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On the intersections between the trajectories of  a normal  
stationary stochastic process and a high level 

By HARALD CRkMER 

l .  Introduction 

Let ~(t) be a real-valued, normal and stat ionary stochastic process with a 
continuous t ime parameter  t, varying over ( - ~ ,  co). Suppose tha t  E ~ ( t ) = 0  
for all t, and tha t  the covariance function 

r(t -- u) = E~(t) ~(u) 

satisfies the following two conditions: 

as t--> 0, and 

1_ ] 

r(t) = 1 - 2! ~2t2 + ~I. ~4t4 § ~ 

r(t) = o(I t l -~) 

(1) 

(2) 

for some a > 0 ,  as t -+ _ c o .  We may,  of course, assume ~ < 1 .  
I t  follows 1 from (1) tha t  there exists an equivalent version of $(t) having, 

with probabil i ty one, a continuous sample function derivative ~'(t), and it will 
be supposed tha t  ~(t) has, if required, been replaced by  this equivalent version. 

Let  u > 0 be given, and consider the intersections between the trajectories 
= ~(t) of the ~ process and the horizontal line, or "level",  B = u  during some 

finite t ime interval, say 0 < t < T. I t  follows from a theorem due to Bulinskaja 
[2] that,  with probabil i ty one, there are only a finite number  of such inter- 
sections, and also that,  with probabil i ty one, there is no point of tangency 
between the trajectory B = ~(t) and the level U = u  during the interval (0, T). 
Thus, with probabil i ty one, every point with ~ ( t )=u  can be classified as an 
"upcrossing" or a "downcrossing" of the level u, according as ~'(t) is positive 
or negative. 

The present paper  will be concerned with the upcrossings, and their asymp- 
totic distribution in time, as the level u becomes large. I t  will be obvious tha t  
the case of a large negative u, as well as the corresponding problem for the 
downcrossings, can be treated in the same way. 

The uperossings may  be regarded as a stationary stream o~ random events (cs 

1 With  respect to the general theory of the  normal  s ta t ionary  process and  its sample funct ions 
we refer to the  for thcoming book [4] by Cram~r and Leadbetter .  
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e.g.  Khintchine 's  book [5]), and it is well known tha t  the simplest case of 
such a s t ream occurs when the successive events form a Poisson process. 
However, a necessary condition for this case is (Khintchine, I.c.,  pp. 11-12) 
tha t  the numbers of events occurring in any  two disjoint t ime intervals should 
be independent random variables, and it is readily seen that  this condition can- 
not  be expected to be satisfied by  the stream of upcrossings. On the other 
hand, it  seems intuitively plausible tha t  the independence condition should be 
a t  least approximately satisfied when the level u becomes very large, provided 
tha t  values of ~(t) lying far apar t  on the t ime scale can be supposed to be only 
weakly dependent. 

Accordingly it may  be supposed that ,  subject to appropriate conditions on 
~(t), the stream of upcrossings will tend to form a Poisson process as the level 
u tends to infinity. 

That  this is actually so was first proved by  Volkonskij and Rozanov in their 
remarkable joint paper  [8]. They assumed, in addition to the condition (1) 
above, tha t  ~(t) satisfies the so-called condition o/strong mixing. This is a fairly 
restrictive condition, as can be seen e.g.  from the analysis of the strong mixing 
concept given by  Kolmogorov and Rozanov [6]. Moreover, in an actual case it 
will not  always be easy to decide whether :the condition is satisfied or not. On 
the other hand, various interesting properties of the ~(t) trajectories follow as 
corollaries from the asymptot ic  Poisson character of the stream of upcrossings 
(ef. Cram6r [3], Cram6r and Leadbet ter  [4]), so tha t  i t  seems highly desirable 
to prove the lat ter  proper ty  under simpler and less restrictive conditions. 

I t  will be shown in the present paper  tha t  i t  is possible to replace the con- 
dition of strong mixing by  the condition (2) above. This is considerably more 
general, and also simpler to deal with in most  applications. 

I am indebted to Dr. Yu. K. Belajev for stimulating conversations about  the 
problem treated in this paper. 

2. The main  theorem 

The number  of upcrossings of ~(t) with the level u during the t ime interval 
(s, t) will be denoted by  N(s,t). This is a random variable which, by  the above 
remarks,  is finite with probabil i ty one. When s = 0, we write simply N(t) instead 
of N(0,t). From the stat ionari ty and the condition (1) it follows (Bulinskaja 
[2], Cram6r and Leadbetter  [4], Ch. 10) tha t  the mean value of N(s,t) is, for 
8 < t ,  

EN(8 ,  t) = E N ( t  - 8) = / , ( t -  s), (3) 

where # = EN(1) = ( ~  e- u,12. (4) 
zT~ 

The quant i ty  /~ will p lay an important  par t  in the sequel. We note tha t  /~ is 
a function of the level u, and tha t  /t tends to zero as u tends to infinity. From 
(3) we obtain for any  T> 0 

EN(~/~) = T. 
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For the s tudy of the stream of upcrossings, it will then seem natural  to 
choose 1//~ as a scaling unit  of time, thus replacing t by T//~. We might expect, 
e.g.,  tha t  the probabil i ty distribution of fr will tend to some limiting form 
when /x tends to zero while ~ remains fixed. This is in fact  the case, as shown 
by  the following theorem, first proved by  Volkonskij and Rozanov under more 
restrictive conditions, as mentioned above. 

Theorem. Suppose that the normal and stationary process ~(t) satis/ies the conditions 
(1) and (2). Let (%,b~), .. . ,  (aj, bj) be disjoint time intervals depending on u in  such a 
way that , /or  i = 1 . . . . .  ], 

b~ - a~ = vJlu , 

the integer j and the positive numbers T1,... ~ being independent o / u .  Let lc 1 . . . . .  kj be 
non--negative integers independent o / u .  Then 

] Tk~ 
lim P { N(a~, b~) = k~ for i = 1 . . . . .  ?" } = ] 7  --~ e--7;' @ 

Thus, when t ime is measured in units of 1/~t, the stream of upcrossings will 
asymptot ical ly behave as a Poisson process as the level u tends to infinity. 

We shall first give the proof for the case i = 1, when there is one single 
interval (a,b) of length b - a - = ~ / / x .  Owing to the s tat ionari ty it  is sufficient to 
consider the interval (O,v/#).  Writing 

T=~J~t ,  P k = P { N ( T ) - = k } ,  (5) 

we then have to prove the relation 

T k 
_ -7; lim Pk -- ~ e (6) 

u - - ~  oo  

for any  given T> 0 and non-negative integer k, both independent of u. Once 
this has been achieved, the proof of the general case will follow in a com- 
parat ively simple way. 

The proof of (6) is ra ther  long, and will be broken up in a series of lemmas. 
In  the following section we shall introduce some notations tha t  will be used 
in the course of the proof. The lemmas will be given in sections 4 and 5, 
while section 6 contains the proof of the case ?'= 1 of the theorem, and section 
7 the proof of the general case. 

3. N o t a t i o n s  

The level u will be regarded as a variable tending to infinity,  and we must  
now introduce various functions of u. I t  will be practical to define them as 
functions of /~, where /~ is the function of u given by  (4). Writing as usual 
[x] for the greatest  integer ~< x, we define 

M = [T/#a]. n = [ M / ( m  1 + m2)] + 1. 
(7) 
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Here fl is any number  satisfying the relation 

0 < ( ~ + 4 ) f l < ~ < l ,  (s) 

where a is the constant occurring in the condition (2), while /c is the integer 
occurring in (6). We further write 

q = T / M ,  t 1 = mlq  , 12 = m2q , (9) 

and divide the interval (0,T) on the t ime axis into subintervals, al ternatively 
of length t I and t2, starting from the origin. We shall refer to these subinter- 
vals as t I- and t~-intervals respectively, the former being regarded as closed and 
the lat ter  as open. Each t~-interval (i = 1,2) consists of m~ subintervals of length 
q. The whole interval (0,T), which consists of M intervals of length q, is covered 
by  n pairs of t 1- and t~-intervals, the nth  pair being possibly incomplete. Any 
two distinct tl-intervals are separated by an interval of length a t  least equal 
to t 2. Art important  use will be made of this remark in the proof of Lemma 
5 below. 

The quantities defined by  (7) and (9) are all functions of u. I t  will be prac- 
tical to express their order of magnitude for large u in terms of /~. The fol- 
lowing relations are easily obtained from (5), (7) and (9): 

q~#~, n ~ ~ #  -~, 
(10) 

t 1 ~ /z~  -1, t 2 ~/z2~ -1. f 
We now define a stochastic process }q(t) by  taking 

~a (v~) = ~(~q) 

for all integers v, and determining ~q by  linear interpolation in the interval 
between two consequtive vq. To any sample function of the ~(t) process will 
then correspond a sample function of ~q(t), which is graphically represented by  
the broken line joining the points [vq,~(vq)]. For the number  of upcrossings of 
this broken line with the u level we use the notations Hq (s, t) and H a (t), corre- 
sponding to N(s, t )  and H(t). The probabil i ty corresponding to Pk as defined by  
(5) is 

P(ka)= p { N q ( T ) =  k }. (11) 

4. L e m m a s  1 - 3  

Throughout the rest of the paper  we assume tha t  the ~(t) process satisfies 
the conditions of the above theorem. 

L e m m a  1. I /  T and q are given by (5) and (9), ~ and Ic be ing/ ixed  as be/ore, we 
have 

lim (Pk - P(k q)) = 0. 

Evidently Nq(T)<~N(T) .  We shall prove tha t  the non-negative and integer- 
valued random variable N ( T ) -  H q ( T )  converges in first order mean to zero, 
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as u -+oo .  I t  then follows that  the probability that  N(T)-Nq(T)takes any 
value different from zero will tend to zero, and so the lemma will be proved. 

By (3) and (5), the mean value of the number /V(T) of uperossings of ~(t) 
in (0,T) is for every u 

EN(T)=T#=T. 

I t  will now be proved that  the mean value ENq(T) tends to the limit T as 
u - +  oo, so that  we have 

lim E { N(T) - Nq (T) } = O. 
U - > C o  

Since N ( T ) - N q ( T )  is non-negative, this implies convergence in first order mean 
to zero, so that  by the above remark the lemma will be proved. 

Consider first the number Nq(q) of upcrossings of ~q(t) in the interval (0,q). 
This number is one, if ~(0)<u < ~(q), and otherwise zero, so that  

ENq(q) = P { ~(0) < u < ~(q)}. 

Now ~(0) and $(q) have a joint normal density function, with unit variances 
and correlation coefficient r=r(q). By (1) and (10) we have 

r(q) = 1 - ~ ~q~  + O(q4). (12) 
For the probability that  ~(0)< u and ~(q)> u we obtain by a standard trans- 
formation 

where as usual 

ENq(q) = V~ f ~ e ~,12ap[/_~_r2)dx , / u - r x \  

O(x)=i/~f~coe t~/2dt. 

:By some straightforward evaluation of the integral from u + ( 1 -  r)~ to infinity 
we obtain, using (12), and denoting by K an unspecified positive constant, 

1 

ENq(q)=/~ j  u [~/~_r~} + O[exp ( -  . 

For the first term in the second member we obtain, using again (12), the ex- 
pression 

1 - u ~ / 2  ~u+(1-r)~(O(u-r.cid x 
e (1 + 

\V~-rV 
V1 - r ~ 
r~/~ e ~'/2(l+O(q�89176 O(y'dy+O(qu')=~22-~:qe-~'/2'l+O(q �89 

so that ENq (q) = q# + o(q#). 
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I f  v denotes an integer, which may  tend to infinity with u, it then follows 
from the stat ionari ty tha t  we have 

ENq(vq) = vq/~ + o@q/~). (13) 

In  particular, taking v = M  we obtain from (9) and (5) 

E~V. (T) = T~ + o ( ~ )  -~ 3. 

According to the above remarks, this proves the lemma. 
We now consider the number  /~q(tl) of ~q uperossings in an interval of length 

t l = m l q  , observing tha t  by  (10) we have t l ~  ~-1. 

L e m m a  2. We have 

lira E { Nq(tl) [Nq(t~) - l]} 0. 

By (3) we have EN(tl)=$1/s while (13) gives for v = m  1 

ENq ( t l )  = t l ~  "~- O(tl/~ ) ~" EN(t l ) .  

Further,  since Nq(tl) ~ N(tl)  , 

E { Nq (t) [Nq (ti) - 1]} ~< E { N(tl) [N(tl) - 1 }. 

The t ru th  of the lemma will then follow from the corresponding relation with 
~Vq replaced by N. Now this lat ter  relation is identical with the relation proved 
by  Volkonskij and Rozanov [8] in their Lemma 3.4. I t  is proved by  them 
without any  mixing hypothesis, assuming only tha t  ~(t) is regular (or purely 
non-deterministic) and tha t  r(t) has a fourth order derivative a t  t=O. Their 
proof is valid without any  modification whatever, if these conditions are replaced 
by  our conditions (1) and (2). Thus we may  refer to their paper for the proof 
of this lemma. We note tha t  the proof is based on the important  work of 
S. O. Rice [7]. 

L e m m a  3. As  u--> ~ ,  we have 

P{Nq( t~)  = 0 }  = 1 - q + o ( q ) ,  

P { Nq(t~) = l } = q + o(q), 

P { Nq  (~1) > 1 } = O(q). 

For any  random variable v taking only non-negative integral values we have, 
writing ni = P { v = i } and assuming Ev 2 < ~ ,  

E~' = 7~ 1 -{- 27~ 2 -}- 37~ 3 -{- ..., 

Er(v - l) = 2 ~ 2 +  67~3-}- .... 
and consequently 

E~) -- E~,('p - l )  ~ 17~ 1 ~ 1 -;Tg 0 ~ Ey .  (14) 

T a k i n g  ~ ) = ~ q ( t l )  , and observing that  by  (10) we have E N q ( t l ) , ~ t l # ~ q ,  the 
t ru th  of the lemma follows directly from Lemma 2. 
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5.  L e m m a s  4 - 5  

For each r = l , 2 , . . . , n ,  we now define the following events, i .e. the sets of 
all ~(t) sample functions satisfying the conditions written between the brackets: 

Cr= {exact ly one ~q upcrossing in the r th tl-interval}, 

dr= {at  least one ~q upcrossing in the r th tl-interval }, 

er = { ~(~(1) > u for a t  least one vq in the r th t~-interval }. 

Further,  let C~ denote the event tha t  e r occurs in exactly k of the tx-intervals 
in (0,T), while the complementary event c~* occurs in the n - k  others. D k and 
E~ are defined in the corresponding way, using respectively dr and er instead 
o f  C r .  

Lemma 4. For the probability P(~q) defined by (11) we have 

lira [Piq)-  P { } ]=O.  
u - - >  o~  

We shall prove tha t  each of the differences P(k q) - P { Ck }, P { Ck } - P { Dk } and 
P { D k } - P { E k }  tends to zero as u - - > ~ .  

By  (13) and (14) the probabili ty of a t  least one ~q upcrossing in an interval 
of length t 2 is at  most  ENq(t2)-~t21~+o(t2#). Thus the probabil i ty of a t  least 
one ~q upcrossing in at  least one of the n t2-intervals in (0,T) is by  (10) 

O(nt~/u ) = O(lu~), 

and thus tends to zero as u--> co. I t  follows tha t  we have 

P(kq)--P{total number  of Sq upcrossings in all n t l - i n t e rva l s=k}-+0 .  (15) 

On the other hand, by the stat ionari ty of ~(t), Lemma 3 remains true if Nq(tl) 
is replaced by the number  of ~q upcrossings in any  particular t~-interval. Since 
the interval (0,T) contains n of these intervals, it follows from (10) tha t  the 
probabili ty of more than one ~q upcrossing in at  least one of the tl-intervals is 
o(nq)=o(1), and Chus tends to zero as u - - ~ .  

From (15) and the last remark, it now readily follows that  the differences 
P(k q ) - p { C k }  and P { C k } - - P { D k }  both tend to zero as u - - ~ .  I t  thus only 
remains to show tha t  this is true also for P { D k } - P { E ~ } .  

By the definitions of the events D~ and Ek we have 

p { D k } = h p { d r l . . . d  ,t* d* "t I 
-rk~sl . . . .  "-~ J' (16) 

f P{E i=hP{% }, 

the summations being extended over all ( ; )  groups of/c different subscripts r I . . . .  ;r~ 

selected among the numbers 1 , . . . ,n ,  while in each case s 1 . . . . .  s~-k are the 
remaining n - k  subscripts. 

Let vrq denote the left endpoint of the rth tl-interval, and denote by  gr the 
event  

= { u } 
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of probabili ty 

Then for every r = 1 , . . . , n  

so tha t  

d r c e r and e r -  dr~gr ,  

(17) 

Similarly e* c d*, and 

d* * - - e r  = e r - d r C g r ,  

By a simple recursive argument  (16) then yields, using (8) and (10), 

/nk*~ \ = 0 [exp 1 - -  ( 
which proves the lemma. 

* Each of these is By  definition, Ek is composed of certain events er and es. 
associated with one particular t~-interval, and it h a s  been observed above tha t  
any  two tl-intervals are separated by an interval which is of length>~ t2, and 
thus tends to infinity with u. By  means of the condition (2) it will now be 
shown tha t  the component events of Ek are asymptotical ly independent, as 
u--> co. Moreover, owing to stationarity,  the probabil i ty 

p = P { e , }  (18) 

is independent of r, so tha t  by  (16) the asymptotic  independence will be ex- 
pressed by  the following lemma. 

Lemma 5. The probability p being de/ined by (18) we have, as u - ~  ~ ,  

In  order to prove this lemma, we consider the points vq on the time axis 
for all integers v such that  rq belongs to one of the tl-intervals in (0, T). Each 
tl-interval , which we regard as closed, contains m 1 § 1 points vq, and there are 
n - 1  complete and one possibly incomplete such interval in (0,T). I f  L is the 
to ta l  number  of points vq in all tl-intervals, we thus have 

(n - 1) (m 1 + 1) < L <~ n(m 1 + 1). 

Let  ~1 . . . . .  ~L be the random variables ~(v~) corresponding to all these L points 
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vq, ordered according to increasing v. The ~ sequence will consist of n groups, 
each corresponding to one particular tl-interval. 

Further,  let /1 (Yl . . . .  , YL) be the L-dimensional normal probabil i ty density of 
U1 . . . .  ,~L, and let A 1 be the corresponding covariance matr ix.  (Our reasons for 
using the subscript 1 here and in the sequel will presently appear.) From (16) 
we obtain 

P ~ Ek ~= JEt-~/~dy= : ,]eiw..~'~,.../ldY' (19) 

where the abbreviated notation should be easily understood, the summation 
being extended as explained after (16). 

Let  us now consider one particular term of the sum in the last member  of 
(19), say the term where the group of subscripts r 1 . . . . .  rk coincides with the 
integers 1 . . . . .  k. I t  will be readily seen tha t  any  other term can be treated in 
the same way as we propose to do with this one. This term is 

F(1) = fo/ldy, 
where G denotes the set 

G = e  1 eke~+l... * . ~  en~ 

F(1) may  be regarded as a function of the covariances which are elements 
of the matr ix  A 1. Let  us consider in particular the dependence of F(1) on those 
covariances Q~j=E~ which correspond to variables ~ and ~j belonging to di/- 
]erent tl-intervals. I f  all covariances Qij having this character are replaced by 
~j=h~j, with 0~<h~<l, while all other elements of A 1 remain unchanged, the 
resulting matr ix  will be 

Ah = hA 1 + (1 - h) A 0, (20) 

while the density function /1 will be replaced by  a certain function/h.  Evident ly  
/0, corresponding to the covariance matr ix  A0, will be the normal density func- 
tion tha t  would apply if the groups of variables ~ belonging to different t 1- 
intervals were all mutual ly  independent, while the joint distribution within each 
group were the same as before. 

Thus A 1 and A 0 are both positive definite, and it then follows from (20) tha t  
the same is true for An, so t h a t / h  is always a normal probabil i ty density. Writing 

F(h) = fG/  dy, 

i t  follows from the remarks just made tha t  we have 

fe fe fe fe * '  * 
F(O)= ,/~ ~/~ ~+l/~ , /~ ...P{en}. 

By stat ionari ty this reduces to 

_F(0) =p~(1 _p)n-k ,  (21) 

where p is given by  (18). 
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We shall now evaluate the difference F ( 1 ) - F ( 0 )  by  a development of a 
method used by  S. M. Berman [1]. We note tha t  for any  normal density func- 
tion /(x I . . . . .  xn) with zero means and covariances r~r we have 

Or~ Ox~Ox~ ~ 

I n  our case, [n(Ya,...,Yr.) is a normal density, depending on h through the 
covariances 2~ = h ~ .  Hence 

F'(h)= f d~h dY ~ O/h du ( O2fu dy, (22) 

the summation being extended over all i, ~ such tha t  ~l and ~j belong to dif- 
ferent tl-intervals. With  respect to the integral over the set G = e  1.. .  eke~+l...e*~ 
occurring in the last sum in (22), we have to distinguish three different cases. 

Case A .  When ~ and ~}j both  belong to t~-intervals of subscripts >/c, say to the 
ts-intervals of subscripts k +  1 and /c + 2 respectively, integration with respect to 
y~ and yj has to be performed over e~+l and e*+2 respectively. By  definition of 
the sets er, both y~ and yj thus have to be integrated over ( - c ~ , 0 ) ,  and so 
we obtain by  direct integration with respect to yi and yj 

f a ~2/h d y -  - f h(y,=yj=u)dy'. (23) 

The notat ion used in the last integral is to be understood so tha t  we have to 
take y~ = y j = u  in [h, and then integrate with respect to all y 's  expect y~ and 
yj. As /h > 0 always, we have 

J~  ay~ 0yj ... fh (yi = yj = u) dy . 

The last integral, where all the y's except y~ and yj are integrated out, yields 
the joint density function of the random variables corresponding to ~ and ~j 
in the normal distribution with covariance matr ix  Ah, for the values y~ = yj = u, 
so tha t  

O< ~e[h d y <  exp [-u~/(l§ (24) 
~yi ~yj 2~(1 - h 2 ff~)�89 

Case B.  Let now ~/i and ~/j both  belong to tl-intervals of subscripts ~/c, say 
to those of subscripts 1 and 2 respectively. Then integration with respect to 
each of the groups of variables to which Yi and yj belong has to be performed 
over e I and e~ respectively. By  definition, el is the set of all points in the y 
space such that  at  least one of the y's associated with the first tl-interval 
exceeds u, and correspondingly for %. Some reflection will then show tha t  the 
integration indicated in the first member  of (23) can still be carried out directly, 
and yields the same result, with the only difference tha t  in the second member  
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of (23) the integration has to be performed over a set G', obtained from G by  
replacing e 1 and e 2 by  e~ and e*2 respectively. I t  follows tha t  the inequality 
(24) still holds. 

Case C. Finally we have the case when ~ and ~/s belong to tl-intervals of 
different kinds, say to the first and the ( k + l ) s t  respectively. As before the 
integration in the first member  of (23) can be carried out directly. In  this case, 
however, we obtain ~ the relation (23) with a changed sign of the second member,  
and e 1 replaced by  et in the expression of the domain of integration. In  this 
case we thus obtain the inequality (24) with changed inequality signs. 

Thus in all three cases we have the inequality 

fa ~2/h dy < 
1 

e,J  exp (25) 

Now ~j is the covariance between the variables ~,=}(~,q) and ~j=}(vjq), 
where the points ~q and vjq belong to different tl-intervals, and are thus sep- 
arated by  an interval of length a t  least equal to t 2. By the condition (2) we 
then have 

l e,J I = I r ( ~ , q  - r~q)l < Kt2 ~, 

where as usual K denotes an unspecified positive constant. Further,  there are 
less than L2<<.n2(ml+l) ~ covariances ~ts. Owing to s tat ionari ty some of the p~j 
are equal, but  it is easily seen tha t  this does not affect our argument.  I t  then 
follows from (22) and (25), using (7) and (10), tha t  we have 

[F,(h)l < . .  2 ~t-= - = , <  /~xn ml 2 e K #  ~-4fl, 

This holds for any  of the ( ; ) t e r m s  in the last member  of (19), and F(0)wi l l  

in all cases be given by  (21), so tha t  we finally obtain 

By  (8) we have ( k + 4 ) f l < ~ ,  so tha t  the last member  tends to zero as u - - - ~ ,  
and the lemma is proved. 

6. Proof  of  the case j =1  of  the theorem 

By (18), p=.P{er} is defined as the probabil i ty tha t  a t  least one of the 
random variables ~(0), ~(q), ~(2q) . . . . .  ~(mlq ) takes a value exceeding u. According 
to (17), this differs from the probabil i ty P{dr} of a t  least one ~q upcrossing 
in the first tl-interval by  a quant i ty  of the order 
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B y  L e m m a  3 the  la t te r  p robab i l i ty  is 

P{dr}=q+o(q) .  

Thus  we ob ta in  f rom L e m m a  5, observ ing  t h a t  b y  (10) we have  1/ue -u'/2 =o(q) ,  

P { E ~ )  (k)[q+~176 +C' 

B y  (10) we have  nq >~ and thus  

li+m P { E k } = ~ e  . 

L e m m a s  1 and  4 then  finally give the relat ion (6) t h a t  was to be  proved:  

l im Pk = ~ e-~. 
U--> Oo k.[ 

Thus  we have  p roved  the  s implest  case of the theorem,  when i =  1, so t h a t  
there  is only  one interval .  

7. Proof  of  the general  case 

The general izat ion to the  case of an a rb i t r a ry  n u m b e r  ~ > 1 of intervals  is 
now simple. 

For  any  ~ > 0, i t  follows f rom the result  just  p roved  tha t ,  for every  i = 1 . . . . .  ], 
the  r a n d o m  var iable  

N (a, + ~/~,bi - ~/tz), 

where b , -  a, = T,/~, will be asympto t i ca l ly  Poisson d is t r ibuted  with p a r a m e t e r  
T , - 2 e .  I n  the  same way  as in the proof  of L e m m a  5 it  is shown t h a t  these 
] var iables  are a sympto t i ca l ly  independent ,  so t h a t  we have  

J (v, - 2 e)~* 
P { N(a, + ~/[~, b, - ~/#) = k, for i = 1 , . ,  ?" } -+ 1-[ e (**-2,). 

"" ~=1 kt! 
(26) 

F r o m  the  a sympto t i c  Poisson dis t r ibut ions of the var iables  

N(a,a~+s/#)  and  N(b~-e/~,b~) 

i t  fur ther  follows tha t ,  with a p robabi l i ty  exceeding 1 -  27"e, these var iables  will 
u l t imate ly  be zero for all i =  1 , . . . , j .  Since 1" is fixed, and  s > 0 i s  a rb i t ra r i ly  
small,  the  t ru th  of the  theorem then  follows f rom (26). 
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