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Some orthogonal matrices and related orthogonal
functions systems

By Epcar AspLunp and HaroLD S. SHAPIRO

In an earlier paper [3], one of the present authors showed that given any n
mutually orthogonal unit vectors in I?, there exists a uniquely determined in-
tinite orthogonal matrix (i.e. unitary transformation of I* onto itself) | ;|| having
the given vectors as its first » rows, and satisfying a;=0 for j>¢>mn. This
matrix was used to show that every subspace of L*(I') (where I' is the circle
group) having finite deficiency has a basis consisting of trigonometric polyno-
mials. In [3] also several questions were raised concerning the behavior of the
Fourier expansion of a smooth function, when the expansion is with respect to
a complete orthonormal system of smooth functions and it was pointed out
that certain other types of orthogonal matrices, if they could be constructed,
might be relevant to these questions. In the present note these questions are
answered, the essence of the results being that no amount of smoothness (not
even the requirement that all functions involved be uniformly bounded trigono-
metric polynomials) can guarantee either smallness of the Fourier coefficients
beyond what is implied by Bessel’s inequality, nor convergence of the series at
every point. We also show that the functions of a uniformly bounded complete
orthonormal system of smooth functions may have a common zero; in such a
system the Fourier series of “most” functions converges to the wrong value at
a point, and a fortiori cannot converge uniformly. Questions of almost every-
where convergence in the context of the present investigation we have not,
however, been able to settle.

Our main tool is the construction of an orthogonal matrix with n prescribed
(orthonormal) columns, and with a;=0 for >4+ n. Actually we only need these
matrices for n=1, but as the matrix theorem has perhaps independent interest,
we prove it for arbitrary n, and complex entries.

1. A class of unitary matrices

Theorem 1. Suppose |a;| (1<i<oo, 1<j<n) is a complex matriz whose
columns are mutually orthogonal unit vectors. Then there exists a unique unilary
matrizx A= |layl| (1<i<oo, 1<j< o) having the given matrixz as its first n col-
umns, and satisfying the additional conditions
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(1) ay=0 for j>j@)=i+rank J;, J,= > aia,.

i=k+1
(ii) If rank J;_y=rank J;, then a; ;,, is (strictly) negative.
Here a; denotes the n-dimensional i-th row
a; = (A1, ..., Qin).
Proof. The heuristic background for the following construction of the matrix 4
is found in [2]. Let j>= and denote by i(j) the smallest solution ¢ of the equa-
tion j=1¢ + rank J;. The number i(j) then satisfies

rank J;;, 3 = rank Jy,.

Put i(j)=Fk. The above condition then means that if d is an #-dimensional column
vector,

Jed=0 implies (J,+aja;)d=0. (1)

Condition (1), however, implies by the non-negativity of the matrices involved, that
a,d=0 if J,d=0.
But this is just the condition for solvability of the systems of equations
Jed=aj.
Fix a set of solutions d), of these systems and put
' M=y, ie., Jpbp=Aar,
where the positive numbers A, are determined by
= t+ad) =1 +didd)™, k=i(G), j>n

Evidently, 0<4,<1 for all k=i(j).

We now claim that the following matrix (which obviously satisfies conditions
(i) and (ii) of Theorem 1 is unitary.

ay 0
@y 0 ..
A=]" . r=i(). e)
: 0
a, a,b,-(,,ﬂ) .o a/rbi(jfl) _lr 0...

Let us first verify that the jth column is orthogonal to the first » columns;
we have
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—har+ > afab,=—Aaf +J,b,=0.

=r+l1

For the orthogonality of the columns j and %, with A>j§>mn, r=1i(j), s=i(h),
we have

~A@b) + 5 (@b (@)
= —Abral+ Sbratanb,
= —b,(Aa;s —J,b)=0.
In the same way, we see that the jth column is a unit vector:

Ve

T

(a/r+ibr)* (ar+ibr) :Z% +a/rlrbr = l?(l + a/rdr) = 1

irvg

Finally, we have to show that the system of column vectors in the matrix 4
is complete. Assume, then, that

e={e, ..o,y ...}

is orthogonal to all columns in A4, and that e, is actually the first non-vanishing
entry. Then

1 oK
a’:z - Z er+ia;k+i (3)
€ri=1

by the orthogonality with the first n columns in 4. If & is an n-dimensional
vector in the null space of J,, we have by the positivity of the matrices involved

a,d=0 for s>r.

But, by (3), this shows that a,d =0 so that, in fact, J,d =0 implies J,_;d=0
which in turn means that

rank J,_; =rank J, or r=4(j) for some j>u.

Now we use the orthogonality of the veetor e with the jth column in 4:

oo
— E I
0= _Zrer‘i_ Z br Q1§ €r i
i=1

= —e (A +bfafy= —e, A (1 +diT dy) = — e 27",

This contradiction proves that A is a unitary matrix. To see that 4 is unique,
suppose that we have constructed another matrix A’ which satisfies the condi-
tions of Theorem 1. Assume that this new matrix coincides with 4 (as given by
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equation (2)) in all columns of index less than j for some j>mn. Then the ele-
ments in the jth column of 4’ with row index less than r=4(j) must vanish,
since the squares of the absolute values of the elements in each of these rows
sum to one already over the first §-—-1 columns. The element in position (r,7)
of A" must be —A, since the subsequent elements in the rth row vanish by
hypothesis. Finally, the remaining elements in the jth column of A’ are deter-
mined by the orthogonality of the corresponding rows with the rth row, and
hence coincide with their counterparts in 4. Thus 4'=A4, as asserted.

Remark. In the finite-dimensional case this proves the existence and uniqueness
(up to postmultiplication by a diagonal unitary matrix) of a unitary completion
of a given orthonormal set of vectors with (in view of the results of [2]) the
largest possible domain of zeros in the upper right corner, if one measures the
domain by the number of those index pairs (7,§) such that a,,=0 for r<+i,s>7.

2. Some orthogonal function systems

In the present section we shall examine the case n=1 in more detail; sup-
pose now that @; are real numbers with a;>0, a;>0 for infinitely many + and
>Z,a2=1. We have in this case

ZE:vT7 k>19 (4)

=35 a2, k=0. (5)

i=k+1

We define ¢, to be the positive number defined by (5). Note that {c} is non-
increasing and tends to zero. We have from (2), b,=ay/(c;-1¢x) so that our
orthogonal matrix takes the form

c
a, 1 0
¢
()
Ay Co
e o
0 01 1
4= (6)
b G GG Gt G g
CyCy CyCq Cp-9Cpn_1 Cp-1

Actually it is more convenient to express the element of the matrix in terms
of other parameters defined by
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= =1; =1. 7
e " Po (7)
2 2
NS . Cp—_1—Cp 1 1
Note that, since 2= -
n o0 -1
we have z p? = C;Z = ( Z a,z) , (8)
i=0 i=n+1
] .
and so z p12 = oo, (9)

Any sequence of non-negative numbers p; satisfying (9) thus uniquely determines
an orthogonal matrix of the form (6), where a, and ¢, are then determined by (8).

We shall now use the matrix (6) to define an orthogonal function system,
as was done similarly in [3]. Let

folx) = Vrlc’ folX)= V% cos nx, n=1,2,.... (10)

This system is a complete orthonormal system (CONS) on [0,#], and hence so
is the system {g,(z)}, n=1,2,... where

n+tl

gn(x) = Z s fy-1(). (11)

j=1
Here we use | a;|| to denote the matrix 4. More concretely, we have

Ca

B@ =0 3 puli@) = = (@) 021, (12

Note that g,(x) is a trigonometric (cosine) polynomial of order n. The necessary
and sufficient condition that the g, be uniformly bounded is clearly the existence
of a positive M with

n—1
an > pi<M. (13)
=0

Let now f(z) € L*[0,n] and denote by s,(x), f,(x) respectively the nth partial
sum of the Fourier development of f in the f-system and in the g-system. Now,
8, is the orthogonal projection of f on §,, the span of f, f,, ... f» and ¢, is the
orthogonal projection of f on 7',, the span of g,, ... g, Moreover, the function

halz) =0y (14)
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is in §, and orthogonal to 7,. Since 7', is a subspace of S, of deficiency one,
we conclude

0 (®) =t (@) + <[, hy>ho(), (15)

where (f,g> denotes the inner product (7 fgdz.
By means of (15) it is quite simple to compare the behavior of the ¢, (x) with
that of the ordinary Fourier partial sums s,(x).

Theorem 2. There exists, for each of the following properties a), b), ¢), d), e),
a complete orthonormal system {g,}, n=1,2,... on [0,7] such that g, is a cosine
polynomial of order m, and moreover with respect fo this system:

1 . .
a) The Fourier coefficients of fo(x)EF are a prescribed unit vector in I2.
7

b) The Fourier series of f,(x)=1 diverges to — oo at x=0.

c) The Fourier series of fy(x)=1 oscillates between finite limits at x=0.

d) The g,(x) all vanish at x=0.

e) The Fourier series of fy(x)=1 diverges on a dense set having the cardinality
of the continuum.

Moreover, in cases b), c), d), e) we may take g,(x) uniformly bounded.

Proof. a) is just the observation that the first column in 4 may be any unit
vector. Now, for f,=1, we have, taking f=1 in (15), and noting that s,(z)=1,

V (V,-k—plcosx%— pncosnx)

ta(@) = (16)

pe+pi+.. Pk

If we choose p,=n"% we have £,(0)—> — oo, proving b). On the other hand,
the ratio

V—+p1+ . P
p0+ pn

may be made to oscillate between finite posﬂ;we limits @ and b, by choosing
pn=a"" for a long block of n, then p,=b""' for a suitably long block of n, and
so on alternately. This proves c¢). As for d) we have simply to satisfy the equa-
tions (see (12)).

Po ) Cn
A, | =+p,+... 0, 1] = -, n=1
n(V§ Pl pn 1 Cn1

or, in terms of the p; (see (7), (8))

pn(%’w&---pnq) =po+pit..ph1
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the solution of which is p,=1, p,=p,=...= /2. For this choice we have c2=
1/@2n+1), a2 =2/(4n*—1), and

gn(x):l/g(éinzfl)’%(1+2cosx+...200s(n~1)w~(2n—1)cosnx)
7

:Vg(éinzwl)*% sin(n— §)a— (2n— 1) cosnasin n>1.
7 sin }z ’

Of course, that these special {g,(x)} are a CONS could also be verified by direct
computation. Thus d) has been proved. As for e), let n; denote an increasing
sequence of positive integers, and define

=0, nF any ny

Choosing n;, rapidly increasing (e.g. n,=6") it is a simple exercise to show that
there is a dense set E having the cardinality of the continuum, such that for
z in E, cos x>} for almost all indices k. For such z, f,(x) = — oo, from (16)
(similarly, we could make &,(x)— + oo on another such set E’). This proves e).
There remains only the question of uniform boundedness. By (13) the uniform
boundedness of the {g,} is implied by the boundedness of the sequence a, 2" p;.
Now,
2 2

(12: Pn < P
n = >
(P5+ . pi-1) (PO p7) (D6 + - Pr1)®

hence a sufficient condition for the uniform boundedness of the {g,} is:
Pa(PoFPy+ oo Pa1) S M(PG+ ... Ph ) (17)

and the proof is now completed by remarking that (17) holds for the systems
we have constructed in b), ¢), d), e).

Remarks 1. Note that the choice p,=1/ Vn+1 (which satisfies (17)) leads to
@, which are asymptotically n *logn. Thus we see that even for a uniformly
bounded, smooth CONS the constant function may have Fourier coefficients a,
satisfying > a7log®n=co, i.e. violating the hypothesis of the Men¥ov-Rade-
macher theorem ([1], p. 76). This suggests the possibility that in such a system
the Fourier series of 1 might diverge everywhere, but we have not been able
to construct an example giving divergence even on a set of positive measure.

2. By adjoining to the {g,} the functions V2/msinnz we can get CONS on
the circle group which exhibit the same pathologies.
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3. If we drop the requirement of uniform boundedness d) becomes quite trivial
to prove: simply take functions complete in L?[0,n], all vanishing at 0, and
orthonormalize them. In this way we can also construct a CONS consisting of
C* functions, all of which vanish on a prescribed closed set of measure zero.

4. That smoothness alone cannot imply rapid decrease of the Fourier coeffi-
cients may be seen readily by simply permuting the ordinary trigonometric func-
tions to form a new CONS. On the other hand, in all of the systems so obtained
a twice differentiable function has an absolutely and uniformly convergent Fourier
series.
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