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C. BJORCK, Linear partial differential operators and generalized distributions 

PREFACE 

The book "Linear part ial  differential operators" (denoted by  [HI in the list of references) by  
HSrmander  is wri t ten in the language of Schwartz distributions. At  the Stanford conference in 
1961, Beurling [3] presented the foundations of a certain more general theory of distributions,  
par t ly  based on ideas published already in [1] and  [2]. The purpose of the present paper  is to 
develop this generalized distr ibution theory, including the spaces ~v. k of [HI and  to use the theory 
to generalize material  from Chap. I I I ,  IV and VI of [HI. Thus we s tudy questions of existence 
and  approximation and  interior regulari ty of solutions of equations with constant  coefficients and  
also consider equations which have no solutions. 

If ~ is a continuous function with compact support,  the condition t ha t  T C C~ could he expressed 
on the Fourier t ransform side by  demanding t ha t  ~(~) exp (N log (1 + I $ I)) is in L 1 for each natura l  
number  N. In  Beurling's theory, log (1+ K~[) is replaced by  another  subaddit ive function w, 
which we can th ink  of as larger. Then the class of test  functions will be smaller and  the class of 
distributions larger. Although much of the classical theory goes through, we sometimes get 
complications from the fact t ha t  a general r is not  as closely related to differentiation and thus  
to di]]erential operators (as opposed to general convolution operators) as is log (1 + 1~1). Another  
kind of complication comes from the fact t h a t  we do not  consider only those r which give rise 
to the same class of test  functions as to (with to(~) =w( _~)).1 A summary of the paper is formed 
by  the  introductions to the various chapters. 

Since most  of our theorems have easily recognizable counterparts  in [HI and  in many  cases 
the proofs are vir tual ly the same, i t  would not  be practical to make our presentat ion self-con- 
tained. Thus the proofs often consist jus t  of a remark t ha t  the proof in [H] works. Similarly, the  
bibliography and the introductions to the various chapters should be completed by  the corre- 
sponding parts  of [I-I]. To avoid confusion of theorems etc. in the present paper and in the refer- 
ences, we always use abbreviat ions in the la t ter  case. Thus Theorem 1.7.4 is in the  present paper, 
bu t  Th. 1.7.4 (of [H]) is not. 

The author  is greatly indebted to Professor Beurling who has permit ted the  publishing of his 
distr ibution theory and  to Professor t tSrmander  whose suggestions have led to many  improve- 
ments  of the manuscript .  In  particular, the author  had  originally obtained only part ial  results in  
connection with Theorems 1.5.12, 3.4.11, 4.1.5 and  5.1.2. 

Chapter I. Generalized distributions 

1.0. Introduction 

T h e  p u r p o s e  of t h i s  c h a p t e r  is t o  d e v e l o p  t h o s e  p a r t s  of t h e  g e n e r a l i z e d  d i s t r i b u t i o n  
t h e o r y  c r e a t e d  b y  B e u r l i n g  [3] w h i c h  wil l  b e  r e q u i r e d  i n  t h e  f o l l o w i n g  c h a p t e r s .  W e  
h a v e  m a d e  t w o  c h a n g e s  in  t h e  n o t a t i o n  of [3]. F i r s t ,  we h a v e  ca l l ed  t h e  s p a c e  of t e s t  
f u n c t i o n s  ]0~ i n s t e a d  of A,,. T h i s  is d o n e  t o  s t r e s s  t h e  f a c t  t h a t  S c h w a r t z ' s  s p a c e  O 
is a spec i a l  case  of O~  a n d  t o  g e t  a n a t u r a l  n o t a t i o n  fo r  t h e  s p a c e  of  m u l t i p l i e r s  o n  
O~, n a m e l y  E,~. O u r  n o t a t i o n  a l so  p a r a l l e l s  t h a t  of R o u m i e u  [17], [18]. S e c o n d ,  i n  o u r  
n o t a t i o n  Z)~ is n o t  t h e  d u a l  s p a c e  of ~ b u t  t h a t  of O ~  ( w h e r e  c a ( ~ ) = ~ o ( - ~ ) ) .  F o r  
S c h w a r t z  d i s t r i b u t i o n s ,  ca =co,  a n d  t h e n  t h e  q u e s t i o n  does  n o t  occur .  O u r  cho ice  is 
d u e  t o  t h e  f ee l ing  t h a t  t h e  F o u r i e r  t r a n s f o r m  is so i m p o r t a n t  t h a t  e.g. t h e  c o n d i t i o n s  

1 Throughout  the paper, the author  has wri t ten and the reader is asked to read 6) ins tead 
of to. The pr inted nota t ion is due to unfor tunate  typografical circumstances. 
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in the 1Jaley-Wiener theorems (Theorems 1.4.1 and 1.8.14) should be similar for 
test  functions and distributions. 

We use freely the Schwartz theory as given in [19] or [HI, Chap. I.  For functional 
analysis see [6] or [21]. For  the theory of subadditive functions (Section 1.2), see 
[11]. For the Denjoy-Carleman theory of classes of functions (Section 1.5), see [15] 
and the references given there. 

Other t reatments  of generalized distributions are given by  Gelfand and ~ilov [10], 
Friedman [9] and Roumieu [17], [18]. 

1.1. Notat ion 

We denote the points of two dual R n spaces by  x = ( x  1 . . . . .  xn) and ~ = (~1 .... .  ~,) 
respectively. The letter n always denotes the dimension. 

The scalar product is denoted by  <x, ~> = ~ x ~ ,  and Ix[ denotes <x, x> �89 
In  C n the points arc denoted by  z = x + iy or ~ =~ + i~. In  this case, <z, ~> denotes 

T~ z ~  and I z] denotes <z, ~}�89 �89 
The open ball { x ; I x i < r }  in R n we will denote by  B~. 
We will use the multi-index notation as in [H], p. 4. Thus ~ denotes n-tuples 

(~1,-", an) of non-negative integers. I a] denotes E ai, and ~! denotes ~1! ' . . - '~ ! .  
We write De= - i ~ / ~ x j  and D~=D~ ' ... D~ ~ and finally ~ = ~  ... ~ .  

L v norms will be denoted I1" I1~ (since I1" I1~ is given another meaning). 
The Fourier transform r of an element q in LI (R  n) is defined as in [19] and [H], i.e. 

(fmeans 
The symbol " is used as follows: ](x) = / ( - x ) .  (See also footnote on p. 352.) 
The translation operator Ty is defined by  (ryq)(x) =~0(x-y).  
The letter C (without super- or subscript) will always denote a positive constant, 

not necessarily the same at  each occurrence. 
Set-theoretic union is denoted by  U, whereas + stands for Minkowski addition. 

Thus if A and B =  R n and c E R n, then A + B = { a  +b; a E A  and b E B}  and c + B =  
{ c ) + B .  Similarly, {x; x E A  and x~ iB)  is written A N CB, whereas A - B  denotes 
{ a - b ;  a E A  and bEB} .  

Finally we introduce the following convenient notation concerning the inclusion 
of subsets S of R n. The relation S 1 = c $2 shall mean tha t  the closure of S 1 is compact 
and contained in the interior of $2. I f  {Sj}~I is a sequence of sets, the relation 
S iS  7 S shall mean tha t  S j=  = Sj+ 1 (] = 1, 2, ...) and that  S = U Sj. In  particular we 
note tha t  if S iS  Vr S and K is a compact subset of S, then K ~  S t for some j. 

1.2. Subaddit ive func t ions  r 

Let to be a real-valued function on R n, continuous at  the origin and having the 
property 

(r162 0 = r = lim co(x) ~< co(~ + ~) ~< eo(~) + o~(~) (V~, ~ E Rn). 
X-->0 

An important  class of such subadditive functions consists of those arising from 
concave functions in a way described in the following proposition. 
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Proposition 1.2.1. I / ~ ( t )  is an increasing continuous concave/unction on [0, + cr 
and ~ ( 0 ) = 0 ,  then the/unction co de/ined by o9(~)= ~(I ~ I) satis/ies (at). 

The proof is left to the reader. 
I t  is helpful in the sequel to think of the special kind of co given by  Proposition 

1.2.1. I t  is natural  to ask how general this special case is. An important  result in 
this direction is given in Theorem 1.2.7 below. For the moment  we limit ourselves 
to the following question: Must a general ~o be as smooth as a concave function? 
The answer is negative: 

Example 1.2.2. Van der Wmrden's example of a bounded continuous nowhere dif- 
ferentiable function of one variable, [20], satisfies condition (at). 

In  fact, (o(~)= ~ c%(~) with 

w,(~) = min {] ~ - m -  10 -~ ]; m integer}, 

and it is easy to see tha t  coy satisfies (at). 
We remark tha t  by  adding the function of the example to an o) which satisfies (at) 

and is large at  infinity we can destroy differentiability properties without violating 
(at) and without changing the growth properties of co. 

However, some regularity is implied by  (at): 

Proposition 1.2.3. I/eo satisfies (at), then o~ is uni/ormly continuous in R n. 

Pro@ We get -co( -h)  <~(~+h) -~ (~)  < ~o(h) 

by two obvious applications of (at). 
In  the sequel we will constantly use condition (at) in a similar way to estimate eo 

upwards and downwards without explicit reference to condition (at). Before leaving 
the subject of smoothness, we prove a simple approximation lemma which will be 
used when the lack of smoothness gives rise to technical difficulties. 

Lemma 1.2.4. Let e > 0  and (o be given and suppose that ~o satis/ies (at). Then there 
exist a/unction eo 1 satis/ying (at) and a constant M > 0 with the/ollowing properties: For 
/ixed ~ ..... ~n, r is a piecewise linear/unction o/$1. We have sup~]o)x(~) -co(~)l ~< e, 
and/inally [ ~ol/~1] <<. M whenever the derivative exists. 

Pro@ We choose (~ > 0 in such a way tha t  

sup o)(~) ~< e. 

Let us write ~=(~1, ~') with ~ ' = ( ~  ..... ~) .  Then, if 0~h~<~, we have 

I~(#x + h, ~ ' ) -~ (#x ,  #')l <e .  

We now define 0)1(~)=0)(~) when ~l=j.(~ for integer j and define r 1 by  linearity 
between these points, keeping ~' fixed. Then the approximation proper ty  follows, 
and it is also clear tha t  we may  take M =e/& I t  remains to prove tha t  ~o 1 satisfies 

(DI(8(~, ~t) ~< (Dl(t~ ' Tit) _~ (DI((8--t)(~, ~t __~,) (1.2.1) 
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for all real s and  t, where ~e, and  ~'  are a rb i t ra ry  given elements in R n-1. We have 
(1.2.1) when s and t bo th  are integers. We next  claim tha t  (1.2.1) holds when s is an  
integer bu t  t is not.  Let  us for fixed integer s denote the r ight -hand side of (1.2.1) 
by  r(t). Let  m < t  < m  + 1, where m is an  integer. Since r is an affine funct ion in 
(m, m + 1), we have either r(t) >~ r(m) or r(t) ~ r(m + 1), which proves our claim. Thus 

-tox(td, ~')  ~< -eol(s(~, ~') +wl((s -t)(~, ~ ' - ~ ' ) ,  (1.2.2) 

if s is an integer and  t is real. Let t ing s v a r y  in (1.2.2) and  applying the same argument ,  
we see tha t  (1.2.2) holds for all real s and t. The proof is complete. 

We will now discuss some growth properties of subaddit ive functions. We will 
mainly  be interested in those to which do not  grow too fast  at  infinity. The crucial 
p roper ty  is as follows. 

Definition 1.2.5.  By ~/~0= 7?/o(n) we denote the set o/ all continuous real-valued 
/unctions to on R n satis/ying the conditions ( ~) and 

(~) 
fl to(~) Jn ( to )=  ~l~>ll~! € 

We collect in a proposit ion some obvious properties of 77/o. The proof is left to  the 
reader. 

Proposition 1.2.6. I /  to C 7?/o, then to E ~t~o. I /  0) 1 and 0) 2 are in 71~o, then so are 
tol+to2 and max (to1, 0)2). 

We note tha t  co E ~o(n)  if to(~:) = ~(I ~1), where ~ is a concave/unction o/ convergence 
type, i.e. a funct ion having all the properties required in Proposi t ion 1.2.1 and  in 
addit ion satisfying 

We now give ]3eurling's proof ([3], Lem. 1) of a result  which in m a n y  cases makes 
it possible to  work with concave instead of subaddit ive functions. 

Theorem 1.2.7. Let to E ~lo(n). Then there exists a concave/unction f2 o/convergence 
type such that 

m a x  to(~) ~< ~(r).  
I~l~<r 

Proo/. We first consider the case n = 1. By  Proposi t ion 1.2.6, we m a y  assume tha t  
t o = t o .  Define tol(X)=maxl~l<lx 1 to(~). We claim tha t  toiE~/0(1). The proof tha t  to1 
satisfies (~) is left to  the reader. We shall prove tha t  Jl(tol) < ~ -  Let  (a, b), with 
b > a ~> 1, be one of the intervals t ha t  form the open set where to <to1. Let  1 be the 
interval  (a, a +l), where l = m i n  (a, b - a ) .  We will consider the following three sets: 

E = { x e I ;  to(x)<to(a)/3}, E '  = I f~ CE, and E " = I  A ( a t E - E ) .  

We claim tha t  E " c  E ' .  I n  fact,  if x E E", then since to satisfies (:r and  to = to, we have 
for some x I and x 2 in E tha t  

to(x) >~ to(a) --to(--xl)  -to(x2) > to(a)/3. 
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Denoting Lebesgue measure by  ]. l, we thus have ] E l ~< [ E"[ ~< I E ' [ ,  which implies 
t ha t  [E ' [>~l l .  We get  

A =  -~i -dx>~ ~, d x > ~ -  ]~+�89189 

f~  col(x) b - a On the other  hand, A 1 = - - ~ - - d x  = co(a) ab " 

Considering the cases l = a  and l = b - a  separately, we find tha t  A1/A<~18. Thus 
gi(col) ~< 18Jx(o)) < ~ .  

:Next we define w2 as the least concave majoran t  of col over [0, ~) .  Let  (c, d) with 
d > c ~> 1 be one of the intervals where col < o93, and let k - (cox(d) - cox(c ))/(d - c). Then 

O)2(X ) = O)l(e) -~-]~(x--e ) (VX~(C, d)), 

and (91(X) /> col(d) --col(d--x) >~o2(d) - w ~ ( d - x )  >~ kx (VxE(c, d). (1.2.3) 

We also have (DI(X) ~> r ) (Vx >~ c). (1.2.4) 

Let  Bi = ~co~(x)x-~dx (i = 1, 2). We claim tha t  B 2 <~ eB t. Withou t  losing generali ty 
we m a y  normalize by  assuming tha t  c--col(e)=1. Then we must  have 0 ~ k ~ < l .  
If  d<~e, we combine (1.2.4) with the fact  tha t  co2(x)/x is decreasing to deduce t h a t  
o)2(x)<~xcol(x ) in (1, d), and hence B2<~eB 1. I n  the sequel we suppose tha t  d>e.  

We have B 2 = ( 1 - k ) ( 1 - ~ ) + k l o g d .  (1.2.5) 

We now distinguish the two cases kd > 1 and kd ~< 1. I n  the first case we use (1.2.4) 
when kx ~< 1 and (1.2.3) when kx ~> 1. We get 

and from (1.2.5) we get 
B t >~ 1 - k + k l o g d + k l o g  k, 

B2 <~ 1 -  k + k log d. 

Since k log k>~ - e  -x and k log d-k>~O, we get B 2 / B l < e / ( e - 1 )  in this case. On the 
other hand, if kd<~l, it follows f rom (1.2.4) t ha t  B l > ~ l - 1 / d .  From (1.2.5) we get  

1 
B2~< 1 - ~ + k l o g d ~ <  1 - ~ - k l o g k .  

Since 1 - l id  > 1 - l/e, we get in this case also B2/B 1 <~ e/(e - 1) < e. Thus we have in 
all cases B~ <~ eB1, which proves the theorem when n = 1. 

If  c o E ~ 0 ( n  ) with n > l ,  we define functions coy on R 1 b y  e%(t)=o)(t(~)), where 
t (~) E R ~ has all coordinates zero except tha t  t~ (~)= t. I t  is clear tha t  co, E ~0(1),  and 
thus there exist concave functions ~ of convergence type  such tha t  o),(t)~<~,(r) 
when - r ~< t ~< r. Since by  condition (~), co(~) ~< ~ co,(~v), it follows tha t  ~ = ~ ~ 
will have  the properties required in the theorem. This completes the proof. 

356 



A.RKIV F6R MATEMATIK. Bd 6 nr 21 

Remark. In  Theorem 1.2.7 we may  also arrange that  ~(r)>~r�89 and tha t  
to(~)/~(l~]) -+ 0 when ]~1 --> c~. In  fact, let ~0 be the function given by  the theorem 
and take ~l(r)  = ~-~0(r) + r  �89 Then define ~(r)  =lim~_~r ~v(r) where the ~ (v =2,  3 . . . .  ) 
are defined recursively as follows. Let G 1 be the graph of ~v-1 and Gz the graph of 
2~,_~. We shall construct the graph of ~2,. Choose r~ > 0 such tha t  ~ ~,_~(r)r -~ dr < 
2- ' .  Let T be a tangent of G~ at  r~. Then T must  intersect G~ at  some r~ >r~. The graph 
of ~ shall coincide with G 1 for r<~rl, with T for rl<~r<~r 2 and with Gz for r>~r2. 
Then the result follows, since 

f~r)dr< f ~  ~ - l ( r )  dr+ 2-~" 
r 2 

Coronary  1,2,S, 1 . / / ( 9  e ~ 0 ,  t h e n  o)(~) = o ( 1 8 ] / l o g  I 1) when ~ .  

Pro@ In  view of Theorem 1.2.7 and the remark following it, we need only prove 
tha t  if ~ is a concave function of convergence type then ~(t)=O(t/logt) when 
t ~ + ~ .  Replacing the graph of ~ by the straight line segment from the origin to 
the point (t, 12(t)), we get 

+ c~ > J(~)  >~ (t x~(t) dx_  g2(t) log t 

J1 t x 2 t ' 

which proves the corollary. 
We will now prove that  the result of the corollary is best possible. 

Theorem 1.2.9. I /  {t,}~ and {a,}~ are two sequences o/positive numbers such that 
t,-+ ~ and ~ r  < oo, then there exists a concave/unction ~ o/ convergence type such 
that ~(tp) >~a,t,/log t~ (Vv). 

Proo/. Let g2,(t)=a~ rain (t, t,)/log t v and define ~ ( t ) = ~ , ( t ) .  Then ~ has the 
required properties, since J ( ~ , )  =at(1 + 1/log G). 

1.3. Spaces D~ of test functions 

Let to satisfy (~). I f  ~ ELI(R n) and if 2 is a real number, we write 

II = II  IlY) = f l e d~, 

which may  be finite or infinite. 
We can now following Beurling [3] give the definition of the spaces of test functions 

to be used in the sequel. 

Definition 1.3.1. ~ is the set o/ all ~v in LI(R n) such that q has compact ~upport 
and HqJH~ < c~ /or all ~ >0.  The elements o / ~  will be called test/unctions. 

Definition 1.3.2. I / E  is a subset o / R  ~, then 

O~(E) = {~ E ~ ;  supp ~ c  E}. 

1 Corollary 1.2.8 and Theorem 1.2.9 have been communicated to the author by Professor 
I-ISrmander. 
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Proposition 1.3.3. I /  K is compact, D~(K) is a Frdchet space under the natural 
linear structure and the seminorms [l" [[,~ (m = 1, 2 . . . .  ). 

Proo/. Only completeness has to be proved. Le t  {~v~}~ be a Cauchy sequence in 
O~(K). Since L~ (with respect to the measure e~~ is complete, ~,  converges in 
L~. Denote the limit function b y / .  I t  is clear that  / is independent of m and that  
/ = r  for some ~v with supp ~v~ K. This proves that  ~v~ ~ v  in O~(K). 

Definition 1.3.4. I] ~ is an open subset o/ R n and i] K ~ f  / ~  we deline ~ ( ~ )  
as the inductive limit o/the Frdehet spaces ~ ( K ~ ) .  

When ~2 = R ~, we will sometimes write ~ instead of ~(Rn). 
We note that  ~ is a fundamental space in the sense of Gelfand and ~ilov [10], [9], 

namely 

1) ~ is a countable inductive limit of Frdchet spaces, and 
2) If ~r in ~ ,  then q~r ~ 0  pointwise. 

In fact, 2) follows from the estimate 

I~v j (x ) l  = ( 2 ~ )  - =  fCj(~)e"~'~>d~]<<-(2~)-~flr 

So far there has been no indication why we have demanded that the function co 
entering in the definition of ~ shall satisfy condition (~). To give the main motiva- 
tion for this we prove (cf. [3]) 

Proposition 1.3.5. Let  co satis/y (~). Under pointwise multiplication, ~ ( ~ )  is an 
algebra, and/or each ~ > 0 we have 

ll wll < II II  llwll  w e 

Proo/. Since ~ and ~EL2, we have (~yJ)^(~)= (2~r)-nr162 and thus all we 
have to prove is that  for all ~t > 0, 

f e~(~) d~ l f r ~ - n ) r ) d~ l <<. f e~<~' [ r ) l d~ f e~<" l ~(n ) l dv 

But this estimate follows from the inequality 

co(~) < oJ(~-v) +o@), 
which is a form of (~). 

After giving the definitions and first properties of ~ ,  it is now natural to ask if 
~ is non-trivial, i.e. contains any other function than zero. If the answer is affirma- 
tive, we want to know if ~ is sufficiently rich to contain partitions of unity. These 
problems of quasi-analyticity were solved by Beurling in [3]. We first give an im- 
portant  example, where the answer to these questions is affirmative: 

Proposition 1.3.6. I[ r (1 + I$] ), then r satisfies (zr and /)~ =C~(R  ~) = 9  
(in the notation o/ Schwartz). 

358 



ARKIV FOR lYIATEMATIK. B d  6 nr  21  

In the simple proof, which is left to the reader, Proposition 1.2.1 could be used. 
On the other hand, it is easy to see by the properties of entire functions (or, of 

course, by the next  theorem) that  if co(~) = ]~:l, then ~ is trivial. 
We now give Beurling's result. 

Theorem 1.3.7. I /co  satis/ies (~), then the/ollowing three conditions are equivalent: 

(fl) J~(co) < cr (c]. De/inition 1.2.5). 

(fl') For each compact K in R n and each neighborhood V o/ K there exists q~ E ~ ( V )  
such that q~ = 1 on K and 0 <~ ~v <~ 1 everywhere. 

(fl") O~(R n) is non-trivial. 

We remark that  condition (fl') implies the existence of partitions of unity, for 
instance in the form stated in Th. 1.2.3 of [HI. For convenience requiring slightly 
more than in [3], we make the following definition. 

Definition 1.3.8. We call ~v o] condition (fl') a local uni t /or  K.  

For the proof that  (fl") ~ (fl) in Theorem 1.3.7 we refer to [3]. We will prove that  
(fl) ~ (fl') by proving the following two lemmas: 

Lemma 1.3.9. Let co E ~/o(n). Then ~ (  BE) is non-trivial/or each c >0. 

Lemma 1.3.10. / ]  ~ (B~)  is non-trivial/or each ~ >0, then condition (fl') holds. 

The proofs we give are essentially those of [3]. We will start by considering the 
properties of a Poisson integral which will be used in the proof of Lemma 1.3.9. 
Let P be the Poisson kernel for the upper half-plane in one variable: 

We define 

P(~, 7) = ~ ~ + ~ .  

= f + ~  ; : P ( s , ~ ) e o ( s +  ~)ds. u(~, rl) _ P ( t -  s e, 7) co(t) dt = 

We now prove a lemma which implies that  u is finite and that  u($, 7) -w(~) is uni- 
formly o(1) when ~ -+0 and uniformly o(l~/I) when [~/I ~ ~" 

Lemma 1.3.11. Let co e 7~1o(1). For each ~ > 0 there exists C~ such that [ u (~, "~1) -co (~) [ <~ 

Proo/. By the subadditivity of co we have 

< (P( s ,  7) co( ) ds +  P(s, 7) co(s) ds = co( ) + u(O, U(~ 7) 7). 
J J 

Similarly we prove that  

u(8, 7) >~ co(~) - / P (  - s, ~]) co(s) ds, 
d 
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and thus lu(~, 7) -w(~)l  ~< u(0, 7). I t  remains to find C~ such tha t  we have u(O, 7) ~ 
C~4,~171 and a similar estimate. Let ~ be the function of Theorem 1.2.7. I t  is 
enough to find Co such tha t  we have 

2 ~ ! f : s  (1.3.1) 
r ~ 4- 7 '~ o 

and another similar estimate. But  for any R > 0 we have 

2171f~ ~)~:r~ ~'~(R)4"217] f ;  ~ z 

Choosing R large we prove (1.3.1), and choosing R small we prove the other estimate. 
This completes the proof of Lemma 1.3.11. 

The essential par t  of the construction in the proof of Lemma 1.3.9 is given in the 
following lemma (cf. [16], Sect. 8 and 10). 

Lemma 1.3.12. Let ~ be a concave/unction o/convergence type and let (~ >0.  Then 
there exists a non-trivial continuous/unction g on R 1 such that g has its support in the 
interval (-(~, ~) and such that ~ exp ~ is bounded. 

Proo/. Without  losing generality we may  assume tha t  ~ is continuously dif- 
ferentiahle except a t  the origin and tha t  ~(t)>~t �89 We define ~ for ~ < 0  by  ~ (~ )=  
~ ( - ~ )  and consider for 7 > 0  the Poisson integral 

f-; f+; u(~, 7) = P(~ - z ,  7) ~(T)  d z  = P ( z ,  7) ~ ( ~  - z) dr .  (1.3.2) 

Let v be the conjugate harmonic function .of u and let 

F($) = exp ( -2u(~,  7) -2iv(~, 7)) (7 >0). 

By Lemma 1.3.11, u is continuous for 7 ~>0, if we define u(~, 0)=~(~) .  From (1.3.2) 
it follows that  ~u/~ is continuous for 7 ~>0 except at  the origin. Since ~v/~ 7 =~u/~, 
we may  thus define F(~)=lim,_~+oF(~+iT) for real ~, and we have IF(~)l = 
exp ( -2~(~) ) .  For real x, define /(x)=(2~) - 1  S+_~eiX~F(~)d~, so tha t  F = ~ .  Thus / 
is non-trivial. However, we claim tha t / (x )  = 0 if x > 0. In  fact, for any  (~ > 0 we have 
by  Lemma 1.3.11, 

IF( )I < (7 > 0). (1.3.3) 

Thus by  contour deformation we have for each 7 > 0 tha t  

/(x) = (27e) -1 d x(~+l') F(~ + i7) d~. 
O~ 

Hence, if x = 2(~ > 0, we have by  (1.3.3), 

II(x)l < Ce-~"J_~ e-2~ d~, 
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and letting ~ tend to + ~ ,  we prove that  ](x)=0. Thus for appropriately chosen 
x0, the function g on R ~, defined by g(x )=/ (X-Xo)] ( -x -xo) ,  is non-trivial and has 
its support in ( -  ~, (~). Finally, we have 

= ( 2 ~ )  - 1  e-~*'~feU**~ - T) F( - ~) dr, (1.3.4) 
3 

and thus 

That ~ is entire follows from the fact that  gE ~' but can also be proved by contour 
deformation in (1.3.4) and in the integral obtained from (1.3.4) by the change of 
variable ~-~-+v.  This completes the proof. 

Proo] o/Lemma 1.3.9. Let ~ be as in Theorem 1.2.7 and the remark following it. 
Let  g be the function constructed in Lemma 1.3.12 with ~$=en -�89 When ~ R  ", 
define q(~) =l-[~g(~). Then supp ~v~ B~, and with the notation used in the end of the 
proof of Theorem 1.2.7 (~o~ =restriction of eo to the ~-axis), we have 

H ~9]I~ ~ f[~(~:)[ e ~(~) d~ ~< C f e x p  ~ (~w~ ( ~ ) -  ~(~))d~. 

Since a~(~,)/~2(~)-+O when I~l -+ ~ ,  we get II l[  < and the proof is complete. 
We will now consider regularization of functions and use regularization to prove 

Lemma 1.3.10. We start with the following result. 

Proposition 1.3.13. Let eoE 7~lo(n). Let u be an integrable ]unction with compact 
support and let c f E ~ .  Then u~eq~E~. 

Proo]. Since I~l < ~ l u(x) [ dx and (u ~- ~o)^ = ~ ,  we get II u ~ ~11~ ~ II ~ll~ Y lu(x) l dx. 

Corollary 1.3.14. Let o) E ~0(n). I] qJ and y~ E ~ ~, then q~ ~ ~v E D ~. 

A slight complication in dealing with regularization is that  if ~v E D~ and ~(x) = 
e-~q)(x/e), then it is not a priori clear that  9 ~ E ~ .  However, we have the following 
result. 

Proposition 1.3.15. Let (o E 7~/o(n) and de/ine ~o'(~) =suplxN~lw(x ). Let q~ E ~ ,  and 
de/ine q~E(x) = e-nq~(x/e). Then qv~ E ~o~" c 0~. 

Proo]. Let N be an integer satisfying e-l~<N~<l+e -1. Then by condition (~), 

w' ( ! )  ~ co' (N~) ~ Nco' (~) ~ (l + s-1) a)' (~). 

(co') ~< - n  (r Thus, since ~(~)~-~(s~) ,are get II~Itz - ~  II~vH(I+~-~)~ �9 
From Propositions 1.3.13 and 1.3.15 we get as in [H], Th. 1.2.I: 

Theorem 1.3.16. Let r E 7~/o(n) and let ~o'(~)= suplxl<l~leo(x). Let ~ be an open subset 
o] R n. Let uEL~(~) (1 ~<p< c~) and let u have a compact support contained in ~.  I] 
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q)~O~,(B~) is such that ~q~(x)dx=l and i /%@)=s-n~(x/e),  then u~q~ED~(g2) i] ~ is 
smaller than the distance/rein K to C~. When s -~0 we have u ~eq~ ~ u  in L~(~). 

Proo/o/Lemma 1.3.10. Let K and V be as in condition (fl') and choose s >0  so small 
that  K + / ~  ~ V. I f  we can find ~ E O~(Be~) such that  ~ >~ 0 and ~ ~(x) dx = 1, then 
the result follows from Proposition 1.3.13, if as u we take the characteristic function 
of K + / ~ .  To find ~ we start  with a non-trivial toE~(B~)  and form Z=to~(-~. 
Then it is well known tha t  Z is non-trivial. By  Proposition 1.3.13, we have 
)~eD~(B~)ND~,(B~), which implies that  2 E ~ ( B ~ ) .  Then by  Proposition 1.3.5 
we have ~EO~(B~),  if we define ~ =  ]ZI~=zZ- Since ~ is non-negative and non- 
trivial, it only remains to multiply ~ by  a suitable positive constant. This completes 
the proof. 

Using once more the idea of this proof we can find non-trivial non-negative ele- 
ments of ~ with non-negative Fourier transforms: 

~orollary 1.3.17. Let e~ E ~o(n) and let ~ be a neighborhood o] the origin in R n. 
Then there exists a non.trivial q~EO~(~) such that ~(x)>~O (VxE~)  and ~(~)>~0 
(V~eR~). 

Proo/. If  B2~ ~ ~], we start  with to E O~(B~) such that  to ~> 0. Define ~ = to ~- ~. Since 
to is real, we have ~ =~r~= [~]2. Thus ~ and ~ are both non-negative. 

I f  we are given two functions co, we may  ask under what conditions they give rise 
to the same space ~ and, more generally, under what conditions one space is in- 
eluded in the other. This is settled by  the following theorem: 

Theorem 1.3.18. Let ~1 and e% E ~o(n). I / / o r  some real A and positive C we have 

c%(~)4A +C~o1(~ ) (V~ER~), (1.3.5) 

then ~ ~ 0~, and ~ ( ~ )  is dense in ~ ( ~ )  /or each open ~ c  R ~. Conversely, if  
/or some E ~  R ~ with non-empty interior, O~,(E)~ ~ ( E ) ,  then (1.3.5) holds/or some 
A and C. 

Proo/(cf. [Hi, Th. 2.2.2). In  the first par t  of the theorem, the inclusion is trivial. 
To prove that  ~ , ( ~ )  is dense in ~ , ( ~ ) ,  let u E ~ ( ~ )  and let u ~ -~  be as in Theorem 
1.3.16 with ~ E ~ ; ( ~ ) .  We get 

u -  (u   )llr .) = I I x - II 
J 

which tends to zero by the dominated convergence theorem. To prove the converse, 
choose K compact with non-empty interior and contained in E. We claim that  the 
inclusion map of D~,(K) into D~(K)  is closed. In  fact, if ~-~1~ in ~ ( i=1,  2), 
then ~,  ~f~ in LI(R n) a n d  so f l  = f2 which implies 11 = ]2- Then the closed graph theorem 
gives the existence of positive constants C' and C such tha t  

llq ll?.)< c'll ll  (u (1.3.6) 

Let us choose a non-trivial to E ~ , ( K ) .  Let  ~0ER n and define ~(x)=y~(x)e i<x'~~ 
Then ~(~)=?3(~-~0)- We get 
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II +11<  +:): fl+(8) l + < Ilwll(  

and II + II<= r fl++l +:<:')fl+<8)I d8 = e=:<~~ I1~011'-~+ ). 

Hence from (1.3.6) we derive (1.3.5) with 

A = log (C' II~ll~ ~ - log II v~ I1(_~1 ,). 

This completes the proof of the theorem. 

Definition 1.3.19. I /  0)2 and 0)1 are related as in Theorem 1.3.18 we will write 
0)2"< 0)1. 

Corollary 1.3.20. Let 0)E~o(n ). Then ~ ( ~ ) = ~ ( ~ )  /or every open ~ in R n (or 
]or some non-trivial such ~)  i/ and only i/r 

Corollary 1.3.21. Let to E ~o(n). Then ~ ( ~ 2 ) ~  C~ (~) /or every open ~ in R ~ (or 
/or some non-trivial such ~)  i/ and only i / /or  some real a and positive b we have 

(7) 0)(8) >~ a+b log (1 + JSl) (v~eR~) �9 

In  the sequel we will mainly consider spaces ~ consisting entirely of infinitely 
differentiable functions. Thus we are lead to the following definition: 

Definition 1.3.22. We denote by ~ the set o/ all continuous real-valued/unctions 
co on R ~, satis/ying conditions (~), (fl) and (7): 

(~) 

(~) 

(Y) 

o = 0)(0) < 0)(8 + 7) < 0)(~) + 0)(7) 

f 0)(~) d8 

(VS, 7 e R"), 

0) (~) t>a+blog( l+18  I) (VSeR n) 

(/or some real a and positive b). 

Occasionally we must  limit ourselves to the "symmetr ic  case" described in Corol- 
lary 1.3.20 or even to the case where a) is given by  a concave function of convergence 
type. For convenience we therefore also make the following definitions: 

Definition 1.3.23. We denote by ~ s  the set o/ all co E~  satis/ying to-<co and by 
~ c  the set o/all  0)E ~ such that 0)(8)=f2([SI) with ~ concave on [0, + oo). 

Definition 1.3.24. I /0)  E "1~, we denote by co c the element o/"]'nc given by c0(8) = ~ (  18I ), 
where ~ is the/unction constructed in Theorem 1.2.7. 

A consequence of condition (7) is that  supremum norms can be used instead of 
integral norms as follows: 
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Definition 1.3.25. Let w E ~ .  I/q~ EL~(R ~) and if ,~ is a real number we define 

I I1,  I = I II  lll,t ~ = sup  I e 

P r o p o s i t i o n  1.3.26. Let ~o ~ ~ .  Then there exists a positive constant A such that 
CA = ~ exp ( -- A(o(~)) d~ < ~ and 

Jl~lJ~ <CAIII~jjlx+A (V,t.:Vq~eLl(Rn)), 
(with the natural interpretation i/I1~11~ = + 

Proof. Clearly, we may take A = (n + 1)lb, where b is the constant of condition (~). 
Another consequence of condition (7) is that  O~ is closed under differentiation: 

Theorem 1.3.27. Let a)E ~ .  Then if cfEO~ and ~ is any multi.index, we have 
D~q~ E ~ and the mapping q~ --> D ~  is continuous. 

Proof. Since ( D ~ )  ^ ( ~ ) = ~ ( ~ ) ,  we get IID~q~[]~ <~ CHqJila+l~,Sb where b is the con- 
stant of condition {y). 

Apart from differentiation, we will consider two other continuous mappings of 
~0) into itself. One is multiplication by an analytic function (Theorem 1.5.16). The 
other is translation: 

P r o p o s i t i o n  1.3.28. Let o9 E ~ and let y E R n be given. Then the mapping vy from O~ 
into ~(~ defined by 

T~qJ(x) = ~(x - y) 

is continuous and in ]act an isometry. 

Proof. Since (vy~)^(~)=e-t<~'~>~(~), the result follows from the fact that  by de- 
finition I]~1[~ depends only on the modulus of qS. 

If ~ is fixed and y varies we also get a continuous mapping: 

P r o p o s i t i o n  1.3.29. Let eo E ~ and let cf E ~ be given. Then the (non-linear) mappin 9 
from R ~ into ~ defined by 

y -+T~(~) 
is continuous. 

Proof. We have 

I] ~x (~) - ~ (~0)N~ = l ' l  ( e-~(x' ~> - e-~<Y' ~>) ~(~)1 e~O(r d~, 
J 

which clearly tends to zero when x--> y. 
We conclude this section by  giving some examples. First, by Proposition 1.2.1 

it is clear that  if eo(~)= I~ll/v with ~ > 1, then eo E ~c .  Then ~ is closely related to 
the Gevrey class with index ~, as stated in Example 1.5.7. Our next  example was 
studied by Domar [8], p. 18. 

Definition 1.3.30. We denote by E the set o/ all sequences {ak}~ such that a 0 = l  
and ak~O and 

(k+ 1)! ak+z ~ k! ak l! at. (1.3.7) 
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Definition 1.3.31. We denote by ~ the set o/ all non-negative/unctions o) on R n 
/or which e ~(~) = ~ :  a k I ~ ]k with {a~} E E and 

f/ log ( ~ a ~ t  ~) .. 

i ~ - ~  a ~ <  ~ .  

Proposition 1.3.32. I /co  E ~ E  and o9 # 0 then eo ~ ~ .  

Proo/. Condition (a) follows easily from (1.3.7), condition (/3) follows from Defini- 
tion 1.3.31, and condition (~,) follows from the fact that  o~ # 0. 

Finally we give an example showing that  ~ #  ~ .  Let  ~=(~1 ..... $~) and define 
eo(~) =log (1 + I~I) when $1<0 and eo(~)=log (1+ I ~ ] ) + ~  when ~1~>0. We leave it  
to the reader to verify that  oJ E ~ but co q ~ .  

1.4. The Paley-Wiener theorem for test functions 

We will now relate the support of a test function to the behavior in the complex 
plane of its Fourier-Laplace transform. Thus Theorem 1.4.1 will generalize part  of 
the Paley-Wiener theorem as given in [HI, Th. 1.7.7. The remaining part, dealing 
with distributions, will be considered in Theorem 1.8.14. We will also complete the 
study of the equivalence of the sets of semi-norms {I]" I]~}~>0 and {ill" IiI~}~>0, initiated 
in Proposition 1.3.26. 

Theorem 1.4.1. Let wE ~ and let K be a compact convex set in R n with support 
/unction H. I /  U is an entire/unction o / n  complex variables ~=~ +i~=(~ 1 ..... ~'~), 
the/ollowing three conditions are equivalent: 

(i) For each 2 > 0  and each e>O there exists a constant C~.~ such that 

f J  U(~+i~)[ C~.~e "(')+~''l (u eRn). 

(ii) For each ~ > 0 and each s > 0 there exists a constant C' ~,~ such that 

]v(~+i~)l< ~,~ (v(~+i~) ecn). 

(iii) U(~) = ff e *<*' r ~0(x) dx with some q~ E O~ (K). 

Pro@ We first prove that  (ii) implies (iii). By condition (7), the classical Paley-  
Wiener result shows that  we have U = ~ for some ~ E C~ with supp ~ ~ K. I t  remains 
to prove that  ~ E O~. By Proposition 1.3.26 this follows from (ii) with ~ = 0. To prove 
that  (i) implies (ii) we use Cauchy's integral formula to get an estimate of the form 

J In'l<1 

Hence, using condition (~) we get from (i) 
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< C" 2 ~ sup e ~(-~') �9 sup f [ U(~ + ~' + i(~ + ~'))1 e~(~+~') d~' 

C. 2ncLe sup e X~ sup e H(~+~')+el~+~'l ~ C'Le e H(~)+elnl 
I~'1<~ I~'1<~ 

w i t h  C,~.~ = C 2nCL~ sup e '~(~ ' )  sup e H(~')+alr 
I~'l<~ I~'1- <~ 

This proves (ii). 
I t  now remains to prove tha t  (iii) implies (i). In  the proof we will use the follow- 

ing well-known result, where P is the Poisson kernel considered in Lemma  1.3.11: 

Lemma 1.4.2. Let g be a/unction o/one complex variable z = x + iy, analytic/or y > 0 
and continuous/or y~O, and suppose that ]g(z)l <~Ce A~ /or y > 0 .  Then/or all such y 
we have 

log Ig(z)l < l o g ] g ( t ) l P ( x - t , y ) d t + A y .  

Proo/. Consider the funct ion/ (z)  =log [g(z)e'~/CI. Since / is subharmonic and non- 
positive for non-negative y, it follows tha t  / is not  greater  than  its Poisson integral. 
(We can for instance map the half-plane y > 0 conformally onto the uni t  disk.) 

End o/proo/o/Theorem 1.4.1. Let  2 > 0  and s > 0  be given. Clearly the result  will 
follow if we can find a constant  C~' ~ ( independent of ~) such tha t  for every  choice of 
(orthonormal) coordinate system (with the given origin) and for every  real A and 
each ~1 > 0  we have (with ~' = (~  . . . .  , ~ )  etc.) 

~RI r + i ~ ,  ~')[ e ~(~' r d~ < Cj' ~ll ~ II~ e(A +~)" (v~ e ~ o  ({X; X 1 < A}). (1.4.1) 

Le t  iv E O~ ({x; x 1 ~< A}). Then  by  the classical Pa ley-Wiener  result we have 

Ir + iv1, ~')1 < o e A'I, 

and thus we can use Lemma 1.4.2 to get 

log I~(~1 + i~1, E')I ~ < e ( ~ - t , , ~ O  log Ir ~')1 dt + A ~  (V~>O) .  (1.4.2) 

For  fixed ~' we will also consider the 1)oisson integral of ~ and write 

u(L ~ )  = P ( ~  - t, ~1) co(t, E') dt. 

To est imate l u -~o  I we repeat  the calculations in the proof of Lemma  1.3.11, using 
the inequal i ty  co(s +~1, ~') ~<o~(~1, ~') +co(s, 0), so tha t  co(s) will be replaced by  co(s, 0). 
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Since the same ~ can be used for all ~o(s, 0), we find a constant C~"~ (with the required 
independence) such that  

2 iU(~, n l )  -- O)(~)l "~ log C'~"~ + ~nl (V ~ e R '~, V ~h > 0). (1.4.3) 

Using Jensen's inequality we get from (1.4.2), 

'~(~l+i~]l,~')le~uc~'~')~eA~'exp(;; (log I~(t, ~'), + lco(t,~'))P(~l-t,~l)dt) 

f/ <~ eAV~ i~( t, ~')1 e~~ ~') P(~I  - t, ~]1) dr. 
O~ 

Integrating over R 1 xR  n-1 and using the fact that  ~_+~ P ( ~ I -  t, ~h) d~l = 1, we get 

f l  II v Ilk. (1.4.4) + e2u(~, ~1) eArl 

Since (1.4.1) follows from (1.4.3) and (1.4.4), the proof of the theorem is complete. 
From the proof of Theorem 1.4.1, combined with Proposition 1.3.26, we get the 

following result: 

Corollary 1.4.3. Let co 6 71~ and let K be a compact subset o / R  ~. Then the/amily o~ 
semi-norms {V-+ II[qlllx}~>o on O~(K) is equivalent to the/amily {~v ~]l~vilx}~>0. Still 
another equivalent/amily o/semi-norms is 

iv-->, sup 1r162 exp 
~eCn 

1.5. Spaces E,~ and Denjoy-Carleman classes 

Starting from the space ~ ,  we will define E~, ~ and E~, as generalisations of 
E, 9 '  and s The distribution spaces will be considered in Section 1.6. We will now 
first define E~. Then we will discuss some relations between spaces ~ and E~, on 
one hand, and D.-C. classes, on the other hand. Here"D. -C .  classes" stands for classes 
of infinitely differentiable functions of the kind studied by Denjoy and Carleman. 

Definition 1.5.l. E~(~) is the set o/ all complex-valued/unctions q) in ~ such that/or 
each compact subset K o/ ~ the restrictions to K o/qv and o/some V E ~ ( ~ )  agree. The 
topology o/E~(~) is given by the semi-norms 

i fo IIv, VK). 
From Proposition 1.3.5 and the existence of local units it is clear that  we may also 

consider E~ as the set of multipliers on ~ .  We formulate this fact as a proposition. 

Proposition 1.5.2. E~(~) is the set o/all complex-valued/unctions q~ in ~ such that 
i/ V EO~(~), then ~vq~EO~(~). The topology in E~(~) is given by the semi-norms 
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A more  general in te rpre ta t ion  of ~ ( ~ )  is given in Proposi t ion 2.3.3. 
We  now collect some definitions and  results f rom the theory  of D.-C.  classes. 

Definition 1.5.3. Let L = {Lz)~o be an increasing sequence o/positive numbers and 
let ~ be an open subset o / R L  Then CL(~) is the set o/ all u in C~176 such that to each 
compact subset K o / ~  there exists a constant C such that 

sup ID=ul (V~ with m=0, 1, . . .) ,  
K 

and cL(~) is the set o/ all u in C~(~) such that to each compact subset K o / ~  and each 
> 0 there exists a constant C such that 

sup ]D ~u ] ~< C~kL~ (V ~ with ] a] =- k; k = 0, 1 . . . .  ). 
K 

We call CL(~) a D.-C. class. For CL(R n) we sometimes write C L. 

Definition 1.5.4. A D.-C. class CL(~) is said to be non-quasianalytic (n.q.a.) i/ it 
contains a non-trivial/unction with compact support contained in ~.  

Theorem 1.5.5. 
only i/ 

(Denjoy-Carleman) The class CL(~) is non-quasianalytic i/ and 

or equivalently, ~ L ~  1 < ~ .  

Example 1.5.6. I f  we denote b y  A ( ~ )  the  class of functions analyt ic  in ~ ,  then  we 
have  ~4(~-~)= C <k>. (Here and in the sequel we agree to replace Lk b y  1 if i t  is 0 or 
undefined).  

Example 1.5.7. I f  ~o(~) = ]~ ]l/v and  L k = kv with  y > 1, then  CL(~) f~ ~ ( ~ )  = O~(F~). 
This follows f rom Lem.  5.7.2 of [HI. 

Theorem 1.5.8. The intersection o/all  n.q.a, classes C L, where Lk/(k!) ilk is increasing, 
is equal to the class C <kl~ 

Proo/. This follows f rom Th. 2 of [5] (cf. also Th. 7 of [5]). 
Le t  us write qL(~)=~-0(]~]/Lk) k. Then  we have:  

Proposit ion 1.5.9. I /  u e ~ (~ )  and ]4(~)[ <~ C/qL(a~) (1 + [~] )n +1 where C and a > 0 
are constants, then u e CL(~). 

Proof. F r o m  the formula  D~u(x) = (27e) -n S ~ u ( ~ )  e~<X'~> d~ and the  hypothes is  
we get  

m a x  sup ID u(x)l<O max ( f I~l=k ~ea I~l=k jqL(a~)(1 + [~])n+l ~< Ca-kL~ (1 + ]~[) 

( k = o , 1 , 2  . . . .  ). 

Final ly  we will use the  following l emma  as a rep lacement  for local uni ts  in a quasi- 
analyt ic  case: 
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Lemma 1.5.10. Let ~ be an open set in R ~ and let K ~  ~ U ~  ~ .  Then there exists 
a sequence {g~}~o o//unctions in C~~ such that all g~=l in K, and a l l ] ~ l  <lgol,  
and such that /or every increasing sequence {L~} with L~ >~ k (Vk) and every u ~ CL(~) 
there exists a constant C such that 

ae k+l  k sup ID (g~u)[<c L~ (V~,~ with (1.5.1) 
x e U  

Proo]. This follows from Lem. 1 and Lem. 2 of [4], except for the inequalities 

ld l < I oI (w).  (1.5.2) 

But  (1.5.2) follows from the proof of Lem. 1 of [4]. (Let goEC~(U) be a local unit for 
K. Choose e > 0  such tha t  B ~ + s u p p g 0 ~  ~ U ,  and let q~EC~(B~) be such that  
]qh(~) [ < ~(0)= 1. Then g~ is defined by  ~ ( ~ ) =  g0(~)(~(~/k)) ~.) 

The following result connects the D.-C. classes considered in Theorem 1.5.8 with 
the subclass ~ of ~/~, considered in Proposition 1.3.32: 

Theorem 1.5.11. Let C ~ be n.q.a, and such that Lk/(]c!) 1/~ i8 increasing. De/ine 
coz = log q~. Then COL E ~ and ~ z  c C L. 

Proo/. Since A e = L e / ( b ! )  1/e is increasing, we have ~e+~e+t ~AeAz" ~ ~ or 

(It + 1)! r,-(k+l)~+~ <~ k l. L~gl! L[  ~. (1.5.3) 

Thus (L~k}EE. By Theorem 1.5.5 and Proposition 1.3.32, we have eoLE T~EC 7~. 
Finally it follows from Proposition 1.5.9 and condition (~) tha t  ~ L ~  C L. This com- 
pletes the proof. 

We now state the main result of this section. 

Theorem 1.5.12. N s176 
eoe~ 

Proo/. We first prove tha t  [1 E ~ ( ~ ) c  C<kl~162 By Theorem 1.5.8, it is clearly 
enough to prove tha t  each n.q.a. CL(~) such tha t  Lk/(k!) 11k is increasing, contains 
E~(~) for some wE 7/~. Let  COL be as in Theorem 1.5.11. Then O~z(~)cCL(~]). Let  
to E E~L(~) and consider a local unit ~0 in ~ z (g l ) .  Then ~to E ~ z ( ~ )  ~ CL(~). Since the 
proper ty  to E C L is a local one, the result follows. 

Since [1 E~(~) = [1 ~ ( ~ ) ,  the proof of the theorem will be complete, if we prove 
oJ e Y/l co e F~lc 

the following result: 

Lemma 1.5.13.1 Let co E 7~c. Then C <k log ~>(s c E~(~). 

1 L e m m a  1.5.13 a n d  i t s  proof  h a v e  been  c o m m u n i c a t e d  to  the  a u t h o r  b y  Professor  H 6 r m a n d e r ,  
who  has  also p o i n t e d  ou t  t h a t  a se l f -conta ined  proof of t he  f i rs t  inc lus ion  in  Theo rem 1.5.12 
(not  us ing  Theorem 1.5.8) can  be o b t a i n e d  b y  cha rac te r i z ing  t he  func t ions  in  ~ ( ~ ) ,  w i t h  co E ~ c '  
as those u for which, when t--~ + 0% 

inf sup [/(x)-u(x)[=O(exp (-~o~(t)) (V~>0, V K ~  c ~ ) ,  
f x e K  

where ] ranges over all entire functions of exponential type t with an appropriate a priori bound, 
and using Theorem 1.2.9. 
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Proo/. Let uEC <kl~ ~EO~(~) and ~>0  be given. We have to prove that  
Illu~lll~< oo. Let  K = s u p p q  and choose U such that  K ~  ~ U ~  ~ .  Let  gz be as 
in Lemma 1.5.10 and write u~ = g~ u. Then uq = u~ q (V k), and it suffices to find C such 
that  for each ~ e R ~ there exists k with 

From (1.5.1) 
C such that  

] f~ (~  - ~< Ce -~(~). (1.5.4) V) d~ 

with Lk = k log k and [ g [ = k we derive the existence of a constant 

C {Ck log k] ~ Vk >2). (1.5.5) 

We claim that  for some C we also have 

f l ~ (n ) ldn  < c  (vk). (1.5.6) 

In fact, if we choose ~vEC~(~) such tha t  ~,=1 in U, then uk=gkv with v=v2u. 
Using (1.5.2) and inverting the order of integration, we have proved (1.5.6) with 

Using (1.5.5) when [~/[ ~> �89 and (1.5.6) when I t - V [  >/�89 and writing w(s 
w(]s we get 

/2Cklogk) 
Taking k ~ 1 I/(2Ce log I 1) and using Corollary 1.2.8, we have proved 1.5.4 with a 
new constant. This completes the proof of Lemma 1.5.13 and Theorem 1.5.12. 

Since C <kl~ is quasianalytie (Theorem 1.5.5) and contains the analytic class, 
we have the following two results: 

Corollary 1.5.14. N D~ is trivial. 
~o e/?1 

Corollary 1.5.15. Let co e ~ .  Then A ( ~ )  c E~o(~). 

We will finally prove a quantitative form of Corollary 1.5.15, needed in Chapter V, 
namely: 

Theorem 1.5.16. Let O c C  n and ~ c  R n be given open sets such that ~ ~ 0 ~  R ~ 
and let co E 7~ be given. Then ]or each 2 > 0 there is a constant Kx such that/or each / 
analytic in 0 and each qp e ~ ( ~ )  we have 

[[[/~0[[[~ ~ g~ ][~[[~ sup ][]. 
0 

The essential part  of the proof is the ease where ~ is a cube and 0 is a polyeylinder 
with the same center. We formulate this ease as a lemma: 
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Lemma 1.~.17. Let the polycylinder P=(z~Cn; ]z~-x ~ <~ 3nR (]=1, 2 . . . . .  n)} and 
the cube Q = ( x e  R~; ]x~-x~] < R  ( j = l ,  2 ..... n)} be given. Then the conclusion o/ 
Theorem 1.5.16 holds with ~ replaced by Q and 0 replaced by P. 

Proof o/ Lemma 1.5.17. Without restriction we may assume that  x~ Let  
/(z) = ~a~z~ in P and let ~ ~ O~(Q). Then 

(fq~)^ (~) = ~ a~ foe-~<x'~> ~(x) x ~ dx, 

since the series we integrate is absolutely and uniformly convergent in Q. Thus 

(/~)^ (~) = ~ a~ ( - 1) I~l D~q~(~). (1.5.7) 

By Theorem 1.4.1 and Corollary 1.4.3 we have 

]~(~§ i~])[ ~ CII~I]~ exp (-2~o(~) + 2R,=1 ~ I ~]Jl)" 

Thus by Cauchy's inequalities we get 

I D ~ q~(~) ] < C II ~ I]~/c! r -k exp ( - 2co(~) + leo~ (r) + 2nRr) (V~ e R ~) 

for k=0 ,  1 .. . .  and any ~ with lal = ]c and any r>0 ,  where we have written a ) l ( r )  = 

supl~Jl<rW(~ ). Choosing in particular r=]c/2nR and using Stirling's formula we get 
with a new constant 

I < c II (k + 1) (2nR) ~ exp ( - 2co(~) + 2co~ (k/2nR)). 

Applying Cauehy's inequalities to / we get on the other hand 

]a~]<~(3nR)-ksup[/[ (]aI=k).  
P 

Introducing our estimates in (1.5.7) and using the inequality ~l~j=g 1 < (k+ 1) n-l, 
we get 

I(/~) ̂  (~)l e~<r ~< C [I ~ I[x sup ]/] ~ (k + 1) n (a~) ~ exp (4o) 1 (k/2nR)), 
P k=O 

and it only remains to prove that  the series is convergent. :But since co(~)/[~[-~0 
when ] ~ [ -> ~ ,  we have for every e > 0 that  2o~l(k/2nR ) < ek if k is sufficiently large. 
Choosing e so small that  ~e~< 1, we have proved the lemma. 

Proof of Theorem 1.5.16. Since ~ is a compact subset of O N R ~, we may cover 
with a finite number of open cubes Qjc  R ~ such that  the corresponding closed poly- 
cylinders p~ c  C ~ with the same centers and 3n times the "sides" are contained in O. 
Let  {Z J) be a partit ion of unity for ~ such that  ZJ E ~(Qj ) .  If  ~ E ~ ( ~ )  and /E A(O) 
we apply Lemma 1.5.17 to ~ZJ and observe that  ~ =Zj~Z~. This proves the theorem. 
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1.6. Spaces ~'~ and ~[~ of  generalized distributions 

The reason for the apparent awkwardness of the following definition is given in 
Section 1.0. 

We recall that  r stands for co(-~) and note that  if co E ://l, then co E 7/~. 

Definition 1.6.1. Let ~ be an open subset o/ R ~ and let ~o E ~ .  Then ~ ( ~ )  is the 
space o/all  continuous linear ]unctionals on ~,o(~). 

An equivalent definition is: ~/o(~) is the space of all linear functionals u on ~ ( ~ )  
such that  for each compact K ~  ~ there exist 2 > 0 and C such that  

lu( )l< cll lls eO~(K)). (1.6.1) 

~ ( g l )  is given the weak topology, that  is the topology given by the semi-norms 
u-~ ]u(~v) l , where ~v is any element of ~ .  

Following Beurling [3] we remark that  two important properties of ~ make it 
possible to take over much of the Schwartz theory. The first property is that  of being 
an algebra (Proposition 1.3.5). This property gives sense to the usual definition of 
the product of a test function and a distribution, although at this point we must pay 
for the choice we made in Definition 1.6.1: 

Definition 1.6.2. I/qp E 0o,(~) and u E ~'~(~), we define cfu E ~'~(~) by 

(~u) (9) = u ( ~ )  (v~ ~ ~A~) ) .  

The second property is the existence of partitions of unity. This property makes 
it possible to prove that  if two elements of D~,(~) agree locally, they agree globally 
(cf. [H], Th. 1.3.3). Thus we may make the usual definition of support: 

Definition 1.6.3. Let (o E ~ .  1 / u  E ~'~(~), the support o /u  (denoted supp u) is de/fried 
as the smallest closed set K such that u = 0 in ~ N UK. 

In analogy with this we generalize the notion of singular support ([H], Def. 1.3.3) 
to the present situation: 

Definition 1.6.4. Let 0) 1 and (o E ~ .  I] u E ~ , ( ~ ) ,  the w-singular support o /u  (denoted 
sing~ supp u) is de]ined as the smallest closed set K such that u E ~ ( ~  N IJK). 

Another property of ~/,, essential when dealing with differential operators, is 
closedness under the usual differentiation operators. Theorem 1.3.27 gives sense to 
the following definition: 

Definition 1.6.5. I] uEO'~(~) and ~ is any multi-index we de/ine D~uEO/o(~) by 

D % @ )  = ( - 1 ) ~ u ( O ~ )  (u e O~(~) ) .  

We will also consider the space of generalized distributions with compact support: 

Definition 1.6.6. Let r E ~1~. Then ~'~(~) is de/ined as the space o/ all continuous 
linear/unctionals on E~(~). 
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Jus t  as in the classical case (cf. [H], Th. 1.5.1 and Th. 1.5.2) we have 

Theorem 1.6.7. E~,(~) can be identified with the set o/ all elements o/ 0~(~) which 
have compact supports contained in ~.  

Clearly we have E~(~) O~,F(~), if we define the space ~ , F ( ~ )  of generalized 
distributions of finite order in the natural  way: 

Definition 1.6.8. O~.F(~) is the set o/ all u E ~'~(~) with the property that ~ can be 
chosen independent o/ K in (1.6.1). 

Next  we note tha t  Theorem 1.3.18 and condition (7) imply the following theorem 
and corollary: 

Theorem 1.6.9. / ]  (D l and c% E ~ and r ~,COl, then ~ ~ ~ ,  algebraically and topo- 
logically. 

Corol lary  1.6.10. / / w  E ~ ,  then ~ '  ~ ~ .  

Finally, since locally integrable functions can be identified with certain elements 
in ~ ' ,  it follows from Corollary 1.6.10 that  the following definition makes sense: 

Definition 1.6.11. I /  uEL~~176 then we identi/y u with the element u in 0~(~)  
which is defined by 

u(q~) = (~ (x )  q~(~) dx = u + ~(o) (v~ e 0,~ (~)).  
, ]  

1.7. Convolutions of generalized distributions 

We will s tar t  by  defining the convolution of a test  function and a distribution and 
proving two theorems generalizing Th. 1.6.2 and Th. 1.6.1 of [H]. 

Definition 1.7.1. Let ~oE~t~. I /  u E ~  and q~E~  we de/ine the convolution u+q~ 
as the/unction given by 

(u +?) (x) = uy(~v(x-y) ) = u(vx~). 

Theorem 1.7.2. Let wE ~ .  I/qv and ~fEO~ and uEO~, then (u+~v)+~o=u+@+~v).  

Proo/. For ~ > 0 we form the Riemann sum 

s (x) = e n ~ ~ ( x -  et) ~(~t), 
t 

where t runs through all points with integer coordinates. We claim t h a t / ~ - + + + ~  
in ~+ when e-~0. In  fact, 

where R~(~) is a Riemann sum for the integral defining ~. Since ~(~) -~ 0 when I~] -+ ~ ,  
the claimed convergence follows from the dominated convergence theorem. 
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Consequently, 

(u-x- (~ ~- ~0)) (x)  = u~ ( ( ~  ~e y)) (x  - y ) )  = l i m  uu ( / ,  ( x  - y ) )  
e--~0 

= l i m  e ~ ~ uu ( ~ ( x  - y - et) )  ~p(et) = ( ( u  ~-  ~c) ~- ~p) (x) ,  
t 

which proves the theorem. 

Theorem 1.7.3. Let o9~ ~1. I]  u ~ ' ~  and q~Oo~, then u~q~E ~ and supp (u~e~c)~ 
supp u + supp ~c. 

Proo/. The last result is trivial. We now choose y)E ~ and have to prove that  
v ~ 0<o if v(x) =~p(x) u(~0).  Let ~ be fixed. By Proposition 1.3.29, u(~z~) is a continuous 
function of x. Hence, since v has compact support, 

/- 
~(~) = Jr (x )  e ~<x'~>(u.~)(x) dx= ((u. ~0).~) (0), 

where we have written ~o~(x)= vd(x ) e -~<x'r Using Theorem 1.7.2 we get 

~(~) = ( u .  @ .  ~ ) )  (0) = u ( ~ .  ~). 

Since supp (~ ~-~o~) is contained in a fixed compact when ~ varies, we then have 

I,~(~) I ~< c i l i a *  v~llll ~', (1.7.1) 

for some 2 > 0  and C independent of ~. But  (~%~p~)^(~)=qD(-U)v)(~+~), and 
consequently (1.7.1) gives 

I~(~)1 < C(sup I ~ ( -  ~) v~(~ + ~)1 ~,~(~>) < c II1~111~> IIl~lllY) ~-~o% (1.7.2) 
t/ 

This completes the proof of the theorem. 
In view of the complication mentioned in connection with Proposition 1.3.15, we 

give the regularization of distributions (cf. [H], Th. 1.6.3) the following form, for 
convenience using Definition 1.3.24: 

Theorem 1.7.4. Let eo E ~1. I / u  e ~'~ and cf E ~o~o and Sq~(x) dx = 1 and qJe(x) = ~-nqj(xle), 
then u ~ q J ~ u  in ~'o,. 

The proof is the same as in [H]. Similarly, all remaining material of Sect. 1.6 of 
[HI can be taken over without difficulty. We will here only mention that  letting 
]]I~IH(2~)-+0 in (1.7.2) we see that  the mapping ~ - - > u ~  from ~ into E~ is con- 
tinuous. This is the starting point of the argument which gives sense to the following 
definition. 

D e f i n i t i o n  1.7.5. Let ~o E ~ .  I /  Ul EO~ and u2E E'o, or conversely, then ul  ~eu 2 is 
de/ined as the unique element u o/ ~'~ satis/ying ul  ~ (u2-)eq)) =u~q9 (V~ce~).  
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1.8. The Fourier transform and the spaces So, S'~ and ~ ,  

We note tha t  Or  does not necessarily satisfy Cond. (I) 4 of [9], p. 101, or in our 
notation, that  we have ~/~ # 7/1. In  spite of this we could of course define the Fourier 
transform of any  u in ~ by  the formula ~(9)=u(v3) ( u  or equivalently, 
u(~) = (2~r)-~(~) (Vq E ~ , ) .  Then ~ would be a "generalized function" over the test- 
space ~ of Fourier transforms of the elements of ~ .  But  we will avoid this generality 
and only define the Fourier transform ~ when u E $~,, where S~, generalizes the space 
$'  of tempered distributions. To prepare for this definition we will first s tudy a gen- 
eralization of the space S (el. [H], Sect. 1.7). I f  ~o r we may  by  Theorem 1.6.9 
consider ~ ,  as a subspace of ~ .  Thus it is no restriction tha t  we will define S~, 
only for the case co E 7//~. 

Definition 1.8.1. Let ~o E ~ .  We denote by $~ the set o/ all /unctions q~ELI(R n) 
with the property that (~ and ~ E C ~ and)/or each multi-index ot and each non-negative 
number 2 we have 

p=,~ (qJ)= sup e'~(X)[D~q~(x)] < 
XE/~n 

and ~.~  (~v)= sup e ~(~) [D~q~(~) [ < oo. 

The topology o/S~ is defined by the semi.norms P~,a and z~,~. 

We recall tha t  the Fourier transform is an automorphism of $. Using this fact and 
the symmet ry  of the definition of S~ and applying condition (y) we get the following 
result. 

Proposition1.8.2. I /  e0(~)= log( l+[~[ ) ,  then S~ is identical with 8. For any 
eo E ~ c  we have S~c S, and the Fourier trans/orm is a continuous automorphism el S~. 

Jus t  as in the classical case we also have 

Proposition 1.8.3. I /  o) E ~1~, then S~ is a topological algebra under point-wise mul- 
tiplication and also under convolution. 

Proo/. I t  suffices to prove the first result. Thus let ~ and ~v E S~. Fix ~ and 2. Since 
e.g. all p~.a (~) < ~ and all PB. 0(9) < oo, Leibniz' formula proves tha t  p~.~ @9) < oo. 
On the other hand, 

/ x  
= (2~) /9 ~ . 9 ,  

and thus 

< (2 )n s F f  I r)l ')Ir dr  7la, A 

(2~)- n z~. ~ @) z0. z (9)j  "e(~ ~) ~(') d r ,  

which by  condition 00 is < oo, if l is chosen sufficiently large. This completes the 
proof. 

We leave it to the reader to check tha t  we also have the following two results: 
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Proposition 1.8.4. I /  eo E ~lIc, then di//erentiation and multiplication by x~ are con- 
t inuous operators in S~. 

Proposition 1.8.5. I / co  E 7~c, then the translation operator v~ and the multiplication 
by exp ( - i < . ,  a>), where a E R ~, are continuous operators in So~. 

Next we relate S~ to ~ and ~ .  

Proposition 1.8.6. I /o~  E 7ql~, then ~ S~, ~ ~o,. 

Proo/. Let ~ E D~ and let ~ and ~t be given. Then p~, ~ (~) < co, since ~v has compact 
support. That  zt~. s (~) < c~ follows from Theorem 1.5.16 with/(x) = x ~ (or directly from 
Theorem 1.4.1 and Cauchy's integral formula). Thus ~vE $~. Next we suppose that  
~0ES~ and choose v2E~o~. We have to prove that  ~ f E ~ o .  By  what we have just 
proved, ~vE So, Thus by Proposition 1.8.3, ~v~vE S~. But since ~v also has compact 
support, the result follows. 

Finally S~ has the following important property (cf. [HI, Lem. 1.7.2): 

Theorem 1.8.7. I/o~ E 7tlc, then D~ is dense in S,,. 

Proo/. Let us write eo(~)= ~(]~]).  Let q E S~. Choose yJ E ~ such that  ~p is a local 
unit for/~1 and 0 <~ ~o(x) <~ y~(O) = 1 (Vx E Rn). Define q(~)(x) = 9~(x). y~(ex). Since S~ ~ E~, 
we have ~0(~)E O~. Thus it suffices to fix ~ and ~ and prove that  when e-+ 0 we have 

p~,~ (~%) - ~0) - +  0 (1.8.1)  

and ~ ,  ~ (~(~) - ~0 ) --> 0. (1.8.2) 

Expanding D~v(~) by Leibniz' formula and using the boundedness of each derivative 
of ~p we see that due to the e-factors it is enough to prove that  

sup ]e ~(~) (~(ex) - 1) D~q~(x) I---> 0 (1.8.3) 
XfiRn 

in order to have (1.8.1). But since ~f (ex) - I  =0 when Ix] ~< 1,/e, the left-hand side of 
(1.8.3) is 

<p~.a+l(~v)" sup e ~x), 
Ixl>~l/e 

which implies (1.8.3) and thus (1.8.1). 
On the other hand, we have 

I - I < I D ~ @ ( ~  - e~)  - D~@(~) [ d~ = (2~) -" (G  + Iv), 

where I s  denotes the integral over B={~ ;  171-<1~1 + e-1~("+2)~ and I v denotes the 
integral over U = CB. Evidently we have for any 1 > 0, 

-< c sup  e re'~ ) dv <-Ge ( '~ d,. 
~/E U J 1~]~>8 -1/(n+2) 
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F r o m  condition (y) then it follows tha t  if l is sufficiently large, we have Iv"  e ~(~) --> 0 
when e--~0. To prove (1.8.2) and  the  theorem it thus remains to prove tha t  
sup~ ~R, IB e ~(~) -+ 0. 

By  the theorem of dominated  convergence we see tha t  I B -~ 0 when e-+ 0. Thus it 
suffices to prove for instance tha t  

sup IB e ~(~ -> 0. (1.8.4) 
1~1~>2 

I n  the rest of the proof we suppose tha t  [ ~l ~> 2 and tha t  s < 1. Let  us denote the line 
element vector  in R ~ by  dr. Since ~ is bounded,  we have 

[1BI <'~ C(I ~1 "]r ~-l/(n+2))n SUp 1D~r162 --  ~ )  --  ADcer I 
vleB 

~< C (I ~l + e-~I('~+~))~ sup <grad D ~ ,  dr> 
~eB J~ 

~< C s ( I  ~[ -]- 8-1/(n+2)) n+l s u p  [grad D~q~(~- ~)] 
~EB 

Since ~([ ~[ - s [ ~[ - 1) > �89 ~([ ~[) - ~(1),  we get with a new constant ,  

IIBI <~ C~ 1/(n+2) e -sl~~ (1 ,8 .5)  

if we choose l = 2 ~ §  where b is the constant  of condit ion (y). This proves 
(1.8.4). The proof of the theorem is complete. 

We can now define $~ and the Fourier  t ransform in S~. 

Definition 1.8.8. Let toe ~c.  A continuous linear /orm on S~=So~ is called an 
o)-temperate distribution. The space of all co-temperate distributions is given the weak 
topology and is called S'~. 

I n  view of Theorem 1.8.7 we m a y  identify S~ with a subspace of ~ , .  I t  is obvious 
tha t  E~,c S~,. Another  impor tan t  subset of S~ will be considered in Definition 1.8.10. 

Definition 1.8.9. I /  o)E ~ c  and u E S~ we define the Fourier transform ~tE S'~ by 

= u(r  e = 

or equivalently, ~(93) = (2z~) ~u(~) (V~ E S~). 

As in [H] it follows tha t  the Fourier  t ransform is a continuous au tomorphism of S~. 
I n  Chapter  I I  we will work with those u in S~o for which 

lu( )l (v eso) 

We prefer to define d explicitly in this case even when o ~ ~ so tha t  we have no t  
defined S~: 

Definition 1.8.10..Let ea E ~1~. We denote by ~ the set of all elements u in ~ such 
that/or some measurable function U with 
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fl u( )l d~ < c~ some for 2 > 0 

we have u@) = (2~t)-=f U(~) r - 1) d~ (u E D~). 

I f  u E ~ we define its Fourier transform a as [the equivalence class of] the function U: 

a(~) = U(~) (a.e.). 

We remark tha t  if functions are identified with certain distributions as in Defini- 
tion 1.6.11, then u and afiS~,o and the new definition of the Fourier transform 
agrees with Definition 1.8.9. We also remark tha t  if u 1 E ff~, and u2 E ff~ and if u 1 = u  2 
as elements of ~/o1+~,, then the corresponding functions U 1 and U 2 are equal (almost 
everywhere). 

The following theorem generalizes Th. 1.7.5 of [H] and is similarly proved. 

Theorem 1.8.11. The Fourier trans]orm o] u E ~ is the ]unction 

r = u~(e-~<x'~>).  

The right-hand side is also defined /or every complex vector ~ ~ C ~ and is an entire 
]unction o/~, called the Fourier-Laplace trans]orm o /u .  

The following theorem and corollary connect convolution and Fourier transform 
and par t ly  correspond to Th. 1.7.6 of [H]. Another related result is given in Theorem 
1.8.15. 

Theorem 1.8.12. Let o) e 711c. 1] q~ e $,o, and u e $~, then cf ~ u E S'~ and (~v ~e u) ̂  = ~.  ~t. 

Proo]. I f  ~v e ~ = ~ we have (using Definition 1.6.11 and results from Section 1.7): 

(~ ~-~')(v') = ~ ~-~ ~- ~,(o) = u ( ~  ~-~,), 

and thus there exist constants C, 2 and k such tha t  

Then it follows from Proposition 1.8.3 tha t  there exist constants C, I and k such tha t  

I~I~,~ 

Thus ~0 ~-u, considered as an element of ~ , ,  is in fact [extendable to] an element of 
$~, defined by  

( ~ u ) ( ~ 0 )  = u @ ~ ) ( v ~ e $ ~ ) .  

Thus, using Definition 1.8.9, 

@ ~-u)" (~,) = ( ~ - u ) ( r  = u@ ~-r 
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Since S~c S, we have (~.y~)^ =~+~b, and thus we get 

(~ + u)^ (9) = ~ (~)  = (~ )  (~0), 
which completes the proof. 

From the proof follows (when only 7~0.~ or only Po.~ is used): 

Corollary 1.8.13. Let ~o E ~ .  I / u  E ~o, and q~ E O~ and ~f E ~, , ,  then qp + u and yJu E :~+ 
and we have 

(qD+u) ̂  = ~ . ~  

and (yJu) ̂  = (27e)-n~ ~ ~. 

We can now state and prove the Paley-Wiener theorem for generalized distribu- 
tions with compact support. 

Theorem 1.8.14. Let ~o E ~ and let K be a compact convex set in R n and let H be the 
support /unction o/ K .  I /  U is an ent ire/unct ion o/ n complex variables ~ =~ + i~ = 
(~1 . . . . .  ~ ) ,  the/ollowing three conditions are equivalent: 

(a) _For some real ~ and all positive ~ there exists a constant C~.~ such that 

f~]  U(~ i~)[ d~ C~.~ + e-~+(o ~< ell('7) +eI'/I. 

(b) For some real A and all positive e there exists a constant C'~.~ such that 

I u(~ + i~)I < c;.~ e '-'+'o'r+~=+ (v~: + i~ e c"). 

(c) U is the _Fourier-Laplace trans/orm o/ some u E E'~ with supp u c  K. 

Pro@ That  (b) implies (a) is clear (cf. the proof of Proposition 1.3.26). To prove 
that  (a) implies (b) we may suppose that  2 is positive. We can then use the inequality 

-).oJ(D < -~.co(~+~') +).~(~') 

and proceed as in the proof that  (i) implies (if) in Theorem 1.4.1. 
To prove that  (b) implies (c), we derive from (b) with ~ =0  that  if y~ E ~ then 

I .I u(~)@(-~)d~ i < cfe~~ I@(-~)l d~ < cIl~lli "> 
Hence the linear functional 

9--+ (2~)-"j  u(~)~( - ~) d~ 

is an element u in O~,. Thus u ~ ~ and d = U. 
Let ~o be in O~(B~) and ~q~(x)dx=l  and let q)o(x)=O-~q~(x/O) and uo=u+q~o. 

Then by Corollary 1.8.13 we have u 0 E ~  and do=U.q~. From conditions (if) of 
Theorem 1.4.1 and (b) (with 2 replaced by l) we then derive for any 2 > 0  and any 
e >0 the existence of a constant C~., such that  

I,~,(~ +<i,Dl < oi'.. exp (Z<o(~) + SS(n) + ~ In l -  ~<~(~) + a i'~l + ~ l nl). 
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Thus, by Theorem 1.4.1, u~ED,~(K+B~). Hence when (~-+0, we get s u p p u c K  
(Theorem 1.7.4), which completes the proof of (c). 

Finally, we prove that  (e) implies (b). The meaning of (e) is that  U(~)=u~(e -~<~'r 
for some u E ~ with supp u ~ K. Clearly, for some l >~ 0 we have 

lu( )l-<clll llll (1.8.0) 

Let ~ E D~ (K + B�89 be a local unit for K. Then U(~) = u(~0) with ~(x) = O(x) e -~(~' ~) 
and ~(~)= ~(v+ ~). Thus, if we apply to ~ condition (ii) of Theorem 1.4.1 with s 
replaced by �89 e, we get 

I U(~ + i~) I ~< C sup [~(~ + ~ + i~) exp (lm(~)) [ 

~< C exp (ho(~)) sup I~(T + ~ + i~) exp (lm(v + ~))1 

<. c c;,�89 exp +H(,fl  + I). 

This proves (b) and completes the proof of the theorem. 

Remark. From the proof it follows that  as ~ in condition (b) we can use any I satis- 
fying (1.8.6). 

We note that  Theorem 1.8.14 implies that  ~ c  :~. This now permits us to prove 
the following result: 

Theorem 1.8.15. Let ~oE~.  I1 ul e E'~ and use  ~ ,  then U l - X - U 2 E  ~oand  (ul~eu~) ̂ =  
A A 

U 1" U s.  

Proo/. We have if ~0 E ~),~ 

(Ul-X-U2) (~0) = (Ul-X-U2-)(-~) ) (0) = U2(~I-X- ~) ), 

Since by Theorem 1.7.3, ~l-)(-t0E~t~ we have by Definition 1.8.10 and Corollary 
1.8.13 (note that  u 1E ~ ) :  

and the result follows, since 42" ?~1 is a function of the kind considered in Definition 
1.8.10. 

We will now prove an analogue of the Paley-Wicner theorem for the ~o-singular 
support (cf. Definition 1.6.4 and [H], Th. 1.7.8). 

Theorem 1.8.16. Suppose that co and o~l E ~ and that col-<co and oA ~r , and let 
u E ~'~1. Let K be a compact convex set in R ~ with support /unction H. I n  order that 
sing~ supp u c  K,  it is necessary and su//icient that there exist a constant ~ and a 
sequence o/constants Cm (m = 1, 2 . . . .  ) such that 

~< m~o(~) implies I~(~ + iv/) I ~< Cm e ~'~ (1.8.7) 
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Proo/. To show that  (1.8.7) is necessary, we choose ~ > 1 such tha t  

I~(~)1 < c IIl~llll <~,) (v~e zL,). (1.8.8) 

For each m we can by  hypothesis write u = u l + u  ~ where supp UlCK+Bll~,n and 
u 2 E O~(Rn). Since 

lu:(~)l < (2=)-: IIIvlll@~:(~)l 
/ l l  

d~, 

(1.8.8) implies tha t  I ~ l ( v ) l <c ' l l l ~ l l l l  ~''> (weD<: , ) .  (1.8.9) 

Thus by  Theorem 1.8.14 (with s = l/2m) and the remark following it, we have 

I~ (~+ i~ ) l  < r  exp ()~O)l(~)-t-H(17)-t-I,I/~) (V~+i~eC") �9 (1.S.10) 

On the other hand, if supp u2cB~_l, we may  apply Theorem 1.4.1 to u~, taking 
e = 1 and ~ = Nm + 1. We get 

l~2(~+in) l < V~ exp (H I ,  I - (~Vm+l)~(~)). (1.8.11) 

Now (1.8.7) follows from (1.8.10) and (1.8.11) if 1 is sufficiently large. 
To prove the su//iciency of (1.8.7), we make an orthogonal transformation and 

reduce the problem to the following one. Suppose that  

Id(~+i~)i<Cmexp(,~co~(~)+A~+i~i/m) if I~l~<m~(~) and ~ > 0 .  (1.8.12) 

Prove tha t  if ,p ~ ~o({x; x~ >A}), then ~u ~ ~o. By Corollary 1.8.13 we thus have to 
prove tha t  for each (sufficiently large) 1 there is a constant C, such tha t  

If@(v-~),(~)d~l<.<C,e-"~(" (V~eRn). (1.8.13) 

We want  to deform the integration contour in this integral. By  Lemma 1.2.4 and 
Theorem 1.3.18 we m a y  suppose tha t  e0 is so smooth tha t  the following integral is 
well defined: 

Im= f d~' f , j ( , ~ -  $. ,' - ~') a(~. ~') d~i. (1.8.14) 

where ~'=(~2 . . . . .  Sn) E R  n-1 and the integration with respect to ~1=~:1-~i?]1 is over 
the contour Fm defined by  ~h =mw(~). 

Since the support  of F is compact and contained in {x; x I >A},  it is in fact contained 
in {x; x 1 > A + 33} for some (~ > 0. Thus, taking s = d in Theorem 1.4.1, we see that  for 
e a c h / > 0  there is C~ such tha t  for ~1~>0: 

[~D(~I-~ ~, ~ ' - ~ ' ) [  < C; exp ( - l oJ (v -~ ) - (A  + 2($)~71 ). (1.8.15) 

From (1.8.12) and (1.8.15) it follows tha t  if m > l/g, then the modulus of the integrand 
of (1.8.13) and (1.8.14) is 

C exp (~wl(~) - l w ( ~ - ~ )  - & h )  
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when 0 ~<~ ~<mr Hence, since COl'~tO and 

- l o ) ( v  - ~ )  < - lo~(  - ~ )  + l ~ (  - ~ )  

(if l>0) ,  the integrals in (1.8.13) and (1.8.14) are equal by deformation if l is suffi- 
ciently large. (A similar argument is carried through in more detail in the proof of 
Lemma 4.1.3.) On the other hand, since ~ o ~ o  and 

- leo@-~)  ~< l~o(~)- ho(~), 

the modulus of the considered integrand on Fm is 

< C exp (C'eo(~) - ~ 1  -ho(z)) = C exp ((C' -Sm)(o(~) -lo~@)). 

Further,  by Lemma 1.2.4, Id$~l/Id~l is bounded on Fro. Thus, if we take m suf- 
ficiently large, the result follows. 

Specializing COl, we get the two following results (with K, H, 2 and Cz as in Theorem 
1.8.16). 

Corollary 1.8.17. Suppose that uE ~' and ogE ~ .  In  order that s i n g ~ s u p p u c K  
it is necessary and su//icient that 

I~1 ~< mco(~) implies I~(~+ i~) I ~< Cm(1 + I~[) x e H(€ 

Proo/. Since o) and co satisfy condition @) we may choose eol(~ ) =log (1 + I~[) in 
Theorem 1.8.16. 

Corollary 1.8.18. Suppose that o~e~s and uE E'~. In  order that sing~ supp u ~ K  
it is necessary and su/]icient that 

]~] ~< mw(~) implies [~(~ + i~/)] ~< Cm e ~(~)+H(~). (1.8.16) 

Proo/. Since eo 1 =w, (1.8.16) is equivalent to (1.8.7), if we replace 2 by ), § 1 when 
necessary. 

Chapter II. Some special spaces of generalized distributions 

2.0. Introduction 

In  this chapter we generalize the spaces B~. k and L,V.k~l~162 considered in Chap. I I  of 
[H]. This generalization will be done by considering weight functions k with more 
rapid growth than those considered in [HI. To each o)E 7/~ we will define a class 
~ of admissible weight functions k. Then Bp. k will be the set of generalized distribu- 
tions u whose Fourier transforms 4 are such that  4.kELp. I t  turns out that  B,.k 
does not depend on co as long as k E ~ ,  Since the conditions defining ~ are given on 
the Fourier transform side, spaces of type By. k are particularly well adapted to our 
situation. On the other hand, when replacing log (1 + I~]) by a general co, we lose the 
close connection between (o and differentiation, as pointed out in the preface. 
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2.1. Weight functions k 

We start with the following two definitions and note that  the first one reduces to 
the definition of 3~ in [H], when co(s (1 + ]s since the constant that  occurs 
there could be left out without any change. 

Definition 2.1.1. Let (9 E ~ be given. Then 3~  is the set o /al l  positive/unctions k 
in R ~ with the/ollowing property. There exists 2 > 0 such that 

k($ + ~/)~< e ~(-~) k(~/) for all ~: and ~ in RL 

Detinition 2.1.2. 1 / k  is a positive/unction on R n, we write 

Mk(~) = sup  - -  
,~R~ k ( V )  " 

We note that  by condition (~) we have ~ c ~  for every eoC ~ .  We also note that  
by  condition (a) we have exp to E ~ .  Next we list as Theorem 2.1.3 some results 
which are proved just as are the corresponding ones in Sect. 2.1 of [H]. 

Theorem 2.1.3. Let a)E~l. I /  kE~K~, then log k is uni/ormly continuous, M k E ~  ~ 
and the/ollowing inequalities hold/or all ~ and ~ E R n (with the ,~ o/Definition 2,1.1): 

e_~(~ ) ~< k(~ + ~)) ~< e~(_~) ' (2.1.1) 

k(0) e -~(~) ~< k(~) ~< k(0) e ~(-~), (2.1.2) 

Mk(~ + ~) ~ Mk (~) M~ (V), (2.1.3) 

1 = Mk (0) < Mk (~). (2.1.4) 

As in [H] we immediately get the following result from Definition 2.1.2 and Theo- 
rem 2.1.3. However, the situation is complicated by the fact that  we do not assume 
~oe ~ .  

Theorem 2.1.4. Let o)E~l~. I /  k 1 and k2 are in ~K~, it /ollows that k~ +k2, klk,,, 
sup (kl, k2) and inf (kx, k2) are also in :Kw. I /  k ~ ~ we have ks~ ~ /or every non- 
negative s but ks~ ~,~ /or every non-positive s. 

We note that  in particular k ' P  and kip ~ ~ if k ~ :K~, where we have defined 
P(~) >~ 0 by/5($)2 = ~1~1~>0] D~P(~) ] z, when P is a polynomial. 

Since we work with a whole family of classes ~0,  the question naturally arises: 
Given k, when does there exist co ~ ~/  such that  k~ :K~? The following theorem an- 
swers that  question. 

Theorem 2.1.5. Let k be a positive/unction on RL Then a necessary and su//icient 
condition that there exists co ~ ~ with k ~ ~1~ is that log k is uni/ormly continuous and 

f sup/ log k(~ + ~) - log k(~/) ] (2.1.5) 
~ , ~  (1 + l ~ l ) = + l  d ~ <  + ~ .  
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Proo/. By Theorem 2.1.3 and condition (fl), the condition is necessary. To prove 
tha t  it is sufficient, we define 

co(~) = max  (log Mx(-~) ,  log (1+ 

where Mk is given by  Definition 2.1.2. Now (2.1.3) has nothing to do with the fact 
tha t  co E ~ in Theorem 2.1.3, but  follows directly from Definition 2.1.2. Thus (2.1.3) 
holds also in the present case, and hence oJ satisfies condition (a). By  hypothesis, 
o~ satisfies condition (fl). By  the uniform contimlity, lim~-.o o~(~)=0, and hence the 
subaddit ivi ty of ~o implies tha t  o~ is continuous. Finally, co satisfies condition (y), 
and the theorem is proved. 

Definition 2.1.6. We denote by ~(~,) the class o/ /unctions [.J ~ ,  that is the class 
O)E ~ 

o/ all positive /unctions k with uni/ormly continuous logarithm on R ~ and satis/ying 
(2.1.5). 

2.2. The spaces Bv,~ 

We will now generalize the spaces B~, ~ of [H] to the case when k E ~(~). We will 
first give a definition of a space ~ , k ,  apparent ly  depending on ~o. 

Detinition 2.2.1. Let ~ E ~ and k E ~ ,  and let 1 <~ p <~ ~ . We denote by B"~.k the set 
o/all u in ~ /or which 

HuHv.k= ((27e)-n f , k(~) ~(~)[V d~) ilP < c ~ ,  (2.2.1) 

where, o/course, Ilull   means ess. sup. ~(~)lg(~)l  

When eo E ~ c  we need not assume tha t  u E :~: 

Proposition 2.2.2. Let eo E ~ and k E ~ and let 1 <~p <~ ~ .  Then B~. k is identical 
with the set o/ all u E S~ such that ~t is a/unction and (2.2.1) holds. 

Proo/. From ttSlder 's inequality and condition (y) follows tha t  (2.2.1) and (2.1.2) 
imply tha t  for some 4, 

f la( )le I lu ~ .  (2.2.2) ~< c 

Thus u E 9:~. 
We now prove the counterpart  of Th. 2.2.1 of [Hi. 

Theorem 2.2.3. Let o~E ~c.  Then B'p'.k is a Banach space with the norm l[" II~,k. We 
have 

also in the topological sense. O~ is dense in B~.k i~ p < ~ .  

Proo/. Jus t  as in [H] we have $~cLv(R  n, k(~)Vd~)c S'~ algebraically and topo- 
logically, and we take the Fourier transforms of these three spaces. We do not repeat  
the details. 

We will now prepare for an invariant  definition o f  B~. k. 
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Theorem 2.2.4. I /  O ) r ~  and k~3~o), ( r = l , 2 )  and w~-<o h,  so that we have a 
continuous in~ectio~ i : ~ , ~ - - - > ~ ,  then i restricted to B ~  is an isometry o/ ~ 
onto B~:~. 

Proo]. Since ~o does not appear in the definition of the norm I1" we only have 
to prove that  the restricted mapping is onto. Let  us therefore choose u E ~:~. Then 
since uE:~ , ,  we have 

~(~) = (2~)=~ I'~(~) r  ~) d8 (V~ ~ ) .  (2.2.3) 
J 

Repeating the proof of (2.2.2) but  using ~% instead of co, we get 

f l  de < ~ .  ~(~)l 

Thus, since ~ ,  is dense in D~,  we can define u@) by (2.2.3) for every ~ E O~,  
which means that  u E ~o~ and thus u E B~z. The proof is complete. 

From Theorem 2.2.4 it follows that  if k E ~(~) is given, the choice of (o in the 
definition of B~.z is irrelevant as long as k E ~ .  We prefer to express this fact in the 
following slightly inexact way: 

Definition 2.2.5. Let k E 3C(r~) and let 1 <~ p <~ ~ . Then we identi/y all B~,k /or which 
r E ~1~ and k E ~K~. We denote the result o / the  identi/ication by B,.k. I / ~  is an open 
subset o/ t~ ~ we also de/ine 

~ C  . t 
~ ~ (~ )  = ~ ~ n 8~ (~) .  

We may now summarize part  of our results as follows: 

Theorem 2.2.6. B~.~ is a Banach space with the norm ]]. ]]~,~. For any o) such that 
k E ~ ,  we have 

algebraically and topologically. Further, i /  p < cr then Do, is dense in Bv,~. 

The results of [H], Sect. 2.2, on relations between By.k-spaces could now be proved 
for general k E ~K(m). (In the statements, Bp.~N E'(~2)should be replaced by B~,k(~).) 
As an example we give the following theorem, which we will use several times. 

Theorem 2.2.7. Let e o E ~  and k E X ~ .  I /  uE~v .  ~ and q)EOo,, then q~uEBp,k and 

H (o E 7~1c, then the same result is true when qD E So,. 

Proo/. By Corollary 1.8.13 (and Theorem 1.8.7), we have 

and the proof proceeds as in [Hi, Th. 2.2.5. 
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Finally we prove the following theorem, which is more general than the obvious 
counterpart of Th. 2.2.7 of [H], and which is also related to Th. 2.2.2 of [H]: 

Theorem 2.2.8. Suppose that k 1 and k 2 E ~(~) and that 1 <~p <~ co. Then, i/ 

1 1 
k l / k  2EL~, with P - + ~ =  1, (2.2.4) 

it/ollows that Bp,k~: ~1.~, algebraically and topologically. Conversely, i/B~.k~(~) ~ ~x,k, 
/or some open non-void ~,  then (2.2.4) ho/ds. 

Proo]. If (2.2.4) holds, then by H51der's inequality, 

Ilulll.,~, < (2:~) -n/~" II ki/k~llv" Ilull,.~, (Vu e ~,.~,), 

which proves the first part. Conversely, we may assume that  0 E~. Choose ~ E D~(~) 
such that  r >~0 (Corollary 1.3.17). Then if u E Bv.k~ we have qu E B~.k~(~) by  Theorem 
2.2.7. Hence, by hypothesis, Tu E Bl,k,. We claim that  the mapping u - ~ u  is a closed 
mapping of Bp,~ into Bl.k,. In fact, if u~-+u in Bv.k, and q~u,->v in Bl.k~, then for a 
suitable a)E ~ we have on one hand that  u~-->u in S~, which implies that  qJu,-~q)u 
in S/,, and on the other hand that  qJu,-+v in $~,. Hence q~u=v. Thus by the closed 
graph theorem, 

f~(~)  I(w~) ̂  (~)1 d~< C~ Ilull,.~ (rue ~.~,). (2.2.5) 

Now ~ is non-negative. If also ~ were non-negative, we would have (using Defini- 
tion 2.1.1) 

(2~) = k~ (~)1 (v~)^ (~)1 = k~ ( ~ ) f g ( ~  - v) r d~/> S ~ ( ~  - ~) ~ (~ - ~) r e - ~ ' )  d~. 

Hence, inverting the order of integration, we would get 

(2~)'S~ (~) I (~) ^ (~)1 d~ ~> I1~11 ~f~(~)~ (~)d~. 

Combining this with (2.2.5), we have proved that  

S ~1(~) 
k ~  g(~) d~ < C I] g i]~ 

for every g~>0 such that  g=k~.~ for some uEB~.~. Since k~ is bounded away from 
zero on each compact set, every measurable non-negative g with compact support 
trivially is of this form. Thus the result follows from the inverse of HSlder's inequality. 

2.3. Local spaces 

In this section we will define spaces B ~  when k E :K(~,), thus generalizing Sect. 
2.3 of [H]. 

Definition 2.3.1. I] ~ is a linear subspace o / ~ ( ~ ) ,  we de/ine 
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Definition 2.3.2. / /  ~ ~ o o ,  we say that ~ is eo-semilocal, and i/ ~ = ~loo, we 
say that ~ is 0)-local. 

I t  is clear t h a t  the propert ies  of local and  semilocal spaces, g iven in the beginning 
of Sect. 2.3 of [H], generalize to our situation. I n  part icular ,  b y  Theorem 2.2.7 
we see t ha t  B~, ~ is eo-semilocal if /c ~ ~ .  We leave to the reader  the proof  of the 
following result. 

Proposition 2.3.3. s  = (O~(~)) ~176176 

~aoo and just  as in Section 2.2 we first  consider spaces We will now define spaces ~,~.~, 
which appa ren t ly  depend on 0). 

, B~,~ (~)= Definition 2.3.4. 1/ e o E ~  and k E ~ o  and l < ~ p < ~  we de/ine ~aoc ~ o ~  
where ~ is the set o/ all restrictions to ~ o/ elements o/ ~,~.  The topology is given by 
the semi-norms u -+ Ilm ll... (me ~ . ( ~ ) )  

Corresponding to Theorem 2.2.6 we have  the  following theorem,  which is p roved  
like Th. 2.3.8 of [H]. 

~o~1oo is a Frdek~et space a~d Theorem 2.3.5. ~ .  

,~<<> (~) c ~o>~oo ,.,~.,~ (~) ~ ~ (~) 

algebraically and topologically. 

Corresponding to Theorem 2.2.4 we have  

Theorem 2.3.6. I] 0)1, 0)2 and i are as in Theorem 2.2.4, then i restricted to :~2 is an 
isomorphism o/:~2 onto :tl, where :~r = B~'.~~176 (r = 1, 2). 

Prowl. Since B~'.~k and  ]~.~ can be identified and  D~, c ]0~,,, it is clear t ha t  the restric- 
t ion of i to :~2 is a l inear injection ] of :~2 into ~1. Since every  semi-norm u -+]]u~iip,k 
in ~1, given by  a funct ion ~ in O,~1, can be considered as a semi-norm in 9:~, we see 
t h a t  ] is continuous. Then  b y  Theorem 2.3.5 and  Banach ' s  theorem it  suffices to 
prove  t h a t  ] is onto. Thus  let u E ~1 and  lets0 E O,~,. Le t  K v be compac t  subsets  of 
~) such t h a t  K ~ / U  g2 and  let ~% E D~I(~)  be a local uni t  for K~. I f  ~ is so large t ha t  
supp q0~K, ,  we have  q:u=q~q~,u, so t ha t  b y  Theorem 2.2.7, 

II~ull~.~ ~< II~ll~.~ [l~uil~,~ �9 

Since/cE ~ , ,  i t  then  follows f rom Theorem 2.1.3 t ha t  there exist  constants  2 and  
C~ such t h a t  

Ilmull,. < c, I1 11s (v e (2.3.1) 
Then we may extend u so that (2.3.1) holds for all ~ E B,,,(K,). Clearly, the extended 
u is in :~2, which completes  the  proof.  

We can now define B~~ 

Definition 2.3.7. Let kE ~(rn) and let 1 <~p<~ ~ .  We identi/y all ~p.k~~176 which 
kE ~K~ and call the result o/ the identi/ication ~ ( ~ ) .  We give ~ ( ~ )  the natural 
topology. 
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We could now prove for general k E ~(~) the results of [HI, Sect. 2.3, on relations 
Bv.~(;2) and on their interplay with P(D). We leave this to the between spaces :~176 

reader and only remark tha t  the proof of Th. 2.3.6 of [H] actually gives the following 
more precise result: 

Theorem 2.3.8. Let U and W be bounded open sets such that U -  W c ~,  and let 
U 1 E Bp ,k , (W)  and 1OC leo ~ ueE Boo,~(~) with k~ and k2E ~K(m). Then Ul-X~U2E Bp,k~k~(U),  

We now prove a theorem which generalizes formula (2.3.2) of [H]. 

Theorem 2.3.9. Let co E 7~l and kg E ~ and let 1 ~<pg ~< c~ (/z = I ,  2 ... .  ). I]  the space 
r~ ~oo ,~2~ is equipped with the topology given by all the semi-norms u-~ii~oulivg ~, ~ ' ~  I I p~,klx \ ) 
,u 

(~v E ~,~(;2)), then ~ is a Frdchet space. 1] in particular k/~ = exp (#ca), then ~ is naturally 
isomorphic to E,~(~). 

Proo/. To prove the first result we only have to prove that  the topology is metriz- 
able. Choose compact sets K , S  f ~2 and local units ~v~ for K ,  with ~0,E~o(g2). I t  
then suffices to use the semi-norms u-+J]~0~uJJpz.%. The last result follows from the 
local version of Theorem 2.2.8, since we have kv~/k,~EL,, for every p'(1 ~<p'< ~ ) ,  
i f /~2-#1 is sufficiently large. 

As an application of Theorem 2.3.9 we prove the following result, which will be 
used in Chapter IV, and which could easily have been proved in Chapter I.  

Theorem 2.3.10. Let co E ~t~. Let U and W be bounded open sets such that U - W ~  s 
and let uE E'~(W) and q~E E~(;2). Then u ~ v E  E~(U). 

Proo]. By Theorem 2.3.9, we have that  ~v E B~r (;2) with k~ = exp (#co) (# = 1, 2 ... .  ). 
By  definition, u E B~.ko(W) with k 0 = exp ( - ho(~)) for some 1 > 0. Hence, by  Theorem 
2.3.8, ~0~-uE~~ with k~=exp( /~- l )~o  and hence also with k~=exp  [,u-1]eo 
(# = 1, 2 ... .  ). Applying again Theorem 2.3.9, we get the desired result. 

In  Section 3.3 we will consider the space ~ .F( ;2)  (cf. Definition 1.6.8). Then we 
will need the following result: 

Theorem 2.3.11. Let r E 77l. For every p with 1 <p  < o~ we have 

U B t~176 ~. ~ (;2) = ~ 2 ~  (;2).  
k e 3Qo 

u E vice ~g2~ and ~v E O~(~2), then from (2.2.2) it follows tha t  Proo]. I f  o , ,k~  j 

f l  @u) ̂  d~ < oo, (4) 1 

with 2 depending only on k. Thus 

I  ( )l elll lil] (v c 
Let K be a compact subset of ~. Choosing ~0 as a local unit for K we get 

Ju(~)J <c~JJJ~0JJ]~ ~> (V~0eo~(g)). (2.3.2) 
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Conversely, suppose tha t  (2.3.2) holds and choose q E O~(K). Then qu E E~,, and 
we have 

@u) ̂  (~)= @U)x (e -"~'~>) = Ux@(X ) e-~<~'~>). 

I" E R n  

and hence ~uEBp.k, if k is a suitable negative power of exp to. This completes the 
proof. 

Chapter III. Existence and approximation o f  solutions of  differential 
equations 

3.0. Introduction 

This chapter corresponds to Chap. I I I  of [HI. For various distribution spaces 
~ (~)  we consider the question of finding necessary and sufficient conditions on 
~2 to have P(D) ~(~) = ~(~). 

I t  turns out tha t  the classical fundamental  solutions will suffice to t reat  the case 
~ =  E/o (Section 3.1), and that  P-convexi ty  (cf. [H], Sect. 3.5) still is the relevant 
property if ~ is related to spaces ~,.kvl~176 (Section 3.3). We also find that  the results 
in [H], Sect. 3.4, on approximation of solutions of homogeneous equations, generalize 
in a natural  way (Section 3.2). In  the final section we prove tha t  an analogue of 
strong P-convexi ty  (cf. [H], Sect. 3.6, and [14]) is necessary and sufficient when 
~=D/o.  Our result, which is given in Theorem 3.4.12, in particular implies tha t  
convexity is always sufficient. 

3.1. The equation P(D) u = f  when fE  ~'~ 

We recall the definition of a fundamental  solution: 

Definition 3.1.1. A distribution E E D'(R ~) is called a/undamental solution/or the 
differential operator P(D) with constant coefficients i] 

P(D) E = 6, 
where ~ is the Dirac measure at O. 

I f  ~o E ~ we could of course define a "fundamental  ~o-solution" in a similar way but  
with E E ~ ( R n ) .  But we avoid this generality for the following reasons. First, just 
as in [Hi, p. 64, it follows that  if for some io and some kE :Ko there exists a "funda- 
mental  o)-solution" E for P(D) such that  

E ~ 8~o~ (Rn), 

then B l~ C B l~ Second, we know from [H], Th. 3.1.1, tha t  to every differential 

operator P(D) there exists a fundamental  solution E E B 1~176 ~R=~ 
o o , p x  ] "  

Let now E be a fundamental  solution for P(D) and let o~ E 77l. Then 

P ( D ) ( E ~ / ) = /  (V/E s (3.1.1) 

E~(P(D)u)  =u  (VuEE/o). (3.1.2) 
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Starting from (3.1.1) and (3.1.2) and using results from Sections 2.2 and 2.3, we 
can now take over the results from [H], Sect. 3.2.~ on spaces B~,k and ~v.k~I~176 and their 
relations to P(D). We leave the details to the reader. 

3.2. Approximation of  solutions of  homogeneous differential equations 

This section generalizes Sect. 3.4 of [H]. Thus we deal with questions concerning on 
one hand the approximation of arbi t rary solutions of the differential equation 

P(D)u  = 0 (3.2.1) 

by  sums of exponential solutions, on the other hand the approximation of solutions 
in one open set by  solutions in a larger open set. We start  by  recalling the definition 
of an exponential solution: 

Definition 3.2.1. A solution u o/the di//erential equation (3.2.1) in R n is called a~ 
exponential solution i] it can be written in the/orm 

u(x) =/(x)  e ~<~'~>, 

where ~ E C ~ and / is a polynomial. 

Since every exponential solution is analytic, Corollary 1.5.15 gives 

Proposition 3.2.2. I / u  is an exponential solution, then u E ~ ,  /or any co E ~t~. 

In  the rest of section 3.2 we use the following set-up. Let  ~ be an open subset of 
R ~. Let  eo E 7/~ be given and let I be an arbi t rary index set. Let k, E ~ and p, be 
given for each tEI .  We suppose that 1 <~p, < co (VtE I). We define 

.~loc ~'~ 
~(~) = N Bp,,k, ( ) 

with the topology given in Theorem 2.3.9. In  particular, we may  have :~(~) = E~(~). 
Then all theorems, lemmas etc. of [HI, Sect. 3.4, remain true if ~ '  is everywhere 
replaced by  E~,. The verification of this is left to the reader. 

3.3. The equation P(D) u = f  when f is in a local space c D~,.F 

In  this section we will s tudy the equation P(D)u  =] when ] belongs to some space 
B ~ ( ~ ) .  We star t  by  recalling the definition of P-convexity,  which is the key concept 
in the corresponding Sect. 3.5 of [H]. 

Definition 3.3.1. An  open set ~ is called P-convex i/ to every compact set K c ~  
there exists another compact set K ' c ~  such that q~EC~(~) and s u p p P ( - D ) ~ v ~  K 
implies supp ~ c K' .  

The following procedure may  now seem natural.  In  Definition 3.3.1 we could 
replace the condition "~v E C~r ' '  by  "~v E ~ ( ~ ) "  and thus define an apparent ly 
weaker property of ~2, which might be called "(P, r However, i t  is 
clear by  regularization (Theorem 1.7.4) tha t  this property does not depend on co 
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and is thus identical with P-convexity and also with the corresponding property 
where the condition ~ E O~(~2) is replaced by "q~ E E~(g2) . Having made this ob- 
servation, we will now prove: 

Theorem 3.3.2. Let o9 E ~ .  Suppose that the equation 

P(D) u = / (3.3.1) 

has a solution u E ~ ( ~ ) / o r  every/E E,~(~). Then ~ is P-convex. 

Proo/. Let K be a fixed compact se t~  ~.  Consider the bilinear form 

B: f /dx, 
defined when / is in the Frgchet space E~(~) and ~ E (I), which is a metrizable space, 
defined as follows, qb consists of all functions ~ E O~(g2) with supp P ( -  D ) ~  K. The 
topology is defined by all semi-norms 

m ~ l l P ( - D )  mll.~ <,>). 

B is continuous in / for fixed ~, since ~ has compact support. If / E E~ we have by 
hypothesis P ( D ) u = / f o r  some uE~/ , (~) .  Thus ~q~/dx=u(P(-D)qJ), which proves 
continuity in ~ for f ixed/ .  Thus B is continuous ([6], Chap. I I I , w  4, Prop. 2), which 
means that  there exist y~ E ~ ( ~ )  and constants 21, 22 and C such that  

]fmldxI<CIIP(-D) II<z>IIwlII  > 
In particular, supp ~ s u p p  ~0 if ~EO, and taking K '  =supp ~ in Definition 3.3.1 
we have proved the theorem. 

Conversely, we have 

Theorem 3.3.3. Let o9 E ~ .  Let Es be P-convex and let 

/ ), where k s E ~ ,  and l~<ps< c~. 
. =  

Then equation (3.3.1) has a solution 

U _ l o c  
N B~s.~kj( ). 

i = 1  

The proof is the same as in [H], Th. 3.5.5. Using Theorems 2.3.9 and 2.3.11 we 
now get the following two results: 

Corollary 3.3.4. I / ~  is P-convex, the equation (3.3.1) has a solution uE E~(~) /or 
each ]E E~(~). 

Corollary 3.3.5. I] E2 is P-convex, the equation (3.3.1) has a solution uEO~.F(E2) 
]or each / E ~'~.F(~). 
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3.4. The equation P(D) u = f  for general f e  V~ 

We star t  with the following definition (note that  we consider Schwartz's space ~'): 

Definition 3.4.1. Let ~o E ~ .  A n  open set ~ is called strongly (P, o~)-convex i/ it is 
P-convex and to every compact set K ~ ~ there exists another compact set K ' ~  ~ such 
that ]or all t t E E'(~) we have 

singes supp P( - D) # c K ~ sing~ supp # ~ K ' .  (3.4.1) 

The following theorem is proved just as Th. 3.6.1 of [HI, twice using Corollary 
1.8.17. 

Theorem 3.4.2. I / #  E E'(R~), the convex hull o/sing~ supp/z is identical with that o/ 
sing~ supp P( - D)tt. 

Replacing ~o by  r we thus get 

Corollary 3A.3. Every open convex set ~ is strongly (P, o))-convex /or every to E ~ ,  
and as K'  we may take the convex hull o /K .  

Our next  theorem gives an equivalent definition of strong (P, w)-convexity (cf. 
[HI, p. 84, and [14]). 

Theorem 3.4.4. Let ~o E ~ and let ~ be a P-convex subset o / R  n. In  order/or ~ to be 
strongly (P, eo)-convex it is necessary and su//icient that/or each t~ E E'(~) the distances 
/tom C~ to sing~ supp # and to sing~ supp P ( - D ) #  are equal. 

Pros/. The sufficiency is proved in the following way. Let  ~ = {x E~; d(x, ~ )  >e}. 
If  K is a compact subset of ~ ,  we have K ~  ~ for some e >0.  Then if # E E'(~)  and 
s i n g , ~ s u p p P ( - D ) # c K  we have by  hypothesis s i n g ~ s u p p # c ~ .  On the other 
hand, considering tt as an element of E'(Rn), we have by  Corollary 3.4.3 that  
sing~ supp t i c  H, if H is the convex hull of K. Thus we m a y  take K '  = ~  N H 
in (3.4.1). The necessity is proved as in [H], Th. 3.5.2. 

We also have the following two results, which can be proved as the corresponding 
ones in [Hi. 

Theorem 3.4.5. I /  I is any index set and ~ is strongly (P, a))-convex /or every 
t EI, then the interior o/ n ~ is strongly (P, e))-convex. 

Corollary 3.4.6. To every open set ~ there is a smallest strongly (P, (9)-convex open 
set containing ~.  

We will now prove the first main result of this section, using the proof of Th. 
3.6.4 of [H]. 

Theorem 3.7.7. Let eo E ~ and suppose that ~ is strongly (P, a))-convex. Then the 
equation P(D)u  = / h a s  a solution u E ~'~(~) /or each /E ~'~o(~). 

Pros/. I t  is sufficient to prove tha t  for given /E ~ , ( ~ )  there exists a continuous 
semi-norm q on ~,o(~) such tha t  

I/@)] ~< q ( P ( -  D)q~) (Vq~E~,~(~)). (3.4.2) 
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For then it will follow fi-om the t tahn-Banach theorem that  the linear form 
P(  - D) 00 -->/(00), defined when 00 E Do, (~), can be extended to a linear form u C D~,(~ ), 
which is a solution. 

To construct q we choose compact sets K1, K 2 .... such that  Kj  S S s We take 
K 1 = K 2 =O. Since s is strongly (P, w)-convex, we may choose compact sets Kj f f g2 
(with K~' =K~ =O) such that  

q~e E'(~), supp P(  -D)q~ = Kj ~ supp q~ = Kj, (3.4.3) 

and ~ E E'(~)), sing~ supp P( - D)~ c Kj ~ sing,o supp ~ = K~. (3.4.4) 

The construction of q will be made in an infinite number of steps, each using the 
following lemma. 

Lemma 3.4.8. Let q be a semi-norm on ~,o(~) which is stronger than the L 2 norm and 
assume that 

{/(q~)[ <~q(P(-D)q~) i/ q~ED,~(K~). (3.4.5) 

For every e >0 we can then find another semi-norm q' on D~(~) such that q' >~q, 

q' (yJ) = (1 + e) q(vJ) (u G O~ (Kj_~)), (3.4.6) 

and [/(q~)l < q' (P( - D) of) (V~ G ~ (Kj'+,)). 

Proo /o /Lemma 3.4.8. Let  �9 be the completion of O~(Kj+I) with respect to the 
metrizable locally convex topology defined by the semi-norms r ~ q ( P ( -  D)qD) and 
~ H ~ P ( - D ) ~ H ~  ~) where ~ is any real number and yJ is any element of ~ ( C g j _ l ) ,  
with ~ denoting complement relative to ~.  Since q is stronger than the L~ norm it 
follows from Th. 3.2.5 of [H] that  q)=L2N E'(K~+I). If ~E(I)we have P ( - D ) c f E  
~o(~Kj_a) and hence by (3.4.4), ~ e E~(CKj-1). Since �9 is a Frdchet space, it follows 
from the closed graph theorem that  the natural mapping of qb into E,o(~Kj_a) is 
continuous. 

Let  us now consider the Frdchet space E~(~K~_~) and choose a special sequence 
{P~}F of semi-norms giving its topology. The semi-norm p~ shall have the form 
Pv(~) = [[Y~,~[[(a~ )with 2 , > 0  and ~p,eO,~(~K~_~), and the sequence shall have the 
property that  for every pair (u, N) of natural numbers there exists M such that  

p,  >~ Np ,  (Vv/>M). (3.4.7) 

Clearly, this is always possible. For  each v we now define a continuous semi-norm 
q~ on O,o(~)) by 

q; = (1 + s) q + p ,  (3.4.8) 

(where p~ (~0) ={[Y~q~ a~(~ for any ~ E/3~(~2)). 
Suppose now that  the lemma is false. Then, since (3.4.6) is satisfied if we take 

q '=  q~, there exists q~ ~ O~(K~+I) such that  

I / (~)  I ~>1 +e  (3.4.9) 

and q'~(P(-D)q~v) < 1 +e. (3.4.10) 
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From (3.4.7), (3.4.8) and (3.4.10) we get 

l + e  
p,  (P( - D) ~v,) < ~ (Vv >/M). 

This implies that  P( - D)~% -> 0 in ~(~K~_~). (3.4.11) 

Combining (3.4.8) and (3.4.10) we also have 

q(P(-D)%,) < 1. (3.4.12} 

Thus the sequence {~,} is bounded in O, and hence by the continuity proved above 
it is bounded in ~(~K~_I). Hence by Theorem 2.3.5 the sequence is bounded in 
~~ with kg=exp  (/~o~). Applying a generalized Th. 2.3.9 of [H] to two 
different /~ we then see that  the sequence is precompact in each B~~ 
Hence by a diagonal process it is precompact in E~(CK~_I) (Theorem 2.3.9). We 
want to prove that  q,-~0 in E~(CK~_~). Replace {q~} by any subsequence converging 
in ,~,,,(~K;_I) and let the limit be q~. We claim that  ~0=0 in ~K~_ 1. By (3.4.3) it is 
enough to prove that  P ( - D ) ~ = 0  in ~Kj_ 1 for some ~fE E'(~) such that  yJ=~ iR 
{]K~4. We will now construct such a % Since q is stronger than the L 2 norm and 
q(P(-D)cf,)<l, the sequence {P(-D)~v} is bounded in L~. Thus by Th. 3.2.5 
of [H], the sequence {~} is bounded in L 2 = Bz.1. Hence by Th. 2.2.3 of [H], {~,} 
is precompact in B2.k if kE :K is such that  k(~)->0 when ] ~ [ - ~ .  Choose such a k. 
Take a subsubsequence, this time converging in B2.k and call its limit ~f. By (3.4.11) 
we have P ( - D ) ~ = 0  in CK~ ~. But we also have y~=0 in ~K~+a (by the definition 
of (I)) and y~ =~  in {~K~_ 1 (by Theorem 2.3.5). Thus we have found a suitable ~f. This 
proves that  ~,-~0 in ~r 

To complete the proof of the lemma we choose Z ~ O~(K;), a local unit for K;_~. 
We get q~= (1-Z)~,-->0 in 0~o(~) and thus P(-D)cf:->O in Oo,(~) by Theorem 
1.3.27. Taking ~'=Zq~, we then get from (3.4.9) and (3.4.12) that  for sufficiently 
large v, 

]/@~')[>1+2e/3 and q(P(-D)cf:')<l+e/3. 

Since supp ~0~' c K;, this contradicts (3.4.5). The proof of the lemma is complete. 

End o/proo/ o/ Theorem 3.4.7. Choose e j>0 such that  ~ F  er Let ql be the 
L 2 norm. Using the lemma we successively construct semi-norms q~ in O,~(~) such tha t  

<qj(P(-D)cf) if ~EO~(K~), (3.4.13) 

and qj+l(y~) = (1 +ej)qj(y~) if ~EO~(Kj_I). 

Then q(v)=lim qj(~f) exists, and q is a continuous semi-norm in ~o,(g2), since 

o r  

q(~)=qA~)YI(l+ek) if ~eO~(Kj-1).  
J 

From (3.4.13) it follows that  (3.4.2) holds. This completes the proof of Theorem 3.4.7. 
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From Theorem 3.4.7 and Corollary 3.4.3 we get: 

Corollary 3.4.9. Let wE ~I. I / f 2  is an open convex set in R n, the equation P ( D ) u = /  
has a solution uE~: (g2 ) /o r  e v e r y / E ~ o ( ~ ) .  

We will now prove the counterpart of Th. 3.6.3 of [HI (necessity of strong P- 
convexity for the existence of solutions). The proof of that  theorem depends on 
Lem. 3.6.1, which roughly states that  if vE E' and there is a fixed "degree of local 
regularity" shared by every derivative of v, then v E 9 .  Instead of derivatives we will 
consider convolutions with distributions having their supports near the origin: 

Lemma 3.4.10. Let eg E 7~l and let r > 0 ,  ~ > 0  and a E R ~ be given. Le t / z  E ~o(a +Bsr) 
and suppose that 

~1oo (a + Bar) (Vu E C~o (Br)). U -)(7 ~ C low, eXp (-)~m) 

Then be E E~(a + Br). 

Proo/. We may assume that  a = 0 .  Let y)EO,oo(Ber) be a local unit for/~r and let 
E ~(B4~).  Then with u as in the hypothesis, we have ~(u ~-~/t)E B~.exp(-a~). 1 Thus 

' B  we may in the rest of the proof assume tha t /u  E E~(2r) .  Then if Z E O~(B4~) is a 
local unit for Ba~, the hypothesis implies that  

Thus ~/~ < C~ exp (2w), and the lemma follows, if for each l~>0 we can find u such 
that  i n f l ~ e x p ( - h o  ) >0. This can be done by choosing vED~(Br) with ~>0  
(Corollary 1.3.17) and defining u E E~,(B~) by '~ =O~+exp (leo). 

Theorem 3.4.11. Let oJ E ~ .  I / P ( D ) u  = [ has a solution u E l):(g2) /or each / E D~,(~), 
i t /ol lows that ~ is strongly (P, w)-convex. 

Proo/. Suppose that  s is not strongly (P, eo)-convex. Let  K be a compact subset 
of ~ and choose compact sets Kj  (]= 1, 2 .... ) such that  Kj/~ S~).  Using Theorem 
3.3.2 we construct (as in the proof of Th. 3.6.3. of [H]) a sequence {xj}F of points in 
f2, a sequence {/ts}~ of elements in ~ ' ( f2)c  ES(g2) and a decreasing sequence {~2j}~ of 
open balls f2~ = B4~j (with center origin and radius 4rj) such that  the compact sets 
f t j  + supp/t~ are contained in ~ and the following four relations hold: 

sing<o supp P(  - D)/z~ ~ K (V]), 

xs E singo, supp its (VT), (3.4.14) 

x ~ K s  (Vj), (3.4.15) 

and x ~ + s u p p / t ~  (]>k). (3.4.16) 

By succesively shrinking the f2~ for ] = 1, 2, ..., we strengthen (3.4.15) and (3.4.16), 
respectively, as follows: 

1 Note added in proo]. This is no t  evident.  We m a y  use funct ional  analysis  to give the  hy- 
po thes i s  a quant i ta t ive  form and  then  apply  ]Fourier's inversion formula  to y). 
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(xr ~1r n K s = O  (V]), (3.4.17) 

and (xr + ~r R ( ~  + supp ff~) = O  (j > k). (3.4.18) 

To simplify nota t ion  we will in the rest of the proof write ]l" I[~ for I1" I1~ ~) and 
II1" II1~ for II" I1+.~ with k : e x p  ~tta. B y  Theorem 1.8.14 we m a y  choose s~>0 in such 
a way  tha t  

II1  111-  < ~ .  (3.4.19) 

w e  will now choose the elements of two sequences {l~}~ and {i~}F of positive numbers  
and a sequence {u~}F with u~ s in the following order: 10, ~ ,  u~, 11, 12, u~ . . . . .  
and in the following way: We s tar t  with 10=0. We define X~=s~+lz_x+l .  Since 
x~ ~ sing~ supp/~z we m a y  by  Lemma  3.4.10 (with ~ replaced by  to) choose u ~  s 
such tha t  

l /  " "  ~ ~ ' ~ l o c  ~- ~u~ ~ ~ . . . .  ~ (_~ )  (x~ + t~) .  (3.4.20) 

Finally, by  Theorem 1.8.14 we m a y  choose l k in such a way tha t  

II1  111-  < (3.4 21) 
We now claim tha t  lk-~ + ~ .  In  fact,  ][]u~-x-~u~[]]-a-~< ~ ,  and thus by  (3.4.20)we 
have 2~ < Iz + s~, which means tha t  l~ > 1 + l~_~. 

We now define [(~) = ~ ?  exp ( - i<x~, ~>) 4~( - ~), t ha t  is, 

/(~) = ~ 4~ ( 7 - ~ )  (v~ e ~ (t~)). 
1 

The series converges in O~,(gl) since by  (3.4.17) only a finite number  of the sets 
xk + ~k meet  the compact  set supp V. Now suppose tha t  P(D) u = / for some u E ~ , (g l ) .  
This means tha t  

v T u(P( -- D) ~p) =/(~) = ~ uk (-xky~) (V~ e ~ (gl)). (3.4.22) 
1 

If  ~eO~(glk),  we have /~k~-~ED~(gl) by  Theorem 1.7.3, and hence we m a y  apply  
(3.4.22) to yJ=#k~-~, which gives 

o r  j~__l v -)(- . u(P(-D)luk-X-cf)= u~('r-x~(#~ of)) .= (3.4.23) 

Since supp (#k~-~)csupp~uk§ it follows from (3.4.18) tha t  all terms in (3.4.23) 
with j > k must  vanish, and we get as in [H] 

k - 1  
v v -X-  

Uk@-xk(~U~* ~ ) ) = u ( P ( - - D ) # k * c f ) -  l~=lU](~-xi([~tk ~))). 

Since ~(~-x~) = (v-x-V) (x), this m a y  be wri t ten  

k - - 1  

(Uk~tk~ecf)(Xk)=u(P(--D)/x~q~)--j~I(U~IXk~eq~)(X ~) (V~ve~,~(~k)). (3.4.24) 

We will now est imate the various terms of (3.4.24). We first no te  t ha t  using (3.4.19) 
and (3.4.21) we have 
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I ~ , ~  ~I = I ~  ( ~  ~)l < (2~)-"lll~lll-~ lI,~q~ll,~ 

Since {/~} is increasing, this gives by the choice of ~ 

l u ~ k ~ l  < ~l l~l l~ (J< ~, v~ ~ ~ ( ~ ) .  (3.4.25) 
~ _ _  

Let Z ~ ~ o ( ~ )  be a local unit for K such that  K = ~x + supp Z c ~.  Then if b is 
the constant of condition (y), applied to to, and m is the order of P, we have 

' < o o  

where we have written 

v~ = ZP( -- D) ff~, and 

and vg ~ O,~ (~), 

v~ = (1 - z )  ~ ' (  - 1 ) )  ff~. 

Since supp v~ ~e ~ is contained in the compact set supp ffk + ~ c ~,  there are con- 
stants C and 2 such that  

l u ( v ~ ) l  < o l I~ ;~ I I~  ( v ~  ~ (~k ) ) ,  

and thus ]u(v  < of f ' :  II ~ ll~ (3.4.26) 

~ C tt t for all ~ and all ~ e Z ~ ( ~ )  (with O~-- lll~lll~-~). To estimate ~ ( ~ ) f i n a l l y ,  
we note that  supp (v~ ~e ~) c K when ~ E ~ (g2k)and that  we have for all a 

[l~k ~I[. = s~+m/bo 

If  a is so chosen that  it can be used as 2 in (1.6.1)with K replaced by K, we 
therefore obtain 

l u(~ ~ r < o II ~ ll,+,~+ ~/0 (v~ e o~ (~)) .  (3.4.27) 

Summing up (3.4.24)-(3.4.27), we have proved 

[(u~ ~ ~ ~ ~) (*~)l < c ll~ II~, (v~ e 9o (~)) ,  (3.4.28) 

if k is so large that  a + m / b  <~ 1~-1 + 1. 
We will now prove that  (3.4.28) implies 

U 9 ( -  ~ ~ ' ~ l o c  k ffk ~ ~ . e x p ( - ~ )  (x~ + ~ ) .  (3.4.29) 

We may assume that  x~=O, and then we obtain if ~6  ~o0(g2~), 

~c'll~ll~, (v~soo). 
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Here we have used Theorem 2.2.7. Writing v~. (uk~-#~) =w, we have thus proved that  
w is a continuous linear form on Bl.k with k = e x p  (2~to). Thus by  a generalized 
Th. 2.2.9 of [I-I], wEB . . . .  p(_~) for each ~oEO~0(~k). This proves (3.4.29). But  
(3.4.29) contradicts (3.4.20), and the assumption that  P ( D ) u = / i s  thus disproved. 
The proof of the theorem is complete. 

We note that  we have in fact proved the necessity of a condition, apparently 
stronger than strong (P, ~o)-convexity, as stated in the following theorem, which 
collects the main results of this section: 

Theorem 3.4.12. Let o~ E 711, and let ~ be an open set in RL Then the/ollowing three 
conditions on ~ and the di/[erential operator P(D) are equivalent: 

(i) P(D)(O:(f~))---O~o(a). 

(ii) ~ is strongly (P, r (c]. De/inition 3.4.1). 

(iii) ~ is strongly (P, o))-convex and (3.4.1) holds/or all/.t E E~(~). 

Chapter IV. Interior regularity 

4.0. Introduction 

In this chapter we will study a concept called e0-hypoellipticity, for o)(~)= 
log (1+ ]~]) reducing to hypoelliptieity. Friedman [9] has studied this concept 
with w(~) = ]~11/~. In particular, the proof of Lemma 4.1.3 is adapted from Chap. 
11, Sect. 2, of [9]. Otherwise, the present chapter is closer related to Chap. IV of [H]. 

The classical condition of hypoellipticity is the property that  every u E ~ '  with 
P(D)u=O is in fact in s The corresponding algebraic property of the polynomial 
P is that  Im ~-+ oo if ~-+ ~ on the surface P(~) = 0. As is well known, this condition 
is equivalent to the following one: For some c >0  and each C there exists B such that  
P(~) = 0 implies [~ [ ~> C[$1 c - B. Thus the (a priori) intermediate condition "For  each 
A there exists B such that  P (~)=0  implies that  I~I ~ A  log (1+ ] ~ I ) - B "  is also 
equivalent to hypoellipticity. Precisely this condition generalizes to our situation. 
Replacing log (1 + I~1 ) by eo(~) with o) E 7/1, we get a necessary and sufficient condition 
that  every u E Oh with P(D) u = 0 is in fact in E and that  every u E ~ '  with P(D) u = 0 
is in fact in s162 (Theorem 4.1.1). Thus a hypoelliptic equation may have "wild" 
solutions, provided they are sufficiently "wild". 

At the end of the chapter we discuss relations between ellipticity and to-hypo- 
ellipticity. 

4.1. ~-hypoelliptic operators 

We collect our main results in the following theorem. 

Theorem 4.1.1. Let ~o 1 and O92E ~ and let co=~o1+~o ~. Let P(D) be a di//erential 
operator with constant coefficients. Then the ]ollowing ]our conditions are equivalent: 

(i) For each A >0 there exists B such that 

P(~) = 0 implies [~71 >~ Ao~(~) - B. 

(ii) P has a ]undamental solution E E O'(R ~) such that E E E~(R~N C{0)). 
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(iii) For any open set ~ in R ~, ]rom uE~(s163  and P(D)uE 8~(~) it ]oUows that 

(iv) For some non-empty open set ~ in R ~, each solution u e ~ ( g s  o/P(D)u=O 
is in/act in ~ , (~) .  

Definition 4.1.2. I /  P(D) satisfies these conditions, we say that P(D) is ~o-hypo. 
elliptic. 

Proo/ o/ Theorem 4.1.1. I t  is trivial that  (iii) implies (iv). We will now prove first 
that  (iv) implies (i), then that  (ii) implies (iii) and finally that  (i) implies (ii). 

Let ~ be as in (iv). Let S be an open ball with S ~  ~ ~ and let H be the support 
function of ~q. Let  ~t>0 be fixed and consider the two Frdchet spaces ~o~,(~q) and 
:~ = {uE B~~ (~); P(D)u =0 in ~}, where in :~ we take the topology induced by 
that  of ~oc ox.~(_~,) .  Choose ~) in D~(S) such that  ~(0) 4: O. We claim that  the mapping 
u-+y~u maps :~ into ~(~q)  and that  this mapping is closed. 

First, by condition (iv), if u ~ 9:, then u E ~ , ( ~ )  and hence y~u E O~,(S). Second, 
suppose that  u~ -*0 in :~ and y~u~ -+v in O~,(S). Considering in :~ the semi-norm given 
by u - ~  [ [~u[[1 ,exp(_~o~) ,  w e  see that  ~s, ] (~u~) ̂  (~)[ exp (-2w2(~)) -~0, which implies 
~s, [~(~)Id~=O. Thus v=O, since ~ is entire. 

We now apply the closed graph theorem and Corollary 1.4.3. We conclude that  
there exist a constant C and a function ~ E ~ ( ~ )  such that  

:~.sup I(~u) ^ (~)l e~'(~-'(')-~'~ < c f l  (eu) ^ (~)1 ~-~(~) d~ (Vu e :~). (4.1.1) 

Let  ~o E C n be such that  P(~o) = 0 and define u by u(x) = d ~' ~0>. Clearly, u E :~, and 
we have (gu) ̂  (~) = ~ (~ -  ~o) and (~ou) ̂  (~) = ~ ( ~ -  ~o)" We now apply (4.1.1) to the 
present u and estimate the sup in the left-hand side by the value for ~=  ~o. 
We get 

1r I < ejl  c0) l d8 

e-~(~')[I  8(8 - 8o - i~o) l e ~(~'-~) as. (4.1.2) C 
d 

Since ~ E O~, (~), the last integral can by Theorem 1.4.1 (with s = 1) be estimated 
by Cxexp (He(~o)+ ~o ), where H e is the support function of the convex hull of 
supp Q. Thus, if H(~) + He(~) ~< K [~ [, we get from (4.1.2): 

(K + 2) [~0 ] >1~(co,(}o) + c%(}0)) - l o g  (cca/l~(o) l). 

Since ~ is any positive number and ~0 is any element of C n with P(~0) = 0 and since 
the last term does not depend on $o, we have proved (i). 

Next  we prove the implication (ii)~ (iii). Let  ~ and u be as in the hypothesis of 
(iii) and let E E O'N ~(R~N C(0)) be the fundamental solution whose existence is 
guaranteed by (ii). Let  U be an arbitrary (bounded) open set such that  U c  c ~ .  
I t  is then enough to prove that  uEE~I(U). Let (~>0 be so small that  U §  cg2, 
and let ~EO~(~) be a local unit for U+B~ and gEO~(Bo) a local unit for B�89 
Since ~u E E~ we have ~u = E-~P(D)(~u), and we may thus write Qu=u 1 +u 2 with 
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U 1 = P(D) (1 - ~) E-)<- (Ou) 

and  u~ = ~E+P(D) (Ou). 

Since (1 - ~) E E ~ ( R n ) ,  we have  P(D) (1 - ~) E E ,~(R n) b y  Theorem 1.3.27, and  thus  
(by Theorem 2.3.10) we have  u~ E ,~(Rn). On the other  hand,  we have  0u = u in U + B~, 
and  hence b y  hypothesis ,  P(D)(ou)Eg~(U+B~). Since ~EE~[o~(B~), we get b y  
Theorem 2.3.10 t ha t  u~ E ~ , ( U ) .  Since u~ +u~ = u  in U, the  result  follows. 

The  final implicat ion ( i )~  (ii) we formula te  as a separa te  lemma:  

L e m m a  4.1.3. Let ~oE'm. Suppose that /or each A > 0  there exists B such that 
P(~) =0 implies ]~[ >1 A~o(~)- B. Then P has a/undamental solution 

EEO'(R ~) N E~(R~N C{0}). 

Proo/. I f  necessary,  we first  make  an or thogonal  coordinate  t r ans format ion  to  
arrange t h a t  all pure  powers  in the principal  pa r t  of P have  non-zero coefficients. 
T h a t  is, for i = 1, 2 . . . . .  n, the fo rm of P is ai$~ + lower  order te rms  in $~ (with as # 0). 
The hypothesis  of the l e m m a  is not  affected, since I ~ [ is invar ian t  under  a n y  orthogo- 
nal  t ransformat ion .  Le t  k = min~ ] a~]. 

We now define E in the  following classical way.  I f  ~ E ~ ( R ' ) ,  we take  

where the  integrat ion is over  a " H S r m a n d e r  ladder"  T (see e.g. [9], p. 285). On T 
we have  ]P(~)I > k. Outside some cube Q, the  in tegrat ion can b y  our  hypothes is  
be chosen to be over  R n. From the classical construct ion it  follows t h a t  E is a funda-  

in Thus  it to menta l  solut ion^ O'(R~). only remains  prove  t ha t  E EE~(R~N C{0}). 
Le t  ~EO~(R~N (;{0}). We have  to prove  t ha t  ~ E E O + ,  tha t  is, t h a t  for any  ~ > 0  
we have  

sup [(~E)^ (3)[ e ~~ < ~ .  (4.1.3) 
T E R n  

Since ~ E  E E' ,  we m a y  use the  Four ie r -Lap lace  t ransform:  

(~E) ^ (3) = (~E)x (e -~(x' ~>)= E~ @(x) e -~<x' ~>). 

Taking  ~p(x)= ~(x)e  -~<z'~>, we then  get f rom the definit ion of E:  

(2~) ~ (~E) ^ (3) =/ (~)  + g(~) 

~ t h  g(~) = ~ ~( - ~ + 3) d~ 
3:  ., ~ P(~) 

and /(~) = ~ . -~( - $ + 3!'d~. 
j R  ncQ P(~) ,, 

Here  q = {~; max~ [~l ~< M} is the  above-ment ioned  cube. We  will p rove  (4.1.3) b y  
proving t h a t  for a n y  choice of M,  we have  sup ]g(T) [ e a~(~) < oo (y2), and  t ha t  g iven 

it  is possible to choose M so large t h a t  
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T ~ n  

To prove the first of these results it suffices to notice tha t  the integrat ion is over 
a compact  set where IP(~)] >1~ and where we m a y  obtain  f rom Theorem 1.4.1 an 
est imate of the form 

[~( - ~ + ~)l~< Ce -z~176 (4.1.5) 

I t  remains to prove the second result. 
Let  us fix ~t > 0. Choose A in such a wa y  tha t  (with (~ to be determined below) 

f e (a-'~A)~'(~) d~ < c~ (4.1.6) 

(cf. Proposi t ion 1.3.26). Let  B be the number  whose existence is guaranteed b y  hypo-  
thesis. We now choose M so large tha t  A c o ( ~ ) - B - 2 > 0  outside Q. We claim tha t  
with this choice of M,  (4.1.4) holds. I f  so, the lemma is proved. 

We star t  by  using a par t i t ion of un i ty  to write q as a sum of functions ~j with 
supports  in half-spaces, no t  containing the origin. I n  fact,  ~ is zero in a neighborhood 
of the origin, say when max~ ]x~[ < 3& We can thus  choose functions Z1, .-.,Z2n E ~ 
such tha t  ~ . Z j = I  in supp ~0 and such tha t  s u p p z ~ { x ;  xv>2r and suppz2v_l ~ 
{x; x v <  - 2 ~ }  ( v = l ,  2 . . . .  , n). Let  qJ=ZJq.  We consider 

f~ 4~ ( - ~ + 3) d~ h~(~:) = .,~c,~ P ( ~ )  

and  claim tha t  sup I/*v (r) l ea~(~) < ~o. (4.1.7) 
T E R n  

To simplify nota t ion  we consider only the case v = 1. Let  us thus write $ = ($1, $') 
where $' = ($2, ..-, tn) and  similarly for s e a n d  ~1, Let  us define Q' = {~:' e R ~-1 ; 
maxj~> 2 ]~=j] < M} and F(~) = r - ~" +r)/P(~).  Then we have /2(r) =/Q,('c) +/CQ" (r), 
where we have wri t ten 

and fcQ d~' f_ "~ /cQ" (3) = F(~)  d~l. 
O0 

We will now deform the integrat ion contours of the inner integrals and use the fact  
tha t  ~2 and P are analytic.  I f  necessary we first apply  L e m m a  1.2.4 and  Theorem 
1.3.18 to arrange tha t  ~o is sufficiently smooth.  B y  Lemma 1.2.4 we have for some 
V <:  17I ,  

We will always keep within the set where ~' is real and ]~/] = ]~11 4 A ~ o ( ~ ) - B - 1 .  
m Factor ing  P as a polynomial  in ~1 we can then prove tha t  IP(~') ] ~ ]c (cos v) , and  thus 

2 '  is analytic.  We claim tha t  for each fixed ~'E CQ' we have 
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f _ d~l ~ /~(~)d~l, (4.1.9) 

where the curve ? in the $1-plane is defined by 

U~ = Aco(~) - B - 1. (4.1.10) 

Since ~2EO~({x; Xl>2(~}) , we get from Theorem 1.4.1 (with e=(~) that  if ~' is real 
and U1 >0, then 

1~ ( - ~ + 3) 1 ~< C e -a~(-r (4.1.11) 

Thus for real ~' and positive Ux we have 

]F(~)i ~< C exp (20)( - 3)) e_a~(_~)_~n,. 
k(cos v) m 

This implies that  ~ I F ( ~ ) I  d~l-> 0 when ]~[-->o~, and hence (4.1.9) follows. Thus 
we have 

s (4.1.12) 

From (4.1.8), (4.1.10) and (4.1.11) we get 

~-~(T)+~(s+l) | e(~-~A) ~o(~) d~ 1 fvF(~) d~  I C z+~ 
k ( c o s  v F  § ~ J _  ~ " 

Thus by (4.1.12), 

and from (4.1.6) it follows that  (4.1.7) holds with/co'  instead of/~. 
We will now consider/Q.. We lift the integration path in the same way, this time 

only to the part of ? on which I ~i I >~ M and use the same estimates as above. We 
must also estimate the integrals (where Uy =Ar • M, ~ ' ) -  B - 1 )  

fQ ~0 y �9 t d~' F( + M + ~?i, ~ ) du~- 

Since the integration is over a subset of Q' • I,  where I is a fixed interval on the 
Ul-axis, it suffices to use an estimate of the form (4.1.5) for ~e. We have thus proved 
(4.1.7). To prove the corresponding inequality for/2,-1, we only have to choose as 
? the curve U , = - A c o ( ~ ) + B + I ,  use the fact that  ~ _ 1 EO~ ( {x ; x v < - 2 8 } )  and 
proceed as above. We have thus proved (4.1.4). This completes the proof of the lemma 
and of Theorem 4.1.1. 

Corollary 4.1.4. I / P ( D )  is elliptic, then P(D) is r /or each r E ?Yl. I n  
particular, i / P ( D )  is elliptic and ue~ '~(~)  /or some o~E ~ and P(D)u=O in ~,  then 
u is analytic in ~ .  

402 



ARKIV :FOll MATEMATIK. Bd 6 nr 21 

Proo[. From the ellipticity it follows that  there exist constants A and B such tha t  

P($) = 0  implies IV] ~>AI#I-B 
(cf. [I-I], Cot. 4.4.1, or [9], Chap. 11, Th. 9). Then by  Corollary 1.2.8, condition (i) 
of Theorem 4.1.1 is fulfilled for each r E ~ .  This proves the first result. To get the 
last result, we apply condition (iv) of Theorem 4.1.1 to conclude that  uCE~(~) 
which is more than enough to prove that  u is analytic, using ellipticity in the classical 
way.  

Conversely, we will prove tha t  elliptic operators are the only ones which are 
eo-hypoelliptic for each co E ~?n. A related result is given in [7]. In  our case, the result 
is true even in the following strong form, where we may  take e.g. w(~) ~ ] ~]/(log ]~:] )2. 

Theorem 4.1.5. Let co E ]~ be given and suppose that/or every ~ > 1 we have [ ~ ] lit.< e). 
Then P(D) is c~-hypoelliptic i/ and only i /P (D)  is elliptic. 

Proo/. We only have to prove tha t  if P(D) is ~o-hypoelliptic, then P(D) is elliptic. 
Let  P(D)u =0 and u E D'. Then by  hypothesis and Example  1.5.7, u is in the Gevrey 
class C{kr) for every y > l .  Thus by  Th. 4.4.3 of [I-I], for each y E R  n and each ~ > 1  
there exist constants a ~> 1 and C > 0 and c > 0 such tha t  

kr>~ck ~ (k=  1, 2; ...), (4.1.13) 

and ] <y, $>] ~< C(1 + IV l)" if P(~) = 0. (4.1.14) 

Then by  (4.1.13), we have 1 ~<a ~<),. Thus, using (4.1.14) and Def. 4.4.1 of [HI, we 
have ~(y)=1 for  all y E R  ~, which by  Th. 4.4.6 of [I-I] gives the desired result. 

Chapter V. Differential equations which have no solutions 

5.0. Introduction 

Let us consider the famous example of H. Lewy, namely the equation 

- iDlU + D2u-2@l  +ix2).Dau =/.  

Here / is a certain function in C~176 such tha t  for no open non-void ~ does there 
exist a solution u ED ' (~ ) .  I t  is now natural  to ask if for any toe ~ we m a y  choose 
/E s in such a way tha t  we do not even have a solution u E ~o(42). We will prove 
tha t  the answer is affirmative. In  fact we will consider the necessary condition given 
by  H6rmander  ([12], [13] and [I-I], Chap. VI) for the local existence of a solution 
u E O '  of an equation P(x, D ) u = / f o r  e a c h / E  E- We will prove tha t  if P(x, D) is of 
first order and has analytic coefficients, then the same condition is necessary for 
the local existence of a solution u E ~ ,  for each /E s 

5.1. Conditions for non-existence 

In  an open set ~ c R n we consider a differential operator 

P(x ,D)= ~ a~(x)D ~ 
I~l~<m 
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of order m with coefficicnts in E~(~). We collect the notation of [H], Chap. VI, as 
follows: 

Definition 5.1.1. C~m_I(X, D) is the sum o/the terms o/order exactly 2 m - 1  in the 
commutator P(x, D)P(x, D) - P ( x ,  D) P(x, D), where P(x, D) = ~l~l<m 5~(X) D a. 

We will now state a weak form of the main result, partially generalizing Th. 6.1.1 
of [H]. We denote by  Pro(x, D) the principal part  ~l~l=ma~(x)D ~. 

Theorem 5.1.2. Let P(x, D) be a linear ]irst order partial di//erential operator with 
analytic coe/jicients in ~.  Let co E ~ .  Suppose that the equation 

t'(x, 1)) u = ] 

has a solution u E O ~ ( ~ ) / o r  each ] E ~ ( ~ ) .  Then we have 

(5.1.1) 

Cl(x,~)=O i/ Pl(X,~)=O, where x E ~  and ~ER n. 

Before giving the proof we will also state Theorem 5.1.4, which is a strong form 
of the main result, partially generalizing Th. 6.1.2 of ]HI. The proof of the strong 
result, assuming the weak one, proceeds as in ]HI with obvious changes, and we will 
not repeat it. 

Definition 5.1.3. Let w E ~ .  We denote by $~(~) the Frdchet space which is the closure 
o/Oo,(~) in S~. 

Theorem 5.1.4. Suppose that the coe]/icients o/ the ]irst order operator P(x, D) are 
analytic in ~.  Suppose that N is dense in ~,  where N is de/ined as the set o/points 
x in ~ / o r  which there exists ~ E R n with 

Cl(x,~)#O but Pl(x ,~)=O. 

Let wE ~c.  Then there exist/unctions ]ES~(~) such that the equation (5.1.1) does not 
have any solution u E ~ ( ~ 1 )  /or any open non-void set ~1 c ~.  The set o/such ]unctions 
] is o/the second category. 

We will prepare for the proof of Theorem 5.1.2 by deducing an inequality from 
the hypothesis. We prove the following lemma (cf. Lem. 6.1.2 of [H]), where tip is 
defined by  the identi ty S vPu dx = ~ (~Pv) u dx when v or u has compact  support. 

Lemma 5.1.5. Let co E ~ .  Suppose that P(x, D) is a linear partial di//erential operator 
(o] any order) with coe]]icients in E~(~). Suppose that the equation 

P(x, D)u = / 

has a solution uEO~(~)  /or each/EO~(~). Let ~1 be an open setc c ~ .  Then there 
exist constants C and ~ such that 

(5.1.2) 

Proo/. S/vdx is a bilinear form defined f o r / E  O~(~1) which is a Frdchet space and 
v E ~ which is a metric space defined as follows. T/ consists of the same elements 

404 



ARKIV FOR MATEMATIKo B d  6 nr  21 

V aS  ~(0(~1) but  is equipped with the semi-norms v~[[tPv[[~ (corresponding to all 
positive numbers 4). The bilinear form is obviously continuous in / for a fixed v 
(by Parseval 's  formula). On tile other hand, when / is fixed, we can by  hypothesis 
choose u e O~(~) such tha t  P(x, D) u =/ .  Hence 

f / v  (Pu) (v) u(tPv), dx 

which proves the continuity in v for a f ixed/ .  Thus by  [6], Chap. I I I , w  4, the bilinear 
form is continuous, which proves the lemma. 

Proo] o/Theorem 5.1.2. To save ~ for use as the variable on the Fourier transform 
side, we write 0 instead of ~ in the hypothesis of Theorem 5.1.2. Making the same 
reductions as in [H] we thus have to prove that  if for some 0 E R n we have 

P I ( 0 , 0 ) = 0  and C1(0,0)<0, (5.1.3) 

then (5.1.2) does not hold for any  choice of ~ and C. We will use the following lemma: 

Lemma 5.1.6. Let P(x, D) be a linear partial di//erential operator o/ order 1 with 
analytic coe//ieients in a neighborhood ~ o/ the origin in R ~ such that (5.1.3) holds. 
Then in some neighborhood 0 o/the origin in C ~ there is an analytic/unction, w such that 

Pl(x,  gradw)=O ( x E ~ N O ) ,  (5.1.4) 

w(z) = (z, O> + �89 ~ ~j~z~zk + O(z 3) (z-+o), (5.1.5) 

where the matrix c% is symmetric and has a positive de/inite imaginary part. 

The proof of Lemma 5.1.6 is given in [H], Lem. 6.1.3. (Since the coefficients of 
P1 are analytic, no modifications of the coefficients 'are needed. Also the function 
W o f / H I  can be used as it is, but of course at  the cost of having it defined only in 0.) 

Proo[ o/ Theorem 5.1.2, continued. By the Cauchy-Kovalevsky theorem there is 
in some neighborhood ~a of the origin in R ~ an analytic solution ~f of the equation 

tP(x, D)V, = O, 

and we may  assume tha t  ~v(0)= 1. 
Let ~ a ~  =~1N ~23 0 with the ~21 of Lemma 5.1.5 and the 0 of Lemma 5.1.6. 

Let  0 q ~ 4 =  =~23 and let ZED~(~3)  be a local unit for ~4. Define ~v=Z~v (defined 
as zero outside ~3). By  Corollary 1.5.15, q E ~,(~3) .  We also have q (0)=  1 and 

tP(x, D)~s = O in ~4. (5.1.6) 

Let  us now define for positive v (which we shall let --> + ~ )  and positive K 

.F~(x) = (K~) ~ e-~<~"~ with F(x) = e -�89 

h(x)  = ~(x). ~',(x) 

and v~ ( x ) = q)( x) . e ~ (~ )  

with the w of Lemma 5.1.6. 
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We have by Corollary 1.5.15 tha t  ]~ and v~E D~(~3). A change of variable gives 

f/gx)vgx)dx=/F(x)(~(x/K~)~.e-~<x,~ 
I f  ~3 is chosen sufficiently small, Re (i~2w(x/K~) < 0 when x/K~ E ~3. Thus we may  
apply the theorem of dominated convergence to get from (5.1.5) tha t  

v (x)dx-+ ( (0)) fexp (- �89 + Y dx 

when ~-+ § ~ .  
We claim that  the right-hand side is different from zero, at  least if K is sufficiently 

large. In  fact, by  dominated convergence it tends to ~ exp ( - � 8 9  12) dx when K-+  ~ .  
Thus to prove tha t  (5.1.2) is not valid, it is enough to fix a suitable K and prove tha t  

III/TIII~III~Pv~III~+o when x - - ~ + ~ .  (5.1.7) 

We will first estimate IIItpv~lll~. By (5.1.4) (with m = 1) we have 

tPv~ = e ~'~ . ~P~v, (5.1.8) 
and by  (5.1.6) we have thus 

tpv~ = 0 outside ~5, (5.1.9) 

where we have written gl 5 = ~ 3  N ~ .  We now claim tha t  for some ~ > 0  it is possible 
to choose ~3 and ~4 in such a way tha t  Re (iw(x)) <~ - 3 6  for x E ~5. In  fact, by  Lemma 
5.1.6, all we have to do is to choose g23 so small that  the remainder te rm in (5.1.5) 
does not destroy the effect of the positivity of I m  ~jk. Thus by  continuity we can 
find a complex neighborhood O 1 of ~5 such tha t  

[e~<z)[<~e -2<~ for z E O  1. (5.1.10) 

Combining (5.1.8), (5.1.9) and (5.1.10) and applying Theorem 1.5.16, we obtain 

and thus to prove (5.1.7) it is enough to prove tha t  

IIl,'  IIl  < (5.1.11) 
We may  assume tha t  e)E )~/~. Since ~ and tv~ E $~, it  follows from the proof of 

Proposition 1.8.3 tha t  to prove (5.1.11) it suffices to prove the z0,x(F:)<<-Ce ~ .  
Evidently,  ~ ( ~ )  = P((~ + ~20)/K~), and thus 

~0. ~ (F~) = sup t P (~ )  ] e ~ < ~ - + 0 )  ~< (2~) ~ ~ e ~<-  +o) sup  e -  +l~l' +~(~). 

Since (9 ( -~0) /~  2 -+0 when ~-+ c+, it is enough to prove tha t  for some constant C' 
we have 

sup ( - ]~]z + 2~w(K~))  ~< (~2 + C'. (5.1.12) 

For  each s > 0  there is a number  X: such that  ~tw(x) ~<~lx [ when ]x] ~>X~. Thus if 
>/x:, we get 

- l al ~ + 2 X ~ o ( K ~ )  ~< - (1 ~ l  - e K e )  2 + s~K:~2  ~< e~K2x2" 
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T a k i n g  ~ =(5�89 we h a v e  t h e n  p r o v e d  (5.1.12) w i t h  

C ' =  2~ s u p  ~(x) .  
Ixl<X e 

Th is  c o m p l e t e s  t h e  p r o o f  of T h e o r e m  5.1.2. 

University o/Stockholm, Stockholm, Sweden 
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