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On unique supports of analytic functionals 

By C. O. KISELMAN 

1. Introduction 

The principal aim of this paper is to prove that  an analytic functional in a domain 
of holomorphy in (P having a smooth holomorph convex compact support admits 
no other holomorph convex compact support. This result is derived from properties 
of compact weak carriers of analytic functionals which we prove by means of 
cohomology and which are analogous to properties of compact carriers proved by 
Martineau using (~ech cohomology. 

If  ~ is an open set in C n, we write A(~) for the set of all analytic functions in ~ .  
This is a Frdchet space under the topology of uniform convergence on all compact 
parts of ~2. An element of the dual space A'(~2) is called an analytic functional. For 
an arbitrary part M of (~, A(M) denotes the inductive limit of all spaces A(o)) 
where cod M is open. If  M1c  M2, A(M1) induces in a natural way a (not necessarily 
Hausdorff) topology in A(M2). 

The Definitions 1.1 and 1.4 below are due to Martineau [4]. 

Definition 1.1. A compact part K o / a n  open set ~ c  G n is called a weak carrier o/ 
ttE A'(~)  i / / o r  any open set eo such that K c o ) c g 2 ,  # is continuous/or the topology 
induced in .,4(~) by A(eo). I t  is equivalent to say that/or every neighborhood U o/ K 
which is contained in ~ there is a constant Cu such that 

I~(1) 1 <cu sup I11 
U 

/or all /E A(~).  Further, K is said to be a carrier o / t t  i / t t  is continuous with respect 
to the topology induced in .,4(~) by A(K).  

Martineau also considers carriers which need not be compact, but in this paper a 
carrier shall always mean a compact carrier. Every carrier of a functional/~ E A'(g2) 
is a weak carrier of/~. I t  is unknown whether the converse is true (see Martineau 
[4]) so that  the relation between Martineau's theorems on carriers and the corre- 
sponding results on weak carriers in Section 2 is not clarified. However, it has been 
proved by Martineau [4, Ch. I, Thdor~me 1.1'] that  the two notions coincide for 
compact sets satisfying a certain geometric condition. In  particular, it is easy to 
see by means of the Runge approximation theorem that a compact subset K of a 
domain of holomorphy ~ which is A(~)-convex in the sense of the following definition 
carries every analytic functional in ~ which it carries weakly. Thus the proofs of 
Section 3 remain equally valid if we substitute properties of carriers for the pro- 
perties of weak carriers actually used. 
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Definition 1.2. I / M  is a non-empty part o / ~ c @  ~ we de/ine the ,,4(~)-hull M~ o/ 
M by 

M ~  = {ze ~l; for all /EA(~) ,  I/(z) I <~ sup [/I }, (1.1) 
M 

and we say that M is A(~)-convex, or holomorph convex, i/ M~ = M. An  .,4(@~)-convex 
set is also called polynomially convex. We write e h M / o r  the closed convex hull o/ M. 

The proof of Theorem 3.2 depends on the following 

Theorem 1.3. Suppose that ~ @ ~ is a domain o/holomorphy and let M be a rela- 
tively compact subset o /~ .  Then M~ is compact and 

M ~  - {z E ~; for all F E O(~)  fl C~ F(z) <~ sup F},  
M 

(1.2) 

where 0(~)  and C~ denote, respectively, the set o/ all plurisubharmonic /unctions 
and the set o/ all continuous/unctions in ~.  

That  M~ is compact follows from the "fundamental  theorem" of Cartan-Thullen 
[1] (see also [2, Theorem 2.5.5]). The equation (1.2) is a consequence of the solution 
of the Levi problem given by  Oka-Norguet-Bremermann;  for a proof we refer to 
HSrmander [2, Theorem 4.3.4]. A discussion concerning the relation of (1.2) to the 
Levi problem is given in Lelong [3] and HSrmander [2, Chapter IV]. 

Definition 1.4. A subset K o / ~  is called an .,4(~)-convex support o/ #E.,4'(~) i/ K 
is an A(~)-convex (weak) carrier o/ # and no .,4(~)-convex proper subset o / K  carries 
/~ (carries t~ weakly). The notion o/ convex support is de/ined similarly with convexity 
instead o/.,4(~)-convexity. 

In  a domain of holomorphy ~l every non-zero analytic functional has at  least 
one A(~)-convex support and, if ~ is a convex open par t  of @n, at  least one convex 
support. Conversely, every A(~l)-convex compact part  of ~ is the unique A(~)-  
convex support of some analytic functional in ~ (Martineau [4, Ch. I, Thdor~me 2.1]). 
A natural  question is thus to ask for functionals having exactly one (A(~)-)convex 
support, and also for compact sets K such tha t  K is the only (A(~)-)convex support 
of any functional having K as an (j4(~l)-)convex support. A result in this spirit is 
the theorem of Martineau [4, Ch. I,  Thdor~me 3.3 b] stating that  an analytic func- 
tional carried by  some compact set contained in R n has a smallest carrier c R ~ 
(but not necessarily a smallest A(~)-convex carrier, see the example (1.3) below). 
We refer the reader to [4] for some other theorems of this kind. 

The P61ya representation of analytic functionals in one variable shows that  any 
non-zero functional in A'(@ 1) has a unique convex support. However, a functional 
can have several polynomially convex supports even in the one dimensional case. 
This is shown by  the example 

~(/)=/~/(z)dz,  /EA(C1). (1.3) 

Here any simple arc connecting 0 and 1 is a polynomially convex support of ju. 
To give a more interesting example we let (o = {zE @1; I zl > 1}, g E~(eo), and define 
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~(1) = frl(~)g(z)dz, I e A(O), 

where F is any Jordan curve in ~o with winding number  one with respect to the 
origin. Now write F =F1 +F2 where F 1 and F 2 are simple arcs with only two points 
in common and define 

~(/)=t~(/)- frl/(z)g(z)dz, /eA(C1). 

Suppose g c  {ze C1; ]z] ~< 1} is a polynomially convex support of re. Then K O F 1 is a 
polynomially convex support of v (this follows e.g. from Corollary 2.6), and one 
might believe that  the intersection of all polynomially convex supports of v contains 
K. However, 

= jro/(z) g(z) 
?)(/) dz 

so tha t  v is also carried by  F2. Thus, in the presence of an arbitrarily small curve 
P1, no regularity condition on a par t  K of an A(~)-convex support of an analytic 
functional is sufficient to guarantee tha t  K is contained in every A(~)-convex 
support. 

On the other hand, Theorem 3.3 states that  an A(~)-convex support of/~ E,~'(~), 
~ c  C 1, containing (in a certain sense) no "curves" is the unique A(~)-convex support  
of/~. 

In  the case of several variables functionals may  even fail to have unique convex 
supports. In  fact, the analytic functional in C 2 defined by  

/L~(e z'~'+z~2) : COS (~1 b~2) �89 (1.4) 

is carried by the polydisk (see Theorem 4.4.5 in [2]) 

g t : {z e C2; Iz11 < ~, [z2 ] ~ (4 t ) - l}  , 

where t is an arbi trary positive number. For every t > 0  there exist convex and 
polynomially convex supports included in Kt, but all such sets must contain the 
point at = ( t , - ( 4 t )  -1) which proves that  there are several supports of each kind 
(since atEKs if and only if t=s), and also tha t  these supports do not have con- 
tinuously varying tangent planes. 

The lack of smoothness of the supports of (1.4) is characteristic. We prove (Theo- 
rem 3.1) that  smooth convex compact sets are unique convex supports whenever 
they are convex supports, and (Theorem 3.2) the analogous result for smooth A(~)-  
convex sets. Here ~ is supposed to be a domain of holomorphy in C~; however, it 
seems probable that  the proof of the last-mentioned theorem can be modified to 
cover the case when ~ is a Stein manifold. 

2. Some results on weak  carriers of  analytic funetionals  

Let ~ be an open set in C n. We write as usual cm(~) for the set of all m times 
continuously differentiable complex-valued functions in ~ (0 ~ m  ~ ~ ) ,  and C~(~) 
for the set of all functions in Cm(~) having compact supports. We let C(~.q)(~) stand 
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for the set of all differential forms of type  (p,q) with coefficients in C~(a), i.e. 
/~  C~. q)(f~) if and only if there exist functions [,,... ~...~r e Ca(R) such tha t  

f =  ~ ~ /,,...~,...~ dzi, A ... A d% A dSI, A ... A dSyq, 
i~, ,,,,i~ i~....,iq 

where % = xz + ix,,+~, x~ and Xn+ ~ real, dz, = dx~ + idx,+~, dS~ = d x z -  idx~+~. The dif- 
ferential of a form f is wri t ten as a sum 

dl = a/ + ~f , 

where ~ and ~ are defined by  the requirement  tha t  ~/ and ~ / b e  of type  (p + 1,q) 
and (p, q + 1) respectively when f is of type  (p, q). Thus, e.g. -~u =E~u/aS~2k if u E Cl(a)  
where ~U/~Sk--(~U/~Xk+@U/~X~+k)/2. I n  the proof of Theorem 2.1 the derivatives 
of the coefficients of a form are to  be understood in the sense of distr ibution theory.  
Elsewhere in this paper  only C ~ forms are used. The coefficients of a form f can be 
chosen so tha t  f~,..~pj,...jq is non-zero only if i 1 <. . .  < i ,  and ~1<... <]q. I n  this case 
we define Ill by  

Ill  = Z Z  

Theorem 2.1. Let a be a domain of holomorphy in C ~, and K a compact subset 
of ~1. Then one can f ind a compact set L c a and a constant C such that /or every 
form f E C~. 1) (~) with ~f = 0 there is a solution u E C ~ (a) of the equation ~u = f satisfying 
sup lul <Csup lfl. 

Proof. That  the equat ion - ~ u - f  has a solution uEC~ for any  ~ closed form 
] E C~ follows from Cartan 's  Theorem B by  means of the Dolbeault  isomor- 
phism; see Schwartz [5] for a proof of the Dolbeault  isomorphism when the ~ coho- 
mology is tha t  of forms with continuous coefficients. 

However,  since it is desirable in this context  to rely exclusively on a cohomology,  
we wish to infer this result f rom Theorem 4.2.5 in H6rmander  [2] according to which 
we can find a locally square integrable solution u of the equat ion ~u = f if [ E C~0.1)(~l) 
and ~ / = 0  (this is only a weak special case of Theorem 4.2.5 in [2]). We claim tha t  
u E C~ (after correction on a set of measure zero) if ~u E C~(0.1)(a) and  u is locally 
integrable. To prove this we form the regularizations u k =u-x-10 k where t0 is a positive 
funct ion in C~r n) with Lebesgue integral one and 10k(z)=k2n10(kz), k = 1 , 2  ..... Fo r  
every open set co, relatively compact  in gl, u k is defined and  infinitely differentiable 
in co when k is large er~ough. I t  is sufficient to prove tha t  u k converges uniformly 
on every compact  par t  K of ~ .  I f  K is given, we choose an open neighborhood co 
of K which is relatively compact  in a .  We then have tha t  I luk-ull~-+ 0 where the 
norm denotes the norm in Ll(co), and  tha t  auk-->~u uniformly in co since ~u is con- 
tinuous. Applying the inequali ty of the next  lemma to u f u  k we find tha t  

sup l u , -  I < C(sup - I + II - II ) 
g to 

(2.1) 

which proves tha t  uk is a Cauchy sequence in C~ hence convergent  to some 
function v E C~ and then v = u a.e. in K. 

We have thus a well defined closed linear mapping 

{/e c~0,1,(a); ~/= 0} ~ f ~ u ~ co( t~) /A(a) ,  

310 



ARKIV FOR MATEMATIK, B d  6 nr  18  

where the equivalence class U is defined by ~ u = / w h e n  uE U. Since T is defined in 
a Fr6chet space and has its values in an other Frdchet space, T is continuous by the 
closed graph theorem. In  view of the definition of the topology in C~ 
proves the inequality in Theorem 2.1. Finally, if -~uEC(~.1)(s u is infinitely dif- 
ferentiable, see e.g. HSrmander [2, Theorem 4.2.5 and Corollary 4.2.6]. 

Remark.  The estimates given in Theorem 2.1 are somewhat stronger than is 
actually needed in this paper. At the expense of a slightly longer proof of Theorem 
2.4 we could have used weaker estimates of the type 

supI ul ~<Csup ~ n~ /  , 
K L ~l~<m 

where D~/are  forms whose coefficients are derivatives of those of / .  These estimates 
follow as in the proof above if we use directly the triviality of the ~ cohomology of 
C ~ forms. 

To complete the proof of Theorem 2.1 it remains to prove the inequality (2.1) 
used there. 

Lemma 2.2. Let oJ be an open set in  C ~ and K a compact subset o/ co. Then there 
exists a constant C such that /or  all u E C1(~o) 

suplul<c(s pl  l§ f luld  ), 
where dan is the Lebesgue measure in  CL 

Proo/. First assume that K is a polycylinder in eo and choose functions ~1 .... , 
~n E C~ (C 1) such that O(z) = ~1(zl)... ~(zn) = 1 in a neighborhood of K and the support 
of (b is contained in co. By the Cauchy integral formula applied to the function uO 
we get if a E K  

u ( a ) =  - I f ~(u~P) J ~ (Z 1, a 2 . . . . .  an) (Z 1 --  a l )  1 d~  1 (z1) 

_ l f ~_U (i)~ (zl ,  a 2 . . . .  an)(Zl_al) i dOl (Z1)  
:~ \~51 ] 

Here d;t e denotes the 2/c-dimensional Lebesgue measure. By iterated application of 
the same formula to all coordinates z2, ...,Zn we obtain 

1 \~--Zk ~Zi''" ~Zk-1] (zl  . . . . .  Zk, ak+, . . . . .  an) 
u ( a )  d ~ ( z l  zk) 

1 ~ (z I - a l ) . . .  (zk-- ak) . . . . .  

U - - - -  " 

§ ~ (zl -- a i ) . . .  (Zn -- an~) dan (z). 
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The first n integrals of this sum are easily est imated by  a constant  times sup~ I ~u ] 
since the singularities are integrable. The absolute value of the last integral does 
not  exceed 

~-'~ sup ly,(z, a)l ]" lul d/t,~, 
do~ 

where 

~fl(z, a) = ~ n ~  (z~ - -  a i )  -~ (Zn - -  a~) -~ --  (z~) (z  k - -  ak) 1 

Since ~v(z, a) is bounded as a funct ion of z by  a constant  independent  of a E K, this 
proves the lemma when K is a polycylinder and hence in general since any  compact  
set in eo can be covered by  finitely m a n y  compact  polycylinders contained in to. 

Theorem 2.3. Let ~ be a domain o/ holomorphy in C ~, K an ,,4(~)-convex compact 
part o/ ~ ,  and ~ an arbitrary neighborhood o] K. Then there exists a constant C such 
that /or every ~ > 0  and every /orm /E C(~.1)(~)satis/ying -~/=0 u,e can /ind u E C~(~2) 
with -~u=/and supKiu [ ~< Csup~I/ I  § 

Proo/. Assuming as we m a y  t h a t  ~o is compact  we can find h i .... ,hmEA(~2) such 
tha t  K ~  V = { z E ~ ;  Ihk(z)I <1 ,  k = l  ..... m}=C~w. Since U =  V f1r is obviously a 
domain of holomorphy we can according to Theorem 2.1 choose a solution v E C~176 
of the equation ~v = [ such tha t  supK I v I ~< Csupgl / I for some constant  C. 

:Now choose y~EC~C(U) such tha t  0 ~ v ~  < 1 and ~v=l in a neighborhood of K and 
set g=]-~(vyJ)EC~.l)(t-l) defined as f outside the support  of yJ. Take a solution 
wEC~176 of the equat ion -~w=g (-~g=O). Since g = 0  in a neighborhood of K, w is 
analyt ic  there and can be approximated  uniformly on K by  functions in A(gl) 
according to the Runge  approximat ion theorem. Adjust ing w by  adding a function 
in A(~)  we can arrange tha t  suPKIw I ~< s, and then u = v~v + w satisfies ~u = ] in ~ and 

suplul <suplvl +suplwl Csupl/I 
K K K to 

The theorem is proved. 
We can now give the main result of this section. 

Theorem 2.4. Let K o and K 1 be compact sets in a domain o/ holomorphy ~1~ C ~, 
and denote by L the /t(~l)-hull o / K  o U K 1. Suppose that K is a compact set separating 
K o and K 1 in the sense that L \ K  = L  N G K is a disjoint union o/two sets M o and M 1, 
closed in L \K,  such that K j \ K c  Mj,  ]=0 ,1 .  Then every analytic/unctional #EA'(gl)  
which is weakly carried by K o and K 1 is also weakly carried by K. 

Proo/. (i) We first choose to each open neighborhood o) of K a function yJEC~(Q), 
0 ~ v  ~< 1, such tha t  ~ = j  in ~%\~0 for some open neighborhoods e% of K j ( j = 0 , 1 ) a n d  
~v is constant  in every component  of U\r for some open neighborhood U of the 
A(~)-hul l  of eo 0 U r I n  fact, pu t t ing  m~ =M~\w we get L\eo = m  0 U ml, m 0 N m 1 = ~ ,  
and mj are closed in L\r hence compact.  For  some positive e the sets m~ ~ and m~" 
are therefore disjoint and contained in ~ .  (If B c  C n and e 90 ,  we let B e be the set 
of all points whose Euclidean distance to B is ~< e.) We now take y~ as the convolution 
of the characteristic function of m~" with a positive function in C~ (C n) whose support  
is contained in {zEC~; Z]zjl2~<s 2} and whose Lebesgue integral is one. I t  is clear 
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t ha t  ~o = j  in m~. Furthermore m~ U m~ U co is a neighborhood of L and we can find 
cwo open neighborhoods U, V of L such tha t  V ~ c  Ucm~)Um~Uco. In  fact, let 
Ucm~)U m~ U co be a relatively compact open neighborhood of L and V = B  1 N U 
where B~={zEf~; Ihk (z ) l<r ,k=l , . . . ,m}  and hkE,~(f~) are chosen so that  
L c B 1 c B e c U U ~ Ua.  With coj = (mj U co) N V we have coo U col = V, hence the A(f~)- 
hull of co0Ucol is contained in U. Finally, since U\~hc m~U m~, ~ is constant and 
equal to 0 or 1 in each component of U\(5. Thus all claimed properties of ~0 are proved. 

(ii) We now prove tha t  to each open neighborhood co of K corresponds a constant 
C such tha t  1/~(/)[ 4 Csup~]/I for all/E.,I(f~). Choose y~ according to the first par t  
of the proof. Since U is a neighborhood of (coo U col)n we can by  Theorem 2.3 find a 
constant C' such tha t  for every /E.~l(f~) and every e > 0 there is a function u E C~176 
with ~ u - / ~ 0  and 

sup lul < C'supl/~wl +~=c '~pl /~wl  +~. (2.2) 
o~oU~l U 

The equality in (2.2) follows from the fact that  ~ 0 = 0  in U\(5. 
Now /u(/)=/u(y~/-u)+#((1-yO/+u ) and if # is weakly carried by  K 0 and K 1 

we get 

I !/)1-<Cosuplw! ul §247 

+CoSUp[u[ + C l s u p l ( 1 - V ) / I  § I 

for ~o = j  in coj'\(5, j =0,1. From (2.2) we conclude that  

< (co+c:)( pl/I +C'supl/  ol (2.3) 

I f  / happens to be zero in co we thus have ]#(/)I ~(C0+C1)s, hence #( / )=0 .  Other- 
wise we are free to choose e=sup~] / ] .  In  both cases we obtain from (2.3) 

<Cs pll! 
for some constant C since ~0 is bounded. This completes the proof. 

Corollary 2.5. Let ~ be a domain o/holomorphy in C ~ and K 0, K 1 weak carriers o/ 
tt E A'(f~). I / K  o U K 1 is .,i(~)-convex, # is weakly carried by K o N K 1. 

The analogous result with carriers instead of weak carriers has been proved by 
Martineau [4, Ch. I,  Th~or~me 2.2]. 

Pro@ The assumptions of Theorem 2.4 are fulfilled with K = K  o N Kll Mj= 
Kj\K(j =0,1). 

Remark. Theorem 2.4 can easily be deduced from the corollary. Indeed, suppose 
that  Ks, K, and Mj satisfy the hypotheses of the theorem and put  K~ = M s U (L N K). 
Then K~ is compact for it is relatively compact and since 2llj N (L\K) c Mj we have 
Kj\K'j --Mj N C (L N K) N C M j c ~  (L\K) N O (L N K)=OL which together with _K~cL 
gives K~\K~=O. Further  KoNK~.=(LNK)  U(M o N M 1 ) = L N K  and K o U K ~ =  
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(LN K)UMoU M I = L ,  an A(~)-convex set. Finally K'jDKj so that  K~ is a weak 
carrier of ~. An application of Corollary 2.5 to K0 and K~ now proves that  Ko N K~ ~ K 
carries # weakly. 

Corollary 2.6. Let ~ be a domain o] holomorphy in C ~, and K o, K~ weak carriers of 
# E A ' ( ~ ) .  Then # is weakly carried by K = K  o N (L\K'o U K1), where L=(KoU K1)~. 

Proo/. We put  S = L \ K  o U K1, M o =Ko\K =Ko\S =L\S,  M 1 = (L\K) \M o and shall 
prove that  the assumptions of Theorem 2.4 are fulfilled. I t  is clear tha t  M o N M~ = 
O, MoU M1 =L\K.  Further M 0 is closed in L\K,  for (L\K) N,I~o=L N C(K o N CMo) N 
M0 = L  N ((C K o N Me) U Me) = L  N M o = M 0. On the other hand, M 0 = Mo\K = (L\S)\K = 
(L\K) N ~S,  and CS is open so that, M o is open in L\K.  Finally Ko\K= M o and since 
K I \ K = ~ K o = C M  o we have also tha t  K I \ K = ( L \ K  ) N ~ M o = M  1. An application of 
Theorem 2.4 now completes the proof. 

For any two given A(~)-convex carriers K 0 and K 1 of a functional /~EA'(~),  
Corollary 2.6 yields a third, K 2 = K  o N ((L\Ko)U KI)~ contained in K 0. If  K 0 is an 
A(~)-convex support the third carrier Kz must  be equal to K 0. This is the idea 
underlying the uniqueness theorems 3.2 and 3.3. More generally, Corollary 2.6 shows 
tha t  the intersection of all A(~)-convex carriers of # contains the set 

N (K1; K1 is A(~)-convex and KoC (((KoU K1)~\K0) U K1)~), 

provided K o is an A(~)-convex support of /~. Similar remarks hold, of course, for 
convexity. 

3. Unique supports 

Using Corollary 2.6 we shall now prove the results concerning unique supports 
mentioned in the introduction. The first theorem deals with convex supports. The 
proof is perhaps not the shortest possible but  is formulated to stress the analogy 
with the less perspicuous situation in Theorem 3.2. 

Theorem 3.1. Suppose K o is a convex compact set in C n whose boundary is once 
continuously di//erentiable. Then/or  any domain o/holomorphy ~ containing K o and 
any analytic/unctional/z E.,4'(~) having K o as a convex support, K o is the only convex 
support o /# .  

Proo/. We have to prove tha t  every convex carrier K 1 of # contains K o. For this 
it is sufficient to find, given any  convex compact set K a such tha t  Ko\KI#:O, a 
pair of convex functions F, G satisfying 

supF~<0, s u p F  >0; (3.1) 
K1 Ka 

sup G ~ 0 ,  hence s u p G ~ 0  where L=ch(KoU K1); and (3.2) 
KoUK1 L 

zCKo, G(z)<~O implies F(z)<~O. (3.3) 

In  fact, suppose that  K 1 is a convex carrier of/~ and that  Ko\KI:4:0. Then if z E L \ K  o 
we have F(z)<~O by (3.2) and (3.3) and hence by (3.1) sup(L/K~ which 
implies supKF ~<0 where K = K  o N ch((L\K0) U K1). Thus K is a convex proper subset 
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of K 0 because F > 0  somewhere in K o. But  Corollary 2.6 shows tha t  K carries ft so 
tha t ,  cont rary  to hypothesis,  K 0 cannot  be a convex support  of ft. Hence there can 
be no convex carrier K 1 satisfying Ko\KI~O which means t h a t  K o is the only con- 
vex support  of ft. 

To prove the existence of convex functions F, G satisfying (3.1)-(3.3) we note  
t h a t  the assumptions on K o implies the existence of a continuous function N, the 
uni t  outer  normal,  defined on the boundary  ~K 0 of K 0, with values in C ~ and such 
t h a t  IN(z) l =1,  Re (z, N(z)} - s u p ~ x o R e  (w,N(z)}. (We write (z,~} = ~ z j ~ j ,  [~I = 
($,$}t.) I f  K 1 is a convex compact  set such tha t  there exists a point  bEKo\K 1 we 
choose ~, ] ~ ] - l ,  such tha t  Re ( b , $ ) > s u p ~ E , l ~ e  (w,$}. Let  a EK o be a point  such 
tha t  Re(a,~}=SUpw~g, Re(w,~}. Obviously ~=N(a). We claim tha t  for all e > 0  
there is a ~ > 0 such tha t  for all z E ~K 0 

Re(z,~)>~Re(a,~}--(~ lN(z) ~l <e" (3.4) 

Indeed,  if the contrary  were true we could find a sequence (z (~)) of points on ~K 0 
and  a positive number  ~ such tha t  Re (z(J),~} >~Re ( a , ~ } - l / j  and ]N(z (j))-$l >s. 
A subsequence of (z (j)) must  then converge to some point  z E ~K 0 and since Re (z, ~} = 
Re (a,~} we must  have N(z)-N(a)=$. Thus I N(z(~))-N(z)l >e  which contradicts 
the cont inui ty  of N. 

Now choose s > 0  so small tha t  R e ( a ,  0} ~>SUpw~clRe(w, 0} when IO-~I  ~<e and 
then  take (~>0 such tha t  (3.4) is valid for all zE~K o and also SUpw~K, Re(w,$}<~ 
Re (a,$}-(5. Define F(z) = R e  (z a,~) + 5  and G(z) = s u p ( R e  (z-w,N(w));  wE~K o 
and  F(w)>~0). Then (3.1) and (3.2) are obvious. To prove (3.3), suppose tha t  z~K o 
and  F(z)>0. Let  z' be the point  closest to z in the compact  set {wEK0; F(w)~>0}. 
Then the open segment between z' and a point  w satisfying F(w)>~ 0 and I w - z l 2 <  
I w - z ' i 2 + i z - z ' l  ~ is free from points in g 0 which proves tha t  Re(w,N(z'))>~ 

Re (z', N(z')} for all such w, and hence (since w can be arbitrari ly chosen in a neigh- 
borhood of z) tha t  Re (z,N(z')} > R e  (z',N(z')}. We obtain G(z) ~>Re (z-z ' ,N(z ')}  > 0  
which proves (3.3) and so completes the proof of the theorem. 

Using similar geometric ideas we prove an analogue of Theorem 3.1 for J4(~)- 
convex sets. 

Theorem 3.2. Let ~ be a domain o/holomorphy in C ~ and # E.,4'(~)). I/  K o is an 
.,4(~)-convex support o/ft whose boundary is twice continuously di]/erentiable, then K o 
is the unique .,4(~)-convex support o] ft. 

Remark. The smoothness requirement on K 0 means tha t  there is a twice con- 
t inuously differentiable real-valued function / in ~ such tha t  g rad / (z )  =~0 when 
/(z) = 0  and K 0 -  {zE ~ ;  ](z)40}. I n  particular, K 0 is the closure of its interior. 

Proo/ o/ Theorem 3.2. I n  complete analogy with the proof of the preceding theorem 
it suffices to construct,  for every given A(~) -convex  compact  set K 1 with Ko\KI~:O, 
two functions F ,  G E ~ ( ~ )  N C~ such tha t  

s u p F  ~<0, s u p F  >0;  
K1 K0 

sup G~<0, hence supG~<0 where L=(KoUK1)~; 
KoUK1  L 

z~K0, G(z)<~O implies F(z)<<.O. 

(3.5) 

and  (3.6) 

(3.7) 
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(Here it is essential t ha t  the A(~)-hul l  of the relatively compact  set (L\Ko)U K 1 
can be defined b y  (1.2).) 

Now if Ko\KI#O and K 1 is A(~)-convex,  there is a function GoE~)(~ ) N C~(~) 
such tha t  sup~iG0<0 and supKoG0~>0 (see Theorem 2.6.11 in H6rmander  [2]). The 
funct ion G~(z)= Go(z ) + 3~1zl2 satisfies the same conditions when 6 > 0 is sufficiently 
small. Define Ha=Ga-sUpKoGa, and choose aE~K o such tha t  H a ( a ) = 0  (by the 
max imum principle, the supremum is a t ta ined at  the boundary) .  We now take 
b E K o on the interior normal  of ~K o at a so tha t  z # a ,  I z - b I ~< I a - b ] implies z E Ko ~ 
and  define 

Hj(z)=Ha(z)- (3-~)~([z-b]  ~ -  ] a - b ] e ) ,  ?'=0,1,2, 

where 0 < e < ~  and e is so small t ha t  supK, H j < 0 .  Then clearly H j E O ( ~ ) N  C~(~) 
and  we claim tha t  Hi(z)<~0 when zEK o and tha t  equali ty holds only at  a, ?'=0,1,2. 
Indeed,  Hj  ~<H 3 ~<0 on the boundary  of K o, hence Hj  ~<0 in all of K o. If  Hi(z)=0, 
z#a ,  we have z E K0 ~ b y  assumption and so by  the max imum principle tha t  Hj  = 0  
in an  open set which is impossible since Hj  is strictly plurisubharmonic.  

Our next  step is to take a funct ion /GC2(~) such tha t  K 0 =  {zC ~ ;  /(z)~<0} and  
[ ~> H~ in ~ .  (The construct ion of such a funct ion is trivial locally and follows globally 
by  means of a part i t ion of unity.) We claim t h a t / - H ~  is convex in some open neigh- 
borhood w' of a. I n  fact, we h a v e / -  H I ~> H ~ -  H 1 with equali ty at  a, and since the  
matr ix  ~ ( ~ e ( H ~ - H i ) / ~ x i ~ x k ) i , ~ = ,  1 is positive definite at  a the same is t rue of ( ~ ( / - H i )  / 

2n ~x~x~)~.~=~, hence the latter matr ix  is positive definite in some convex open neigh- 
borhood ~o' of a because its coefficients are continuous (x~ ..... X~n are real coordinates 
in C~). This means tha t  in w'  we have l - H i = s u p ( A ;  A ~ / - H ~  in ~o') where the 
supremum is taken over all real affine functions A(z)=l~e<z, 0> +C.  We define a 
norm for such functions e.g. by  

HAH = ~z~<Pl] A (z) ] 
and  set for arbi t rary  ~ > 0 

Gn=Ht+Ao+sup(A;  A o + A  <~/-Hz in o~' and llAll <v) ,  
A 

where A o is the affine funct ion defined by  

H2(z ) - H I ( Z  ) = Hi(z ) - Ho(z ) = Ao(z ) + o(z - a), z-+ a. 

By well-known properties of continuous and plurisubharmonic functions it follows 
tha t  G n E ~ ( ~ )  N C~ Since A o is also the best affine approximat ion  o f / - H  1 at  a 
we have Gn = / in some open neighborhood r of a. Clearly G, ~< / in r We also note  
tha t  

H i + A  0 ~< G, in ~ ;  (3.8) 

Ho§ in ~ ;  and (3.9), 

HI+Ao<-,H~ in ~ .  

Now, since Gn"~,HI+A o when ~ ' ~ 0  and HI+Ao<-,H2<O in Ko\(o', it follows f rom 
Dini 's theorem tha t  Gn<0  in Ko\r if ~] is sufficiently small; hence G , ~ 0  in K o, 
because G, ~</~< 0 in K 0 N oY. I n  the same way we infer tha t  G, < 0 in K 1 when ~l 
is small enough. This proves (3.6) if G=G~ for some convenient ly chosen ~ >0.. 
Finally, we obtain from (3.8) if r denotes the neighborhood of a where G=/ 
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q - - sup  (Ho(z) § z (~K 0 and  G(z) <~0) 

~< sup (Ho(z) +A0(z); z ~ K  0 [ (o and  Hl(z ) § ) <~0) 

~ < s u p ( - e ( ] z - b [  2 -  [a-b[2); zCK.Uw)<O 

(the las t  i nequa l i ty  follows f rom the  w a y  b was chosen). This,  toge ther  wi th  (3.9), 
shows t h a t  (3.5) a n d  (3.7) are  sat isf ied wi th  F(z)=Ho(z ) +Ao(z ) §  if 

r = r a i n (  - q ,  - s u p  (H o +A0)  ) >~ min(  - q ,  - supH1) >0 .  
K1 Ki 

The proof  is complete.  
W h e n  n = l ,  the  smoothness  assumpt ions  of Theorems 3.1 and  3.2 are, of course, 

ve ry  unna tu ra l .  Indeed,  convex suppor t s  are  then  a lways  un ique  as r e m a r k e d  in 
the  in t roduc t ion ,  and  A ( ~ ) - c o n v e x i t y  is a topological  not ion.  The following theorem 
general izes Theorem 3.2 when n = 1, a n d  replaces the  smoothness  condi t ion  on K 0 
there  b y  a topological  one s ta t ing  in tu i t ive ly  t h a t  K 0 conta ins  no curves. 

W e  recal l  t h a t  if K is a compac t  p a r t  of ~ = C  l, K ~ ,  def ined b y  (1.1) or (1.2), 
is the  union of K and  those connected  components  of ~ \ K  which are  r e l a t ive ly  com- 
pac t  in ~ ;  for a proof  see [2, Theorem 1.3.3]. I n  par t icu la r ,  a connected  open set 
which is d is jo in t  f rom K and  contains  po in ts  outs ide  K ~  is also d is jo in t  f rom K ~ .  

Theorem 3.3. Let ~ be an open set in C 1 and K o = ~  an .,4(~)-convex support o/ 
#E A'(~).  Suppose that/or any connected open set (o intersecting the boundary ~K o o/ 
Ko, the interior o/ the union o/ K o and an arbitrary connected component o/ eo\K o inter- 
sects ~K o. Then # has a unique A(~)-convex support. 

Remark. The following p r o p e r t y  is easier to fo rmula te  t han  and  implies  the  hypo-  
thes is  on K o in the  theorem:  F o r  a n y  z E ~K o there  exis t  a rb i t r a r i l y  small  open neigh- 
borhoods  Vgz such t h a t  V\K o is connected.  The compac t  set  {z~ ca; ] z 2 - 1 ]  ~<1} 
(whose b o u n d a r y  is a lemniscate)  shows t h a t  the  l a t t e r  condi t ion  is s t r ic t ly  stronger.  
Bo th  condi t ions al low K o to  conta in  i so la ted  points .  

Proo/ o/ Theorem 3.3. The theorem will follow if we prove  t h a t  Ko\((L\Ko) 0 Ki)~ =~=O 
if K 1 is an  a r b i t r a r y  A ( ~ ) - c o n v e x  compac t  set such t h a t K o \ K l ~ O  a n d L  = (K o [ K1) ~. 
I n  fact ,  t hen  eve ry  A ( ~ ) - c o n v e x  carr ier  K 1 of # mus t  conta in  K o. :For otherwise 
K o A ((L\Ko)(J Ki)  ~ is b y  Corol lary 2.6 an  .4 (~) -convex  carr ier  which is a p rope r  
subset  of K 0 con t r a ry  to  the  a s sumpt ion  t h a t  K o is an  ,4 (~) -convex  suppor t .  

Le t  (D 1 be a connected  componen t  of ~ \ K  1 in tersec t ing  K 0. Since (o 1 is no t  r e l a t ive ly  
compac t  in ~ i t  is no t  conta ined  in the  compac t  set L. Le t  e) 0 be a componen t  of 
w l \ K  0 no t  conta ined  in L. F r o m  the  r e m a r k  preceding  the  theorem i t  then  follows 
t h a t  w o does no t  in tersec t  L. Also, since 601 in tersects  ~Ko, we can f ind  an  open con- 
nec ted  set ~o meet ing  bo th  ~K o a n d  w 0 such t h a t  ~ 5 = C O l ~ \ K  1. Indeed ,  ~o can be 
def ined e.g. as a suff ic ient ly  small  connected  open ne ighborhood  of a n y  curve in  
(o 1 which joins a po in t  in ~K o to a po in t  in 0% Some componen t  eo 2 of ~o\K 0 in tersec ts  
co0, and  therefore  w , ~  (o0c ~ \ L .  According  to  hypothes i s  there  exis ts  a po in t  z E ~K 0 
such t h a t  K o (J ~o 2 conta ins  a connected  open ne ighborhood  w3 of z. Since z E ~ = e o l ,  
we m a y  assume t h a t  w3=o~.  Now ~o a is connected,  conta ins  po in ts  outs ide  L,  and  
does no t  mee t  the  closure of (L\Ko)U K 1 so i t  is d is jo in t  f rom ((i\Ko)U K1)~, in 
pa r t i cu l a r  z (~ ((L\Ko)U K1)~. This comple tes  the  proof.  
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