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Seml-groups of isometries and the representation and multi- 
plicity of weakly stationary stochastic processes 

By G. KALLIANPUR and V. MANDREKAR 

1. Introduction and Summary 

I t  is the purpose of this paper to examine the work of J .  L. B. Cooper on the 
representation of a continuous semigroup {St, t~>0} of isometrics on a separable 
Hilbert space ZJ and to show how it can be adapted to give a complete discussion of 
the representation theory of a very general class of contilmous parameter,  weakly 
stat ionary stochastic processes which include finite as well as infinite dimensional 
processes [12]. The possibility of such a connection between Cooper's results and 
representations of stat ionary processes has been noted by  P. Masani and J.  Robert-  
son [15] (also [14]). However, the approach of these authors has been to reduce the 
s tudy of continuous parameter  processes to certain discrete parameter  processes 
associated with them ([15], w 4). 

The point of view adopted in this paper enables us to dispense with the associated 
discrete parameter  process and to give a t ime domain analysis based directly on 
the stochastic process itself. A significant tool in our analysis is the fundamental  
notion of multiplicity of a stochastic process introduced recently by  H. Cramdr [2] 
and T. Hida [10], and studied extensively by  the former author in subsequent papers 
([3], [4]). Before we can bring out the relevance of Cooper's ideas to our present aims, 
it is necessary to complete his basic result in two essential respects: firstly, to in- 
troduce the definition of multiplicity of Cooper's representation and secondly to 
show tha t  it is equal to the dimension of the deficiency subspace R ' ,  R being the 
range of the Cayley transform V of the maximal symmetric operator H, where iH 
is the infinitesimal generator of {St}. Cooper's result thus completed and amplified 
is presented as Theorem 2.1 in section 2. 

In  sections 3 and 4 we obtain some interesting points of contact with more recent 
work on isometric operators in Hilbert  space. We show in section 3 tha t  Theorem 2.1 
immediately yields in a simple and natural  way a direct integral representation in 
terms of "differential innovation" subspaces obtained earlier by  Masani [14]. Indeed, 
the vector valued integral of [14] turns out to be nothing other than the orthogonal 
sum of N "stochastic integrals", N being the multiplicity of the representation. Sec- 
tion 4 carries the study of the differential innovation subspaces further. Each such 
subspaee is shown to be a "weighted" orthogonal sum of Vn(R j') (n=0,1 .... ) which 
are the innovation subspaces of the associated discrete representation (1.1) of [14]. 
We believe that  this theorem (Theorem 4.1) puts in bet ter  perspective, the intrinsic 
relationship between the given continuous parameter  process and its associated 
discrete parameter  process. 
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In  sections 5 and 6 we apply Theorem 2.1 to the semigroup of isometries induced 
by  the unitary group of a stat ionary stochastic process x t ( -  ~ < t <  ~ )  defined on 
a separable Hausdorff space r and satisfying certain continuity requirements (Con- 
dition (5.1)). We obtain the Wold decomposition of such a process, together with 
the desired representation for the purely non-deterministic component (Theorem 6.3). 
A consequence of our derivation is the very natural  and significant role played by  
the Cramdr-Hida multiplicity of the process. This multiplicity is, in fact, shown 
to be equal to the dimension of the deficiency subspace of the induced semigroup, 
which in this case turns out to be L2(x;0)@ V-1L2(x;0), V being the Cayley transform 
of the uni tary  group and Le(x;0), the past  and present up to time 0 of the process. 
For finite dimensional stat ionary processes, this result yields the corollary (proved 
in [12] by  a different method) tha t  the multiplicity of the process equals its rank. 

The first t ime domain analysis of a continuous in quadratic mean, univariate 
stat ionary process {xt, -- c~ < t < ~}  was given by O. Hanner  in a remarkably original 
paper  [9]. Recently, with the help of the ideas of multiplicity theory we have ex- 
tended his approach to obtain representations of multivariate (including infinite 
dimensional) stat ionary processes [12]. These representations are seen to be essen- 
tially the same as the ones derived in this paper, thus effecting a synthesis between 
the ideas of Hanner  and the ideas presented in this paper. 

2. Continuous seml-groups of  isometries  on a Hill~ert space 

Let {St, t>~0} be a strongly continuous semi-group of isometrics on a separable 
Hilbert  space ~J with iH as its infinitesimal generator. J.  L. B. Cooper has shown 
tha t  H is a maximal symmetric operator with negative deficiency index, say, ~(c~ ~= 0) 
[1]. He further proved that  every such semi-group yields the following decomposi- 
tion of 

N 
y = ~ ~ ~b(i) o Y~, (2.1) 

i 1 

where (i) ~ J ~ - n t ~ 0  St(~J) and the restriction of S t to ~Jo~ is unitary, (if) each /(~) 
is chosen from OH*, the domain of the adjoint H* of H in such a way that  2ym(H*/(~), 
/(~)) = - 1  and (iii) .Ti~f(i ) is the closed linear subspace consisting of all elements of 
the form S~p(u)d(S;u;/(i)) ,  p EL2(#,[0 , ~)),  the Hilbert space of complex-valued 
functions on [0, ~) ,  square integrable with respect to the Lebesque measure #. In  
the notation of [1] (pp. 837-839) the integral introduced above is defined as the 
limit in norm of Riemann type sums. I t  will be seen below that  such an integral is, 
in fact, nothing but  a "stochastic integral" with respect to an orthogonal homo- 
geneous set function (J. Doob [5], Ch. IX,  w 2, 0. Harmer [9]). 

Since ~J is separable it is clear from (2.1) that  _N can at most be equal to ~0. Beyond 
this, Cooper's method of proof does not give any information about _N. We shall 
show that  there is an intrinsic connection between N and the semigroup (St). Let  
V = ( H -  i I ) (H  + iI)  -1 be the Cayley transform of H. (It  will be often convenient to 
write c(H) for the Cayley transform of H.) Let R =  V(~J) and R 1, the orthogonal 
complement of R. We first prove tha t  N = dim (R • - ~ .  The essential point involved 
in showing this is to recognize tha t  ~H* is generated by  the subspaces ~ and R 1 
(Sz. Nagy B. [20], p. 38) and to see that  the elements [(o in (2.1) (ii) can actually 
be chosen from R • In  order to bring out the significance of this result for weakly 
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stationary stochastic processes we introduce a spectral resolution of the identity 
associated with {St}. Let  :~ = ~JQ lJoo and let J~(t) be the projection onto S~(~J)(t ~>0). 
If we define 

F,(t)=I-]~(t) if t~O, and = 0 f o r t < 0 ,  

then {E(t), - o+ < t  < o+ } is the desired resolution of the identity in :~. Our next  step 
is to show that  N is equal to the multiplicity of the maximal spectral type ~ with 
respect to {/~(t)}, ~ being of positive Lebesgue type, i.e., ~ is equivalent to the restric- 
tion #+ of # on [0, oo ). (In fact, ~ is a uniform spectral type, although this fact is 
not used here.) These facts, presented in Theorem 2.1, enable us to give a complete 
discussion of the representation and multiplicity theory of stationary processes of 
the most general kind and to put  it in the perspective of the multiplicity theory 
of purely non-deterministic processes developed by H. Cramdr ([2], [3], [4])and 
T. Hida ([10]). I t  also enables us essentially to identify the multidimensional exten- 
sion of the time domain analysis of Hanner [9] worked out by us [12], with the 
theory developed here. 

We begin by recasting the elements of ~r( i )  as stochastic integrals. In doing so 
we shall freely use the properties of the integral ]~  p(u)d(S;u;[ <~)) obtained by 
Cooper ([1] p. 831 and p. 840). For each finite interval [a,b)(O<~a<b<oo), let 
~(O[a,b)=~ r I[a.b)(u)d(S;u;/(~)), ( i=1 ,2  ..... N) where I[~.b)(u)=l ifue[a,b)and=0, 
otherwise. I t  can be seen that  ~(~)[a, b) is a homogeneous orthogonal interval function; 
i.e., for each i and O~a<b<c, 

(~) ~") [a, b) + ~(')[b, c) = ~(~)[a, c), 

(fl) ~(~)[a,b) is orthogonal to ~(~)[b,c), and 

(y) St~(~)[a,b)=~(O[a§ for all t>~0. 

(2,3) 

Since L2(#, [0 ,~))  is generated by  the family {IE~.b)(u)O~a<b< co} we have 
~)~r(i) = the subspace of lJ generated by  {~(~) [a, b), 0 ~< a < b < ~ }. By the definition 
of stochatic integrals ([5]) it then follows that  

(2.4) 

I t  is convenient to recall at this point some of the terminology of multiplicity 
theory in a separable Hilbert space. Let A be any self-adjoint operator with the 
resolution of the identity {E(t)}. For any element / in ~J let ~z be the finite measure 
on Borel sets of the real line (sometimes called the spectral function of ]) given by 
~t(A)-HE(A)/]]~, where if A=[a,b),  E(A)-E(b)-E(a). The family of all finite 
measures on the line is divided into equivalence classes by the relation of equivalence 
between measures (equivalence here means mutual absolute continuity). If ~ is used 
to denote the equivalence class to which ~I belongs, ~ will be called the spectral type 
of ] with respect to A (or {E(t)}). ~ is also referred to as the spectral type belonging 
to A. If elements / and g are such that  ~f-~g they obviously have the same spectral 
type ~. We say that  the spectral type ~ dominates the spectral type a(~ > a  or a <Q) 
if any (and thus every) measure belonging to q is absolutely continuous with respect 
to any measure belonging to ~. ~ is called a Lebesgue type if every measure belonging 
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to ~ is equivalent to the Lebesgue measure. ~ and a are said to be independent 
spectral types if for any spectral type v such that  ~ < ~ and v < a we have v = 0. An 
element / is said to be of maximal spectral type Q (with respect to A or {E(t)}) if 
for every g in ~ ~g~Qr' The closed linear subspace ~ {E(A)/, A ranging over all finite 
intervals} is called the cyclic subspace (with respect to A) generated b y / .  If this 
subspace coincides with ~,  / is called a cyclic or generating element of A and A is 
cyclic. Also if / is a generating element of A, / is of maximal spectral type and the 
latter is referred to as the spectral type of the cyclic operator A. I t  is to be noted 
that  if A is any self-adjoint operator (since ~J is separable) there always exists a 
maximal spectral type belonging to A. Any system of mutually orthogonal cyclic 
parts of A of type ~ is called an orthogonal system of type ~ relative to A. An ortho- 
gonal system of type ~ which cannot be enlarged by adding to it more cyclic parts 
of A is called maximal. I t  is a known result of this theory that  all maximal systems 
of type ~ have the same cardinal number. This uniquely determined cardinal number 
is defined to be the multiplicity of the spectral type Q with respect to A. 

Finally, we need the notion of a uniform spectral type. The spectral type Q is 
said to be uniform if every non-zero type a dominated by ~ has the same multiplicity 
as ~ itself. Most of the above definitions have been taken from the article of A. I. 
Plessner and V. A. Rohlin [16] to which the reader is referred for further details. 

Let  us denote by A, the self-adjoint operator on :~( = ~J~) given by  the resolution 
of the identity {E(t)}. Our aim is to show that  each ~Ia)  reduces A and that  the 
restriction A (o of A to ~J~f(o is cyclic with a generating element g(O E R T. We need 
the following characterization of R • ([20], p. 38), 

(2.5) 

and the relations due to Cooper ([1], p. 840 (5.12) (5.13)); 

(C1) J~(t)=StS* fo reach  t~O,  

(C 2) St p(u) d(S; u; 1 (i)) = p ( u -  t) d(S; u;/(')) 

for p E L2(/~, [0, oo )), 

f: (C3) S p(u)d(S;u;/(~)) = p(u+t)d(S;u;/(~)). 

Since E[a, b) .~o p(u) d(S; u;/(o) = {~(a) - ~(b)} ~ p(u) d(S; u; rio) we have from (C 1), 
F_,[a, b) S~p(u)d(S;u;/('))= {SaS*a-- SoS~} S~p(u)d(S;u;/(O). However, by  (C3) 
and (C 2) 

S~S*f~P(u)d(S;u;/(~176176 �9 

Hence it follows that  

B[a,  b) p(u) d(S; u;/(0) = p(u) d(S; u;/(0) = :p(u) I[a" b)(u)d(S; u;/io ). (2.6) 
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L e m m a  2.1. For each i, there exists an element g(O ~ R • such that ~J~/(0 = ~ { E [ a ,  b ) g (~ 
where [a, b) is any / in i t e  subinterval o / the  line}. 

Proo/. Le t  us define g(0 = V2 S~o g~d~(O" Clearly f rom (2.6), 

JE[a, b) g(O = v2  f /  gu I~a. b) (u) d(S; u;/(0)  

for  - o~ < a  < b <  + o~. Also, g ~ > 0  for  u>~0 and  L2( #, [0,oo)) is genera ted  by  
{IEa, b) (") ,  0 ~< a < b < ~ }. Hence  ~J~1(o = ~ {E[a, b) g(0, - c~ < a < b < + ~ }. To  com- 
ple te  the  proof  of the  l emma,  we now show t h a t  H*g (i) = - i g r  so t h a t  b y  (2.5) 
gr e R • Le t  / E OH, the  domain  of H.  Then  limt_.0 (t-l[ S* - I] gr exists,  since 

l im (t -1 [S* - I ]  gO),/) = l im (gr t - l [ S t -  1]/) = (g(~), iH/) .  (2.7) 
t ---> 0 t--~O 

Also, f rom (C 3), 

/o~ S~ g (0 = 2 ~(~+t) d( S; u;/r ) = ~t g(~. 

Hence  
(g(~, iH/)  = l i m  t - 1  ( g t _  1 )  ( g ( ~ ) , / )  = - -  (g(O,/) f o r  

t-->0 
fEOH; i.e., 

g(i) EDB, and  - i ( H * g ( ~ , / )  = - (gr for all l E O n .  

Thus  H*g (~ = - ig(O and  the  l e m m a  is proved.  

L e m m a  2.1 immedia t e ly  implies t h a t  A is reduced b y  ~rJ~i(o, and  t h a t  

A = A (1} 4- A (2) 4- . . .  4- A (N), (2.8) 

where A r the  res t r ic t ion of A to  ~}~i(o, is cyclic wi th  the  genera t ing e lement  
g(~) = V2 S~ cUd(S; u; [r If ,  fur ther ,  #+ (A) = tt(A ~ [0,oo)) for  each A (Lebesgue) 
measurab le  on the  real  line, we get  

Qg(1)-----~(~)----...~g(~)--#+. (2.9) 

Since ~ = ~ = 1  | ~I(o,  i t  follows f rom L e m m a  2.1 t h a t  

N N 

:~ = ~ i f ) ~ ( E [ a , b ) g ( ' ) ,  - co < a  < b <  4- c~} = ~ G ~ { E [ a , b ) g  ('~, 0 ~ < a < b <  c~}. 
i = l  ~ -1  

(2.10) 

The  last  equa l i ty  in (2.10) is a consequence of the  fac t  t h a t  E[a ,  b )g r  for  
- oo < a < b < 0. We now s ta te  the  m a i n  theorem of this section. 

Theorem 2.1. Let (St, t >~ O} be a strongly continuous semigroup o/isometrics on a 
separable Hilbert space ~]. Then 
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(1) ~J = EN|174162 where (i) ~J~ = N t>0 St (TJ) and the restriction o I S~ to yr162 
is unitary; 

(2) ~ ( , )  = (Sg p(u)d~(i) (u), p e L=(be, [0 ,~  ))} where ~(~1 is a homogeneous, orthogo- 
nal interval 1unction and the integral ~ p(u)d~ (~1 (u) is a "stochastic integral"; 

(3) _For each i, (i = 1, 2 . . . . .  N),  92i~r is a cyclic subspace ol A with generating ele- 
ment gO) ~ R • such that ~(o--  # +, where be + is the restriction o I the Lebesgue measure 
be to [0, o~); 

(4) N is equal to the multiplicity o I the common spectral type ~ o I ~(~ with respect 
to A;  

(5) -Finally, N = the dimension o I the deficiency subspace R • 

Proo 1. Conclusions 1 and 2 follow from (2.1) and (2.4) respectively. Conclusion 3 
is precisely Lemma 2.1. To prove concl. 4 observe that  from (2.8) and (2.9) {A(~ is 
an orthogonal system of type ~. To show that  this is a maximal system of type ~, 
we have recourse to an argument based on the ideas of A. I. ISlessner and V. A. 
Rohlin [16] and used by  us in [12] (Theorem 5.2). 

Let  {A~} be an orthogonal system of type ~ and cardinality M';  i.e., a system of 
orthogonal cyclic restrictions A~ of the operator A, the spectral type of each A~ 
being ~. According to our definition N is the multiplicity of ~ if we prove M'  ~ N .  
By the separability of ~J neither N nor M '  can exceed ~0. There is obviously nothing 
to prove if N = ~0. Thus the only case to be considered is where N is a finite cardinal. 
I f  possible let M '  > N .  Let  g~ be a generating element of A~. Clearly there is no 
loss of generality in assuming that  all these elements have the same spectral function 
p' (i.e., p' =pg~-p~(o). From (2.10) it follows that  

g'~= -Fiz(u)dE(u)g 0~, where I-F~(u)I2dQ'(u) is finite. 
t=l  t= l  

For every finite interval A we obtain 

f ~  N (E (• g~, g~) = Y-Fie (u) -Fir (u) d2' (u). 
1 

The left hand side of the above relation is zero if fl 4 ~ and equals Q' (A) if fl = 7" 
Hence for u not in a set ~/zr of zero ~'-measure we have 

N 
Fie (u) Fir (u) = 8~r for all fl, ~. 

i=1 

Since M '  is at  most ~o the set ~ /=  U~,~, ~ ,  is measurable and ~ ' (~ / )=0 .  Choosing 
a fixed point u 0 in the complement of ~ we see tha t  

N 
Fi~ (%) Fir (%) = 5Zr for all fl, 7" (2.11) 

1 

I f  a s = (FI~ (u o) . . . . .  FNr (u0)) the relations (2.1 1) imply that  the a j s  are M '  orthonor- 
mal  vectors in N dimensional space. Hence M'  ~< N. In  other words ~ has multi- 
plicity N. 
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Proof of 5. Let  us consider for a( = 1, 2 . . . . .  N) h e OH(~)= OH ~ ~f(~). Then OH(~) 
is dense in ~)~f(~)and h = ~o q(~.h)(u)d(S; u;/(~)). I t  follows that  the set {q(~.h), h e OH(~)} 
is dense in ~ L 2 (#, [0, oo )) for every a. I t  is known (see N. Dunford and J. Sehwarz [6], 
p. 1258) tha t  (Hh, q~) = (iDq~.h, P~), where q9 = ~N ~ ~ p~ (U)d(S; u;/(~)), ( , )  denotes 
the inner product in L2 (/~, [0, cr and iD is the differential operator i (d/du). If, 
further, ~ E R z, from (2.5) we have, 

(Hh, q~) = (h, H* q~) = (h, - iq~) = (q~.h, - ip~>. (2.12) 

But  since the operator iD is formally self-adjoint ([6], p. 1287), 

(iDq~.h, p~) = (q~.h, iDp~) = (q~.h, - i p ~ )  (2.13) 

from (2.12). The set (q~.h, hEO(~)) being dense in L2(#, [0, ~ ) ) ,  from (2.13) we get 
(d/du)p~ (u)= -p~(u)  for every ~. The above differential equation has the solution 
in L 2 (#, [0, ~ )) given by p~ (u) = a~ gu. Hence ~ C R" implies that  

q~= a~ gUd(S;u;/(~))= ~ a~/~Z2g(~); i.e., 
~=1 ~=1  

the orthonormal system (g(~), ~ = 1, 2, ..., N)  in R" is complete, giving N = dim(RZ). 
The proof of Theorem 2.1 is complete. 

3. A n  alternative derivation o f  a direct integral representation of  P. Masani  

I t  is well known (P. R. Halmos [8]) that  if V is an isometry on a Hilbert space lJ 
onto a subspace R of ~J, then 

= ~ | Vk(R•174 N Vk(Y), (3.1) 
k = 0  k~>0 

where for ]=4=k Vk(RI)&VJ(R • and restriction of V to N~>0 Vk( l J ) i saun i ta ry  
operator. Recently P. Masani [14] has obtained a continuous parameter generaliza- 
tion of the decomposition (3.1) as follows. 

Theorem M ([14], Theorem 6.5). Let {St} (t>~O) be a stronjly continuous semi- 
group o/ isometrics on ~ into ~,  iH its in/initesimal generator and V the Cayley 
trans/orm o /H.  Then lot every a, non-negative, 

where R =  V (~), ~ r  = f]~>~oSt ( ~)  and/or each a, b (0~<a<b) 

' b  
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b R'  direct integral o/di / /er-  is an operator-valued measure and ~a Tdt( ) is de/ined as a 
ential innovation subspaces. 

I n  this section we deduce Theorem M as a consequence of Theorem 2.1. I n  fact ,  
Theorem 2.1 even enables us to give an  explicit  representa t ion  for each "differential  
innovat ion  subspace"  in te rms  of the  subspaces V~(R'). The la t ter  result  furnishes 
ano ther  general izat ion of (3.1) and  as such we t rea t  it in the nex t  section. 

Not ing t ha t  the subspace S-J~r of the preceding section reduces S~ for each a/> 0, 
we can wri te  the representa t ion  obta ined  in Theorem 2.1 in the  following somewhat  
more  general form: 

N 

S,~(y) = ~ | Sa~))~r | y~r (3.3) 
1 

The elements  of SaS)~,(0 are "s tochast ic  integrals" .  Hence,  we can rewri te  (3.3) as, 

= k =1 J ~ ck (u) d~ ~k) (u), ck e L2 (~,  (3.4) 

where, if N(  = d i m R  x) is infinite then  the sum of stochastic integrals represent ing v 
converges in norm.  

Fo r  each finite subinterval  [a,b)(0 <~a < b) let  Tab be the  bounded  linear opera to r  
on R '  which t ransforms the complete  or thonormal  sys tem {gik)} in R ~ as follows: 

%bgtk~ = ~(k~ [a, b) (k = 1, 2, . . . ,  M). (3.5) 

Then  Tab is an  opera to r  va lued  measure  on intervals  which has  the  following pro-  
per t ies  ([14] p. 627 (4.2)); 

(at) Tab+The=Tat (O <~ a < b ~ c), 

(fl) StTab=Ta+t,b+~ (t>~O,O<<-a<b), 

(~) For  every  rl, ra E R" and  finite in tervals  J v  J~ 

(T j, r I, Tj, r2) = #(J1 f3 J2) (rl, r2). 

(3.6)  

We shall show (Theorem 3.1 a) t h a t  %b is identical  wi th  the  opera to r  va lued  mea-  
sure - Tab on R • Following Masani  we denote  b y  L 2 ([a, b], R ' ) ,  the  Hi lbe r t  space 
of all s t rongly  (Lebesgue) measurab le  funct ions  x on [a, b] wi th  values  x(t) in R x 
and  such t h a t  S~ ][x(t)]] 2dr is finite. Since each e lement  x of L2([a, b], R x) has  the  

N fo rm x(t) = ~ 1  c~(t) g(~) where c~ E L2(~t, [a, b]) the  integral  S~ T~(x (t)) can be na-  
tu ra l ly  def ined as follows, 

F = c~(t)dt (n) (t). (3.7) Tdt(X(t)) 1 Ja  

The above  definit ion is unambiguous  because the functions c~E L2(Ft, [a,b]) are uni- 
quely de te rmined  b y  x. F r o m  the  propert ies  of s tochast ic  integrals,  one can show 
t h a t  (3.7) is a "general ized vec tor -va lued  integral"  of the k ind  in t roduced b y  Masani  
[14] and  satisfies the  following properties:  
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(i) (~Vat(x(t)), f~Tdt(y(t)))= f~ (X(t),y(t))dt, 

for all x, y EL2([a , b), R• 

(ii) ;~at(,~lx(t)+2~y(t))=,~l f Tat(x(t))+2~ f Tat(y(t)), 

for 21, 2~ complex numbers;  

(iii) IIFvdt(x("(t))--f~:dt(x(t))llconvergestozero~s 

: l] x'~) (t) -- x(t)]]~ dt tends to zero; 

(iv) S, Tdt(x(t)) = "Ca~(U--S) for s>~0. 
,$ a + s  

(3.8) 

Le t  us now define 

f T~t(R• ~ f "cat(x(t)), xEL2([a, b],R• (3.9) 

Then  ~ vat(R • is a closed linear subspace of ~ isomorphic to L~([a, b], Rx). F rom 
{3.4) and  definitions (3.7), (3.9) i t  follows tha t  

f: // Sa(Y) = Tdt(R• ~J~r Tdt(R ~') _l- lJ~. (3.10) 

The direct  integral  representa t ion of Masani is identical  with the  one obta ined in 
(3.10). We show this by  proving t ha t  ~ao r = - Tab r for all a, b (0 ~< a < b) and r e R ~ 
and ~ ~dt (x(t)) = -- .[~ Tdt (x(t)) for all z e L 2 ([a, b], R~). Since ~b T~t (R • is a subspace 
the result  will then  follow. 

T h e o r e m  3.1 .  

and t >1 O, where Tot = l/V2 (St - ] - St Sh dh). 
(b) For xEL2([a,b], R • and all a,b (0~<a<b)  

where S~ Tat(x(t)) 
(5.2) (a)). 

(a) I/ Tt = rot is defined as in (3.5) then 7:t x = - T t  x/or all x E R • 

f~ v~t(x(t) = - F T~t(x (t)), (3.11) 

is the generalized vector-valued integral due to Masani ([I4], 

Proof o/ (a). I t  suffices to prove tha t  Tt(--g(k))=~(~)[O,t) for each t~>0 and 

k = 1, 2 . . . . .  N. Now, 

Ttg(k' = ~ {Stg(~'-g(~)- [f~ ShdhJ g(k)}. 
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For  each t >~ 0 (see Section 2 (C 3)) 

f7 S t ( - g ( ~ ) =  - U 2 e  ~ gud(S;u; / (k) )= - ~ 2 e  ~ gUd~(k)(u). (3.12) 

Bu t  

fo l /2e  t eUd~(~)(u)-~-etg(k)-l /2e t eUd~(k) (u)=etg(~) - l f2e t~( t ) ,  (3.13) 

where ~(t) = ~ gu d~(k) (u). 

Since 

[~i S~dh] (-g(~))= fl s.(-g(~))dh= -g(~) fl e~ dh + V2 fl e~ r dh 

= _ g(k~ (e ~ _ 1) § V2 e t $(t) - 1/2 f l ehd~(h ) ,  

we get f rom (3.12), (3.13) and  the definition of Tt t ha t  

T t ( - g ( k ) ) =  -- e t g ( k ) - l / 2 e t ~ ( t ) - g ( ~ ) - g ( k ) ( e t - 1 ) + V 2 d ~ ( t ) - 1 / 2  e~dr , 

i.e., - Tt  g(k~ ~ Tt  ( - g(k) = .it e L d~(h). But  

f0 f0 eh d~(h) - d~k)(h) 2 = 0 .  Hence--Totglk)=~(e)[O,t)=720tg le), 

for k = 1, 2, ..., N. 

Proo/ o / (b ) .  I t  suffices to prove (3.11) for the functions x EL2([a, b], R • of the 
form x( t )=  ~ Ij~(t)g(k), where IJk is the indicator funct ion of the subinterval  Je of 
[a, b]. B y  (3.'/), 

va~(x(t)) = I j~( t )d~k)( t )  = d~(~)(t) = ~ v~(g(~)). 
1 1 1 

But  ~k(g (~)) = T~k( -- g(~') and hence ~ rd~(x(t)) = -- 5 ~ T ~ ( g  (~)) = -- .[~ Ta~(g(~)). (See 
[14] (5.2) (a).) The proof is complete.  

4. A representation of Tab in terms of (V ~, n >~ 0} 

The representat ion (3.1) of Section 3 closely resembles the Wold decomposit ion of 
a weakly s ta t ionary stochastic process into a sum of innovat ion subspaces and its 
remote  past.  In terpret ing /c as the time, Vk(R • can be regarded as an innovat ion 
subspace of ~J. I n  the continuous parameter  si tuation we shall refer to Tao(R• 
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(O ~<a < b  < oo) as the differential innovat ion  subspace of the continuous semi-group 
{St, t>~0} ([14], p. 624). The purpose of this section is to express each Tab(R') in 
te rms  of the discrete subspaces V~(R• (n = 0 , 1 , 2  .... ). 

F r o m  Theorem 2.1 we recall t h a t  ~J = ~f|174 where N = d im (R • and  
the  restr ic t ion of St to ~J~ is un i ta ry .  Le t  us set  ~ = ~N O ~(~). I t  is well known 
(see, e.g., Sz. N a g y  [20], p. 40) t h a t  ~ also has  the  decomposi t ion 

N 

: ~ = ~ |  where ~=~{g(~),Vg(~,V2g(~), . . .} ,  where {g(~) . i=l ,2 , . . . ,N}  
1 

is the complete  o r thonormal  sys tem in R • in t roduced  earlier. Since H is reduced 
b y  ~0~(o, its Cayley t r ans form V is also reduced b y  ~l~(~), and thus  for each i 
~J~(,) = ~J~*. Hence,  for each finite subin te rva l  [a, b) (0 ~< a < b) 

~(~ [a, b)= ~ C~(a, b)Vng (0 (4.1) 
n = 0  

and  V n g(~) = f ~  ~ )  (u) d~ (0 (u), where ~f(~) E L 2 (ja, [0, oo )). (4.2) 

F r o m  (4.2) and  the  fact  t h a t  {Vng 0)} (n = 0, l ,  2 . . . .  ) is a complete  o r thonormal  sys- 
t e m  in ~(~) we obta in  the following relations: 

(a) V ,? (u )G) (u )@(u)  = (re+n),  
0 

(b) folW '(u)l d (u)= 1; 
(c) foe-Uy~)(u)d/z(u)=O for n~>l .  

(4.3) 

Fur the r  the  sys tem {yJ~)(u), n=O, 1 . . . .  } is complete  in L~(/.,,[O,o~)). Let  us now 
denote  b y  L~ )* (u) = l / V 2  e u ~v~ ) (u). Then  i ~  )* (u) sat isfy the equations:  

2 e-eUL~)*(u)L~*(u)d/~(u)=~nm (m,n=O, 1,...). 

I n  other  words, we have  

fi ~ L~ )* ( u /2 )L~*  (u/2)d#(u) = (~nm for all m, n. (4.4) 

F r o m  the completeness  of the  sys tem {yJ~)(u),n=O, 1,2 . . . .  } in Le(#, [ O , ~ ) ) a n d  
the  or thogona l i ty  relat ions (4.4) it  follows t h a t  the  funct ions L~ )* (u/2) ,  n = 0, 1, 2 ... .  
are complete  in the space of funct ions on [0, ~ ) ,  square  in tegrable  wi th  respect  to 
the measure  e-Ud#(u). Hence  for each i = 1, 2, . . . ,  N, L~)*(u/2) = L, (u), where Ln (u) 
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is the  n t h  Laguer re  po lynomia l  (G. Sansone [19]). Hence  for  each i, V~)(u)= 
V2e-~L~(2u) and  

f V~g~)=V2 e-~L~(2u)d~(i)(u). (4.5) 

F r o m  (4.1) and  (4.5) we have  

C~ (a, b) = (~(t) [a, b), r n g(i~) = V2 fo e- u L ,  (2 u) du. (4.6) 
J~ 

Theorem 4.1. (a) I / T a b  = l / V 2  ( S b - s a -  ~a S~dh) (0~<a<b) ,  theu on R" 

- Tao = ~ C~(a, b)V n, (4.7) 
n ~ O  

where Cn (a, b) = V~2 ~ e- ~ L~ (2 u) d/~ (u) and the operator-valued power series on the 
riqht-hand side converges in the strong sense on R J-. 

(b) The di//erential innovation subspace Tao (R ~) = ~ o  Cn (a, b) V n (Rt). 

Proo[ o/(a). Let  us observe  t h a t  

- -  Tab9 (~ = ~t~[a, b) = ~ Cn(a, b) Vn9 ~0 
n=O 

For  a n y  [ 6 R • 

for  every  i = I,  2 . . . .  , N.  (4.8) 

H ~n~o Cu(a'b)Vn ]]]Z~o]Cn(a' b)l~ ]]Vn ]ll2-~ ll/ll2n~olCn(a' b) = (4.9) 

But ~ - o  lC=(a, b)l 2 = 2 S~ e - ~  ]E~.b)(u) d~(u), by Parseval's identity. Hence from 
(4.9) it  follows t h a t  the  opera to r -va lued  series ~=%o Cn(a, b)V '~ converges  s t rongly  

~r a on R z. Clearly the  opera tor  ~ = o  C~( , b)V '~ is l inear and  bounded  (see (4.9)). This  
a V n . along wi th  (4.8) implies t h a t  - Tab = ~.~ =o C~ ( , b) 

Proo/o/ (b). ~ ' o m  (a) we have  - Tab (R • = ~ = 0  C~ (a, b) V ~ (R• Since T~b (R 1) 
is a subspace,  T,b (R • = - T ~ b  (R• This  completes  the proof.  

I n  the  nex t  two sections we shall app ly  the results h i ther to  developed to the  
representa t ion  and  mult ip l ic i ty  theory  of weakly  s ta t ionary  stochastic processes. 

5. Stationary stochastic processes and the associated semigroup of isometrles 

We consider the s t a t ionary  stochastic process (henceforth, S.P.) of the  following 
kind. Let  (P be a Hausdor f f  space satisfying the  second countabi l i ty  axiom. We  
say  t ha t  x t ( - ~ < t <  ~ )  is a S.P. on (I) if for  each ~fi(I), xt(~) is a complex-va lued  
r a n d o m  var iable  on a probabi l i ty  space (~,  P)  wi th  mean  zero and  E I xt(~) I ~ finite. 
The  process (xt} ( - ~ < t < + ~ )  is called weakly  s ta t ionary  (or briefly, s ta t ionary)  
if for all 9~,~p6(I) and  a rb i t r a ry  real numbers  s, t and  v, we have  ~[xt+~(q~)x,+~(V)] = 
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~[xt@)x~(~v)]. The covarianee function E[xt(99)x~(~oi] of the process depends on t -s,99,% 
I t  should be noted that  the stationarity considered here is a temporal one and does 
not involve (I). Nevertheless, it is sufficiently general and useful for our purpose since 
it  includes as special cases many stationary random processes of practical interest. 
For instance, if (P is a q-dimensional euclidean space and xt(99 ) is linear with respect 
to 99 for each t, then xt.proeess can:be regarded as a q-variate stationary process 
(see Yu. A. Rozanov [18]). 

Associated with the xt-process are the following spaces. (a) The past and present 
up to time t of the xt-process, L2(x; t) is the subspace | {x~@),99 E (I), ~ ~<t} of L2(~, P) 
generated by the random variables {x~(99),99 E(I),~ ~<t}. (b) The remote past of the 
process L ~ ( x ; - ~ ) =  f'ltL2(x;t ). (c) The space of the process L~(x) is the smallest 
subspace of L2(~,P ) containing L2(x; t) for each t. 

The stationary S.P. considered will be assumed to satisfy the following condition. 

(i) If 99n--->99 then E Ixt(99n)--Xt(99)I2-->O for each t,] 

(ii) For each 99E(I), Ixt(q)--x~(99)12-+0 as s-+t, l (5.1) 

(iii) L 2 (x, - ~ )  = {0}. 

I t  has been proved by us ([12], Lemma 2.1) that, under (5.1), Lz(x) is a separable 
Hilbert space. If we define the operator Ut from L2(x) to L~(x) by Utxs(q)=xs+t(q) ), 
~0 E(I) and s, t real, then Ut is a unitary operator for each t. Under condition 5.1(ii) and 
stationarity {U t -  ~ < t  < + ~ }  is a strongly continuous group of unitary operators. 
We shall refer to this group as the unitary group of the stationary S.P. For t>~0, 
U* = U_ t is reduced by L2(x;0 ). If St denotes the restriction of U~ to L~(x;0) then 
clearly {St} (t ~> 0) is a strongly continuous semi-group of isometrics on L2(x; 0) which 
we shall call the semi-group of isometries associated with the process {xt}. In what fol- 
lows we shall write ~J in place of L2(x;0). From (5.1)(iii), we have limt_~+r162 St(~)=0.  
The following lemma gives the relation of the infinitesimal generator iK of {Ut} to 
ill ,  the infinitesimal generator of {St}. 

Lemma 5.1. 

(1) The in/initesimal generator o/the unitary semi-group { U*, t >~ 0} is - i K ;  

(2) - i K  is reduced by the space L 2 (x; 0); 

(3) iH is the restriction o/ - iK to L 2 (x; 0). 

Proo/ o/ (1). By the definition of K we get that  for every real t, Ut=exp(i tK ). 
From this it follows U* = e x p ( - i t K )  for t ~> 0. Since (U~, t ~> 0} is a strongly conti- 
nuous semi-group of unitary operators, from Theorem XII.6.1 ([6], p. 1243) it fol- 
lows that  {U~} has a unique infinitesimal generator iK o given by U* =exp  (itKo). 
Hence K 0 = - K .  

Proo/o] (2) and (3). For each t > 0  a n d / E  ~J, by the definition of St we have 

t -1 [ S  t - -  1]  / = t -1 [ U ~  - 2]  1. (5 .2)  

If / eO~,  then limt_.0 t - l [ U * - I ] /  exists; i.e., ~HCO_~ N ~J. Also from (5.2) we 
get, by a similar argument, that  D-K N ~J c OH. For each / E D-K N ~J, -- iK/belongs 
to 7,/and equals iH/. Hence it follows that  iH is the restriction of - i K  to ~. 
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Let W =c(H) and V =c(K). Since - K  is reduced by ~J and c ( - K )  = V -1 it follows 
that  V -1 is also reduced by  ~J. Further,  from (2) and (3) of Lemma 5.1, it is easy to 
see that  ~ w =Ov -1  N ~ and Wg= V-lg for all g E ~ v  1 ~ ~. Hence we have 

Corollary 5.1. (a) V -1 is reduced by L~(x;0); and (b) W is the restriction o/ V -1 
to L 2 (x; 0). 

6. Representation of stationary S.P.'s: Multiplicity as generalization of rank 

The rank of a discrete parameter  q-variate stationary S.P. is defined as the rank 
of its q • q prediction error matr ix  [21]. This definition brings out the importance 
of this notion to prediction theory and to the development of the spectral theory of 
stationary S.P.'s. The definition of the rank of a q-variate, continuous parameter  
stationary S.P., however, is less direct. In  this case, the rank is defined to be the 
rank of the associated discrete parameter  process. Let  xt( - ~ < t  < c~ ) be a continuous 
in quadratic mean, univariate stat ionary S.P., and let {Ut} be its uni tary group 

V ~ with infinitesimal generator iK. If  V is the Cayley transform of K, the S.P. { x0, 
n =0,  + 1 .... } is called the associated discrete parameter  process [15]. This definition 
extends easily to infinite dimensional stationary S.P.'s (see [12]). Using this exten- 
sion we were able to show that  the multiplicity of an infinite dimensional stat ionary 
S.P. is the proper generalization of rank. 

In  this section we rederive this result and also obtain a representation of the purely 
non-deterministic component of the S.P., basing ourselves on Theorem 2.1 and 
Theorem 6.2 below. The representation and multiplicity theory of continuous para- 
meter stationary S.P.'s is thus put  on an independent footing without any appeal 
to discrete parameter  processes. For the proof of Theorem 6.2 we need the following 
result proved by  us in [12]. 

Theorem 6.1. ([12]~ Theorem 5.2). For each t, let E(t) denote the proiection operator 
]tom Le(x ) onto L2(x;t)(c/. Section 5). Then {E(t)} ( -  o~ < t <  + o~) is a resolution 
o/ the identity in L 2 (x) and its maximal spectral type o has uni/orm multiplicity M. 

The fact that  the multiplicity is uniform, is of_great importance in the ensuing 
argument. For each t>~0, E ( t ) - E ( O ) - E ( - t )  and E ( t ) = 0  for t<0 .  For any /CL2(x  ) 
and - ~ < a < b  40,  [IE(a,b]E(O)/l[~= IIE(a,b]/ll 2= IIE[-b,-a)/I]2.  Also for 

0 < b  < I IE(a ,b] / l l :  = I i E [ - b , - a ) l l l  2 

Therefore the spectral function ~r of / with respect to {E(t)~ can be regarded as the 
spectral function ~r of E(O)/ with respect to {E(t)}; i.e., every spectral type ~ of 
{/~(t)} is a spectral type of {E(t)}. But  e is the maximal spectral type with respect 
to {E(t)}, so that  ~<e-  The multiplicity of ~ being uniform by Theorem 6.1, we have 
M - m u l t i p l i c i t y  of every spectral type ~ with respect to  {E(t)}. In  particular, M 
equals the multiplicity of the maximal  spectral type ~ of {E(t)}. Hence from Theorem 
2.1, M = N .  

Theorem 6.2. The multiplicity M o/ a weakly stationary S. P. satis/ying (5.1) is 
equal to the dimension o/ the space L~(x;0) GV-1L~(x;0)  where V=c(K) ,  iK being 
the in/initesimal generator o/ the unitary group { Ut} ( - ~ < t < + ~ ) o/ the process. 
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Proof. I t  has just  been shown above tha t  M = N. F rom Theorem 2.1, N = dim (R ~) = 
dim(L2(x;O)~)WL2(x;O)) where W is as defined in Section 5. Corollary 5.1 shows 
tha t  W is equal to the restriction of V -~ to L2(x;0). Therefore M ( = N )  equals 

dim [L2(x; 0) ~ V-~L2(x; 0)]. 

I f  in the definition of a s ta t ionary  process, �9 is q-dimensionM and xt is linear on 
r then {x t -  ~ < t  < ~ }  is a q-variate process (see Rozanov  [18]). Let  us denote the 
associated discrete process by  ( x ~ } ( n = 0 , _  1 .... ). The "prediction error mat r ix"  of 
{x~} has rank equal to the dimension of L2 (~ ;0 )oL~(~ ; -  1) where L2(~; n)=@{x~(q~), 
qJe(1) ,m=n,n- i  .... }. Bu t  L2(~;0)=L~(x;0) and V-1L2(x;O)=L~(x;-1). Thus the 
rank of the associated discrete process is equal to the dim [L2 (x; 0) Q V-1L2(x;0)] 
which by  Theorem 6.2 equals the multiplicity. Hence the multiplici ty o f  the S.P. 
is, in reality, th  e generalization of rank. 

Let  us define for each k, ~ (u) = - ~(k)(0, u] for u ~> 0, and  = U~(~)(0, - u] f o r  u < 0 
where {~(~)(u), u ~> 0} is as defined in Section 2 and {Ut} is the un i ta ry  group of the 
S.P. Wi th  this definition {$~(u), - ~ < u < + c~} (k = 1,2 ..... N) are orthogonal  pro- 
cesses with s ta t ionary  orthogonM increments possessing the p roper ty  Ut$~ (u) = 
~:~(u- t) for all real t and  u. 

Theorem 6.3.  Let {xt - ~ < t < + ~ } be a s t a t i o n a r y  S .  P .  o n  a separable Haus- 
dorff spa~e �9 satisfying (5.1) (i) (ii). Then 

x~(~) = Z ~n(~V;u) dSn(n-t)+x~(~v), 
n = l . O  

where 

(i) M is equal to the multiplicity o/{xt},  
(ii) X'M ~,~=1 ~o [F~(q); u)l 2 du is finite for each q) and, 

(iii) {zt, - c~ < t < § c~ } is a deterministic stationary stochastic process on (I); i.e., 
L e (z; - ~ ) = L~ (z) 

(iv) For each (t, q0), (s, y~): 8[zt(q0), y~(~v)] = 0  with y~(~f) 
M or 

= ~ n : l  SO -~n (~/); U) den (u -- s). 

Pro@ From Theorems 2.1, 6.1 and  6.2 we get  

Xo(~0)= ~ Fn(q;u) dSn(u)+PL~(x; ~)xt(~), 
n = l  

where M is the mult ipl ici ty of (xt, - ~ < t < ~ }. Bu t  for each t, 

xt(~)= Utx0(~0)= ~ Jo 

by  definition of ~:n process and  the fact  t h a t  Ut PLy(X;-o~) =PL~(x; -~)Ut .  Le t  us 
define zt (9o) = PLy(X; - ~) Xt (~0); then {zt, - ~ < t < + ~ } is a s ta t ionary  process on (]) 
and  since L2(x; 0) = L2(y; 0) | 0) = L.,(y; 0) | - ~ ), L2(z; 0) = L2(x; - ~ ) = 
L2(z; - ~ ) .  
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As a corollary we ob ta in  the following representa t ion  for f in i te-dimensional  pro- 
cesses due to E. G. Gladyshev ([7], see also [17]). For  un iva r i a t e  processes the cor- 
responding result  was first given by  K. K a r h u n e n  [13] (also [9]). 

Corollary 6.3. Let  [x 1 ( t ) , . . . ,  xq(t))] be a continuous in  q:m., weakly  stationary q- 
variate process. Then  

x~(tl= .~'~(u) d ~  (u - t / +  z~ (t/; 

where (i) M is the rank o/ the process, (i i)~ M S0 I ~n(U)] z du i s / i n i t e ,  (iii) [(zl(t), 
zq (t))] is a q-variate stationary process orthogonal to [(Yl (t) . . . . .  yq (t))] where y~ (t) = 
Y 2 = 1 S ~  F ~ , ( u ) d ~ , ( u - t ) ,  (i = 1, . . . ,  q). 

Theorem 6.3 and  Corollary 6.3 were obta ined  by  us in  [12] (see also [11]). The 
method  used there was an extension of H a n n e r ' s  approach made possible by  the 
appl icat ion of the ideas of mul t ip l ic i ty  theory.  The proof given here is direct ly based 
on  Theorem 6.2 and  the modified version of Cooper's result  given in  Section 2. The 
essential u n i t y  of these two approaches is thus  demonstra ted.  
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