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Some orthogonal matrices and related orthogonal 
functions systems 

By EDGAR ASPLUND and HAROLD S. SHAPIRO 

In an earlier paper [3], one of the present authors showed that given any n 
mutually orthogonal unit vectors in 12, there exists a uniquely determined in- 
finite orthogonal matrix (i.e. unitary transformation of 12 onto itself)Haijll having 
the given vectors as its first n rows, and satisfying a~j= 0 for ] >  i > n. This 
matrix was used to show that every subspace of Ls(F) (where F is the circle 
group) having finite deficiency has a basis consisting of trigonometric polyno- 
mials. In  [3] also several questions were raised concerning the behavior of the 
Fourier expansion of a smooth function, when the expansion is with respect to 
a complete orthonormal system of smooth functions and it was pointed out 
that certain other types of orthogonal matrices, if they could be constructed, 
might be relevant to these questions. In  the present note these questions are 
answered, the essence of the results being that no amount of smoothness (not 
even the requirement that all functions involved be uniformly bounded trigono- 
metric polynomials) can guarantee either smallness of the :Fourier coefficients 
beyond what is implied by Bessel's inequality, nor convergence of the series at 
every point. We also show that  the functions of a uniformly bounded complete 
orthonormal system of smooth functions may have a common zero; in such a 
system the Fourier series of "most"  functions converges to the wrong value at 
a point, and a /ortiori cannot converge uniformly. Questions of almost every- 
where convergence in the context of the present investigation we have not, 
however, been able to settle. 

Our main tool is the construction of an orthogonal matrix with n prescribed 
(orthonormal) columns, and with ai~ = 0 for j >  i + n. Actually we only need these 
matrices for n = 1, but as the matrix theorem has perhaps independent interest, 
we prove it for arbitrary n, and complex entries. 

1. A class of unitary matrices 

Theorem 1. Suppose lla~H ( 1 < i < o ~ ,  l • j < n )  is a complex matrix whose 
columns are mutually orthogonal unit vectors. Then there exists a unique unitary 
matrix A = lla~jll ( 1 ~ i <  c~, l ~ j <  o~) having the given matrix as its /i~wt n col- 
umns, and satis/ying the additional conditions 
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(i) a i j = O / o r i > i ( i ) = i + r a n k J ~ , J k  = ~ a*a~. 
i = k + l  

(ii) I / r a n k  Ji 1 =rank  Ji ,  then a~.j(~ is (strictly) negative. 

Here a i denotes the n-dimensional i-th row 

a~ = (aft . . . . .  a~n ). 

Proo/. The heuristic background for the following construct ion of the matr ix  A 
is found in [2]. Let  1"> n and denote by  i(]) the smallest solution i of the equa- 
t ion ~ = i + rank J i .  The number  i(]) then satisfies 

rank Jio) 1 = rank J~(j). 

P u t  i ( ] )=  k. The above condition then means t h a t  if d is an n-dimensional column 
vector,  

J~ d = 0 implies (Jk + a~ak) d = 0. (1) 

Condition (1), however, implies by  the non-negat ivi ty  of the matrices involved, t ha t  

akd=O if Jkd=O.  

But  this is just the condition for solvability of the systems of equations 

Jkdk=a~.  

Fix a set of solutions dk of these systems and pu t  

Jtkdk = bk, i.e., Jk bk = ~ka~, 

where the positive numbers  +~k are determined by  

~ = ( l  + a ~ d k ) - l = ( l  §  g~dk) -1, k=i(~),  i > n .  

Evident ly ,  0 < 2k < 1 for all k = i(]). 
We now claim tha t  the following matr ix  (which obviously satisfies conditions 

(i) and (ii) of Theorem 1 is uni tary.  

Iil o a2 0 
A =  

0 

r arbi(n+l) ... arb~(i 1) --~r 0 ... 

, r = i ( i ) .  (2) 

Let  us first verify tha t  the j th  column is or thogonal  to the first n columns; 
we have 
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- -~ra*r§ ~ a * a ~ b r = - ~ r a * r §  
i = r + l  

For the orthogonality of the columns ?" and h, with h > ] > n, r = i(]), s = i(h),  
we have 

- 2s(asbr)* + ~ (a~+~br)* (as+~bs) 
i = l  

= - 2tsb~ as + ~ b~ as+~as+~b s 
i = l  

= - b r ( , ~ s a * - J s b s ) = O .  

In  the same way, we see that the ]th column is a unit vector: 

~2r§ ~ (ar+ibr)* (ar+~b~)= ~r2 § ar/~rbr :/tr~ (l §  ]. 

Finally, we have to show that the system of column vectors in the matrix A 
is complete. Assume, then, that  

e ~ ( e l , . . . , e  . . . . .  } 

is orthogonal to all columns in A ,  and that er is actually the first non-vanishing 
entry. Then 

1 ~ , a* 
- ~:_ er+~ar+~ (3) 

er 1=1 

by the orthogonality with the first n columns in A. If  d is an n-dimensional 
vector in the null space of Jr, we have by the positivity of the matrices involved 

a s d = O  for s > r .  

But, by (3), this shows that  a r d = O  so that, in fact, J ~ d = O  implies J r _ l d = O  
which in turn means that 

rank Jr_l = rank Jr  or r = i ( ] )  for some ] > n .  

Now we use the orthogonality of the vector e with the ]th column in A: 

0 =  --/~re~§ ~ b*a*+ie~. ~ 
i = l  

= - er(2r § b*a*~) = - er~r (1 § d*Jkdk)  = - er,~r 1, 

This contradiction proves that A is a unitary matrix. To see that A is unique, 
suppose that we have constructed another matrix A'  which satisfies the condi- 
tions of Theorem 1. Assume that this new matrix coincides with A (as given by 
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equa t ion  (2)) in all  columns of index  less t han  j for some ] >  n. Then  the  ele- 
ments  in the  j t h  column of A '  wi th  row index less t h a n  r = i ( j )  mus t  vanish,  
since the  squares of the  absolu te  values  of the  e lements  in each of these rows 
sum to one a l r eady  over  the  f irst  j - 1  columns. The e lement  in pos i t ion  (r, j) 
of A '  mus t  be - ~ r  since the  subsequent  e lements  in the  r th  row vanish  b y  
hypothesis .  F ina l ly ,  the  remain ing  e lements  in the  j th  column of A '  are  deter-  
mined  b y  the o r thogona l i ty  of the  corresponding rows wi th  the  r th  row, and  
hence coincide wi th  thei r  coun te rpa r t s  in A.  Thus A ' = A ,  as asser ted.  

Remark. I n  the  f in i te -d imensional  case this  proves  the  existence a n d  uniqueness  
(up to pos tmul t ip l i ca t ion  b y  a d iagonal  u n i t a r y  mat r ix )  of a u n i t a r y  comple t ion  
of a g iven o r thonormal  set of vectors  wi th  (in view of the  resul ts  of [2]) the  
larges t  possible doma in  of zeros in the  upper  r ight  corner,  if one measures  the  
domain  b y  the  number  of those index pairs  (i, j) such t h a t  a r s - 0  for r ~  i, s ~ j.  

2. Some orthogonal function systems 

I n  the  present  sect ion we shall  examine  the  case n =  l in more  detai l ;  sup- 
pose now tha t  ai are  real  numbers  with a i ~ 0, at > 0 for inf in i te ly  m a n y  i and  
~ c ~  a 2  ,=1 ~ = l -  We have  in this  case 

~ _  c~ k>~l, (4) 
2 

C k - 1  

where we have in t roduced  the  no t a t i on  

k> 0 (5) 
~ = k + l  

We define ck to be the  posi t ive  number  def ined b y  (5). Note  t h a t  {ck} is non- 
increasing and  tends  to zero. W e  have  f rom (2), bk=ak/(Ck~lCk ) SO t h a t  our  
o r thogona l  m a t r i x  t akes  the  form 

A = 

c 1 
a 1 0 , . .  

c o 

a l  a2 c2 
a 2 . . .  

c 0 c 1 c 1 

a l a n  a 2 a n  an  l a n  Cn 
0 , . ,  a n . . .  

CoC 1 C lC  2 Cn-2Cn 1 Cn 1 

(6) 

Actua l ly  i t  is more convenient  to express  the  e lement  of the  m a t r i x  in t e rms  
of o ther  p~rameters  def ined b y  
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an  
P n -  , n~>l;  P 0 = l "  (7) 

Cn - 1 Cn 

2 2 Cn 1-- Cn 1 1 
Note  that ,  since P ~ =  ~ ~ - 2 2 , 

Cn 1 Cn Cn On-1  

we have 2 - 2 _  p ~  = c n  - a , ( 8 )  
i=O \ i = n + l  / 

and so ~ p ~ =  o~. (9) 
~=0 

A n y  sequence of non-negative numbers  p~ satisfying (9) thus uniquely determines 
an  orthogonal  matr ix  of the form (6), where an and cn are then determined by  (8). 

We shall now use the matr ix  (6) to define an  orthogonal  function system, 
as was done similarly in [3]. Let  

~/~ ~/2 (10) 
/ o ( X )  = , / n ( x )  = ~ c o s  n x ,  n = 1, 2 , . . . .  

This system is a complete or thonormal  system (CONS) on [0, z] ,  and hence so 
is the system {gn(x)}, n =  1, 2, ... where 

n + l  
g n ( X ) =  ~ a n ] / j _ i ( X  ). (11 )  

y= l  

Here we use II~JII to denote t he  matr ix  A. More concretely, we have 

n 1 

gn(x)=an ~ p~/~(x)-  cn /n(x), n>~l. (12) 
~=0 Cn-1  

Note  tha t  g,(x) is a t r igonometric (cosine) polynomial  of order n. The necessary 
and sufficient condition tha t  the gn be uniformly hounded  is clearly the existence 
of a positive M with 

n 1 
an ~ p~ ~< i .  (13) 

i - 0  

Let  now /(x) EL2[O, ze] and denote by  Sn(X), tn(x) respectively the n th  partial 
sum of the Fourier  development  of / in the /-system and in the g-system. Now, 
sn is the orthogonal  projection of / on Sn, the span of ]0,/1 . . . .  /n and tn is the 
orthogonal  projection of / on Tn, the  span of gl . . . .  gn. Moreover, the funct ion 

p ~ / ~ ( x )  
i=0  (14) 
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is in S~ and  orthogonal  to T=. Since T~ is a subspace of S~ of deficiency one, 
we conclude 

s=(x)=t~(x)+ </, h=>h=(x), (15) 

where <[, g> denotes the inner product  ~ [g dx. 
B y  means of (15) it is quite simple to compare the behavior  of the t~(x)with 

tha t  of the ordinary Fourier  partial  sums sn(x). 

Theorem 2. There exists, /or each o/ the /oUowing properties a), b), c), d), e), 
a complete orthonormal system {g~}, n =  1, 2 . . . .  on [0, ~] such that g~ is a cosine 
polynomial o/ order n, and moreover with respect to this system: 

1 
a) The Fourier coe[/icients of /o(x)==-l~ ~ are a prescribed unit vector in 12. 

b) The Fourier series o/ / 0 ( x ) ~ l  diverges to - c ~  at x=O. 
c) The Fourier series o/ / 0 (x ) - - I  oscillates between /inite limits at x = 0 .  
d) The g~(x) all vanish at x=O. 
e) The Fourier series o/ / 0 (x ) - - I  diverges on a dense set having the cardinality 

o/ the continuum. 

Moreover, in eases b), c), d), e) we may take g~(x) uni]ormly bounded. 

Proo/. a) is just the observat ion tha t  the first column in A m a y  be any  uni t  
vector.  Now, for / o ~ 1 ,  we have, taking / = 1  in (15), and noting tha t  s~(x)--=l, 

( + P l  cos x + ... p~ cos nx) 
tn(X) = 1 - -~2 _ (16) 

po 

If  we choose p~=n-�89 we have tn(O)-->- c~, proving b). On the other hand, 
the ratio 

P0 ~_ Pl + ... P~ 

m a y  be made to oscillate between finite positive limits a and  b, by  choosing 
p~ = a -1 for a long block of n, then p= = b -1 for a suitably long block of n, and  
so on alternately. This proves c). As for d) we have simply to satisfy the equa- 
tions (see (12)). 

a~ + P l + . . . P ~  1 - - -  , n>~l 
Cn ] 

or, in terms of the Pi (see (7), (8)) 

Pn(P~2+Pl+ pn-1)=p~+P~+ 2 . . . . . .  Pn 1 
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the solution of which is P0 = 1, P l = P 2  = . . . =  [/~" For  this choice we have c ~ -  
1 / (2n + 1), a~ = 2 / (4n  z -  1), and 

V 2 ( 4 n  ~ 1) � 8 9  g~(x)= 

 )oo nx in x] 
- - ~  sin �89 x ' 

Of course, t ha t  these special {g~ (x)} are a CONS could also be verified by  direct 
computat ion.  Thus d) has been proved. As for e), let nk denote an  increasing 
sequence of positive integers, and define 

p~ = O, n # any  nk 

1 =1/~' n=n~. 

Choosing nk rapidly increasing (e.g. nk = 6 ~) it is a simple exercise to show tha t  
there is a dense set E having the cardinali ty of the continuum, such tha t  for 
x in E, cosn~x~>21- for almost all indices k. For  such x, t ~ ( x ) - + - c ~  from (16) 
(similarly, we could make t~(x)-->+ ~ on another  such set E') .  This proves e). 
There remains only the question of uniform boundedness.  B y  (13) the uniform 

a "<~n- 1 boundedness of the {g~} is implied by  the boundedness of the sequence n/-~=0 P~. 
N O W ,  

2 
a 2 = Pn ~ P~n 

( p ~  + 2 2 2 �9 . 'Pn-1) (Po  - k ' . . p n )  ( p ~ - k . . . p 2  n 1) 2, 

hence a sufficient condition for the uniform boundedness of the {g=} is: 

Pn(Po §  + " "  Pn-1) <~ M(p~ + . . .  P~-I)  (17) 

and the proof is now completed by  remarking tha t  (17) holds for the systems 
we have constructed in b), c), d), e). 

Remarks  1. Note tha t  the choice Pn = 1 / J / ~  1 (which satisfies (17)) leads to 
an which are asymptot ical ly  n -} log n. Thus we see tha t  even for a uniformly 
bounded,  smooth CONS the constant  function m a y  have Fourier  coefficients a n 
satisfying ~ a ~ l o g 2 n  = c~, i.e. violating the hypothesis of the Menw 
macher  theorem ([1], p. 76). This suggests the possibility tha t  in such a system 
the Fourier  series of 1 might  diverge everywhere, bu t  we have not  been able 
to construct  an  example giving divergence even on a set of positive measure. 

2. B y  adjoining to the {9~} the functions V2/ z~s innx  we can get  CONS on 
t he  circle group which exhibit  the same pathologies. 
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3. I f  we drop the requ i rement  of uniform boundedness  d) becomes qui te  t r iv ia l  
to prove:  s imply take  functions complete  in L2[O, 7~], all vanishing at  0, and  
or thonormal ize  them.  In  this way  we can also construct  a CONS consisting of 
C ~ functions,  all of which vanish on a prescribed closed set of measure zero. 

4. T h a t  smoothness alone cannot  imply  rapid decrease of the Four ie r  coeffi- 
cients m a y  be seen readi ly  by  s imply permut ing  the ord inary  t r igonometr ic  func- 
t ions to form a new CONS. On the other  hand, in all of the systems so obta ined 
a twice differentiable funct ion has an absolutely and uni formly  convergent  Four ier  
series. 
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