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Lorentz-invariant Markov processes in
relativistic phase space

By R. M. DubLEY

1. Introduction

This paper deals with certain “random motions” permitted by the special theory
of relativity; that is, with probability measures on sets of trajectories on which
speeds are less than or equal to the speed ¢ of light (which we take equal to 1
throughout). We deal with classes of such measures indexed by possible initial states,
related to each other by the Lorentz group (implying certain invariance conditions
for individual measures).

The definition of “state” as mentioned above is governed by the Markov pro-
perty, i.e. that given the present state, further knowledge of past states should be
irrelevant to the prediction of future states. It is known that position is insufficient
for this purpose (see e.g. Theorem 11.3 below), and it seems natural to include the
velocity in specifying the state. Indeed, velocities must exist at almost all times
since position is a Lipschitzian function of time, and the existence of velocities is
generally incompatible with the Markov property of a position process.

We distinguish between speeds strictly less than 1 and those equal to 1, and do
not consider processes in which both occur (except in Theorem 11.3). This corre-
sponds to the physical distinction between particles of positive or zero rest mass.
Invariant processes of speed 1 turn out to be essentially uninteresting (see § 11) in
that they cannot change direction.

We are left, then, with processes of speeds almost always strictly less than 1.
For these processes, we can introduce the relativistic “‘proper time’ on each trajec-
tory (see §6 below). The possible ““4-velocities”, i.e. derivatives of space-time posi-
tion with respect to proper time, then lie in a three-dimensional hyperboloid U with
a symmetric, Lorentz-invariant Riemannian structure (see § 7). Because of our in-
variance assumptions, the velocity process is itself Markovian (Theorem 3.2) and
defined by a ““convolution” semigroup on U.

Such convolution semigroups have fortunately been completely classified by Tutu-
balin [1]. We thus arrive at an explicit description of all the processes which concern
us, in Theorem 8.2, the main theorem of the paper. There are two extreme possi-
bilities: on the one hand, “Brownian motions” in U (a one-parameter family indexed
by a diffusion constant), which yield (the only) processes in which velocity is a
continuous (but, of course, not differentiable) function of time; see § 10. On the other
hand, there are “Poisson” processes in which the velocity changes only by jumps.
Finally, there are (roughly speaking) mixtures of the two.
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In order to make the change from coordinate time to proper time as parameter,
it seems necessary to make an assumption of continuity in probability. One would
like to infer this from the other assumptions through a sort of “infinite divisibility,”
but in our situation this seems difficult before the change to proper time, since one
has a convolution semigroup on a symmetric space only after the change.

Sections 2 and 3 deal with generalities about Markov processes. Section 4 intro-
duces Lorentz-invariant Markov processes of speeds less than 1. Sections 5-10 carry
through the characterization of these processes. In section 11, we establish the triv-
iality of processes with speeds equal to 1 or states given by position only. In sec-
tion 12 some unsolved problems are mentioned.

For Markov processes I have used specializations of the definitions in Dynkin’s
books [1] and [2], since several results are also quoted. It is worth noting, however,
that this leads to at least one unsatisfying situation. In the usual approach to the
strong Markov property one demands right continuity for sample functions. Here,
where a sample function is (in part) a derivative, it becomes a right derivative after
imposition of right continuity. It may seem unnatural to consider the right deriva-
tive of a function at time ¢ as known at that time, if the left derivative is different.
The way out of this difficulty, if it is one, will be left for other researches.

The ““diffusion” or “Brownian motion” processes studied in § 10 below have been
worked on previously by G. Schay [1] and H. Dinges. Both the latter and R. Her-
mann advised me against beginning with the proper time (i.e., essentially starting
in the middle of §6 below), as I did in an earlier draft, and I am now glad to have
followed their advice. An exchange of correspondence with H. Dinges on this sub-
ject in general has been most helpful.

2. Starting probabilities and Markov processes

First we review some measure-theoretic notation. If (X, §, ) and (Y, T, ») are
o-finite measure spaces (which for our purposes may as well be finite), then $xJ
denotes the g-field of subsets of the Cartesian product X x ¥ generated by all sets
AxB,A€S, BET, and uxv the product measure. If F maps X onto another set S,
then F(§) denotes the class of all C < § such that F™(C)={x: F(x)€C}€S. We let

(1o F~Y) ()= u(F(C)), CEF(S).

Finally if f is u-integrable and  is a sub-g-field of S, then E,(f| #) denotes the
u-conditional expectation of f given H, and if f is the indicator function of a set 4,
we let

Eﬂ(fl )= (4|3
To clarify the argument of a function F = u(4|H) we may write
Fx)y=ulx:2€4|H),

where “x € A” will be replaced by a defining condition.

Throughout this paper, R will denote the real line (with its usual topology), R”
its n-fold Cartesian product, and R¥ the nonnegative axis [0, o0). If § is any topo-
logical space, B(S) will denote the Borel o-field generated by the open sets in S.

We shall consider certain function spaces defined as follows:
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Definition. If S is a set, a path space for 8 is a pair (A4, £) satisfying the following
conditions:

(1) ¢ is a function on A4 with 0 <((f) < + oo, f€ A.

(2) Each f€ 4 is a function from the interval [0, {(f)) to S.
(3) For each s>0 and z €S there is an f€ A4 with f(s)==.

If S is any set, the set A4 of all functions f from intervals [0, {(f)) to S will be
called the maximal path space for S.
Given a path space (A4, {) and s =0, let

A={feA: () >s).

Suppose § is a o-field of subsets of 8. If 0 <s <t, Bj(A, §) will denote the ¢-field of
subsets of 4° generated by all sets of the form

{feA :f(rye 4}

for s<r<t and 4A€S (here and throughout f(r) € 4 implies (f)>r). B°(A4, §) will
be the ¢-field generated by all the B{(4, §) for t>s. Context permitting, Bi(A4, S)
will be written Bi(A4) or Bf, and likewise for B°. We call (A4, £, S, S) a measurable
path space.

We shall need the following fact, proved in Dynkin [1] Lemma 5.9:

Lemma 2.1. Suppose S is a metric space and (A, ) is a path space for S such that
each €A is continuous from the right wherever it is defined. For 0 <r<s let M} be
the product o-field

Bi(A, B(S)) xB(R")

m AxR*. Let F(f,t)=f(t) for r <t <s. Then the domain D of F belongs to M; and F
18 Mi-measurable on D.

For k>0 let 05 be the transformation of functions defined by
BufY@y=f+R), t=0.

A path space (A, £) will be called stationary if for each b >0, 8, takes 4 into itself.
If (A,(,8,8) is a stationary measurable path space, clearly 8, takes Bi{; onto B}
for any h>0, t=>s>0.

A Markov process will be defined below by a class of measures on a path space
corresponding to different initial states. The restriction to path spaces is a speciali-
zation of the definitions in Dynkin [1] and [2]. The definition in [2] requires station-
ary transition probabilities, which are sufficient for our purposes. It will be repro-
duced after our own is completed.

Definition. Suppose (A, , S, §) is a measurable path space in which § contains
all one-point sets. Given z €S, a probability measure P on B%(A4) will be called a
starting probability at x on (4,7, 8, §) if

P(f: f(0)=2)=1.
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Definition. Suppose (A4, ¢, S, S) is stationary and for each z €8, P, is a starting
probability at  on A. Then ({P,}, 4,(,8,S) or, briefly, ({P,}, A) or {P,},isa
Markov process it

(1) For any t>0 and A €S, P(t,x, A) = P.(f: f(¢) € A) is S-measurable in x.
(2) Whenever 0<t<u,z€S, and AE€S, P,(f: f(u)€A|B?)=P(u—t,f{),A4) al-
most everywhere with respect to P, on A4°.

The following is known (Dynkin [1], Lemma 2.2):

Lemma 2.2, If ({P.}, A, ¢, 8, 8) is a Markov process and A € B°(A4, S), then P,(A)
is S-measurable in x.

The definition of Markov process in Dynkin [2] can be reformulated in our terms
as follows:

Definition. Suppose given a stationary measurable path space (A4, Z, 8, $), a set Q,
a mapping
X:wo—>z( ,0)

of Q onto A, for each t>0 a o-field M, of subsets of
Q= {weQ: i(a( , w)>t},

a o-field M° of subsets of Q including all the M,, and a set {Q,, x € S} of probability
measures on M°. Then (x( , ), {M;}, {Q.}) is a fields Markov process if:

(A) For 0<t<wand A€M, or A€ X YBYS, §)),
ANQ.eM,.

(B) If P,is Q. > X ' restricted to B°(A, §), then ({P,}, A, {, S, §) is a Markov pro-
cess (in the path space sense), and (2) holds with B} replaced by X(M,).

The word ‘“‘fields” has been added to clarify the difference between the two de-
finitions. If the @, are defined only on the minimal o-field X *(B°), we have an
isomorphism,

It is clear that a Markov process on a path space defines a fields Markov process,
and conversely a fields Markov process defines a path space Markov process. How-
ever, non-isomorphic fields Markov processes may define the same path space Mar-
kov process.

A Markov process on a maximal path space is called “canonical” by Dynkin
(1, 2.11}. Any path space Markov process extends naturally to a canonical one.
Conversely, a canonical Markov process ({P,}, B) can be restricted to a path space
A< B if and only if 4 has outer measure 1 for all the P, (Dynkin [1] Theorem 2.5).

We shall also use the strong Markov property, which we proceed to define. Sup-
pose (A4,¢, X, §) is a measurable path space. A stopping time on the path space is a
B°(A4)-measurable function 7 from A to R' such that 7(f) <((f) for all f€ 4 and,
for any =0,

{feA:z(f)y<t<l(f)} € BYA).

If 7 is a stopping time, let
A ={feA:L(h)> ()}
and let B; be the o-field of sets 4 < 4 such that for any ¢ >0,
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AN{f:o(fy <t <{(f)} € BUA).

Then a Markov process {P,} on A is called strongly Markovian if:
SM(1) Given BE€ S,

<t, x> —>P{f: f(t) € B}

is B(R")x S-measurable,
SM(2) for any stopping time 7, BE §, and B;-measurable function 5> 1,

Py(f:{(n) € B| B) = Prey (9 : 9( — 7) € B)
almost everywhere on A4°® with respect to P,, and {z : f(r) =z for some f€ 4} €.

3. Markov processes in product spaces

Suppose (A, & X, §) and (B, y, Y, J) are stationary measurable path spaces with
&=mn=+ oo, and for each z€X (y€Y), P, (Q,) is a starting probability on A4 (B).

Let Z=XxY, U=§xT, C=AxB,

and {=+ co. For 2={z,y>€Z let R, be the measure P,x@, on C. Regard b=
{f, 9> €C as the function

ey =<f), g)> €2, >0.

Theorem 3.1. ({R.},C, ¢, Z,U) is a Markov process if and only if both {P,} and
{Q,} are Markov processes.

Proof. Clearly (C,{, Z,U) is a measurable path space and each E, is a starting
probability at z. First suppose {P,} and {@,} are both Markovian. The class of sets
C€U for which both 1) and 2) in the definition of Markov process hold is closed
under finite, disjoint unions and countable increasing unions and decreasing inter-
sections. Thus we can put C =4 xB, A€§, B€J, and the conclusion follows easily.

Now suppose {R,} is Markovian; let us show that {P,} is Markovian. The meas-
urability condition 1) is clear. Given 0<¢<u, x€X, and AE€S, let 2=z, y) for
some y € ¥ and note that the conditional probability of a “rectangle’ for a product
measure is itself a product, so that if 1,=1 for all g,

Py(f:f(u) eA| B} (A) 1,
=R, 9> f(w) €4| B}(C))
= Rywrom (b, ) dlu—t) € A)
=Pr(d: pu—t)€4)-1,
almost everywhere for R,. Choosing g suitably, we obtain that {P,} is Markovian,
q.ed.
Now suppose (X, §) and (Y, J) are measurable spaces, Z=XxY, U=8xT, and
({R.},C, ¢, Z,U) is a Markov process. Suppose @ is a transitive group of automor-
phisms of the measurable space (X, §), and each y €G acts on Z by y<{=, y> = {p(*), y>

and on C in the obvious way. Let K be the natural projection of Z onto ¥ and
K(<f,9>)=g,<f,9> €C, where f and g are both defined on the interval 0 <t < LK, );
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we can let 5(g) = {(<f, g>). Let B be the set of all K(h) for h€C. Clearly (B, 7, Y,J)
is a stationary, measurable path space.

Theorem 3.2. Suppose {R,} is G-invariant, i.e. for any z€ Z, A€ B*C), and y €@,
B.(4)= R, (y(4)).
Then for each y € Y the measure R, K™ is independent of x. Calling it Q,,
({9}, B.1, Y, J)

is & Markov process.

Proof. Each @, is well-defined by G-invariance and is clearly a starting probability
on B. For the Markov property, first given 4 €J we have

Qu(g:9(t) € A)= R, ,,,(<f, g>: g(t) €4)

for any fixed x € X, and this is J-measurable in y. Second, suppose y€ Y, 0 <f<u,
A€J. For any z€X,

R.,(f, 9> g(uy€ 4| B} (C))
=Ry 00K D plu—t)€A)

almost everywhere for R, , in C’. Transforming both sides by K we get
Qu(g: 9(w) € A} B} (B)) = Qoo (y: p(u— 1) € 4)

almost everywhere for @, on Bf, g.e.d.

4. Lorentz-invariant random motions
Let X be a three-dimensional Euclidean space B3 of ordered triples

x= (2, Xy, T3)
of real numbers and let
|z| = (a1 + 25 + 23)'2.

Let M be the space R* of pairs z= (z,t>, x€ X, t€R, with
lells=e- ok

L will denote the group of linear transformations of M into itself which preserve
|||z, have determinant 1, and do not change the sign of ¢ (the proper, orthochronous
Lorentz group).

M, will denote the universal ‘“tangent space” of M, or space of derivatives of
functions from the real line to M at points of M. M, is naturally isomorphic to M,
but for some purposes the two spaces will be distinguished.

Let 4 be the space of functions f from R* to X such that

(1) |1(s) = 1(®)] <|s—¢t] for 5,¢>0 -
(2) If f'(s) is defined (as it is for almost allsby N [f(s)]<1.

246



ARKIV FOR MATEMATIK. Bd 6 nr 14

Let I(f)= + co. Then (A, I, X, B(X)) is a measurable path space. We shall need
the following fact:

Lemma 4.1. Suppose U is an open subset of R*, $=B(U), and (B,;,U,S) isa
measurable path space consisting of continuous functions. Let F=Bx U and '

F=B"(B)xS.
Then the function
<t —>df(t)/dt

18 defined on a set in J and J-measurable there.

Proof. By Lemma 2.1,
<fs ) = f(t) and {f, &) = (f(¢+ 1) = f@&) /7
for any r= 0 have the desired property. For any open set V < R, let
Z(V) = {{f,t>: (f¢ -+ r)— f(t))/r € V for small enough rational » + 0}. Clearly Z(V) € .

For each n=1,2, ..., let {U ,,m},,fil be a locally finite open cover of R¥ by sets of
diameter less than 1/zn. Then

A={f, 0:f (1) exists} = N U Z(Unn)-

Now any open V C R* is the union of the Uy, with U.n <V, where the bar denotes
closure. Thus

{<f7 t>: fl(t) € V} = U mn{Z(Umn) [jmn < V} n4.

This completes the proof.

Now let V' be the open unit ball {v:|v|<1} in B3. V is the space of admissible
velocities. We shall consider families {P?} of measures, where for each € X and
v€EV P7 is a starting probability at x on (4, I, X, B(X)). The family {P?} will be
assumed to satisfy conditions 4)—~ ) to be formulated below.

(A) For any n=1,2,...,4>0,4,€ B(X),x€X, and vEV,
PUf:ft)EAni=1, ... ,n)=Po(f: f(t) EAi—w,i=1, ...,n).
(B) For any z€X and v€V,
Py(f:f(07)=v)=1.

Since each f€ 4 is differentiable almost everywhere and {{f,¢>:f(f) exists} is
product measurable,

{s>0: PY(f'(s) exists) <1}

has Lebesgue measure zero by the Fubini theorem for each » and ». We assume
this set is actually empty, and formulate a Markov property:
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(C) Ift>0,x€X, and v€V, then
Pi(f (t) exists)=1
and for any A € B(A),
Py(A| Bi(A) = P06, 4)
almost everywhere for P2 (where 6, is the translation by ¢, defined in §2 above).

We next formulate a Lorentz-invariance condition. Each L € £ defines a trans-
formation L* of functions f € 4 by

L<f(t)> t> = <L(1)<f(t)5 t>: L(2><f(t)7 t>>:
Lay(f(t), £ = (L* )L (1), £).

Clearly L* is measurable from (4, B%(A4)) to itself. L also defines a transformation
V1 of velocities by

Va(f'(8) = (L7 )" (Laxf(), ).

Our Lorentz-invariance assumption is

(D) P§o(L*)1=Pg*” for any LEC and v€E V.

Let W be the “phase space” X x V. Let d be the metric on W defined by

d(Cx,wy, govy) =|x =y | +|u—v].

The last assumption is that derivatives are continuous in probability:

(E) lim Po (d(<AE). 1'(2)), <0, v)) =€) =0

uniformly in », for any &> 0.

I don’t know whether (E) follows from the preceding assumptions.
Let Q be the set of all functions from R* to W. Then (Q, I, W, B(W)) is a station-
ary, measurable path space. Each measure P; on sets

{f : <f(ti)7fl(ti+)> EBi:i= 1> Pees n}) ti>07 BtEB(W)>

extends uniquely by Kolmogorov’s theorem (Lodve [1] p. 93) to a probability meas-
ure @,, on BXQ). For t,>0, t; can be replaced by #;. Of course, there may exist
with positive probability points ¢, depending on f, at which f'(t) does not exist.

5. Properties of the Q...
In this section we infer from (A4) — (E) that {Q,,} is a ‘‘Fellerian” Markov process,

and discuss other continuity properties.
We consider the transition measures

Q(h’ x, 0, A) = le(f : f(h) EA)
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defined for (z,v> € W, A € B(W), h = 0. Each Q(h, z, v) is a probability measure on W.
We consider weak® convergence of such measures:

pn >t (wealk")

if for every bounded continuous real-valued function f on W,

ffd,un—> f}‘d‘u.

Let BL(W) be the class of bounded Lipschitzian real-valued functions on W, i.e.
functions f with

llfllm—sup|f<w>|+su£|f_d(*ﬂ_;m

Then (BL(W), || ||s2) is & Banach space, and any probability measure u on W defines
an element of the dual space BL*(W), with the dual norm

lrslse=sup (11 l=1).
We have pu, — u (weak™) if and only if

| g = el — 05

see e.g. R.R. Rao [1] Theorem 3.1. (For “if”, nonnegativity of the measures is
essential.)

Theorem 5.1. Under assumptions (4)— (E) of §4, Q(k, x,v, ) 1is jointly weak™ conti-
nuous in h,z, and v.

Proof. We shall prove continuity in » and z uniformly on the triple product,
then simple continuity in ».

We have continuity in %, uniformly in all z, v and h, by assumptions (4) and
(E). For continuity in x, let

Ty<.’l,‘, ’U> = <.'II + y; U\/’
and note that
Qh,x+y,v, )=Qh,x,v, ) T;"
by (4). Letting u = Q(h, z,v, ), we have
e A L L]
llpr=1

Since |(f—foT,)(w)|<|y| if we W, yEX and ||f||zz =1, we have continuity in x,
uniformly in A and ».

It remains to prove continuity in v for fixed  and A, and we can take x=0.
Suppose v,~>v in V. There are L, € £ such that v= V,(v,) for all n, with L, con-
verging to the identity. We also choose numbers ¢, | 0 such that

Ly, b+ ey =(2',t'> and (¢')2—|a'[2>0 imply ¢ >h.
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For f€ A4, {(0) =0, let £,(f) be the unique value of s such that

<f(8), 8> = Lyplac, b+ &n>
for some z. (Then ¢,(f) > & for all € A4 with f(0)=0.) We need the following:
Lemma 5.2. f— <{f(t.(f)), Vi.f ta(f))> is B*-measurable on A.

Proof. Clearly f—t,(f) is B"-measurable, and so is f— (f,t,(f)>, (from B" to
B" x B((h, >)). The map

8> =>Lf(s), Vinf' (), 8> h,

is B" x B(R")-measurable by Lemmas 2.1 and 4.1 and continuity of Vz,. Composing
the last two mappings finishes the proof of the Lemma.
Now we apply assumption (C) to obtain, given &> 0,

) PG (f: d(<fEal1))s Vil CalD), <f(R), £ (R)>) = &| BR)
= Pl (g : d(Kf(h), £/ (k). <g(su(9)), Vg (54(9))>) = &)
almost everywhere for Pg, where s,(g) is the unique value of s such that
g(8), s T h) = Ln(w, b+ &)
for some x. The set of {y, s> € M such that
y,s+h>=L<x, ht+e,)

for some x€X is the set of points of the form L,(z, «,> for some fixed o, >0 and
arbitrary z € X, since L,' takes parallel hyperplanes into parallel hyperplanes.
For y € X the translation

Ty: & —>LKE—y, b

of M onto itself takes points of the form L,{a, «,> onto points of the form L,<b, o, (y)>
Ifor some o,(y). If |y|<h, then a,(y)>0, and as n—> oo, xt,(y)—0 uniformly for
yI<h.
For any y€ X and u €V, let

Anyu=Pylg : (Y, w0, <g(8a(9)); Viag (82(9)))) > &-
Applying first T, and then L;?, letting u, = VL_,,I u, we obtain by (A) and (D)
An,yu=Pg" (¢ :d({0, %), <lan(y)), ¢’ (a())) = &)

Of course, 0<4, ,,<1 for all n,y and u. As n— oo, since a,(y)—0, and the
sequence u, and its limit « form a compact set for any u, we have by (E) that
Anyu—>0 for any u and y with |y|<h. Integrating (*) with respect to Pj over all
of A, we conclude by the bounded convergence theorem that

Py (f : d(<ftalD), Viaf (), FR), ['(R)> =€)
tends to 0 as n— co. Now if BE B(W) let
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Py(B) =Py (f : {f(ta(1), Vi f talf))> € B),
defined by Lemma 5.2. We have shown that
P,—Q(h,0,v) weak™ as n— oo, By (D),
Py(B)=Py'(g: <gh+a), ¢ (h+,)) €B)=Qh + £,,0, vy, B).
We also know that
QG + e, 0,04, ) —Q(k, 0,04, )2 —>0

as % — oo since &, — 0 and the v, lie in a compact set. Hence @(%, 0, v,, )= @(%,0,v, )
weak”, and the proof is complete.
It is now easy to prove

Lemma 5.3. Under assumptions (A) through (E), ({@:,»}, Q) is @ Markov process.

Proof. We know that (Q,I, W, B(W)) is a measurable path space. The @, , are
probability measures on BYQ, B(W)) and are starting probabilities by assumption (B).
For the Markov property, we must first show that givent >0and 4 € B(W), Q(¢, x,v, 4)
is jointly measurable in # and v. If 4 is open, z,—>#, and v, —>v,

Qt, x, v, A) < lim sup Q(t, 2, v,, A)
by Theorem 5.1. This implies joint measurability in x and », and then 4 can be
replaced by an arbitrary Borel set. The Markov property itself then holds by assump-
tion (0), q.e.d.
{The following section, which presents Lemma 5.4, was received as manuseript
added to proof on 15 September 1965.—Editor)

We next verify Dynkin’s condition “IL(I")” for compact sets I', which says in
our case:

Lemma 5.4. For any compact set K< X x ¥V and © >0,
lim sup Q(t, z,v, K)=0.

{z,0)->00 0<tu
(Here (z,v) — oo means |2|— oo and/or |v|—>1.)

Proof. ¥or |x|— oo the result is clear. Thus it suffices to show that for any com-
pact set C< V,
lim sup Q(,0,v, X x C)=0.

|s]41 O0<i<u

We may assume that € is a closed ball centered at 0, and then that v=(z,0,0)
with 0<z } 1. For (x,s> €M let

L(v) <@, 8> = {(x, +28)/V1 — 22, ,, 2y, (s +22,) /V1 — 22).
Then L(v) € £ and ¥V, (0)=v. Also for any ¢>0, by (D),
Qt,0,v, X x O)=P(f: Vi [ (s() EC),
where P= P§ and s(v) = s(v, t, f) is the unique number s such that
f(s)=<f(s), ) € H=L(v) " {<y, 1) : y € X}.
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Let C; be the cone |x|<ds. By assumption (B), for any >0 f(s) will P-almost
surely lie in Cs for s small enough. In H n Gy, s> a(v) >0, where

a(v) =, £, ) = tV1—22/(1 +20),
so that a(v)—0 as z } 1. Thus if D(8, v) is the set of all {z, «(v)> with | 2| <da(v), and
= {f:f(x(v)) € D(3, v)},
then P(S(v))-—1 as z 1 1. Also, by (&), for any ¢>0
lzi;lln P(f:|f(a(v))]|>e)=0.

Let u(f, v) = Vi («(v)). We can apply the Markov property at time a(v) to obtain

(*) P(f:f€S(») and l Vi f (s(v)) —ulf,v) l Se ; B«(m)
=11t », d)= ﬁﬁf{%’ (9 3| Vi@ (0(®) — ul(f, ”)l <e), f€S(v)
=0 otherwise,

P-almost everywhere; for f€ S(v) we have let o(v)=a(v, g, d,t) be the unique s
such that

{9(s), s+ a(v)> €H.
Translating by — f(e(v)), using (4), we obtain
T1(f, 2, 0) = PE (h:| V 00 B () — ulf, v) | <e),
where x(v) = x(v, %, f, 8, t) is the unique x such that
() + fa(v)), %+ a(v)y €EH.
Now we transform by L(v), using (D), to get

[1(f, v, 8) = Pg> (j:|5'(A u(f, v)| <e),
where A(v)zt—L(vxz)ﬂ«(v)»

Note that A(v) does not depend on 4, only on v, ¢, §, and f(x(v)). Now
L(v) o, a(v)) = < (wy +2(0)/V1 = 22, g, @, (o(0) +20,)/ V1 =22 = g, 2, T,

t 4 2Ty
1+26 yY1—z2

where 1=

For {(z,x(v)> € D(J,v), T is smallest when x, = — dax(v).

Then T=1t(1—26)/(1+20).

Thus Alw) < 2208/ (1 + 20) < 20t.

Hence [Tt v,6)> inf 6P“(’ D (5:7'(s) —ulf, v} | <e).
0820t
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Thus by (E), }si:n TIth, ». 6)=1,
0

aniformly in f and v. Thus, integrating our Markov equation (*) with respect to P,
we have
limlim P(f:f€8(v) and |Viwmf(s®)—ulf,v)|<e)=1.

040 |v]41
For (a,b,¢) €V we have
Vi (ab,b,c.)=(a+z,bV1—:;2,cV14——z2)/(l + 2a),
| Vi (@, b, ¢) —v|2< (a2(1 —22)% + b2 + ¢2) /(1 + za)?
<(a?+b2+c2)/(1~]al)
Thus for y <1, (@, b, ¢)| <y implies
| Vi (@, b, ) —v|<2y.
Hence for any e>0and 0<§ <1,

lim P(f:| Voo [ (alo) ~ 0] <) = 1.

Thus, letting 6 -0, we get
lim P(f:| Vi f(s(0)) — o] < &) =1

Now for any compact C'< V, there is an &> 0 such that |v|>1—¢ and |w—v|>¢
imply w ¢ C. Then
Ilill?lp(fi Vi f'(s(w) €C)=0

This limit is uniform in 0 <¢< u since

lim «(v)=1lim A(v) =0
12]41 540

uniformly for 0 <¢< u. The proof is complete.

Under assumptions (A)-(E), each measure ., gives outer measure 1 to the
class G of functions in Q having limits from the left and continuous from the right
for each ¢ >0 (Dynkin [2], Theorem 3.6).

The set of <a( ),v( )>€G such that |x(s) — z(t)| <|s—t| for all rational s,¢>0 is
BY(G)-measurable and has @, ,-measure 1 for each (y,u>€ W since Py is concent-
rated in A4. Thus by definition of G, |2(s) —2(t)| <|s—¢t| for all s,¢=0 with @y .-
probability 1 on §. The map

<ty < (), 0( )05 —a'(t)

is B(R")xB%()-measurable by Lemma 4.1. For each ¢, 2’ () = v(t) with @, ,-proba-
bility one. Hence by the Fubini theorem, for @, ,-almost all (x( },%()> € G we have
#'(t) = v(t) for almost all ¢, so that since v( ) is locally bounded and x( ) is Lipschit-
zian, z( ) is an indefinite integral of »( ) and 2'(t") = v(f) for all = 0. Let U be the
set of C(x(),v()>€G with a'(¢7) =v(t) for all £ 0. Then we have a Markov process

({Qx.0}, W, I, W, B(W)).
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Let W be the set of functions t— e+t f(t)>, fEW, c,tER. Let W be the product
space B x W, and let B, be the unit mass concentrated in the function {—¢+¢. Let
@e.z,» be the product measure E,x@; ,. Then by Theorem 3.1,

({Qezn}, W, I, W, BOW))

is a Markov process. This process is “‘Fellerian” by Theorem 5.1 and right eontin-
uous, hence strongly Markovian (Dynkin [1], Theorem 5.10).

6. The proper time

For any f€ A (defined early in §4) the proper time (s, f) is defined (cf. Moller

(1] §§ 36, 37) by
_ S df 2\ 1/2

where the integrand is clearly bounded and measurable. By assumption on A, it is
strictly positive almost everywhere (Lebesgue measure). For F € W, F(t) = {f@), v(t)),

or for FEW, Pty = {J(t), ¢+t »(t)>, we let (s, F)=1(s, [). Then let
@i(H) =t f) — (s, ])

for 0<s<t¢,/€1W. Clearly @s(f)=0 for any s>0, and @i(f)>0 if 0 <s<¢. We have
@il + ¢ulh) = @ulf)

for 0<s<t<u,f€ W, and @i(f) is continuous in s and £. The functional ¢ is station-
ary in the sense that

@i (0nf) = PIL(f)
for h=0,0<s<t,fel.

The strong Markov process ({@c.z.0}s W, 1,W, B(W)) is “strongly” measurable as
defined by Dynkin [2], 3.17, i.e. the conclusion of Lemma 2.1 above holds, since

the hypothesis (right continuity) does. We can extend each of the o-fields Bi (W) by
the sets which are subsets of sets of measure zero for all the @ ; ,, thus obtain-
ing a “complete” fields Markov process as defined by Dynkin [2], 3.6.

Thus we have established all the hypotheses of a theorem on “‘random change of
time”’; Dynkin [2], Theorem 10.10. To state the theorem in our case, we let T—{(z, f)

be the inverse of the increasing function ¢-> (¢, f) for any f € W. Then for any fixed
7> 0,7, }is a stopping time. For f€ U let

(4f) (x) =[x, ), ' (Af) = sup (z(¢, f) : £ = 0), a(z, ) = (4]) (=)
Theorem 6.1. (x(z, ),l° A, Biw), Qc.c.0) 8 @ fields Markov process.
Corollary. ({Qc....c A7}, A(0), 2", W, B(W)) is a (path space) Markov process.

We have the inclusion
A(Biw, )2 B

I don’t know whether the converse inclusion holds (given right continuity, in general).
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The “‘velocity component’” of a function in A(w) is not the derivative of the
“space component”’. To remedy this situation, let U be the transformation of V
into M, defined by

Uv) =, 1>/V1—|v]2.
Then ||U(v)|[2=1 for any v € V, and the last component of U(v) is positive. U(v) is

the four-velocity associated with the “velocity” v (cf. Maller [1] § 37). Let U be the
set of all U(v),»€ V. U is one nappe of a three-dimensional hyperboloid. For

E={n,c,0€EMXV,

let U,(&) = <z, ¢, U(v)) € M xU. Then U, is a homeomorphism of M x V onto MxU,
and it defines a transformation U, of A(1¥) onto another function space Y. For
x 0, USEM xU, 2=z, c>, U=U(v), let

HZ,U: Qc,x,v °A4 1o Uz—la C(sz) = C,(f)

(U, is one-to-one). Then by a standard result on transformation of phase spaces
(Dynkin [2] Theorem 10.13) we have

Theorem 6.2. ({[1..0}, Y., M x U, B(M <xU)) is a Markov process.

We now have that for f=<(¢,y> €V, where ¢ has values in M and y in U,
¢’ (x")=w(r) for all T<(f), since the derivative with respect to 7 is the 4-velocity
(Meller [1] § 37, equation (38)). Also 9 has a limit from the left for all 7> 0. Thus
is bounded on any bounded closed subinterval of [0, {(f)), and ¢ is locally Lipschit-
zian and an indefinite integral of .

Assumption (A) of §4 (spatial homogeneity) and the same eondition for the meas-
ures R, of § 5 imply the corresponding condition for the []. v

I If y2e M,U€U,7>0, and A€B(M),

[L.o(($, 9> : (v) €4) =[Lerr.u(<(, 9> : $(r) EA +y).
Also, assumption (D) of §4 yields
(IT) For any LeL, A€BY(Y), and UEU,
Ho. v(d)= HO.L(U) (L(A))-

An L€eL acts on the tangent space M, of M through the natural isomorphism of M
and M,, or, equivalently here, through its differential dL, so that if U €U and
¢'(r)="U, then

L(U)=dL(¢(z))/dx.
Now let P be the natural projection of M x U onto U. By (I) and Theorem 3.2,
({{Tew e P}, P(B), , U, BAW))

is a Markov process independent of z, where %(P(f)) = {(f) for any f€ Y. P is one-to-
one on ¥, so that this process determines {[ ..y} (by integration).
For ¢ =0, UEU, and A € B(U), let

Py(U, 4)=[L.v(<$, p> €V :y(0) €4)
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(which is independent of z). By the Markov property, we have the Chapman—Kol-
mogorov equation (semigroup property)

PorolU, B) = f P,(U,dV) PV, B)
u

for any 0,720, U €U, BE B(U). By (1), we have
P,(U, B)=P,(L(U), L(B)), LEL.

In §8, we shall reproduce the known classification of all semigroups {P,} satisfying
our conditions.

Lemma 6.3. For any {[L..u} satisfying our conditions and 7> 0,

[L.o{<h, v>:¢'(x) exists} =[ L. v {f: {(H)> 7}

Proof. Let N be the set of all 7> 0 for which the conclusion does not hold. For
f=<p,y> €V, ¢'(r) exists for almost all 7 in the interval (0, {(f)). Thus by Lemma
4.1 and the Fubini theorem, ¥ has Lebesgue measure 0. Thus for any 7> 0 there
exist ¢ >0 and u > 0, neither of them in M, such that ¢+« =17. For any ¢ >0,

[To,v{<d, > : ¢'(0) exists}

is independent of U by condition (I1). Letting ¢ =u and applying the Markov prop-
erty at time ¢, we conclude that T ¢ N, q.e.d.
Of course, for (¢, yp> €V, ¢'(z) is equal to y(z) if the former is defined.

7. The space U

U is well-known as ‘“hyperbolic space” or ‘“‘Lobachevsky space” (Gelfand and
Berezin [1]). It is acted on transitively by the proper Lorentz group £. The subgroup
K, of L leaving a point p of U fixed is isomorphic to the orthogonal group K on
three-dimensional Euclidean space, and is a maximal compact subgroup of £. U can
be regarded as the homogeneous space L/ K, of right cosets of K, in L. (Of course,
K, is not a normal subgroup of L.)

U has a natural L-invariant Riemannian structure, inherited from the ‘“‘pseudo-
Riemannian” or Lorentz form || || on M, by restriction to the tangent spaces of U.

We put geodesic polar (or spherical) coordinates on U (see Helgason [1] p. 401)
as follows: we take p as (0,0, 0, 1) for a given Lorentz coordinate system (z, y, z, t)
on M,. Given any point U in U we let o(U) be the Riemannian distance from p to
U in U. Now each surface p=g,>0 in U is isometric to a Euclidean sphere of some
radius f(g,). (K, acts transitively on these surfaces, i.e. U is a “‘two-point homo-
geneous” Riemannian manifold as defined by Helgason [1] p. 335.) in each such
sphere we choose standard spherical coordinates 6 and ¢, 0 <0 <27, ~7/2 <@ <m/2,
constant on each geodesic emanating from p. The functions (g, 0, ¢) make up a regu-
lar local coordinate system except where g or 6 is zero or ¢ = +7/2.

Now let 7= (22 + y2 + 22)"2. Then g is a function of » in U, and f(o(r))=7,0<r < oo,
since the induced Riemann metric on a sphere p = constant can also be induced from
a 3-plane { = constant, which has the standard Euclidean structure.

To find the function g(r), and hence its inverse f, it suffices to find the Riemann
structure induced on the hyperbola H: #2— 22 =1, y=2=0. Here r = |z|.  is a coor-
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dinate function on H, and the tangent vector d/dx is (1, 0,0, z/ V1 + a2) at the point
(x,0,0, V1 +a?) of H. This vector has “magnitude” 1/V1+ a2 for the Riemann met-
ric induced on H. Thus a unit vector d/dp for the Riemann metric is V'1 + 22 d/dx
for x>0, so that dx/do=V1-+a2, p=1log (z + V1 +a?) (since g=0 when z=0), |«|=
sinh ¢ on H, and r =sinb g throughout Y.

Now let ¢ be the induced Riemann form on U:

=g(0/0x;,0/0x;), where =z, =p,z,=0,z;=4¢.

Then g¢,,=0 for i%7, g,,=1, g,,=sinh2p, and g,, = sinh? e sec? ¢ (except at the ex-
ceptional points §=0 etc.). Now the “Laplace-Beltrami operator A on U is (see
Helgason [1] p. 386)

% Z ik l/g v,

1 8z,

<nl—

(7 = determinant of (g;), g’ = inverse matrix)
=92/80 + 2 coth 0 8/00 -+ csch? ¢ 8/6¢h — tan ¢ csch? 0 9/0 + esch? g sec? § &2/002

(wherever o, §, ¢ form a coordinate system).

8. Semigroups of measures on Y

At the end of §6 we had obtained a collection of nomnegative, K ,-invariant
measures Py(p, ) on B(U) for p €U, t>>0, of total mass at most 1. For a fixed p,
we call finite, K ,-invariant, nonnegative measures on U “radial””. The “convolu-
tion” of two radial measures p and » on U is given by

(u*v)(4d)= L v(4,) p(dx)

for any 4 € B(U), where A4, is a set T',(4) and T, is any element of £ taking z into
p. By K,-invariance, it is irrelevant which such element is chosen, and we can
take 7', continuous in 2 to insure measurability.

Since Py(U, By = P{L(U), L(B)) for all LEL, B€B(U), we have

P,xP,=P,,, forall s,t=>0.

Thus the P, form a semigroup under convolution. Now each radial measure on U
has a “Fourier transform”, defined in terms of the eigenfunctions of A which are
functions of ¢ alone (“spherical functions”: see Helgason [1] Chap. X §3 p. 398).
As given by Tutubalin, Karpelevich and Shur [1] (hereafter called “TKS”) the non-
constant spherical funetions on U, normalized to the value 1 at p, are

Fi(p)=sin Ag/Asinh g,

where 1 is any complex number and A F;=(—1—-22)F,. For 4 or p equal t0 0,
Fi(@) is defined by continuity. These functions are bounded for |[Im A|<1. The
Fourier transform of a radial measure y is given by

w00 = [ Fi@)duto)
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defined at least for {Im 1| <1. For radial measures convolution is commutative, and

(w0 9)"(2) = jul2) (1)
(see TKS [11]).

A radial measure x on U such that for all n=1,2, ..., 4 is the n-fold convolution
(un)" of a radial measure u, with itself, is called “infinitely divisible”. Clearly the
measures P, have this property. Such measures have been characterized by Tutu-
balin [1] and Gangolli [1]: u is infinitely divisible of total mass §>0 if and only if

) AA)=Bexp((—1- lz)a—f (1 = Fi(u)) dL(u))
u
where «>0 and L is a nonnegative, K -invariant measure on U satisfying

* o) -
L T+ glup® dL(u) <

(so that the integral of 1 — F; is absolutely convergent). « =o(u) and L = L(u) are
uniquely determined. Conversely, for any such measure L and numbers o and g >0,
there is a radial, infinitely divisible measure y satisfying (*).

Tutubalin [1] proved the representation formula (*) under a definition of infinite
divisibility requiring that for every >0, u is a convolution of possibly distinct
measures each concentrated within Riemann distance ¢ of p, except for mass . An
argument in his proof, partly reproduced below, shows that this is equivalent to the
definition given above. A proof under our definition was also given by R. Gangolli
[1] for general symmetric spaces of non-compact type.

We say a radial measure y divides another one, v, if u % ¢ =» for some radial g.
Clearly this implies

alp) +ofo)=afv) and L{u)+ L(g) = L(»),

so that u divides v if and only if «(u) <a(y) and L{u) < L(»).

Now given a convolution semigroup P,, we have L(P,;) = rL{P,) and a(P,;) = ra(P;)
for all rational >0 by uniqueness, and hence for all »>0 by the ordering just
mentioned. Thus the semigroup is completely determined by L(P,) and c(P,).

Pyp, ) converges weak® to the unit mass concentrated at p as ¢ | 0, since P,
converges to 1 pointwise and each | F;| for 1 real is bounded below 1 outside any
neighborhood of p. Note that the original continuity assumption (E) was used only
to obtain a Markov process with proper time as parameter; for the latter, the conti-
nuity properties follow from the invariance conditions, and the first part of assump-
tion (C) is taken care of by Lemma 6.3.

We now show that { is actually infinite:

Lemma 8.1. For any 26 M and UeU, [, y(= + o) =1.

Proof. The Markov process
({HZ‘U © P“l}’ P(U): 773 u7 B(u))

is right continuous and Fellerian, hence strongly Markovian. Given f€P(V), let
to(f) = 0. Given £y(f), ..., t.(f), let £,.,1(f) be the least ¢, if any, such that the Riemann
distance from
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fED+ o H8alf)) to flt()F oo Half) 1)

is greater than or equal to 1 (if such a ¢ exists, ¢,.(f} is well-defined by right conti-
nuity). Clearly ¢,(f) + ... +t.(f) is a stopping time for each n.

If 5(f) is finite, then all the ¢,(f) are defined and their sum converges. In any
case, each t, is defined with [], ;o P~! probability one. The random variables t, for
n>1 are independent by the strong Markov property and have the same probability
distribution on the nonnegative real axis. Each is almost surely strictly positive by
right continuity. Thus the probability of their sum converging is zero, q.e.d.

It follows that under our assumptions the measures Pyp, ) are all probability
measures. We summarize our results as follows:

Theorem 8.2, There is a natural 1 —1 correspondence between sets { Py} of measures
on A satisfying (A)~(E) of §4, and infinitely divisible radial probability measures P,
on U, and hence with pairs (L, x) as described earlier in this section. Each P} gives
ouler measure 1 to the set of functions | € A4 having left and right derivatives at all points
{except left derivatives at 0), equal except at countably many points, with right deriva-
tives continuous from the right and left derivatives from the left.

9. Further discussion of radial semigroups on Y

In this section we discuss further facts which were not needed for the proof of
Theorem 8.2, but may well be of interest.

Suppose u is an infinitely divisible radial probability measure on U, and {I ..o}
the corresponding Markov process on Y. It follows from results of Gangolli [3] that
if n(M, f,t) for M,t>0 and f= (¢, p> € ¥ is the number of values of 7 < ¢ such that
the Riemann distance from ¢'(zv—) to ¢'(z +) is at least M, then

me, £, AT L., olf) = L) (U o(U) > M),

Thus if L=0, x>0, v is almost surely continuous. These processes (“Brownian
motions”’) will be considered in § 10. v

On the other hand, we have so-called “Poisson’” processes defined as follows: let
s be normalized K -invariant “surface area” measure on the sphere p=¢ in U, for
any ¢ >0. Then the “Poisson measure” n(s, ¢) is defined by

7o, c)=e"° 2 (cus) "/nl,

n

ir8

where the powers represent convolutions. It is easy to verify that P;= n(c, ct) gives
a convolution semigroup. The associated process in U will remain at one point for
some time, then jump to one of the points at Riemann distance ¢, with uniform
probability distribution over the sphere of such points. The probability of such a
jump during an interval {,<¢<?,+¢eis 1 —e % (see Loéve [1] p. 548), which is as-
ymptotic to ce as ¢ | 0.

A Poisson process seems very natural as a velocity process, where a particle un.
dergoes collisions at various times which cause discontinuities in its velocity, constant
between collisions.
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If I is the identity operator on hounded continuous functions on U, then

lim (P, - I)/t

te0

will be, in general, an unbounded operator defined on a subspace, called the “gene-
rator” of the semigroup P, Transferring our semigroups from U to £ in a rather
obvious way, we obtain information on their generators from Hunt [1] (see also
Wehn [17).

Since any radial measure u on U is an average

e f,h, (o)

for some finite measure » on R*, we can explicitly calculate any convolution of
radial measures if we can find u, %y, for @,b>0. In doing this, we can assume
b <a. Suppose given ¢=>0; let us find

fa, b, €) = (ua % 1) (0 <¢).
Clearly fla,b,c)=0 if c<a—b,
=1 if e¢>a-+b.

For any w €U and ¢>0 let S(u,t) be the set of points of U at Riemann distance
t from u. Let

¢={(sinh a, 0, 0, cosh a});
then g(g9) =a. Also L, € £ takes p=(0,0, 0, 1) into ¢, where
Ly(x,y,2,t) = (x cosha + tsinh a, ¥, 2, t cosh @ + 2 sinh a).

S(p, b) is the set of (X, vy, 2z, T)€ U with T = cosh b and
X2+ g2+ z2=sginh? b.
Thus S(g, b) is the set of points
(X cosh a + cosh b sinh a, y, 2, cosh b cosh @ + X sinh a)

with X2+ 424 22 =sinh?. Then 8(p, ¢) N S(g, b) is the set of (, y, z, 1) with £ =coshe,
2 =X cosh a + cosh b sinh @ where X =(cosh ¢— coshbcosha)/sinha, and y2+22=
sinh2b — X2, Applying L~} we obtain a circle of radius sinh?b — X2 in S(p, b), a sphere
of radius sinh b, in the given coordinate system for M,. We now want to find the
areas of the two zones demarcated by this circle.

For ¢ small enough so that cosh ¢ < cosh b cosh a, the area of the zone which con-
cerns us is

97 sinh b (sinh b cosh b cosh a — cosh c) )

sinh a

For cosh ¢>coshbcosha we want the area of the larger of the two zones marked
off by the circle, which is given by the same formula. The total area of the sphere
being 47 sinh?b, we obtain

260



ARKIV FOR MATEMATIK. Bd 6 nr 14

cosh ¢ — cosh b cosh a]

=1
fla.b,e)=4 [1 + sinh b sinh @
df(a, b, ¢)/dc =sinh ¢/2 sinh a sinh b.

Proposition 9.1. For any a, b, >0,

g = ath sinh e
fla™ o [a7b|2sinhasinhb‘uz ’

We now turn to proving ‘‘transience” or “‘non-recurrence’’ of our invariant pro-
cesses in U. Proposition 9.1 will not be used.

Theorem 9.2. For any invariant Markov process {[ .,u} as described in §6, with [ ., v
not concentrated in one function, and any compact subset K of U,

[L.vi<, w> :9(x) ¢ K for all sufficiently large v} = 1.
We first prove the following

Lemma 9.3. For any radial probability measure u on U not concentrated at p,
0<4(0) <1 and for any B =0 there is a K >0 such that

uo<R) < KIp(0)]".

Proof. Since y is not concentrated at p,

- 4
=| ——du<]l.
0<a(0) JSinh o o<
4 n ~ 7
Th ~—=—du" = (u" = "
en sinh o ' =(u") (0)=[a(0)]

Thus given R >0,
n sinhB__
# o< B)<—5—[a0)]", q.ed.

Now to prove Theorem 9.2, suppose for some z, U, and compact K < U,
Pyr=[L.v(<{$,p> € W:y(t) €K for t arbitrarily large) > 0.

For k=1,2,...,f=<{d,p> €V, let m(f) be the kth integer n such that y(f) €K
for some ¢ in the interval [r»,n+ 1), or + oo if there is no such =; let #(f) be the
least such ¢, or + oo if ;= + co. Then each ¢, is a stopping time.

Let d be the Riemann distance in U. There is an R > 0 such that

[Te.v(<, ) : d(w(t), p(0)) <R, 0<t<1)=£>0.

¢ is clearly independent of z and U. Let A; be the set of all f € ¥ such that n,(f)
and #(f) are finite, and let C, be the set of (¢, > € A, such that

d(pt), plt+8) <R, 0<t<l.
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Then by the the strong Markov property of {I..v}

Hz,U(Ok I By)=¢

almost everywhere on A,. Thus

[LuC)=cell.v(d)=2ePr>0 for k=1,2,....
Thus [L..v{f : f € C for infinitely many k} > ePx.
Hence if K is the set of U €U such that d(U, V) <R for some VEK,

T1:.01<é, v> : p(n, + 1) € K, for infinitely many &} > 0.

This contradicts Lemma 9.3, so the proof of Theorem 9.2 is complete.

10. Diffusion processes in U and M x Y

A convolution semigroup P, in a symmetric space, e.g. in U, is called a diffusion
semigroup if
lim Pyg>¢)/t=0,
ti0

where ¢ is the Riemannian distance from the fixed point used in defining convolu-
tion. The theory of such semigroups tells us that the generator 4 is defined at least
on all functions which, together with their first- and second-order partial derivatives,
are bounded and uniformly continuous on U, and is equal on these functions to a
second-order differential operator (Yosida [1]).

On U, or other “two-point homogeneous™ symmetric spaces @/K, G-invariance
then implies that 4 =mA +b where A is the Laplace-Beltrami operator. By defini-
tion of 4 it is zero on constants and 4f <0 where f has a relative maximum, so that
b=0 and m>0.

Thus we have the “Brownian motion” semigroup with parameter m as defined
by Yosida [1]. On W, the P, for this semigroup are given explicitly by Tutubalin [1] as

_ —a2_ @ e @\
P, = (4mxmt) sinhgeXp( mit 4mt) N,

where N is the L-invariant measure on Y given by 4x(sinhZg) dp d€2 and (Q is normal-
ized orthogonally invariant surface area measure on a sphere (dQ = cos ¢ df d¢/47).
In this case the measures P; are concentrated in the set of functions f having
continuous first derivatives f'(¢), since the P, are a diffusion semigroup (Yosida [1],
Dynkin [1] Theorem 6.5).

Now, the space M x U is a homogeneous space under the action of the “Poincaré
group” L generated by L (acting on M and U together) and by translations of M
which leave U pointwise fixed. The subgroup of £ leaving the point (0, p) of M x u
fixed remains equal to K, so that M xU can be regarded as the space L/K, of
right cosets of K, in L.
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One can define a convolution for finite, (left) K,-invariant measures on M x U,
as before, by

(% v) (4) = f WT (A o(dz), A €BMxW),
Mxu

where 7', € L takes z into (0, p) and y and v are invariant under K,

Our conditions (I) and (II) of §6 can be regarded as conditions of C-invariance
of transition probabilities

Q(x, p); B)=IL..o(f : /(1) € B),
t=0,2€M,peU, BE BMxU). Our assumptions imply, letting

Q.= R((0,p); ),

that Q% Q,=@Qs.¢ on MxU. If P, is a diffusion semigroup on U with generator
mA, the generator of @, is the differential operator whose value at the point (x, U)
of MxUWUis — U+ MA, where mA acts on U and U acts as a first-order differential
operator on M at x.

G. Schay [1] also studied L-invariant diffusion processes in M x M, and arrived
at essentially the same generator or ““diffusion equation” (Schay [1] Theorem 4 p. 39,
Equation 3.33). Our use of the proper time permits a considerable simplification of
the result.

11. Non-existence results

In §8 above we proved the existence of a class of Lorentz-invariant processes
with speeds less than 1 in M x V. In this section we show that such processes with
speeds equal to 1 (in M x S%, where S2 is the sphere |2|=1 in R3) are deterministic
(trivial), and that this remains essentially true if we allow states to be specified by
momenta rather than velocities only. We also prove the non-existence of invariant
processes in M itself. The results in this section do not require the Markov property
or continuity in probability.

On a trajectory with speed almost everywhere equal to 1 the proper time 7 is a
constant and hence not suitable as a parameter.

Let D he the set of all functions f from R* to X such that for 0 <s <,

o —fo)|<t—s,

and if f'(¢) is defined, |f'(¢)|=1.

Now suppose given starting probabilities P; on the stationary, measurable path
space (D, I, X, B(X)), satisfying (A), (B) and (D) of §4, with V replaced by S2.

A collection {P3} will be called deterministic if each P} gives mass 1 to a set con-
taining only one function.

For any f€D with /' non-constant there is a unique £ = #,(f) >0 such that

- e =1
(i.e., <f(t),t) € U). Clearly t,( ) is B°(D)-measurable.
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Suppose {P:} is non-deterministic. Then by (A) and (D) no P; gives mass 1 to
one function. Let =0 and fix v €82 Then there exist Lorentz transformations
Ly, n=1,2, ..., such that V.,(v)=v for all » and for any compact subset C of U,
L,(C) and C are disjoint for »n large enough (we take L, as Lorentz transformations
defined by relative velocities v, parallel to v with |v,| 1 1). For 4 € B(U), let

P(A)=Paif : H(to(1)): to(f)> € 4}

Then P is a finite, non-zero Borel measure on U, invariant under all the L,, which
is impossible. We have proved

Theorem 11.1. If ({P3}, D) satisfies (A), (B) and (D) of §4, then each P is con-
centrated in the function fE€D with f(0)=xz and ['()=v for all 0. Conversely, such
P} satisfy (A)— (BE).

We can try to avoid the paucity of processes in Theorem 11.1 by introducing
different possible “states” of a particle moving with speed 1 in a given direction.
One possibility is to use an “energy” analogous to the energy of a photon or other
particle of zero rest mass. We take such an energy as defined by a function

E: (C,S, f;)_)E(C: S, f)’

where f€D, s> 0, and C is an arbitrary Lorentz coordinate system {z( ), {( )>, where
x( ) and #( ) take M onto X and R respectively. Then the trajectory defined by f in
the original coordinate system of M is defined in C by another function f. € D with

2({(s), 87) = [c(E(<[(s), 7)), 82 0.

We assume that E(C, s, f) is defined if and only if fc(s) is defined.
We require that

transform as an “energy-momentum vector” under Lorentz transformations L (in £)
of C (see Moiller [1] p. 72). This is simply the natural action of £ on M, the tangent
space of M, through its isomorphism with M. The space of possible energy-momentum
vectors is the open half-cone Q of all points (&, E>, E€ R, E >0, with |£]2=E2. Q is
acted on transitively by L.

The subgroup X of £ leaving the point (1,0, 0, 1) fixed contains all transforma-
tions K,. with matrices

1—-a b ¢ a
~b 1 0 b
—c 0 1 c
—a b c 1+a

where a=(b2+¢2)/2 and b and ¢ are arbitrary real numbers. Thus (in its relative
topology from the general linear group) X is not compact.

For k>0 let U, be the set of (x;, %,, x5, 8> EU <M with 2,>0,2;>0, and t <k.
In Uy, t—2,>0 (since £>0 and 2> z%) so by compactness there is an &> 0 such that
t+a, = ¢ for all <z, t) €U,. Now
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Kyl £ =, —ax; +bxy+cxy, + (1 +a)t>.

Thus for (z,t) € U, and b, ¢=> 0 the time component of K,.(x, t> it at least ae. Hence
for b and ¢ sufficiently large, K,.(U,) is disjoint from U, but, on the other hand, it
is included in a larger set Uy.. Thus we can find an infinite sequence of disjoint sets
in U taken into Uy by transformations in X. Thus for the initial energy-momentum
(1,0,0,1) the probability that the trajectory passes through U, is zero. We can
" apply the same argument to the cases where y >0,z >0 in the definition of U, is
replaced by y>0,2<0 or y<0,2>0 or y<0,2<0 (letting b and ¢ have the same
signs as y and z respectively). Thus there is probability zero of passing through U.

Let T be the set of all functions f= (g, > from R* to M x @ such that g € D and
g'(¢), where defined, is proportional to A(t) (where the constant may vary with ¢). We
have proved

Theorem 11.2. Suppose starting probabilities {P, . m) or (M, I, M xQ, B(MxQ))
are homogeneous in z and Lorentz-invariant in the sense that for any L€ L, defining a
map Lx L of MxQ onto itself and hence of M onto itself,

P, e o (LXLY '=Pr 1ce.ns

Then for each z€M and (& E>€Q, P, 5 8 concentrated in the set of functions
f=<g,h) where g defines a straight half-line in M and h(t) is proportional to (&, E>
for almost all t (Lebesgue measure), possibly with a varying proportionality factor.

Thus the energy-momentum approach does not yield any essentially non-trivial
processes either. We do not consider here the possibility of allowing still more in-
formation, e.g. a “polarization”, in the definition of states.

Random processes with speed 1 have been considered by Rudberg {1] in one or
two space dimensions. His approach is different from ours; to help clarify the situa-
tion we now consider the cases of one and two space dimensions.

For the “velocity’” approach (as in Theorem 11.1) in any number of space dimen-
sions, the same arguments as above yield the conclusion that invariant processes
do not exist. This seems to be reflected in Rudberg’s condition (p. 12, above Equ.
(19),and p. 28, A) that there is a distinguished time-axis direction for which the
probabilities of scattering in all directions are equal.

For the “momentum” approach, apparently not treated by Rudberg, the situa-
tion is as follows: in two or more space dimensions, the situation for invariant pro-
cesses is essentially the same; in the argument in two dimensions (1,0, 0, 1) and K,
can be replaced respectively by (1,0, 1) and

1-a b a
K,,:( —b 1 b ,a="02/2,
—a b 1+a

In one space dimension, the argument which proved Theorem 11.2 does not apply,
since the group X reduces to the identity. The question of the truth of Theorem 11.2
in one space dimension will be left open here.

Now we turn to processes in M itself. Let J be the class of all functions f from
R to M with

[Hs)~ f)| <|s—t],s,£=>0.
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Suppose given starting probabilities {P,} on
(4, I, M, B(M))
which satisfy (A) and (B) below:
(A) Fort;,>20, A,€B(M),ze M,

Plf:ft)€d,i=1,...,n}=Pf:ft)€4;+z1i=1,....,n}
(B) For any L€ L and 4 € BY(¥),
Py(4)=Py(L(4)).

As before, for those f€F with (f(),t> € U for some ¢ we let £y(f) be the unique
such ¢. Assuming P, gives positive probability to the set of such f,

P(A4)=Py(f: f(to(D), b(F)> € A)

is a finite, £-invariant Borel measure on U, which is impossible. Thus P, is con-
centrated in the set of f€F with f(0)=0 and f equal to a constant v €8,. (This
result was obtained under additional hypotheses by G. Schay [1] Theorem 1 pp.
17-18.) Since orthogonal transformations of X are in £, the distribution of v is an

orthogonally invariant probability measure, hence the standard surface area measure
divided by 4s.
Let D be the set of half-lines

t— (at, bt, ct, t),t =0
on which a2 +b2+¢2=1 and a, b, ¢ >0, so that Py(PD)=1. If w>0, the Lorentz trans-
formation X,
x + wi t+wx

7y’z’
V1 —w V1— w2

takes the half-line defined by v= (a, b, ¢) into the half-line of all points

&9, 2,8) —>< b

Z /1 —

<a,+w y bl/l w? cl 1 w2t17 'S, 8 >0.
1+wae ’~ 14+wa ~— l1+wa

Thus P is taken into itself. The second components of the velocities associated with

elements of X, (D) are at most equal to V1 — w2, Thus an open subset of S2, the
{a, b, c) with @ and c sufficiently small and positive, has measure zero for the distri-
bution of » in 82, a contradiction. Thus we have

Theorem 11.3. No starting probabilities {P,} satisfying (A) and (B) (of this section)
exist, i.e. there are no Lorentz-invariant processes in space-time M.
12. Unsolved problems

A first set of problems is the explicit calculation of transition probabilities for
the processes of Theorem 8.2, such as the following: the distribution of velocity in
U at proper time t for nondiffusion processes; the distribution of position at proper
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time 7 for all processes; and the distribution of position and velocity at coordinate
time ¢ for all processes. The latter would be of special interest for diffusion processes;
to simplify it, one can first seek only the distribution of velocity at time {. For a
diffusion process with parameter m this leads to a parabolic partial differential
equation in U:

cosh p 8f /0t =mAf

(cf. Schay [1] equation 3.60 for the case of one space dimension).

Also of interest are the “relativistic Maxwell(-Boltzmann)”’ distributions originally
defined by Jiittner [1] (see also Synge [1] equation (118) p. 36). These are radial
measures on U of the form

M,z =ccexp(—f coshg)cosho- N
where N is the L-invariant measure
47 sinh2p dp dQ)

and o, §>0. (Note that if U is projected into the spacelike hyperplane ¢ =0 per-
pendicular to p=(0,0,0, 1) €U, cosh pdN goes into Lebesgue measure.)

Given >0, M,; is a probability measure if and only if

o= 1/475"‘ exp ( — B cosh p) cosh g sinh2p dgp = /47K ,(B),
0
where K, is a Bessel function (see e.g. Synge [1] §14). Let Mz be M,z for this value
of a.

Schay [1] asserts that Mz for fixed § is a “steady-state’” solution of a diffusion
equation with a term representing “internal friction.”” Thus it may be irrelevant to
ask whether M, is infinitely divisible, etec., but it seems that Schay’s result should
be followed up.

Thirdly, it would be interesting to move from the “special relativity’’ assumptions
of this paper to the case of general relativity, in which M is no longer a vector space
but a 4-dimensional manifold with a Lorentz quadratic form on its tangent spaces.
The proper time is still available, but spatial homogeneity and Lorentz-invariance
require reformulation. Instead of the product M x U one has a subset U(M) of the
“tangent bundle” T(M):U(M) consists of all “forward” timelike vectors of unit
magnitude at all points of M. (We assume it is possible to choose a ““forward” direc-
tion at all points in a continuous way.)

In particular, there should be diffusion processes in U(M), generated by the dif-
ferential operators which, roughly speaking, have the form — U+mA at a point
(x, U) of U(M), where m>0,z€ M, U belongs to the tangent space at #, and A is
the Laplace-Beltrami operator in a hyperboloid in this tangent space. U may be
regarded as a first-order partial derivation, or tangent vector, to U(M) by way of
the pseudo-Riemannian “affine connection” (or “‘parallel displacement’: see Helgason
[1] Chapter 1 §§4-6). Diffusions in sufficient generality to cover this case have been
considered by Nelson [1] and Gangolli [2], but their results are not as complete as
might be desired for our purposes. For example, it apparently is not known whether
the semigroup generated by the operator mentioned above on bounded measurable
functions actually takes bounded continuous functions into bounded continuous

functions. This may require supplementary, but physically reasonable, hypotheses
on M.
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Finally, given a ‘“Brownian motion”’ diffusion in U(M), even where M is a vector
space, one might let the parameter m in the generator approach infinity for use in
defining a sort of “Feynman integral” as in Ito’s approach [1] to the non-relativistic
Feynman integral. Of course, there is also the problem of finding a suitable replace-
ment for the classical Lagrangian function.
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