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On unique supports of analytic functionals

By C. O. KisELMAN

1. Intreduction

The principal aim of this paper is to prove that an analytic functional in a domain
of holomorphy in €* having a smooth holomorph convex compact support admits
no other holomorph convex compact support. This result is derived from properties
of compact weak carriers of analytic functionals which we prove by means of 3
cohomology and which are analogous to properties of compact carriers proved by
Martineau using Cech cohomology.

If Q is an open set in C*, we write 4(Q) for the set of all analytic functions in €.
This is a Fréchet space under the topology of uniform convergence on all compact
parts of Q. An element of the dual space A4'(Q) is called an analytic functional. For
an arbitrary part M of C*, 4(M) denotes the inductive limit of all spaces 4(w)
where w> M is open. If M, = M,, 4(M,) induces in a natural way a (not necessarily
Hausdorff) topology in A4(J,).

The Definitions 1.1 and 1.4 below are due to Martineau [4].

Definition 1.1. A compact part K of an open set Q< C" is called a weak carrier of -
HEA(Q) if for any open set w such that K<w<Q, p is continuous for the topology
induced in A(Q) by Aw). It is equivalent to say that for every neighborhood U of K
which is contained in L there is a constant Oy such that

|u(f)| <Cy sup |/]

for all {€ A(Q). Further, K is said to be a carrier of p if p is continuous with respect
to the topology induced in A(Q) by A(K).

Martineau also considers carriers which need not be compact, but in this paper a
carrier shall always mean a compact carrier. Every carrier of a functional u € 4'(()
is a weak carrier of . It is unknown whether the converse is true (see Martineau
[4]) so that the relation between Martineau’s theorems on carriers and the corre-
sponding results on weak carriers in Section 2 is not clarified. However, it has been
proved by Martineau [4, Ch. I, Théoréme 1.1'] that the two notions coincide for
compact sets satisfying a certain geometric condition. In particular, it is easy to
see by means of the Runge approximation theorem that a compact subset K of a
domain of holomorphy Q which is 4(Q)-convex in the sense of the following definition
carries every analytic functional in Q which it carries weakly. Thus the proofs of
Section 3 remain equally valid if we substitute properties of carriers for the pro-
perties of weak carriers actually used.
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Definition 1.2. If M is a non-empty part of Q= C" we define the A(Q)-hull Mg of
M by
MG = {z€Q; for all f€ AQ), |/(2)| <sup|f|}, (1.1
M

and we say that M is A4(Q)-convex, or holomorph convez, if Mg =M. An A(C™)-convex
set is also called polynomially convex. We write ch M for the closed convex hull of M.

The proof of Theorem 3.2 depends on the following

Theorem 1.3. Suppose that Q< C* is a domain of holomorphy and let M be a rela-
tively compact subset of Q. Then Mq is compact and

MG = {z€Q; for all FEPQ) N C°(Q), F(z)<supF}, (1.2)
M

where P(Q) and CYQ) denote, respectively, the set of all plurisubharmonic functions
and the set of all continuous functions in .

That Mg is compact follows from the “fundamental theorem” of Cartan-Thullen
[1] (see also [2, Theorem 2.5.5]). The equation (1.2) is a consequence of the solution
of the Levi problem given by Oka-Norguet-Bremermann; for a proof we refer to
Hérmander [2, Theorem 4.3.4]. A discussion concerning the relation of (1.2) to the
Levi problem is given in Lelong [3] and Hérmander [2, Chapter IV].

Definition 1.4. 4 subset K of Q is called an A(Q)-convex support of u€ A'(Q) if K
is an A(Q)-convex (weak) carrier of u and no A(Q)-convex proper subset of K carries
u (carries u weakly). The notion of convex support is defined similarly with convexity
instead of A(Q)-convexity.

In a domain of holomorphy Q every non-zero analytic functional has at least
one 4(Q)-convex support and, if Q is a convex open part of C", at least one convex
support. Conversely, every 4(Q)-convex compact part of Q is the unique A4(Q)-
convex support of some analytic functional in Q (Martineau [4, Ch. I, Théoréme 2.1]).
A natural question is thus to ask for functionals having exactly one (4({2)-)convex
support, and also for compact sets K such that K is the only (A4(£)-)eonvex support
of any functional having K as an (4(Q)-)convex support. A result in this spirit is
the theorem of Martineau [4, Ch. I, Théoréme 3.3 b] stating that an analytic func-
tional carried by some compact set contained in R™ has a smallest carrier —R"
(but not necessarily a smallest ,4(Q)-convex carrier, see the example (1.3) below).
We refer the reader to [4] for some other theorems of this kind.

The Pélya representation of analytic functionals in one variable shows that any
non-zero functional in ,4'(C!) has a unique convex support. However, a functional
can have several polynomially convex supports even in the one dimensional case.
This is shown by the example

ulf) = f He)de, €AY, (L.3)

Here any simple arc connecting 0 and 1 is a polynomially convex support of u.
To give a more interesting example we let w = {z€ C'; |z| >1}, g€ A(w), and define
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u(f) = frﬂzm(z)dz, Fe A,

where I' is any Jordan curve in @ with winding number one with respect to the
origin. Now write I'=I", +I', where I'; and T, are simple arcs with only two points
in common and define

v(f) =ulf) —fr fR)g(R)dz,  f€AC).

Suppose K < {z€ C; |z| <1} is a polynomially convex support of 4. Then KUT, is a
polynomially convex support of » (this follows e.g. from Corollary 2.6), and one
might believe that the intersection of all polynomially convex supports of » contains
K. However, :

v(f) =] 12)9(z)dz
PZ

so that v is also carried by I',. Thus, in the presence of an arbitrarily small curve
'y, no regularity condition on a part K of an 4(Q)-convex support of an analytic
functional is sufficient to guarantee that K is contained in every 4(Q)-convex
support.

On the other hand, Theorem 3.3 states that an 4(Q)-convex support of u € 4'(Q),
Q< €, containing (in a certain sense) no “curves” is the unique ,4(Q)-convex support
of u.

In the case of several variables functionals may even fail to have unique convex
supports. In fact, the analytic functional in €? defined by

p(eiaty = cos (&, L)t (1.4)
is carried by the polydisk (see Theorem 4.4.5 in [2])

K= {2€0% || <t, |2,| <(4t)71},

where ¢ is an arbitrary positive number. For every >0 there exist convex and
polynomially convex supports included in K, but all such sets must contain the
point a;=(t, —(4t)~!) which proves that there are several supports of each kind
(since a,€K, if and only if ¢{=s), and also that these supports do not have con-
tinuously varying tangent planes.

The lack of smoothness of the supports of (1.4) is characteristic. We prove (Theo-
rem 3.1) that smooth convex compact sets are unique convex supports whenever
they are convex supports, and (Theorem 3.2) the analogous result for smooth 4(Q)-
convex sets. Here () is supposed to be a domain of holomorphy in €% however, it
seems probable that the proof of the last-mentioned theorem can be modified to
cover the case when Q is a Stein manifold.

2. Some results on weak carriers of analytic functionals

Let € be an open set in €. We write as usual C"™(Q) for the set of all m times
continuously differentiable complex-valued functions in Q (0 <m <o), and CJ(Q)
for the set of all functions in O™(Q)) having compact supports. We let O ,(Q) stand
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for the set of all differential forms of type (p,q) with coefficients in C™(Q)), i.e
FE€CG, () if and only if there exist functions fi, ...i,7...7, € C™(Q2) such that

f= 2 2 fueipiiess dzg Ao Ndzig AdEL A ... A dE,,

o eenrip Fyeenandg

where 2z, =, +1%,,,, % and x,,, real, dz,=dx, +idx,,, dZ,—dr,—idx, . The dif-
ferential of a form f is written as a sum

df =of +éf,

where & and 7 are defined by the requirement that &f and gf be of type (p+1,9)
and (p,q -+ 1) respectively when f is of type (p,q). Thus, e.g. du =2 0u/0Zd%, it u€C1(Q)
where ou/0z), = (du/ox, +i0u/ox, ,)/2. In the proof of Theorem 2.1 the derivatives
of the coefficients of a form are to be understood in the sense of distribution theory.
Elsewhere in this paper only € forms are used. The coefficients of a form f can be
chosen so that fi_ i,5..; is non-zero only if ¢; <... <4, and j; <...<j,. In this case

we define |f| by
|12 = 22 futp ol

Theorem 2.1. Let Q be a domain of holomorphy in €, and K a compact subset
of Q. Then one can find a compact set L<Q and a constant C such that for every
form [€ O 1,(Q) with 3f =0 there is a solution u € C°(Q) of the equation du =f satisfying
supg |u| <Csup,|f].

Proof. That the equation gu—f has a solution w€C°(Q) for any & closed form
f€C% 1,(Q) follows from Cartan’s Theorem B by means of the Dolbeault isomor-
phism; see Schwartz [5] for a proof of the Dolbeault isomorphism when the § coho-
mology is that of forms with continuous coefficients.

However, since it is desirable in this context to rely exclusively on § cohomology,
we wish to infer this result from Theorem 4.2.5 in Hérmander [2] according to which
we can find a locally square integrable solution u of the equation ou =f if f€ 0, 1,(Q)
and 9f =0 (this is only a weak special case of Theorem 4.2.5 in [2]). We claim that
w€Q(Q) (after correction on a set of measure zero) if su €% 1,(Q) and w is locally
integrable. To prove this we form the regularizations u, =u ¢, where @ is a positive
function in C§°(C") with Lebesgue integral one and ¢, (z) =k®"p(kz), k=12,.... For
every open set w, relatively compact in Q, u, is defined and infinitely differentiable
in w when k is large emough. It is sufficient to prove that u, converges uniformly
on every compact part K of Q. If K is given, we choose an open neighborhood w
of K which is relatively compact in {. We then have that ||uk~u||a,—>0 where the
norm denotes the norm in Li(w), and that du,~ du uniformly in o since du is con-
tinuous. Applying the inequality of the next lemma to u;-u, we find that

sup |u; — uy| < C(sup |ou; — du| + || w;— uello) 2.1)
X w

which proves that u, is a Cauchy sequence in C°(K), hence convergent to some
function » € (%K), and then v=u a.e. in K.
We have thus a well defined closed linear mapping

{1€C%.1(Q); 3 =0} f U €CYQ)/AQ)
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where the equivalence class U is defined by du =f when u€ U. Since T is defined in
a Fréchet space and has its values in an other Fréchet space, 7' is continuous by the
closed graph theorem. In view of the definition of the topology in C°(£2)] 4(Q) ‘this
proves the inequality in Theorem 2.1. Finally, if du€Cg 1,(Q), « is infinitely dif-
ferentiable, see e.g. Hormander [2, Theorem 4.2.5 and Corollary 4.2.6].

Remark. The estimates given in Theorem 2.1 are somewhat stronger than is
actually needed in this paper. At the expense of a slightly longer proof of Theorem
2.4 we could have used weaker estimates of the type

sup [u|<Csup 2 |D%|,
K L |zl<m

where D*f are forms whose coefficients are derivatives of those of f. These estimates
follow as in the proof above if we use directly the triviality of the & cohomology of
C* forms.

To complete the proof of Theorem 2.1 it remains to prove the inequality (2.1)
used there.

Lemma 2.2. Let w» be an open set in C* and K a compact subset of w. Then there
exists a constant C such that for all w€CVYw)

sup]u|<0(supl5u| +f |u|dln),
K w @

where dA, is the Lebesque measure in C".

Proof. First assume that K is a polycylinder in o and choose functions ¢, ...,
@, € C§(C) such that @(z) =@,(2,) ...@,(2,) =1 in a neighborhood of K and the support
of ® is contained in w. By the Cauchy integral formula applied to the function u®
we get if a€K

u(a) = — 1 f@(u(b) (21; Bgy +v, Q) (27— ()Ll)f1 di, (z,)

4 0z,
1 ou _
== f (52: q)) (21> Ggy +ovs @) (2 — @) A, (24)
1 oD _
_; f (ua_zl) (21s Qgy o ons ) (2, — @) ldll(zﬂ'

Here dj, denotes the 2k-dimensional Lebesgue measure. By iterated application of
the same formula to all coordinates z,,...,2, we obtain

ey Z)

(6u PR () )(z . a @)

n 1 - - . - B 13 ** k> k+l,-..’ n

u(a) _ z — kJ 6zk 821 32}4 1 d}»}‘; (zl’ .
T (—m)

(zi—a) ... (2 —ay)

o,
1 J “oa, o am) @ "

(Mn)n (zl - a]) (zn_an)

+ 2(2).
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The first » integrals of this sum are easily estimated by a constant times sup,, | ou|
since the singularities are integrable. The absolute value of the last integral does
not exceed

7" sup |p(z, a)| f |w| dAn,
where
a0 il _
P @)= 5 @ ) () =] D ) )
Since y(z,a) is bounded as a function of z by a constant independent of a € K, this

proves the lemma when K is a polycylinder and hence in general since any compact
set in w can be covered by finitely many compact polycylinders contained in w.

Theorem 2.3. Let Q be a domain of holomorphy in €, K an A(Q)-convex compact
part of Q, and ® an arbitrary neighborhood of K. Then there exists a constant C' such
that for every £>0 and every form f€CG 1) (C2) satisfying 3f =0 we can find w€C>(C2)
with ou=f and supg|u| < Csupo|f| +e.

Proof. Assuming as we may that w is compact we can find A, ..., k, € A4(Q) such
that K<V ={z€Q; |I(2)| <1, k=1,...m}<(dw. Since U=V N is obviously a
domain of holomorphy we can according to Theorem 2.1 choose a solution v € C®(U)
of the equation dv =f such that supg|v| < Csup|f| for some constant C.

Now choose p€C§*(U) such that 0<<y <1 and y=1 in a neighborhood of K and
set g=f—dvy)€CE 1,(Q) defined as f outside the support of y. Take a solution
wE€C®(Q) of the equation dw =g (9g=0). Since ¢g=0 in a neighborhood of K, w is
analytic there and can be approximated uniformly on K by functions in A4(€)
according to the Runge approximation theorem. Adjusting w by adding a function
in 4(Q) we can arrange that supg|w| <e, and then u=wvy +w satisfies du =f in Q and

sup|u| <sup|v| +sup|w| < Csup|f| +e.
K K K ]

The theorem is proved.
We can now give the main result of this section.

Theorem 2.4. Let K, and K, be compact sets in a domain of holomorphy Q< C*,
and denote by L the A(Q)-hull of K, U K,. Suppose that K is a compact set separating
Ky and K, in the sense that INK =L N K is a disjoint union of two sets My and M,
closed in L\K, such that K\K< M,, j=0,1. Then every analytic functional u€ A4 (Q)
which is weakly carried by K, and K; is also weakly carried by K.

Proof. (i) We first choose to each open neighborhood w of K a function ¢ € 05 (£2),
O0<yp<l1, such that 9 =75 in w,\w for some open neighborhoods w; of K ,(j=0,1)and
p is constant in every component of U\ for some open nelghborhood U of the
A(Q)-hull of o U 0y In fact, putting m;=M ,\w we get L\w=myUm,, my | Nm; = ﬂ
and m; are closed in L\w, hence compact For some positive ¢ the sets md® and mi*
are therefore disjoint and contained in Q. (If B<C" and ¢20, we let B° be the set
of all points whose Euclidean distance to B is < &.) We now take y as the convolution
of the characteristic function of m}® with a positive funetion in O (C") whose support
is contained in {2€ C"; X|z;|2<¢?} and whose Lebesgue integral is one. It is clear
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that =4 in mj. Furthermore mgUmiU w is a neighborhood of L and we can find
two open neighborhoods U, V of L such that Vo< UcmiUmiUw. In fact, let
UcmiUmiUw be a relatively compact open neighborhood of L and V=B, nU
where B,={z€Q; |h(z)|<r,k=1,...,m} and h,€A(Q) are chosen so that
LcB,cB,cUU(QU,. With ;=(m{Uw)N V we have w,U w, =V, hence the 4(Q)-
hull of w,Uw, is contained in U. Finally, since U\&@< mgU mj, y is constant and
equal to 0 or 1in each component of U\@. Thus all claimed properties of y are proved.

(ii) We now prove that to each open neighborhood w of K corresponds a constant
C such that |u(f)| < Csup,|f| for all {€ 4(Q). Choose y according to the first part
of the proof. Since U is a neighborhood of (w,U w,)a we can by Theorem 2.3 find a
constant ¢’ such that for every f€ 4(Q) and every ¢ >0 there is a function » € C=°({2)
with du = foy and

sup |u| < C'sup|foy| +&=C"sup|fop| +e. 2.2)
woUw, U ®
The equality in (2.2) follows from the fact that gy =0 in U\®.

Now u(f) =u(yf —u)+u((1 —y)f+u) and if y is weakly carried by K, and K,
we get

(D] < Cosup|ypf —u] +Cysup| (L-y)f +u| < Cosup|yf|

+Cysup [u] +Cysup| (1 —y)f| +Cysup|u]

for y =4 in w,\@, j=0,1. From (2.2) we conclude that
| ()] < (Co+Cy) (S(Llp|f| +0'sup|foy| +e). (2.3)

1f f happens to be zero in @ we thus have |u(f)| <(Cy+Cy)¢, hence u(f)=0. Other-
wise we are free to choose £ =sup,|f|. In both cases we obtain from (2.3)

|u(f)| < Csuplf|

for some constant C since gy is bounded. This completes the proof.

Corollary 2.5. Let Q be a domain of holomorphy in C" and K,, K, weak carriers of
BEA(Q). If KU K, is A(Q)-convex, u is weakly carried by KN K.

The analogous result with carriers instead of weak carriers has been proved by
Martineau [4, Ch. I, Théoréme 2.2].

Proof. The assumptions of Theorem 2.4 are fulfilled with K:KoﬂKl; M;=
K\K(j=0,1). '

Remark. Theorem 2.4 can easily be deduced from the corollary. Indeed, suppose
that K, K, and M, satisfy the hypotheses of the theorem and put K;=M,U (LN K).
Then K; is compact for it is relatively compact and since M, N (L\K)< M, we have
K)\K; =M ,n6@nK)nCM,<C(L\K)nC(Ln K)=0L which together with K;<L
gives K}\K;=0. Further KiNK;—(LNK)U(M,NM,)=LNK and KiUK;=
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(LNK)UMyUM,=L, an 4(Q)-convex set. Finally K;> K, so that K; is a weak
carrier of u. An application of Corollary 2.5 to K¢ and K now proves that Ko N K= K
carries u weakly.

Corollary 2.6. Let Q be @ domain of holomorphy in C", and K, K, weak carriers of
UE A (Q). Then u is weakly carried by K =K, 0 (I\KyU K,), where L=(K,U K,)q.

Proof. We put S=L\K U K,, My=K,\K =K,\S=L\S, M,=(L\K)\M, and shall
prove that the assumptions of Theorem 2.4 are fulfilled. It is clear that M,N M, =
O, MyU My=L\K. Further M, is closed in L\K, for (L\K) N My=Ln Cx,nCumy)n
M,=Ln(OCK,n MU My)=L0 My=M, Onthe otherhand, M, =M,\K =(L\S)\K =
(L\Kyn TS, and 0S8 is open so that M, is open in L\K. Finally K\K < M, and since
K\K<CK,=0M, we have also that K,\K<(L\K)n0GM,=3,. An application of
Theorem 2.4 now completes the proof.

For any two given 4(Q)-convex carriers K, and K; of a functional u€A4'(Q),
Corollary 2.6 yields a third, K,=Kyn (L\K,) U K,)a contained in K,. If K, is an
A(Q)-convex support the third carrier K, must be equal to K, This is the idea
underlying the uniqueness theorems 3.2 and 3.3. More generally, Corollary 2.6 shows
that the intersection of all 4(Q)-convex carriers of x4 contains the set

N(K;; K, is A(Q)-convex and K< (KU K)3\K)U K,)a),

provided K, is an 4(Q)-convex support of u. Similar remarks hold, of course, for
convexity.

3. Unique supporis

Using Corollary 2.6 we shall now prove the results concerning unique supports
mentioned in the introduction. The first theorem deals with convex supports. The
proof is perhaps not the shortest possible but is formulated to stress the analogy
with the less perspicuous situation in Theorem 3.2.

Theorem 3.1. Suppose K, is a convex compact set in C* whose boundary is once
continuously differentiable. Then for any domain of holomorphy Q containing K, and
any analytic functional u€ A4 (Q) having K, as a convex support, K, is the only convex
support of u.

Proof. We have to prove that every convex carrier K, of y contains K,. For this
it is sufficient to find, given any convex compact set K, such that K,\K,=+0, a
pair of convex functions F, @ satisfying

sup F <0, supF >0 (3.1)
K Ky
sup G<0, hence supG@<0 where L=ch(K,UK,);and (3.2)
KoUK,y L
z¢ K, G(z)<0 implies F(z)<0. (3.3)

In fact, suppose that K, is a convex carrier of u and that K¢\K,=+0. Then if z€ L\K,
we have F(z)<0 by (3.2) and (3.3) and hence by (3.1) supu xyux, F <0 which
implies supg F <0 where K = K, N ch((L\K,) U K,). Thus K is a convex proper subset
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of K, because F'>0 somewhere in K, But Corollary 2.6 shows that K carries u so
that, contrary to hypothesis, K, cannot be a convex support of 4. Hence there can
be no convex carrier K, satisfying K,\K,=0 which means that K, is the only con-
vex support of u.

To prove the existence of convex functions F, @ satisfying (3.1)—(3.3) we note
that the assumptions on K, implies the existence of a continuous function N, the
unit outer normal, defined on the boundary 8K, of K,, with values in (" and such
that |N(z)| =1, Re (2, N(2)> =sup,ex, Re (w,N(z)>. (We write {z,{>=2>72,{,,[C]| =
{¢,0>%) If K, is a convex compact set such that there exists a point b€ K,\K, we
choose {,|{| =1, such that Re (b,{>>supyex, Re (w,l). Let a €K, be a point such
that Re<{a,{) =sup ez, Re (w,l>. Obviously {=N(a). We claim that for all ¢>0
there is a 0 >0 such that for all z€0K,

Re(z,0>>Rea,ly—d= | N(z) | <e. (3.4)

Indeed, if the contrary were true we could find a sequence (2”) of points on 8K,
and a positive number ¢ such that Re(z”,{) 2Re<a,l>—1/j and |N(P)—¢| >e.
A subsequence of (2”) must then converge to some point z€ 8K, and since Re (z,{> =
Re<a,l> we must have N(z)=N(a)=(. Thus |N(z”) —N(z)| >¢ which contradicts
the continuity of N.

Now choose £>0 so small that Re<a, 0> >supex, Re {w, 0> when |6 | <eand
then take §>0 such that (3.4) is valid for all 268K, and also sup,ex, Re {(w,{> <
Re<a,l>—6. Define F(z)=Re{(z—a,l>+4 and G(z) =sup(Re (z—w, N(w))>; wEaK,
and F(w)=>0). Then (3.1) and (3.2) are obvious. To prove (3.3), suppose that z¢ K,
and F(z)>0. Let 2’ be the point closest to z in the compact set {w€K,; F(w)=>0}.
Then the open segment between 2’ and a point w satisfying F(w) >0 and |w—z|2<
|w—2'|2+|2~2'|? is free from points in K, which proves that Re(w,N(z')> >
Re (', N(z')> for all such w, and hence (since w can be arbitrarily chosen in a neigh-
borhood of z) that Re (z, N(z')> >Re (', N(z')>. We obtain G(z) =Re (z -2/, N(z')> >0
which proves (3.3) and so completes the proof of the theorem.

Using similar geometric ideas we prove an analogue of Theorem 3.1 for A4(Q)-
convex sets.

Theorem 3.2. Let Q be a domain of holomorphy in C" and pn€ A (Q). If K, is an
A(Q)-convex support of yu whose boundary is twice continuously differentiable, then K,
18 the unique A(Q)-convex support of u.

Remark. The smoothness requirement on K, means that there is a twice con-
tinuously differentiable real-valued function f in  such that grad f(z)==0 when
f(2) =0 and K= {z€; f(z) <0}. In particular, K, is the closure of its interior.

Proof of Theorem 3.2. In complete analogy with the proof of the preceding theorem
it suffices to construct, for every given 4(£2)-convex compact set K, with K,\K,=+0,
two functions F, G'€ P(Q) N C%(Q) such that

sup F<0, supF>0; (3.5)
K, K,
sup G<0, hence supG<0 where L=(K,UK,); and (3.6)
KWK, L
z¢K,, G(z)<0 implies F(2)<0. (3.7)
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(Here it is essential that the ,4(Q)-hull of the relatively compact set (L\Ky)U K,
can be defined by (1.2).)

Now if K)\K,+0 and K, is A(Q)-convex, there is a function Gy€ P(Q) N C%(Q)
such that supg, G, <0 and supg, G, >0 (see Theorem 2.6.11 in Hérmander [2]). The
function Gg(2) =Gy(z)+38|z|? satisfies the same conditions when é >0 is sufficiently
small. Define H,=G, —supg, G5, and choose a€9K, such that Hg(a)=0 (by the
maximum principle, the supremum is attained at the boundary). We now take
b€ K, on the interior normal of 2K, at a so that z=a, |2—b| <|a —b| implies z€ K°,
and define

H(z)=Hgyz) — (3 —j)e(Jz~b|2~ |a—b]?), j=0,12,

where 0<e<4§ and ¢ is so small that supg, H,<0. Then clearly H,€ D(Q)n C¥L2)
and we claim that H,(2) <0 when z€ K and that equality holds only at a, j=0,1,2.
Indeed, H;<H,<0 on the boundary of K, hence H,<0 in all of K. If H{z)=0,
z=ra, we have z€EK,° by assumption and so by the maximum principle that H;=0
in an open set which is impossible since H, is strictly plurisubharmonic.

Our next step is to take a function f€C%(Q) such that K,={2€Q; f(z) <0} and
f=H, in Q. (The construction of such a function is trivial locally and follows globally
by means of a partition of unity.) We claim that f - H, is convex in some open neigh-
borhood @’ of a. In fact, we have f —H, > H,— H, with equality at a, and since the
matrix (02(H,—H,)/0x;0x,)?%., is positive definite at a the same is true of (6%(f — H,)/
0x,0x,)7% -1, hence the latter matrix is positive definite in some convex open neigh-
borhood o' of @ because its coefficients are continuous (x, ...,,, are real coordinates
in €"). This means that in o’ we have f - H,=sup(4; 4 <f— H, in w') where the
supremum is taken over all real affine functions A(z)=Re(z, 6>+ C. We define a
norm for such functions e.g. by

4] —sup| )]

2|1
and set for arbitrary >0

Gy=H,+Ag+sup(4; A+ A<f—-H, inow and |4]<n),
A

where A4, is the affine function defined by
Hy(z) — Hy(z) = Hy(2) — Hy(2) = Ao(2) +0(z - a), z—~>a.

By well-known properties of continuous and plurisubharmonic functions it follows
that @, € D(Q) n C%Q). Since 4, is also the best affine approximation of f—-H,; at a
we have G, =f in some open neighborhood w, of a. Clearly G, <f in w’. We also note
that

H,+A4,<G,in Q; {3.8)

Hy+A4,<H,inQ; and (3.9)
H,+Ay<H,in Q.

Now, since G, H,+ 4, when n\\0 and H,+4,<H,<0 in Kj\w', it follows from
Dini’s theorem that G, <0 in K,\w' if  is sufficiently small; hence G,<0 in K,
because G, <f<0 in K Nw'. In the same way we infer that &,<0 in K; when y¢
is small enough. This proves (3.6) if G=@, for some conveniently chosen #>0.
Finally, we obtain from (3.8) if @ denotes the neighborhood of a where G/ =f
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q—sup (Hy(2) -+ A,(2); 26K, and G(2) <0)
<sup (Hy(2) + Aglz); 26 KyUw and H,(z) +4,(2) <0)
<sup(—e(|z—b[2—|a—b|2); 26 KoUw) <0

(the last inequality follows from the way b was chosen). This, together with (3.9),
shows that (3.5) and (3.7) are satistied with F(z) = Hy(z) + Ay(z) +7 if

r=min(—gq, —sup(H,+4,)) > min(—gq, —sup H;) >0.
Ky :¢1

The proof is complete.

When n=1, the smoothness assumptions of Theorems 3.1 and 3.2 are, of course,
very unnatural. Indeed, convex supports are then always unique as remarked in
the introduction, and 4(Q)-convexity is a topological notion. The following theorem
generalizes Theorem 3.2 when n=1, and replaces the smoothness condition on K,
there by a topological one stating intuitively that K, contains no curves.

We recall that if K is a compact part of Q< (!, Kg, defined by (1.1) or (1.2),
is the union of K and those connected components of Q\K which are relatively com-
pact in Q; for a proof see [2, Theorem 1.3.3]. In particular, a connected open set
which is disjoint from K and contains points outside K is also disjoint from K.

Theorem 3.3. Let Q be an open set in C! and K,=Q an A(Q)-convexr support of
1€ A Q). Suppose that for any connected open set w intersecting the boundary 9K, of
K, the interior of the union of K, and an arbitrary connected component of w\K, inter-
sects 0Ky Then u has a unique A(Q)-convex support.

Remark. The following property is easier to formulate than and implies the hypo-
thesis on K in the theorem: For any z€ 8K, there exist arbitrarily small open neigh-
borhoods V32 such that V\K, is connected. The compact set {€C'; |2—1]| <1}
(whose boundary is a lemniscate) shows that the latter condition is strictly stronger.
Both conditions allow K to contain isolated points.

Proof of Theorem 3.3. The theorem will follow if we prove that K,\((L\K,) U K)o =i:?
if K, is an arbitrary 4(Q)-convex compact set such that K,\K, 40 and L= (K, U K,)3.
In fact, then every 4(Q)-convex carrier K, of u must contain K, For otherwise
KyN ((L\Kg)U K,)q is by Corollary 2.6 an A(Q)-convex carrier which is a proper
subset of K contrary to the assumption that K, is an 4()-convex support.

Let @, be a connected component of Q\K, intersecting K. Since w, is not relatively
compact in it is not contained in the compact set L. Let w, be a component of
w,\K, not contained in L. From the remark preceding the theorem it then follows
that w, does not intersect L. Also, since w, intersects 9K, we can find an open con-
nected set w meeting both &K, and w, such that @<w; <Q\K,. Indeed, » can be
defined e.g. as a sufficiently small connected open neighborhood of any curve in
w; which joins a point in 0K to a point in w,. Some component w, of w\K, intersects
®,, and therefore w,<w,=Q\L. According to hypothesis there exists a point z€2K,
such that K,U w, contains a connected open neighborhood w, of 2. Since 2€dH, < wy,
we may assume that w;<w,. Now w; is connected, contains points outside Li\ and
does not meet the closure of (L\K,)U K, so it is disjoint from ((L\K,)U K;)q, in
particular z ¢ ((L\K,) U K,)g. This completes the proof.
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