of time; see w 10. On the other 
hand, there are "Poisson" processes in which the velocity changes only by  jumps. 
Finally, there are (roughly speaking) mixtures of the two. 
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In  order to make the change from coordinate time to proper time as parameter, 
it seems necessary to make an assumption of continuity in probability. One would 
like to infer this from the other assumptions through a sort of "infinite divisibility," 
but in our situation this seems difficult before the change to proper time, since one 
has a convolution semigroup on a symmetric space only after the change. 

Sections 2 and 3 deal with generalities about Markov processes. Section 4 intro- 
duces Lorentz-invariant Markov processes of speeds less than 1. Sections 5-10 carry 
through the characterization of these processes. In  section l l ,  we establish the triv- 
iality of processes with speeds equal to 1 or states given by position only. In sec- 
tion 12 some unsolved problems are mentioned. 

For Markov processes I have used specializations of the definitions in Dynkin's  
books [1] and [2], since several results are also quoted. I t  is worth noting, however, 
that  this leads to at least one unsatisfying situation. In the usual approach to the 
strong Markov property one demands right continuity for sample functions. Here, 
where a sample function is (in part) a derivative, it becomes a right derivative after 
imposition of right continuity. I t  may seem unnatural to consider the right deriva- 
tive of a function at time t as known at that  time, if the left derivative is different. 
The way out of this difficulty, if it is one, will be left for other researches. 

The "diffusion" or "Brownian motion" processes studied in w 10 below have been 
worked on previously by G. Sehay [1] and H. Dinges. Both the latter and R. Her- 
mann advised me against beginning with the proper time (i.e., essentially starting 
in the middle of w 6 below), as I did in an earlier draft, and I am now glad to have 
followed their advice. An exchange of correspondence with H. Dinges on this sub- 
ject in general has been most helpful. 

2. Starting probabilities and Markov processes 

First we review some measure-theoretic notation. If  (X, S, #) and ( Y, if, ~,) are 
a-finite measure spaces (which for our purposes may as well be finite), then $ • 9" 
denotes the a-field of subsets of the Cartesian product X • Y generated by all sets 
A • B, A E 5, B E if, and # • v the product measure. If F maps X onto another set S, 
then F(5) denotes the class of all C c S  such that F-I(C) = {x:F(x) EC} E 5. We let 

(#o F -1) (C)=#(F-I(C)) ,  CEF(5). 

Finally if / is #-integrable and :H is a sub-a-field of 5, then E,(/] ~4) denotes the 
/~-conditional expectation of / given :H, and if / is the indicator function of a set A, 
we let 

E.( / I  ~ )  = ~ (A  I ~). 

To clarify the argument of a function F = #(A ] :H) we may write 

F(x) = ~(x : x e A I :H), 

where "x E A" will be replaced by a defining condition. 
Throughout this paper, R will denote the real line (with its usual topology), R = 

its n-fold Cartesian product, and R + the nonnegative axis [0, ~ ) .  If S is any topo- 
logical space, B(S) will denote the Borel a-field generated by the open sets in S. 

We shall consider certain function spaces defined as follows: 
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Definition. I f  S is a set, a path space for S is a pair (A, ~) satisfying the following 
conditions: 

(1) ~ is a function on A with O~<~(/) ~< + c~,/E~4. 
(2) Each /E ~4 is a function from the interval [0, $(/)) to S. 
(3) For each s ~> 0 and x E S there is an / E A wi th / (s )  = x. 

If  S is any set, the set A of all functions / from intervals [0, ~(/)) to S will be 
called the maximal path  space for S. 

Given a pa th  space (A, ~) and s ~> 0, let 

A s = { / e  A : ;( /)  > s}.  

Suppose $ is a a-field of subsets of S. I f  O ~ s ~ t, BI(A,  $) will denote the a-field of 
subsets of A ~ generated by  all sets of the form 

{/E A ~ :/(r) E A} 

for s ~< r ~ t and A E $ (here and throughout / ( r )  E A implies ~(/) > r). Bs(A, $) will 
be the a-field generated by  all the B~(A, $) for t > s. Context permitting, BI(A, $) 
will be written B~(A) or B~, and likewise for B ~. We call (14, $, S, $) a measurable 
path space. 

We shall need the following fact, proved in Dynkin [1] Lemma 5.9: 

Lemma 2.1. Suppose S is a metric space and (~4, ~) is a path space/or S such that 
each / E ,'4 is continuous /rom the right wherever it is defined. For 0 <~ r <~ s let Mrs be 
the product a-field 

B~(A, B(S) ) x B(R § 

in A • R +. Let F(/, t) =/( t ) /or  r <~ t ~ s. Then the domain D o / F  belongs to Mrs and F 
is M~-measurable on D. 

For h ~> O let Oh be the transformation of functions defined by  

(0h 1) (t) = / ( t  + h), t/> 0. 

A path  space (A, ~) will be called stationary if for each h >/0, Oh takes A into itself. 
I ) S T h  8 I f  (A, ~, S, $) is a s tat ionary measurable pa th  space, clearly Oh takes ~,t+h onto B~ 

for any h>~O, t>~s>~O. 
A Markov process will be defined below by a class of measures on a pa th  space 

corresponding to different initial states. The restriction to pa th  spaces is a speciali- 
zation of the definitions in Dynkin [1] and [2]. The definition in [2] requires station- 
ary  transition probabilities, which are sufficient for our purposes. I t  will be repro- 
duced after our own is completed. 

Definition. Suppose (~4, ~, S, $) is a measurable pa th  space in which $ contains 
all one-point sets. Given x E S, a probabil i ty measure P on B~ will be called a 
starting probability at  x on (A, ~, S, S) if 

P(/  : /(0) - x )  = 1. 
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Definition. Suppose (A, ~, S, $) is s ta t ionary  and for  each x E S, Pz is a s ta r t ing  
probabi l i ty  a t  x on A. Then  ({P~}, .,4, $, S, S) or, briefly, ({Px}, 74) or {Px}, is a 
Markov process if 

(1) For  any  t >~ 0 and  A E $, P(t, x, A) = P~(/:/(t) E A) is S-measurable  in x. 
(2) Whenever  0 ~< t <~ u, x E S, and  A E S, P~(/: [(u) E A I Bt ~ = P(u -- t,/(t), A) al- 

mos t  everywhere  with respect  to P~ on ~4 s. 

The  following is known (Dynkin  [1], L e m m a  2.2): 

L e m m a  2.2. I /  ({P~}, ,.4, ~, S, $) is a Markov process and A EB~ $), then Px(A) 
is S-measurable in x. 

The definition of Markov  process in Dynk in  [2] can be re formula ted  in our t e rms  
as follows: 

Definition. Suppose given a s t a t ionary  measurable  p a t h  space (~t, ~, S, $), a set f~, 
a mapp ing  

X : ~ x ( , ~ o )  
of f l  onto A, for each t ~> 0 a a-field ~ t  of subsets of 

~ ,  = {~  c ~ : ~(x( , ~))  > t}, 

a a-field ~ ~  of subsets of f2 including all the  ~ t ,  and a set  (Qx, x E S)  of p robabi l i ty  
measures  on ~ o .  Then  (x( , ), $, {~ t} ,  {Qx}) is a fields i a r k o v  process if: 

(A) For  O<~t<~u and A E ~ t ,  or AEX- I (B~  $)), 

A n ~ . ~ .  

(B) I f  Px is Qx o X 1 restr icted to B~ S), then  ({P,}, A, ~, S, S) is a Markov  pro- 
cess (in the  p a t h  space sense), and  (2) holds with Bt ~ replaced b y  X(~ t ) .  

The word "f ie lds"  has been added  to clarify the difference be tween the two de- 
finitions. I f  the Q, are defined only on the minimal  a-field X l(B~ we have  an  
isomorphism.  

I t  is clear t ha t  a Markov  process on a p a t h  space defines a fields Markov  process, 
and conversely a fields Markov  process defines a pa th  space Markov  process. How- 
ever, non- isomorphic  fields Markov  processes m a y  define the same p a t h  space Mar- 
k o v  process. 

A Markov  process on a max ima l  pa th  space is called "canonica l"  by  Dynk in  
[1, 2.11]. Any  p a t h  space Markov  process extends na tura l ly  to a canonical one. 
Conversely,  a canonical Markov  process ({Px}, B) can be restr ic ted to a p a t h  space 
A ~ ~ if and  only if .,I has outer  measure  1 for all the P :  (Dynkin  [1] Theorem 2.5). 

We shall also use the strong Markov  proper ty ,  which we proceed t.o define. Sup- 
pose (,-i, ~, X, S) is a measurable  p a t h  space. A stopping time on the p a t h  space is a 
B~ funct ion ~ f rom .~ to R + such tha t  -c(f) ~< ~(/) for  all / E ,-1 and,  
fo r  any  t )  0, 

{l E A : T(I) <~ t < $(f)} E B~ 

I f  T is a s topping t ime, let 

A" = {l e A : ~(l) > ~(1)} 

and let B~ be the a-field of sets A c A such tha t  for any  t ~> 0, 
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A n { / :  < ;(/)} EB~ 

Then a Markov process (P~} on .4 is called strongly Markovian if: 
SM(1) Given B E $, 

(t, x} -+ Px{/ : /(t) e B} 

is B(R +) • S-measurable, 
SM(2) for any stopping time v, B E S, and B:-measurable function ~ >~ T, 

Px(/:/(U) e B[ B~) = Pro) (g : g(u - ~) E B) 

almost everywhere on .4~ with respect to Pz, and {x :/(T) = x for some / E .4} E S. 

3. Markov processes  in  product spaces 

Suppose (.4, ~, X, S) and (B, ~1, Y, ~) are stat ionary measurable pa th  spaces with 
~ U ~  + c~, and for each x E X  (yE Y), Px (Q~,) is a starting probabil i ty on .4 (B). 

Let Z = X •  Y, ' U = S •  C = . 4 x ~ ,  

and ~------ + c~. For z = ( x , y )  e Z  let R~ be the measure Px• on C. Regard h= 
(/ ,  g} e C as the function 

h(t) = (/(t), g(t)} EZ, t/>- 0. 

Theorem 3.1. ({Rz}, C, ~, Z, "if) is a Markov process i/ and only i/both {Px} and 
{Qy} are Markov processes. 

Proo/. Clearly (C, ~, Z, ~ )  is a measurable pa th  space and each Rz is a starting 
probabili ty at  z. First suppose {P,} and {Qy} are both Markovian. The class of sets 
C E ~  for which both 1) and 2) in the definition of Markov process hold is closed 
under finite, disjoint unions and countable increasing unions and decreasing inter- 
sections. Thus we can put  C = A • B, A E S, B E 9", and the conclusion follows easily. 

Now suppose {R~} is Markovian; let us show tha t  {Px} is Markovian. The meas- 
urability condition 1) is clear. Given 0 ~<t ~<u, x EX, and A ES, let z = (x, y} for 
some y E Y and note that  the conditional probabili ty of a "rectangle" for a product 
measure is itself a product, so that  if lg = 1 for all g, 

Px(/: /(u) EA ]B~(.4)). lg 

= R~((/, g}:/(u) E A ]B ~ (C)) 

= R<i(t),o(t)>((r , ~p}: r - t) e A) 

= Pm)(r r - t) E A)" lg, 

almost everywhere for Rz. Choosing g suitably, we obtain that  {P~} is Markovian, 
q.e.d. 

Now suppose (X, $) and ( Y, g) are measurable spaces, Z = X • Y, ~ = $ • g, and 
((R~}, C, $, Z, ~ )  is a Markov process. Suppose G is a transitive group of automor- 
phisms of the measurable space (X, S), and each ~ E G acts on Z by ~(x, y} = (~,(x), y} 
and on C in the obvious way. Let  K be the natural  projection of Z onto Y and 
K((/ ,  g}) = g, (/, g} E C, where / and g are both defined on the interval 0 ~< t < ~((/, g}); 
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we can let ~/(g) = ~(</, g>). Let  B be the set of all K(h) for h E C. Clearly (B, ~, Y, if) 
is a stationary, measurable pa th  space. 

Theorem 3.2. Suppose {R~} ks G-invariant, i .e./or any zEZ,  A EB~ and 7EG, 

R~( A ) = R~(~)(~ ( A ) ). 

Then/or  each y E Y the measure R<~.~> o K -1 is independent o /x .  Calling it Q~, 

({Q~}, B, ~?, Y, if) 

is a Markov process. 

Proo/. Each Q~ is well-defined by G-invariance and is clearly a starting probabili ty 
on B. For the Markov property,  first given A E ~" we have 

Q~(g: g(t) qA) = R<x,y>(</, g>: g(t) EA) 

for any fixed x E X, and this is if-measurable in y. Second, suppose y E Y, 0 < t < u, 
A e 9": For any x E X, 

R~.~( </, g>: g(u) E A I B~ (C)) 

= Rr(~),~(t)(<r ~>: ~ ( u  - t) e A)  

almost everywhere for R~,~ in C t. Transforming both sides by  K we get 

Q~(g: g(u) e A. I B ~ (B)) = Qg(t)(~o: yJ(u - t) E A) 

almost everywhere for Qy on B t, q.e.d. 

4. Lorentz- invariant  random mot ions  

Let X be a three-dimensional Euclidean space R 3 of ordered triples 

x = ( %  x2, x3) 
of real numbers and let 

ix  I = (x~ + x~ + x~) "2 

Let M be the space R 4 of pairs z = <x, t>, x E X, t ~ R, with 

I l z l l 2 = t ~ - I x l  ' 

s will denote the group of linear transformations of M into itself which preserve 
]] II 2, have determinant 1, and do not change the sign of t (the proper, orthochronous 
Lorentz group). 

Mo will denote the universal " tangent  space" of M, or space of derivatives of 
functions from the real line to M at  points of M. Mo is natural ly isomorphic to M, 
but  for some purposes the two spaces will be distinguished. 

Let  A be the space of functions / from R + to X such tha t  

(1) I/(s)-/(t)l<ls-tl for s , t > ~ 0  
(2) I f / ' ( s )  is defined (as it is for almost all s by (1)), I/ '(s) l < 1 
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Let  I(/)-=- + oo. Then (•, I,  X ,  B(X) )  is a measurable pa th  space. We shall need 
the following fact: 

Lemma 4.1. Suppose U is an open subset o/ R k, S = B ( U ) ,  and (~, ~, U, $) is a 
measurable path space consisting o~ continuous/unctions. Let F = ~ x U and 

y = BO(~) x S. 

Then the/unction 

(/ ,  t )  --> d/(t) /dt  

is de/ined on a set in y and y-measurable there. 

Proo/. B y  Lemma 2.1, 

(/ ,  t)--> /(t) and (/, t)--> (/(t + r ) - [ ( t ) ) / r  

for any  r 4 :0  have the desired property.  For  any  open set V c R k, let 

Z(V)  = {(/,  t): (/(t + r) - / ( t ) ) / r  E V for small enough rat ional  r 4: 0}. Clearly Z(V) E y. 

For  each n = 1, 2 . . . . .  let {Umn}m~l be a locally finite open cover of R k by  sets of 
diameter  less than  1In. Then 

A = {(/, t ) : / ' ( t )  exists} = N n [3 m Z(Umn). 

Now any  open V c R k is the union of the Umn with (finn c V, where the bar  denotes / 
closure. Thus 

{(/ ,  t )  : It(t) ~. V} = [3 m,n{ Z(Umn): ~f mn C V} n A.  

This completes the proof. 
Now let V be the open unit  ball {v:iv] < 1} in R 3. V is the space of admissible 

velocities. We shall consider families {Px v} of measures, where for each x E X and 
v E V Px ~ is a s tar t ing probabi l i ty  at  x on 04, I ,  X ,  B(X) ) .  The family {Px ~} will be 
assumed to satisfy conditions A ) -  E) to be formulated below. 

(A) For  any  n = l , 2  . . . .  , t , > ~ O , A ~ E B ( X ) , x E X ,  and v E V ,  

P~x(/ : /(t,) E A,, i = 1 . . . . .  n) = Pg (] :/(t,) E A~ - x, i = 1 . . . . .  n). 

(B) For  any  x E X and v E V, 

P~z(/:/'(0 +) = v) = 1. 

Since each / E A  is differentiable almost  everywhere and {(/, t ) : / ' ( t )  exists} is 
product  measurable, 

{s > 0 : P~(/'(s) exists) < 1} 

has Lebesgue measure zero by  the Fubini  theorem for each x and v. We assume 
this set is actual ly  empty ,  and formulate  a Markov proper ty :  
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(C) I f t > O ,  x E X ,  a n d v E V ,  then 

P~(/'(t) exists)= 1 

and for any A E Bt(~4), 

P~(A IB~~ r'(~) - P } ( t ) ( O t A )  

almost everywhere for Pz" (where Ot is the translation by t, defined in w above). 

We next  formulate a Lorentz-invariance condition. Each L E ~: defines a trans- 
formation L* of functions /E A by 

L( / ( t ) ,  t )  = ( L(1)(/(t), t ) ,  L(2)(/(t), t )  ) ,  

L(i)(/(t),  t )  = (L* /)(L(2)(/(t), t )  ). 

Clearly L* is measurable from (A, B~ to itself. L also defines a transformation 
VL of velocities by  

VL(/'(t) ) = (L* /)' (L(2)(/(t), t )  ). 

Our Lorentz-invariance assumption is 

(D) Pg o (L*) -1 = p~L(v) for any L E I: and v E V. 

Let  W be the "phase space" X • V. Let d be the metric on W defined by 

d( (x ,  u ) ,  (y ,  v ) )  = I x -  Y l + I u - v I. 

The last assumption is that  derivatives are continuous in probability: 

(E) l iE Pg (d( ( / ( t ) , / ' ( t ) ) ,  (0,  v ) )  >~ e) = 0 
t~o 

uniformly in v, for any e > 0. 

I don ' t  know whether (E) follows from the preceding assumptions. 
Let  Q be the set of all functions from R + to W. Then (Q, I ,  W,  B ( W ) )  is a station- 

ary, measurable path  space. Each measure P~ on sets 

{[ : (/(t~),/'(t~-)~ E B ,  i = 1 . . . . .  n}, t~ >~ O, B~ E B ( W ) ,  

extends uniquely by  Kolmogorov's  theorem (Lo~ve [1] p. 93) to a probabili ty meas- 
ure Qx,, on B~ For ti > 0, t + can be replaced by ti. Of course, there may  exist 
with positive probabil i ty points t, depending o n / ,  at  which/ ' ( t )  does not exist. 

5. Propert ies  o f  the Q . . . .  

In  this section we infer from (A) - (E) that  {Qx.v} is a "Fellerian" Markov process, 
and discuss other continuity properties. 

We consider the transition measures 

Q(h, x, v, A )  = Qx.v(/ : /(h) EA) 
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defined for <x, v) E W, A E B(W), h >~ 0. Each  Q(h, x, v) is a probabi l i ty  measure on W. 
We consider weak* convergence of such measures: 

#n--># (weak*) 

if for every bounded continuous real-valued funct ion / on W, 

Let  BL(W) be the class of bounded Lipschitzian real-valued functions on W, i.e. 
functions [ with 

II ! JIlL = sup l/(w) I + sup I/(u) - / (w)l  < ~ .  
~.~ d(u, w) 

Then (BL(W), ]] IIBL) is a Banach space, and any  probabi l i ty  measure # on W defines 
an element of the dual space BL*(W), with the dual norm 

We have # n - ~ #  (weak*) if and only if 

I I ~ n - ~ l l ~ - + o ;  

see e . g . R . R .  Rao  [1] Theorem 3.1. (For "if" ,  nonnegat iv i ty  of the measures is 
essential.) 

Theorem 5.1. Under assumptions (A) - (E) o/w 4, Q(h, x, v, ) is jointly weak* conti- 
nuous in h, x, and v. 

Proo!. We shall prove cont inui ty  in h and x uniformly on the triple product ,  
then simple cont inui ty  in v. 

We have cont inui ty  in h, uniformly in all x, v and  h, by  assumptions (A) and 
(E). For  cont inui ty  in x, let 

Ty<x, v> = (x + y, v>, 

and note tha t  

Q(h,x+y,v ,  )=Q(h,x ,v ,  ) o T ;  1 

by  (A). Let t ing  # = Q(h, x, v, ), we have 

H~--]~~ SUp f/d~- f/oT, d#l 
IIflIBL=I 

Since I (1 -  ! oT~)(w)l ~<lyl if w ~ w, y ~ x ,  and II111~ = 1, we have continuity in x, 
uniformly in h and v. 

I t  remains to prove cont inui ty  in v for fixed x and  h, and we can take x = 0. 
Suppose v~--->v in V. There are L~ E s such tha t  v = VL~(%) for all n, with L~ con- 
verging to the identity.  We also choose numbers  s~ ~ 0 such tha t  

Ln<x , h + s~> = <x', t'> and (t') 2 - I x' 12 >~ 0 imply t' > h. 
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For / E ~4,/(0) = 0, let t~(/) be the unique value of s such that  

</(s), s> = L~<x, h + ~> 

for some x. (Then tn(/)> h for all /E ~4 with/(0) = 0.) We need the following: 

Lemma 5.2. / -~  (/(t~(/)), VL,,/'(t~(/))> is Bh-measurable on A.  

Proo/. Clearly [-->t~(]) is Bh-measurable, and so is [-->(/, tn(/)>, (from B h to 
B h • oo)). The map 

</, s>-+ </(8), v~J'(s)>, s > h, 

is Bn• B(R*)-measurable by Lemmas 2.1 and 4.1 and continuity of VL,. Composing 
the last two mappings finishes the proof of the Lemma. 

Now we apply assumption (C) to obtain, given e > 0, 

(*) e~ ([: d((/(t~([)), VL,/'(t~(/))>, (/(h), /'(h))) >~ e]B ~ 
- -  / z ( h )  t -P~f(h) (9 : d( </(h ), /' (h ) >, <g(s,~(g) ), VL, g (Sn(g) ) > ) ~ e) 

almost everywhere for P~, where sn(g) is the unique value of s such that  

<g(s), s + h> = Ln<x, h + ~> 

for some x. The set of <y, s> E M such that 

<y, s + h> = L~<x, h + ~n> 

for some x E X is the set of points of the form L=<z, an> for some fixed an > 0 and 
arbitrary z E X, since L ;  1 takes parallel hyperplanes into parallel hyperplanes. 

For y E X the translation 

T~: <~, t> --> <~ - y, t> 

of M onto itself takes points of the form L~<a, a~> onto points of the form Ln<b, an (y)> 
for some an(y). If  I Y I < h, then a~(y) > 0, and as n--> ~ ,  a~(y)--> 0 uniformly for 
!yl<h. 

For any y E X and u E V, let 

A~.~.~ = P~ (g : d(<y, u>, <g(s~(9)), VL~g'(sn(9))> ) >~ e. 

Applying first Ty and then L ;  1, letting un = V -1 u, we obtain by (A) and (D) 
L n  

An.y.~ = p~n (r : d(<0, un>, <r r ~> e). 

Of course, 0~<An.~.~<l for all n ,y  and u. As n--> ~ ,  since a~(y)-->0, and the 
sequence un and its limit u form a compact set for any u, we have by (E) that 
An.y.u--~0 for any u and y with lY[ ~<h. Integrating (*) with respect to P~ over all 
of A, we conclude by the bounded convergence theorem that  

P~ (/: d(</(t~(/)), VL./'(t~([))>, </(h),/'(h)> ~> e) 

tends to 0 as n -~  oo. Now if B E B(W) let 
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P, (B)  = P~ (/: </(t,(/)), VL,,/'(t,(/))> 6B) ,  

defined by  Lemma 5.2. We have shown tha t  

P,~--~ Q(h, O, v) weak* as n - +  co. By  (D), 
vn 

P. (B )  = Po (g : <g(h + e.), g'(h + e.)> 6 B) = Q(h + e., O, v., B). 

We also know t h a t  

]]Q(h+en, O,v,, ) - Q ( h , O ,  vn, )II*L-+O 

as n - ~  co since en-~ 0 and the v~ lie in a compact  set. Hence Q(h, O, v~, ) --> Q(h, O, v, ) 
weak*, and  the  proof is complete. 

I t  is now easy to prove 

Lemma 5.3. Under assumptions (A) through (E), ({Qx,v), (2) is a Markov process. 

Proo/. We know t h a t  (Q, I ,  W,  B(W))  is a measurable pa th  space. The Qx.v are 
probabi l i ty  measures on B~ B(W)) and are start ing probabilities by  assumption (B). 
For  the Markov property,  we must  first show tha t  given t ~> 0 and A E B(W) ,  Q(t, x, v, A )  
is jointly measurable in x and  v. If  A is open, x~-->x, and Vn-->v, 

Q(t, x, v, A)  <~ lim sup Q(t, x~, v,, A)  

by  Theorem 5.1. This implies joint  measurabil i ty in x and v, and then A can be 
replaced by  an arb i t rary  Borel set. The Markov proper ty  itself then holds by  assump- 
t ion (C), q.e.d. 

(The following section, which presents Lemma 5.4, was received as manuscr ip t  
added  to proof on 15 Sep tember  1965.--Editor) 

We next  verify Dynk in ' s  condition "L(F)"  for eomlzact sets F, which says in 
o u r  c a s e :  

Lemma 5.4. For  a ny  compact  set K c X • V and  u >~ 0, 

lira sup Q(t, x, v, K) = O. 
<x,v>-->c~ O~t~u 

(Here ;x,  v> co means ix oo and/or  iv 

Proo/. For  I x l --> co the result is clear. Thus it suffices to show tha t  for any  com- 
pac t  set C c V, 

lira sup Q(t, O, v , X  • C) = O. 

We m a y  assume tha t  C is a closed ball centered a t  0, and  then tha t  v =  (z, 0, 0) 
with 0 ~< z ~ 1. For  <x, s> E M let 

L(v) <x, s> = <(x~ + zs) / f  l - z ~, x2, %, (s + zx~)/V1 ~- z~>. 

Then L(v) 6 C and VL(v) (0) = v. Also for any  t ~> 0, b y  (D), 

Q(t, O, v, X • C) = P( /  : VL(~)/'(s(v)) 6 C), 

where P = P0 ~ and s(v) = s(v, t , / )  is the unique number  s such tha t  

](s) = </(s), s)  E H = L(v) -1 { <y, t> : y 6 X ) .  
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Le t  C~ he the cone Ix]--<Ss. B y  assumpt ion  (B), for any  5 >  0 f ( s )wi l l  P -a lmos t  
surely lie in C~ for s small  enough. I n  H N C~, s ~> ~(v) > 0, where  

a(v) = ~(v, t, 5) = t 1/1 - z2/(1 + z6), 

so t h a t  0r --> 0 as z ~' 1. Thus  if D(5, v) is the set of all <x, a(v)} wi th  I x l ~< 5~(v), and  

S(v) = {/: ](~(v)) e D(5, v)}, 

then  P(S(v))--> 1 as z ~ 1. Also, by  (E), for any  s > 0 

l im P ( / :  I l '(~(v)) I > ~) = 0. 
z~'l 

Let  u(/,  v) = VL(v)/'(a(v)). We can app ly  the  Markov  p rope r ty  a t  t ime ~(v) to obta in  

(*) P ( / : / ~ S ( v )  and  ] VL(~)/ ' (s(v))--u(/ ,v)]  <<.eIB~ 

= YI(I,  v, a) = .r(~(~)) ~(~(~)) (g:l  V~(v)g (~(v)) - u( l ,  v) l < ~), / c S(v)  

= 0 otherwise,  

P - a lmos t  everywhere;  for /C  S(v) we have  let a ( v ) =  (~(v, g, 5, t) be the  unique s 
such t h a t  

<g(s), s + a(v)> ~ H.  

Trans la t ing  by  - ] (~(v ) ) ,  using (A), we ob ta in  

H(/ ,  v, a) = Pro(~(v)) (h :1 V~(~ h'(~(v)) - u(/,  v) I < ~), 

where ~r = x(v, h , / ,  5, t) is the  unique x such t h a t  

<h(x) +/(a(v)) ,  x + ~(v)> E H.  

Now we t rans form by  L(v), using (D), to get  

l-I(/, v, 5) = p~,(r,~)(j: ] ?"(2(v)) - u(/, v) l ~< e), 

where ]~(v) = t - L(v)(~) f(zc(v) ). 

Note  t h a t  2(v) does not  depend on j, only  on v, t, 5, and / (a (v ) ) .  Now 

L(v) <x, g(v)> = <(x~ + za(v))/]/1 - z 2, x2, x3, (zt(v) + z x i ) / V ~ - - z 2 >  = < , x2, x3, ~>, 

t zx 1 
where T = i + z~ + 1 /~ -  z ~" 

For  <x, a(v)} E D(5, v), T is smallest  when x 1 = - (~(v). 

Then  T = t(1 - z5)/(1 + zS). 

Thus  ~(v) <~ 2zSt/(1 § z5) ~< 25t. 

Hence  1-[(/, v, 6) ~> inf p~(I.v) (] : I f ( s )  - u(/, v)[ ~< s). 
O<~s<~26t 
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Thus by  (E), lim l-I(/, v, (~) = 1, 
6~,0 

uniformly in / and  v. Thus, integrat ing our  Markov equat ion (*) with respect to P ,  
we have 

lim lim P([  : / E S(v)  and  I VL( , ) / ' (s (v))  - u( / ,  v) I <~ e) = 1. 
o$o Ivl~l 

For  (a, b, c) E V we have 

VL(~) (a, b, c) = (a + z, b Vi -~-z  i, cV1 - z2)/(1 + za),  

I VL(v)(a,  b, c) - v] 2 ~ (ae(1 - z2) ~ § b e § c2)/(1 § za) e 

< (a e + b e + ce)/(1 - [a ])3. 

Thus  for 7 <~ 1, t(a, b, c)l ~< 7 implies 

I VL(,) (a, b, c) - v l < 2r. 

Hence for any  e > 0 and 0 < 6 < 1, 

lim P ( / :  I VL(,)/'(c~(v)) -- v I ~< e) = 1. 
IriS1 

Thus, letting ~-->0, we get  

lira P ( f  : I VL~) / ' ( s (v ) )  -- v I <~ e) = 1. 
Iv11"1 

Now for any  compact  C c V, there is an  e > 0 such tha t  Iv 1> 1 - e and I w -  v l>  e 
imply w ~ C. Then 

lim P(/:  VL(,)/'(8(v)) E C) = 0 
Iv[ t'1 

This limit is uniform in 0 < t ~< u since 

tim e(v) = lim 2(v) = 0 
lvlr ~r 

uniformly for 0 --~ t ~< u. The proof is complete. 

Under  assumptions ( A ) - ( E ) ,  each measure Qx.v gives outer  measure 1 to  the 
class 0 of functions in Q having limits f rom the left and continuous from the r ight  
for each t >~ 0 (Dynkin  [2], Theorem 3.6). 

The set of ( x ( ) ,  v ( ) )  E 6 such t h a t  Ix(s)  - x(t) I <~ I s -  t I for all rational s, t ~ 0 is 
B~ and  has Qy.~-measure 1 for each ( y ,  u )  E W since P~ is concent- 
ra ted in ,,t. Thus by  definition of 6 ,  Ix(s)  - x( t)  l <~1 s - t l for all s, t >~ 0 with Q~.u- 
probabil i ty 1 on 6.  The map  

(t, (x(  ), v( ) ) ) - , x ' ( t )  

is B ( R  +) • B0(6).measurable by  Lemma 4.1. For  each t, x ' ( t ) =  v(t) with Q~.~-proba- 
bili ty one. Hence by  the Fubini  theorem, for Qy.u-almost all ( x ( ) ,  v( )} E 6 we have 
x'( t)  = v(t) for almost all t, so tha t  since v( ) is locally bounded and x( ) is Lipschit- 
zian, x( ) is an indefinite integral of v( ) and x ' ( t  +) =v(t)  for all t>~0. Let  "/~ be the 
set of ( x ( ) ,  v( )} E 6 with x ' ( t  +) = v(t) for all t ~> 0. Then  we have a Markov process 

({Q~,v}, lO, L w, B(W)). 
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Le t  ls be the set of funct ions t---> <c + t, ](t) > , / E "llq , c, t E R. Let  W be the p roduc t  
space R • W, and  let R~ be the  uni t  mass  concentra ted  in the funct ion t--> c + t. L e t  
Qr be the  p roduc t  measure  R~x Q ....  Then  by  Theorem 3.1, 

({Q .. . . .  }, W,  I ,  W,  B(W))  

is a Markov  process. This process is "Fel le r ian"  by  Theorem 5.1 and  r ight  contin- 
uous, hence s t rongly Markov ian  (Dynkin  [1], Theorem 5.10). 

6. The  proper t ime  

For  any  / E ~4 (defined early in w 4) the proper  t ime v(s,/)  is defined (cf. Moller 
[1] w167 36, 37) b y  

where the in tegrand is clearly bounded  and  measurable.  B y  assumpt ion  on ~4, it  is 
s t r ict ly posit ive a lmost  everywhere  (Lebesgue measure).  For  F E "lO, F(t) = </(t), v{t) >, 
or for  F e ~ ,  F(t) = </(t), c + t, v(t)>, we let T(s, F)  = v(s,/).  Then  let 

~ ( f )  = ~(t ,  f )  - ~ ( s , / )  

for 0 ~ s ~< t, / E ]0.  Clearly ~v~(/) = 0 for a n y  s >~ 0, and ~0~(/) > 0 if 0 ~< s < t. We have  

~(1) + ~.(1) = ~ ( I )  

for 0 ~< s ~< t ~< u, / E ~0, and  ~0~(/) is cont inuous in s and  t. The  funct ional  ~0 is s tat ion-  
a ry  in the sense t h a t  

= ~ + 4(/) 
for h>~O, O<~s<~t,[E~O. 

The strong Markov  process ({Q .. . . .  }, ~ ,  I ,  W, B(W)) is " s t rong ly"  measurable  as 
defined by  Dynk in  [2], 3.17, i.e. the conclusion of L e m m a  2.1 above  holds, since 
the  hypothes is  (right continuity)  does. We can ex tend  each of the (~-fields B~(~L 0) b y  
the sets which are subsets of sets of measure  zero for all the  Q . . . . . .  thus  obta in-  
ing a "comple te"  fields Markov  process as defined b y  Dynk in  [2], 3.6. 

Thus  we have  established all the  hypotheses  of a theorem on " r a n d o m  change of 
t ime" :  Dynk in  [2], Theorem 10.10. To s ta te  the theorem in our case, we let ~-->t(v,/) 
be the  inverse of the  increasing funct ion t - +  T(t,/) for a n y  / E]L 0. Then  for a n y  f ixed 

T > 0, t(T, ) is a s topping t ime. Fo r  / E ~o let 

(A/) (~) =/( t (z , / ) ) ,  ~'(A/) = sup (z(t,/) : t/> 0), x(z , / )  = (A/) (3). 

Theorem 6.1. (x(T, ), ~'o A ,  Bt(~), Q ..... ) is a ]ields Markov process. 

Corollary. ({Q ..... o A - l } ,  A(~9), ~', W,  B (W))  is a (path space) Markov process. 

We have  the  inclusion 
A(Bt(~. )) ~ B~ 

I don ' t  know whether  the converse inclusion holds (given r ight  cont inui ty,  in general) 
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The "ve loc i ty  componen t "  of a funct ion in A(~9) is not  the  der iva t ive  of the  
"space  componen t" .  To r emedy  this si tuation,  let U be the t rans format ion  of V 
into M 0 defined by  

i ( v )  = Cv, ~ > / V ~  - I~ ~. 
Then  ]] U(v)II 2 = 1 for any  v E V, and  the  last  componen t  of U(v) is positive. U(v) is 
the four-veloci ty  associated with the  "ve loc i ty"  v (cf. Moller [1] w 37). Le t  l / b e  the  
set  of all U(v), v E V. ~ is one nappe  of a three-dimensional  hyperboloid.  For  

~ = ( x , c , v )  E M x V ,  

let U2(~ ) (x,  c, U(v)) E M • ~ .  Then  U 2 is a homeomorph i sm of M • V onto M x ~ ,  
and  it defines a t r ans fo rmat ion  U 2 of A{~9) onto another  funct ion space If. For  
(x,  c, U) e M • z = (x, c), U = U(v), let 

[Iz.~ = Qc,~,~ o A -1o U~ 1, r = ~'(/) 

(U 2 is one-to-one). Then  by  a s t andard  result  on t r ans fo rmat ion  of phase spaces 
(Dynk in  [2] Theorem 10.13) we have  

Theorem 6.2. ((1-Iz. u}, If, ~, M • 1l, B ( M  x ll)) is a Markov process. 

We now have  t h a t  for ] = (4 ,  Y)} E lq, where q~ has  values in M and  y3 in 1/, 
r  = v2(T ) for  all v < ~(/), since the der iva t ive  wi th  respect  to v is the 4-veloci ty  
(Moller [1] w 37, equat ion (38)). Also ~fl has a l imit  f rom the left for all ~ > 0. Thus  y~ 
is bounded  on any  bounded  closed subinterval  of [0, ~(/)), and  r is locally Lipschit-  
zian and  an indefinite integral  of yJ. 

Assumpt ion  (A) of w 4 (spatial  homogenei ty)  and  the same condit ion for the  meas- 
ures R~ of w 5 imply  the  corresponding condit ion for the  l-L. v: 

(I) I f  y, z E M ,  UEI I ,  v>~O, and A E B ( M ) ,  

l -L.v((r  ~o) : r EA) = YIz+y.v((r ~ ) :  r E A + y). 

Also, a ssumpt ion  (D) of w 4 yields 

(II)  F o r a n y  L E s 1 7 6  and U E I / ,  

1-[o. v(A) = ]-Io.L(~) (L(A)). 

An L E s acts on the  tungent  space Mo of M th rough  the  na tu ra l  i somorphism of M 
and  Mo, or, equivalent ly  here, th rough its differential  dL, so t ha t  if U E 1 / a n d  
r = U, then  

L(U) = dL(r 

Now let P be the na tu ra l  project ion of M • 1 / o n t o  l / .  B y  (I) and  Theorem 3.2, 

((i-L.u o p 1}, p ( ~ ) ,  ~, 1/, B(I / ) )  

is a Markov  process independent  of z, where ~(P(/)) = ~(/) for a n y  / E If. P is one-to- 
one on If, so t h a t  this process de termines  {1-Lv} (by integrat ion).  

For  ~ ~> 0, UEI/ ,  and  A E B ( ~ ) ,  let  

P,,(U, A) = YIz.v(<r ~o) E If : y~(a) E A) 
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(which is independent  of z). By  the Markov property,  we have the Chapman-Kol -  
mogorov  equat ion (semigrou p property)  

P ~ ( U ,  B) = J~Po(U, dV) P~(V, B) 

for any  a, ~ ~> 0, U E ~ ,  B E B(~) .  By  (II), we have 

P,(  U, B) = Po( L( U), L( B) ), L E s 

I n  w 8, we shall reproduce the known classification of all semigroups {P,} satisfying 
our conditions. 

Lemma 6.3. For any {YIz. ~} satis/ying our conditions and ~ > O, 

[Ix. u {(~, yJ): ~'(3) exists} = l-Iz. u {/: ~(/) > T}. 

Proo/. Let  ~ be the set of all 3 > 0 for which the conclusion does not  hold. For  
/ = (~,  ~p) E ~, r exists for almost  all 3 in the interval (0, ~(/)). Thus by  Lemma 
4.1 and the Fubini theorem, ~ has Lebesgue mexsure 0. Thus for any  3 >  0 there 
exist t > 0 and u > 0, neither of them in ~ ,  such tha t  t + u = 3. For  any  a > 0, 

[Io, v { ( r  ~o): r  exists} 

is independent  of U by  condition (II): Let t ing a = u and applying the Markov prop- 
er ty  at  t ime t, we conclude tha t  T ~ ~ ,  q.e.d. 

Of course, for (~,  ~o) E ~,  r is equal to ~p(v) if the former is defined. 

7. The space "U 

is well-known as "hyperbol ic  space" or "Lobachevsky  space" (Gelfand and 
Berezin [1]). I t  is acted on transit ively by  the proper Lorentz  group ~. The subgroup 
K ,  of ~ leaving a point  p of ~ fixed is isomorphic to the or thogonal  group K on 
three-dimensional Eucl idean space, and is a maximal  compact  subgroup of i:. ~ can 
be regarded as the homogeneous space ~ / K p  of r ight cosets of Kp in t:. (Of course, 
K~ is no t  a normal  subgroup of IZ.) 

~/ has a natura l  l~-invariant Riemannian  structure,  inherited from the "pseudo- 
Riemannian"  or Lorentz  form ]III 3 on Mo by  restriction to the tangent  spaces of ~/. 

We put  geodesic polar (or spherical) coordinates on ~/ (see Helgason [1] p. 401) 
as follows: we take p as (0, 0, 0, 1) for a given Lorentz  coordinate system (x, y, z, t) 
on Mo. Given any  point  U in ~ / w e  let e(U) be the Riemannian  distance from p to 
U in ~/. Now each surface ~ - Q0 > 0 in ~/ is isometric to a Euclidean sphere of some 
radius /(Q0)- (Kp acts transit ively on these surfaces, i.e. ~ / i s  a " two-poin t  homo- 
geneous" Riemannian  manifold as defined by  Helgason [1] p. 335 . ) in  each such 
sphere we choose s tandard  spherical coordinates 0 and r 0 ~< 0 < 27~, - 7~/2 ~ ~ ~< ~ /2 ,  
constant  on each geodesic emanat ing  from p. The functions (Q, 0, 4)) make up a regu- 
lar local coordinate system except where Q or 0 is zero or ~ = _+ ~ /2 .  

:Now let r = (x ~ + y2 + z2)lm. Then ~ is a funct ion of r in ~ ,  and/(~(r)) = r, 0 < r < ~ ,  
since the induced Riemann  metric on a sphere D = constant  can also be induced from 
a 3-plane t = constant ,  which has the s tandard  Euclidean structure. 

To find the function Q(r), and hence its inverse / ,  it suffices to find the R iemann  
s t ructure  induced on the hyperbola  H: t 2 - x 2 = 1, y = z = 0. Here r = Ix ]. x is a coor- 
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dinate funct ion on H, and the tangent  vector  d/dx "is (1, 0, O, x /~ l  + x 2) at  the point  
(x, 0, 0, ]/i + x 2) of H. This vector  has "magn i tude"  1/VI+ x ~ for the Riemann  met- 

ric induced on H.  Thus a unit  vector  d/d~ for the Riemann  metric is [/1 + x 2 d/dx 
for x > 0, so tha t  dx/dQ = V1 + x ~, Q = log (x + ]/1~+ x 2) (since Q = 0 when x = 0), Ix[ = 
sinh ~ on H, and r = sinh Q throughout  ~ .  

Now let g be the induced Riemann  form on ~/: 

g~ = g(~/~x,, ~/~x;), where x~ = e, x~ = 0, x 3 = r 

Then g~j = 0 for i =~ ], gll = 1, g22 = sinh~- ~), and gaa = sinh2 0 sec2 ~ (except at  the ex- 
ceptional points 0 = 0  etc.). Now the "Laplace-Bel t rami"  operator  A on ~ is (see 
Helgason [1] p. 386) 

1 ~  

(~ = de terminant  of (g~), g~ = inverse matrix) 

= ~ / ~  + 2 coth ~ ~ / ~  + csch ~ ~ ~2/~r _ tan  r csch 2 ~ ~ / ~  + csch ~ ~ sec ~ r ~2/~0~ 

(wherever ~), 0, r form a coordinate system). 

8.  S e m i g r o u p s  o f  m e a s u r e s  o n  ~/ 

At  the end of w 6 we had obtained a collection of nonnegative,  K~-invariant  
measures Pt(P, ) on B(~/) for p E ~/, t ~> 0, of total  mass at  most  1. For  a fixed :p, 
we call finite, Kp-invariant,  nonnegat ive measures on ~/ "radial" .  The "convolu- 
t ion"  of two radial measures # and r on ~ / i s  given by  

(/~ ~ v) (A) = j~  v(A~) #(dx) 

for any  A EB(~) ,  where A~ is a set T~(A) and T~ is any  element of ~: taking x into 
p.  B y  Kp-invariance, it is irrelevant which such element is chosen, and we can 
take Tx continuous in x to insure measurabil i ty.  

Since Pt(U, B) = Pt(L(U), L(B)) for all L E C, B E B(~/), we have 

P ~ P t = P s + t  for all s,t>~o. 

Thus the P~ form a semigroup under  convolution. Now each radial  measure on 
has a "Four ier  t ransform",  defined in terms of the eigenflmctions of A which are 
functions of ~ alone ("spherical funct ions":  see Helgason [1] Chap. X w p. 398). 
As given by  Tutubalin,  Karpelevich and Shur [1] (hereafter called " T K S " )  the non- 
constant  spherical functions on ~ ,  normalized to the value 1 at  p, are 

F~(0) = sin ~ / /~  sinh if, 

where 2 is any  complex number  and A 2'~ = ( - 1 - ~ )  _F;. For  ~ or  Q equal to  0, 
F~(~) is defined by  continuity.  These functions are bounded for I lm~ l  ~ 1. The 
Fourier  t r a n ~ o r m  of a radial  measure ,u is given by  

f~(~) = I F~(x) d#(x), 
J u  
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defined at  least for I I m X  I ~< 1. For  radial measures convolution is commutat ive ,  and 

(~ ~ ~)^ (~) = ~(~) ~(~) 

(see TKS [1]). 
A radial measure # on ~ such tha t  for all n = 1, 2 . . . . .  tt is the n-fold convolut ion 

(#n) n of a radial measure #n with itself, is called "infinitely divisible". Clearly the 
measures Pt  have this property.  Such measures have been characterized by  Tutu-  
balin [1] and Gangolli [1]: # is infinitely divisible of total  mass ~ > 0 if and only if 

fi()~) =/~ exp (( - 1 - ~t 2) ~ - f u  (1 - F~(u)) dL(u) )  (*) 

where a ~ 0 and L is a nonnegative,  K~-invariant measure on ~ satisfying 

~ @(u)~ d L ( u ) <  
J o  1 + @(u) 2 

(so tha t  the integral of 1 - F~ is absolutely convergent),  a = ~(#) and L = L(tt ) are 
uniquely determined. Conversely, for any  such measure L and numbers  ~ and fl >~ 0, 
there is a radial, infinitely divisible measure # satisfying (*). 

Tutubal in  [1] proved the representat ion formula (*) under  a definition of infinite 
divisibility requiring tha t  for every c > 0, # is a convolution of possibly distinct 
measures each concentrated within R iemann  distance ~ of p,  except for mass c. An  
a rgument  in his proof, par t ly  reproduced below, shows tha t  this is equivalent  to the 
definition given above. A proof under  our definition was also given by R. Gangolli 
[1] for general symmetr ic  spaces of non-compact  type. 

We say a radial measure # divides another  one, v, if #-)e @ = v  for some radial @. 
Clearly this imp]ies 

~(#) § ~(@) = ~(v) and L(#) § L(@) = L(v), 

so tha t  # divides v if and only if a(#) ~< ~(~) and L(#) ~ L(v). 
Now given a convolut ion semigroup Pt, we have L(P~t) = rL(Pt )  and ~(P~t) = ro~(Pt) 

for all rat ional  r > 0 by  uniqueness, and hence for all r >  0 by  the ordering just  
mentioned.  Thus the semigroup is completely determined by  L(P1)  and a(P1). 

Pt(P,  ) converges weak* to the uni t  mass concentrated at  p as t $ 0; s ince/5  t 
converges to I pointwise and each I F~I for ~t real is bounded below 1 outside any  
neighborhood of p.  Note  tha t  the original cont inui ty  assumption (E) was used only 
to obtain  a Markov process with proper t ime as parameter;  for the latter, the conti- 
nu i ty  properties follow from the invariance conditions, and  the first pa r t  of assump- 
t ion (C) is taken care of by  Lemma 6.3. 

We now show tha t  ~ is actual ly  infinite: 

Lemma 8.1. For  any  z E M and  U E "ll, I~z. ~(~ = + ~ ) = 1. 

Proo/.  The Markov process 

({YIz. v o P-~}, P(~) ,  ~/, ~ ,  B(~))  

is r ight  continuous and Fellerian, hence strongly Markovian. Given / E P ( ~ ) ,  let 
to(/) = O. Given to(/) . . . . .  tn(/), let t~+l(/) be the least t, if any,  such tha t  the Riemann  
distance from 
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/ ( to( / )+. . .+t~(/ ) )  to  / ( t o ( / ) + . . . + 4 ( / ) + t )  

is greater  than  or equM to 1 (if such a t exists, tn+l(/) is well-defined by  r ight  conti- 
nuity).  Clearly tl(/) + ... + Q(f) is a s topping t ime for each n. 

I f  U(/) is finite, then all the 4(/) are defined and their sum converges. I n  any  
case, each t~ is defined with I-L. u o p -x  probabi l i ty  one. The random variables t~ for 
n ) 1 are independent  by  the strong Markov proper ty  and have the same probabi l i ty  
distr ibution on the nonnegat ive real axis. Each  is almost  surely str ict ly positive by  
r ight  continuity.  Thus the probabi l i ty  of their sum converging is zero, q.e.d. 

I t  follows tha t  under  our assumptions the measures Pt(P, ) are all probabi l i ty  
measures. We summarize our results as follows: 

Theorem 8.2. There is a natural 1 - 1 correspondence between sets {P~} o/ measures 
on ,.4 satis/ying (A)-(E) o / w  4, and in/initely divisible radial probability measures P1 
on ~ ,  and hence with pairs (L, ~) as described earlier in this section. Each P~ gives 
outer measure 1 to the set o//unctions / E ,,4 having left and right derivatives at all points 
(except le/t derivatives at 0)~ equal" except at countably many points, with right deriva- 
tives continuous/rom the right and le/t derivatives/rom the le/t. 

9. Further  d i scuss ion  o f  radial  s emigroups  on  ~/ 

I n  this section we discuss fur ther  facts which were no t  needed for the proof of 
Theorem 8.2, bu t  m a y  well be of interest. 

Suppose /~ is an infinitely divisible radial  probabi l i ty  measure on ~ ,  and {YIz. v} 
the corresponding Markov process on ~0. I t  follows from results of Gangolli [3] t ha t  
if n(M, / ,  t) for M, t >~ 0 and f = <r ~fl> E ~0 is the number  of values of ~ < t such tha t  
the Riemann  distance f rom r  ) to r  + ) is at  least M, then 

/ n( M,  /, t) d~-[z, u(/) = tL(/u) ( U: ~(U) ~> M). 

Thus if L = 0, ~ > 0, ~ is almost  surely continuous. These processes ("Brownian 
motions")  will be considered in w 10. 

On the other  hand, we have so-cal]ed "Poisson"  processes defined as follows: let 
/~, be normalized Kp-invariant  "surface area"  measure on the sphere ~ = (r in 7~, for 
any  a > 0. Then the "Poisson measure"  7e((~, c) is defined by  

~((~, c) = e -~  ~ ~ (ct~.) ~ / n ! ,  
n = O  

where the powers represent convolutions. I t  is easy to verify tha t  Pt ~ ~(a, ct) gives 
a convolution semigroup. The associated process in ~ will remain at  one point  for 
some time, then jump to one of the points at  R iemann  distance a, with uniform 
probabil i ty distr ibution over the sphere of such points. The probabi l i ty  of such a 
jump during an interval t o < t < t o + s is 1 - e -~c (see L o i r e  [1] p. 548), which is as. 
ympto t ic  to ce as e ~ 0. 

A Poisson process seems very  natural  as a velocity process, where a particle un. 
dergoes collisions at  various times which cause discontinuities in its velocity, constant  
between collisions. 
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I f  I is the  iden t i ty  opera tor  on bounded continuous funct ions on ~/, then 

l im (Pt - I ) / t  
tr 

will be, in general, an unbounded  opera tor  defined on a subspace, called the  "gene-  
r a t o r "  of the semigroup Pt. Transferr ing our semigroups f rom " t / to  s in a ra ther  
obvious way, we obta in  informat ion  on their  generators  from H u n t  [1] (see also 
W e h n  [1]). 

Since any  radial  measure  # on "U is an average  

tt = f#.dv((~) 

for some finite measure  v on R +, we can expl ici t ly  calculate any  convolut ion of 
radia l  measures if we can find #a-)6 ~/b for a, b > 0. In  doing this, we can assume 
b < a .  Suppose given c~> 0; let  us f ind 

Clearly 

/(a, b, c) = (tta ~e lib) (o <~ c). 

/(a,b,c)=O if c < a - b ,  

= 1  if c>a+b.  

For  any  u C ~ / a n d  t > 0 let  S(u, t) be the  set of points  of ~ / a t  R i e m a n n  dis tance 
t f rom u. Le t  

q = (sinh a, O, O, cosh a); 

then 0(q)= a. Also La E I~ takes p = (0, 0, 0, 1) into q, where 

La(x, y, z, t) = (x cosh a + t sinh a, y, z, t cosh a + x sinh a). 

S(p, b) is the  set of (X, y, z, T) E "tl with T = cosh b and 

X , + y2 + z 2 = sinh ~ b. 

Thus S(q, b) is the  set of points  

(X cosh a + cosh b sinh a, y, z, cosh b cosh a + X sinh a) 

wi th  X~ + y2 + z 2 = sinh2b. Then S(p, c) 0 S(q, b) is the set of (x, y, z, t) wi th  t = eosh c, 
x = X cosh a + eosh b sinh a where X = (cosh c - cosh b cosh a ) / s inh  a, and ya + z 2 = 
sinh2b - X 2. Applying L-~ we obta in  a circle of radius sinh~b - X 2 in S(p, b), a sphere 
of radius sinh b, in the given coordinate  system for M o. W e  now wan t  to f ind the  
areas of the  two zones demarca ted  by  this circle. 

Fo r  c small enough so tha t  cosh c ~< cosh b cosh a, the  area of the zone which con- 
cerns us is 

2z~ sinh b (sinh b - C~ b c~ a--- e~ c) a 

For  cosh c > cosh b cosh a we wan t  the area of the  larger of the two zones marked  
off by the circle, which is g iven by the same formula.  The  to ta l  area of the sphere 
being 4 z  sinh2b, we obtain  
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cosh c -  cosh b cosh a/ 
/(a, b, c) = �89 1 + s i ~  bsisinhaa ] '  

d/(a, b, c)/dc = sinh c/2 sinh a sinh b. 

Proposition 9.1. For  any  a, b, ~ 0, 

(a+b sinh x 
~la-)~- /~b = ira ~1 2 sinh-as]sinh 5 ttxdx" 

We now turn to proving " t ransience" or "non-recurrence"  of our invar iant  pro- 
cesses in ~ .  Proposi t ion 9.1 will not  be used. 

Theorem 9.2. For any invariant Markov process {I/z. 9} as described in w 6, with l~z, v 
not concentrated in one/unction, and any compact subset K of "H, 

I~z,v{ <r ~p> : y~(v) ~ K / o r  all su//iciently large v} = 1. 

We first prove the following 

Lemma 9.3. For any radial probability measure tt on ~ not concentrated at p,  
0 </2(0) < 1 and/or  any R >~ 0 there is a K > 0 such that 

#"(e  < R) < I;[/2(0)]". 

Proo/. Since tt is no t  concentra ted  at  p,  

o</2(o)= fu2hed~  < l. 

Then  fsin Qh- ----e "= (o)= [/2(0)]". 
Thus  given R ~> O, 

sinh R 
#"(e  ~< R) < ~ R ~  [/2(0)]", q.e.d. 

Now to prove Theorem 9.2, suppose for some z, U, and compact  K c ~ ,  

PK = l'-[z,U( <r y~} E "~ : y~(t) e K for t arbi trar i ly large) > 0. 

For  k = l ,  2 . . . . .  / = <~, y~> E ~q, let nk(/) be the kth integer n such t h a t  yJ(t) E K 
for  some t in the interval  [n, n + 1), or + ~ if there is no such n; let tk(/) be the 
least such t, or + ~ if nk = + ~ .  Then each tk is a stopping time. 

Let  d be the Riemann distance in ~ .  There is an  R > 0 such tha t  

I~,u(<r y~> : d(yJ(t), y~(0)) ~< R, 0 ~< t ~< 1) = e > 0. 

e is clearly independent  of z and U. Le t  Ak be the set of all / E ~ such tha t  nk(/) 
and  tk(/) are finite, and let C~ be the set of <r yJ} E Ak such tha t  

d(~p(tk), ~p(tk + t)) <~R, 0 < t <~ 1. 
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Then by  the the strong Markov property of {l~.v} 

1-L. ~(GI B~) = 

almost everywhere on Ak. Thus 

1-[~.v(Ck)=sl-Iz.v(Ak)>~ePs,>O for k = l , 2  . . . . .  

Thus 1I~. v{/: / E C~ for infinitely many  k} >~ SPK. 

Hence if Ka is the set of U E ~  such tha t  d(U, V) <~R for some V E K ,  

H, .v{( r  v2): v/(n~ + 1) E Ka for infinitely many  k} > 0. 

This contradicts Lemma 9.3, so the proof of Theorem 9.2 is complete. 

10. Diffusion processes in ~ and M x ~/ 

A convolution semigroup Pt in a symmetric space, e.g. in ~/, is called a diffusion 
semigroup if 

lim Pt(~ >~ t) / t  = O, 
t~O 

where 0 is the Riemannian distance from the fixed point used in defining convolu- 
tion. The theory of such semigroups tells us that  the generator A is defined at  least 
on all functions which, together with their first- and second-order partial derivatives, 
are bounded and uniformly continuous on ~ ,  and is equal on these functions to a 
second-order differential operator (Yosida [1]). 

On ~ ,  or other "two-point homogeneous" symmetric spaces G/K,  G-invariance 
then implies tha t  A = mA + b where A is the Laplace-Beltrami operator. By defini- 
tion of A it is zero on constants and A/~< 0 where / has a relative maximum, so tha t  
b = 0  and m~>0. 

Thus we have the "Brownian motion" semigroup with parameter  m as defined 
by Yosida [1]. On ~/, the Pt for this semigroup are given explicitly by Tutubalin [1] as 

Pt = ( 4 3 z m t )  - 3 / 2  Q exp -- mt -- �9 N ,  
sinh ~ 4mr 

where N is the s  measure on ~ given by 4~(sinh2~) d~ d• and ~ is normal- 
ized orthogon~lly invariant surface area measure  on a sphere (ds = cos dpdOdr 
In  this case the measures P~ are concentrated in the set of functions / h a v i n g  
continuous first derivatives tiff), since the Pt are a diffusion semigroup (Yosida [1], 
Dynkin [1] Theorem 6.5). 

Now, the space M • ~ / i s  a homogeneous space under the action of the "Poincar6 
group" s generated by s (acting on M and ~/ together)  and by translations of M 
which leave ~/pointwise fixed. The subgroup of s leaving the point (0, p) of M • 
fixed remains equal to K~, so tha t  M•  can be regarded as the space s  of 

right cosets of K v in / : .  
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One can define a convolut ion for finite, (left) K f i n v a r i a n t  measures on M • "U, 
as before, by  

(# ~ev) ( A ) =  l" M 

I 

A E B ( M  • "U), 

where Tz E F~ takes z into (0, p) and/~ and v are invariant  under  Kp. 
Our conditions (I) and (II)  of w 6 can be regarded as conditions of ~-invariance 

of transit ion probabilities 

Qt((x, p) ; B) = YIx.,(/ : /(t) E B),  

t >~ 0, x E M,  p E "1l, B E B(M • ~) .  Our assumptions imply, letting 

Q, = R,((0 ,  p )  ; ), 

t ha t  Qs % Qt = Qs+t on M • ~ .  If  Pt is a diffusion semigroup on ~ with generator  
mA, the generator  of Qt is the differential operator  whose value at  the point  (x, U) 
of M • ~ is - U + M A ,  where mA acts on ~ and  U acts  as a first-order differential 
operator  on M at  x. 

G. Schay [1] also studied ~- invar iant  diffusion processes in M • M0, and arrived 
at  essentially the same generator  or "diffusion equat ion"  (Schay [1] Theorem 4 p. 39, 
Equa t ion  3.33). Our use of the proper  t ime permits  a considerable simplification of 
the result. 

1 1 .  N o n - e x i s t e n c e  r e s u l t s  

I n  w 8 above we proved the existence of a class of Lorentz- invar iant  processes 
with speeds less than 1 in M • V. I n  this section we show tha t  such processes with 
speeds equal to 1 (in M • S 2, where S 2 is the sphere ] x ] = 1 in R a) are deterministic 
(trivial), and tha t  this remains essentially true if we allow stutes to be specified by  
momenta  ra ther  than velocities only. We also prove the non-existence of invar iant  
processes in M itself. The results in this section do not  require the Markov proper ty  
or cont inui ty  in probabil i ty.  

On a t ra jec tory  with speed almost  everywhere equal to 1 the proper time ~ is a 
constant  and hence not  suitable as a parameter .  

Let  ~ he the set of all functions / f rom R + to X such tha t  for 0 <~ s <~ t, 

I/(t) -/(s) I < t - s ,  

and i f / ' ( t )  is defined, I]'(t)] = 1. 
Now suppose given start ing probabilities Px" on the stat ionary,  measurable pa th  

space (~ ,  1, X ,  B(X)) ,  satisfying (A), (B) and (D) of w 4, with V replaced by  S ~. 
A collection {Px'} will be called deterministic if each pv gives mass 1 to a set con- 

taining only one function. 
For  any  / E ~ w i t h / '  non-constant  there is a unique t = to(]) > 0 such tha t  

t 2 - / ( t )  2 = 1 

(i.e., (/(t), t) E ~) .  Clearly to( ) is B0(O)-measurable. 
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pV Suppose { x} is non-deterministic.  Then by  (A) and (D) no P~ gives mass 1 to 
one function. Let  x = 0 and fix v E S ~. Then there exist Lorentz  t ransformations 
in ,  n - 1, 2 . . . . .  such tha t  VLn(v) = v for all n and for any  compact  subset C of ~ ,  
L~(C) and C are disjoint for n large enough (we take L~ as Lorentz  t ransformations 
defined by  relative velocities v~ parallel to v with ]Vn ] I' 1). For  A EB (~ ) ,  let 

P ( A ) -  P~x{/ : (/(to(f)), to(/)) E A}.  

Then P is a finite, non-zero Borel measure on ~ ,  invar iant  under all the L~, which 
is impossible. We have proved 

Theorem l l .1 .  I /  ({P~}, O) satisfies (A), (B) and (D) o /w  4, then each P~ is con- 
centrated in the /unction /E  0 wi th / (0)  = x and/ ' ( t )  = v /o r  all t >~ O. Conversely, such 
P~ satis/y ( A ) -  (E). 

We can t ry  to avoid the pauci ty  of processes in Theorem 11.1 by  introducing 
different possible "s ta tes"  of a particle moving with speed 1 in a given direction. 
One possibility is to use an "ene rgy"  analogous to the energy of a photon  or other 
particle of zero rest mass. We take such an  energy as defined by  a funct ion 

E :  (C, s, / ,)-> E(C, s, /), 

where / E O, s >~ 0, and C is an arb i t rary  Lorentz  coordinate system (x( ) ,  t ( ) ) ,  where 
x( ) and t( ) take M onto X and  R respectively. Then the t ra jec tory  defined by  / in 
the original coordinate system of M is defined in C by  another  func t ion /c  E O with 

x( (/(s), 8)) =/c(t((/(s),  s)  ) ), s >1 o. 

We assume tha t  E(C, s , / )  is defined if and only if/'c(s) is defined. 
We require tha t  

(E(C,  t,/)/'c(t), E(C, t , / ) )  

t ransform as an "energy-momentum vector"  under  Lorentz  t ransformations L (in s  
of C (see Moller [1] p. 72). This is simply the natural  act ion of C on M0, the tangent  
space of M, through its isomorphism with M. The space of possible energy-momentum 
vectors is the open half-cone Q of all points (~, E ) ,  ~ E R 3, E > O, with ] ~ ]2 _ E 2. Q is 
acted on transit ively by  1:. 

The subgroup :~ of s leaving the point  (1, 0, 0, 1) fixed contains all t ransforma- 
tions K~c with matrices 

1 - - a  b c a 

- c  0 1 c 

- a  b c l + a  

where a = (b 2 + c2)/2 and b and c are arb i t rary  real numbers.  Thus (in its relative 
topology from the general linear group) :K is not  compact.  

For  k >~ 0 let ~k be the set of (Xl, X2, X3, t) E ~ C M with x 2 ~ 0, x a ~> 0, and  t ~< It. 
I n  ~k, t - x 1 > 0 (since t > 0 and t ~ > x~) so by  compactness there is an  e > 0 such tha t  
t + x I ~ e for all (x, t) E "Uk. Now 
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Ko~(x, t)  = ( , - ax 1 + bx 2 + cx 3 + (1 § a) t). 

Thus for (x, t} E ~k and b, c ~> 0 the t ime component  of Kbc(x, t} it a t  least as. Hence 
for b and c sufficiently large, K~c(~/~) is disjoint f rom ~ ,  but,  on the other  hand, it 
is included in a larger set ~k.. Thus we can find an infinite sequence of disjoint sets 
in ~ taken into ~/k by  t ransformations in :~. Thus for the initial energy-momentum 
(1,0, 0, 1) the probabi l i ty  tha t  the t ra jec tory  passes th rough  ?gk is zero. We can 
apply  the same a rgument  to the cases where y >~ 0, z ~> 0 in the definition of ~k is 
replaced by  y ~> 0, z ~< 0 or y ~< 0, z >~ 0 or y ~< 0, z ~< 0 (letting b and c have the same 
signs as y and  z respectively). Thus there is probabi l i ty  zero of passing through ~ .  

Let  ~ be the set of all functions / = (g, h} from R + to M • Q such tha t  g E ~ and 
g'(t), where defined, is proport ional  to h(t) (where the constant  m a y  va ry  with t). We 
have proved 

Theorem 11.2. Suppose starting probabilities {P~,<~.E> } on ( ~ ,  I ,  M • Q, B ( M  • Q)) 
are homogeneous in z and Lorentz-invariant in the sense that /or  any L E s de/ining a 
map L • L o~ M • Q onto itsel/ and hence o/ ~ onto itsel/, 

P~.<~,~> o (L • L) -1 = PL(z).L<~. E>. 

Then /or each z C M  and (~, E}  C Q, P~.<$.E> is concentrated in the set o/ /unctions 
/ = (g, h} where g defines a straight hall-line in M and h(t) is proportional to (~, E }  
/or almost all t (Lebesgue measure), possibly with a varying proportionality/actor.  

Thus the energy-momentum approach does no t  yield any  essentially non-trivial  
processes either. We do not  consider here the possibility of allowing still more in- 
formation,  e.g. a "polar izat ion",  in the definition of states. 

Random processes with speed 1 have been considered by  Rudberg  [1] in one or 
two space dimensions. His approach is different f rom ours; to help clarify the situa- 
t ion we now consider the cases of one and two space dimensions. 

For  the "ve loc i ty"  approach (as in Theorem 11.1) in any  number  of space dimen- 
sions, the same arguments  as above yield the conclusion tha t  invar iant  processes 
do not  exist. This seems to be reflected in Rudberg ' s  condition (p. 12, above Equ.  
(19),and p. 28, A) tha t  there is a distinguished time-axis direction for which the 
probabilities of scattering in all directions are equal. 

For  the " m o m e n t u m "  approach,  apparent ly  no t  t reated by  Rudberg,  the situa- 
tion is as follows: in two or more space dimensions, the si tuation for invariant  pro- 
cesses is essentially the same; in the a rgument  in two dimensions (1, 0, 0, 1) and K~c 
can be replaced respectively by  (1, 0, 1) and 

1 - a  b a ) 

Kb = -- b 1 b , a = b~/2. 

- a  b l + a  

I n  one space dimension, the a rgument  which proved Theorem 11.2 does not apply, 
since the group :~ reduces to the identity.  The question of the t ru th  of Theorem 11.2 
in one space dimension will be left open here. 

Now we turn  to processes in M itself. Let  ~ be the class of all functions / f rom 
R + to  M with 

I/(s)-/(t)[ <[s-tl, s,t~o. 
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Suppose given start ing probabilities {P~} on 

(y, I ,  M,  B(M))  

which satisfy (A) and (B) below: 

(A) For  t~>~O, A ~ E B ( M ) , z E M ,  

P0{/:/(t,) E A~, i = 1 . . . .  , n} = Pz{[ : l(t~) E A, + z, i = 1 . . . . .  n} 

(B) For  any L E s and A E B~ 

Po(A) = Po(L(A)).  

As before, for those [ E ~ with </(t), t> E ~/ for some t we let to(/) be the unique 
such t. Assuming P0 gives positive probabi l i ty  to the set of such / ,  

P(A)  = P0(/:  </(to(/)), to(/)> E A) 

is a finite, s  Borel measure on ~/, which is impossible. Thus P0 is con- 
centrated in the set of /E  ~ with / (0 )=  0 and / '  equal to a constant  v E $2. (This 
result was obtained under  addit ional hypotheses by  G. Schay [1] Theorem 1 pp. 
17-18.) Since orthogonal t ransformations of X are in s  the distr ibution of v is an 
orthogonally invariant  probabil i ty measure, hence the s tandard  surface area measure 
divided by  4~r. 

Let  ~) be the set of half-lines 

t --~ (at, bt, ct, t),  t >~ 0 

on which a 2 + b 2 + c 2 = 1 and a, b, c >~ O, so tha t  P0(O) - ~" I f  w > O, the Lorentz  trans- 
formation Xw: 

x + w t  t + w x  
<x, y, z, t> Vl-w  y' z' v: 

takes the half-line defined by  v = (a, b, c) into the half-line of all points 

<a+Wl+wa t " b V ~ t ' c '  l/1-w2t"t'>'t'>~O'l§ 

Thus ~ is taken into itself. The second components  of the velocities associated with 

elements of Xw(~) are at  most  equal to t/1 - w  2. Thus  an open subset of S 2, the  
(a, b, c) with a and c sufficiently small and positive, has measure zero for the distri- 
but ion of v in S 2, a contradiction. Thus we have 

Theorem 11.3. No starting probabilities {Pz} satis/ying (A) and (B) (o/this section) 
e)cist, i.e. there are no Lorentz-invariant processes in space-time M.  

12. Unso lved  problems 

A first set of problems is the explicit calculation of transit ion probabilities for 
the processes of Theorem 8.2, such as the following: the distribution of velocity in 
~ / a t  proper time ~ for nondiffusion processes; the distribution of position a t  proper 
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t ime ~ for all processes; and the distribution of position and velocity at  coordinate 
t ime t for all processes. The latter would be of special interest for diffusion processes; 
to simplify it, one can first seek only the distribution of velocity at  time t. For a 
diffusion process with parameter  m this leads to a parabolic partial differential 
equation in ~ :  

cosh 0 ~//~ t = mA/ 
(cf. Schay [1] equation 3.60 for the case of one space dimension). 

Also of interest are the "relativistic Maxwell(-Boltzmann)" distributions originally 
defined by  Ji i t tner  [1] (see also Synge [1] equation (118) p. 36). These are radial 
measures on "U of the form 

M ~  = ~ exp ( - fl cosh 0) cosh 0" N 

where N is the s  measure 

4~r sinh20 d 0 d ~  

and ~, fl > 0. (Note that  if "/~ is projected into the spacelike hyperplane t = 0 per- 
pendicular to p = (0, 0, 0, 1) E ~/, cosh odN goes into Lebesgue measure.) 

Given fl > 0, M ~  is a probabili ty measure if and only if 

0~ = 1/4~ exp ( - fl eosh 0) eosh 0 sinh~0 do = fl//4:~K2(fl), 
0 

where K s is a Bessel function (see e.g. Synge [1] w 14). Let  M s be M~r for this value 
Of 0~. 

Schay [1] asserts that  21/8 for fixed fl is a "s teady-s ta te"  solution of a diffusion 
equation with a term representing "internal  friction." Thus it may  be irrelevant to 
ask whether M~ is infinitely divisible, etc., but it seems tha t  Schay's result should 
be followed up. 

Thirdly, it would be interesting to move from the "special relat ivi ty" assumptions 
of this paper to the case of general relativity, in which M is no longer a vector space 
but  a 4-dimensional manifold with a Lorentz quadratic form on its tangent spaces. 
The proper t ime is still available, but spatial homogeneity and Lorentz-invariance 
require reformulation. Instead of the product M x '~ one has a subset 'U(M) of the 
" tangent  bundle" T(M):'~(M) consists of all " forward"  timelike vectors of unit 
magnitude a t  all points of M. (We assume it is possible to choose a "forward" direc- 
tion at  all points in a continuous way.) 

In  particular, there should be diffusion processes in 'U(M), generated by  the dif- 
ferential operators which, roughly speaking, have the form - U + m A  at  a point 
(x, U) of 'U(M), where m > 0, x E M, U belongs to the tangent space at  x, and A is 
the Laplaee-Beltrami operator in a hyperboloid in this tangent space. U may  be 
regarded as a first-order partial derivation, or tangent vector, to '~(M) by  way of 
the pseudo-Riemannian "affine connection" (or"parallel  displacement": see Helgason 
[1] Chapter 1 w167 1-6). Diffusions in sufficient generality to cover this ease have been 
considered by  Nelson [1] and Gangolli [2], but  their results are not as complete as 
might be desired for our purposes. For example, it apparent ly is not known whether 
the semigroup generated by the operator mentioned above on bounded measurable 
functions actually takes bounded continuous functions into bounded continuous 
functions. This may  require supplementary, but  physically reasonable, hypotheses 
o n  J}/. 
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F i n a l l y ,  g i v e n  a " B r o w n i a n  m o t i o n "  d i f fus ion  in ~ ( M ) ,  e v e n  whe re  M is a v e c t o r  
space,  one  m i g h t  le t  t h e  p a r a m e t e r  m in t he  g e n e r a t o r  a p p r o a c h  i n f i n i t y  for  use in 
de f in ing  a sor t  of  " F e y n m a n  i n t e g r a l "  as  in  I t o ' s  a p p r o a c h  [1] to  t he  n o n - r e l a t i v i s t i c  
F e y n m a n  in tegra l .  Of course,  t he re  is also t h e  p r o b l e m  of f ind ing  a su i t ab le  rep lace-  
m e n t  for  t h e  c lass ical  L a g r a n g i a n  func t ion .  
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