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Introduction 

This paper deals with generalizations of the following problem, which was given 
as one (No. 7) of 25 research problems in [1]. 

"If  /l(z) and /2(z) are two entire functions of lower order less than  one and 
if /l(Z) and  /2(z) have the same zeros, is ]l(Z)//~(z) a constant?"  

The solution of the research problem is t ha t  the quot ien t / l (z ) / /2 (z )  need not  
be a constant .  The proof is given in [8] by  the present author.  The same result 
can also be obtained as a direct consequence of Theorem 6.1 or 6.2 or 7.1 of 
this paper.  

I n  Chapter  I of this paper  we give the definitions of some set functions suit- 
able for funct ion theoretic applications. Of special interest is the set funct ion ~t(A) 
of Definition 1.2. This set funct ion was originally introduced (in [9]) by  the pre- 
sent author.  
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In  Chapter I I  there are given results analogous to the following: For every 
entire function /(z) it holds true that  the lower order of the product 

/ ( z ) e  = 

is at least equal to + 1, except for a nullset of a-values. The main part of this 
paper is an investigation of this nullset. 

In  Chapter I I I  we t ry  to give results converse to those in Chapter II .  One 
special result (cf. Theorem 6.2) is that  the quotient /x(Z)//2(z) in the original 
research problem [1] can be any entire function without zeros. 

In  Chapter IV we deal with various problems, which are in some way con- 
nected with the earlier parts of this paper. Especially the result in Section 9 in- 
dicates that  the (very small) nullsets A~(/) are by no means "almost countable". 

Chapter I. Set functions 

In  this chapter the definitions of three set functions are given. Each one of 
the three definitions contains an auxiliary function which is continuous and mono- 
tonic. These set functions are used for classifying noncountable nullsets in the 
complex plane. 

l .  The set function m(A) 

d ~ Let A be a set of complex numbers. The sequence { n}n=l of real numbers is 
called a ma]orizing sequence for the set A if there exists some sequence {an)~_l 
of complex numbers such that  the inequality 

la-a l<d  

holds for an infinity of values of n whenever a E A. 

Definition 1.1. Let A be a set o/complex numbers and g(x) a monotonic decreasing 
real /unction, de/ined /or x> 0, which satisfies 

lim q(x§ e) = 0 (1) 
x ~  g(x)  

/or every e > O. 
The measure m(A)= m(g(x), A) is then defined as the lower bound o/ real numbers 

l / k >  0 /or which {g(kn)}~=l is a majorizing sequence /or the set A. 

The set function re(A) is subadditive ([9], Satz 3). For the special case that  

g(x) = O ~, 0 < 0 < 1  

the set function m(g(x),A) is denoted tt(A). Notice that  changes in 0 are in. 
essential, since they do not affect the value of /t(A). In  particular, for 0 = e  -1 
the definition of #(A) can be written: 
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Definition 1.2. For a set A o/ complex numbers, /a(A) is de/ined as the lower 
t, Jurtd o/ positive numbers 1 /k  /or which 

dn = e- ekn, n = 1 ,  2 ,  . . .  

is a majorizing sequence /or the set A.  

2. The Hausdorff  measure h* (A) 

In  the following the real function h(t) is any continuous and monotonic in. 
creasing function, defined for t > O, and with limt-~oh(t) = O. 

Definition 2.1. Let A be a set o/ complex numbers. The value h*(A)=h*(h( t ) ,A)  
o/ the Hausdor// measure o/ A is de/ined as 

(i )) h* (A) = lim nf ~ h(d~ 
d-+O \ (2) ~ 1  / 

where d~ denotes the radius o/ the circle Ci, and the in/imum is taken over all cov- 
erings 

~J C~DA; d~<~. (2) 
i = l  

This definition is due to Hausdorff [6]. We now deduce a relation between the 
set functions re(A) and h* (A). 

Proposition 2.2. Let m(g(x), A) < 

and h(g(n)) < ~ , 

then h* (h(t), A) = O. 

Proo/. The meaning of m(g(x), A) < 

is t h a t  there exists some k, 0 < k < ~ ,  such that  the sequence 

{g(kn)}n%i 

is a majorizing sequence for the set A. 
The functions h(t) and g(x) are monotonic, and therefore, it follows from 

h(g(n)) < 
n = l  

that  ~ h(g(kn)) < ~ .  
n ~ l  
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For an arbitrary e>  0, let the number N(~) satisfy 

h(g(kn)) < ~. 
n -  N(e) 

From the fact that  {g(kn))~=l is a majorizing sequence for the set A, it follows 
that  the corresponding sequence of circles C~, for n~>N(8), can give a covering 
of the set A. This implies 

h*(h(t),A)<. ~ h(g(kn))<~. 
n = N(e) 

Since r  0 is arbitrary, the proof is complete. 

3. The generalized capacity C(A) 

For a survey on capacities and Hausdorff measures we refer to Taylor, [10]. 
In  Definition 3.1 below the real function r is continuous and strictly de- 

creasing for t > 0, and 
lim r  + ~ .  
t---> 0 

Definition 3.1. (Frostman [5]). Let A be a bounded Borel set and let v denote a 
positive mass distribution with 

= jAdv = 1 .  ?2( A ) 

Then C(A)=C(r is de/ined by 

Here r  denotes the inverse /unction, and r  co)=O. 

In  (3) the supremum is taken over all complex numbers z, and the infimum 
is taken over all positive mass distributions v with v(A)= 1. The value of the 
set function C(A) = C(r A) is called the generalized capacity of the set A with 
respect to the kernel function r 

When the kernel function r and the mass distribution v are given, the po- 
tential u(z) is defined as 

u(z} = ' r  $1)d~(O. 

For a given set A, the relation C(A)> 0 is equivalent to the existence of some 
positive mass distribution v, with u(A)> 0 such that  

= f r  ~1) d~(O < ~ < U(Z)  o<) 

In  order to establish a relation between m(A) and C(A), we prove the following 
proposition: 
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Propos i t ion  3.2. Let A be a given Borel set o/ complex numbers, and let (b(t) be 
a given positive kernel ]unction. I] 

m(g( x ), A) < c~ 

and also ~ O(g(n)) -1 < ~ ,  
n = l  

then C(qi)(t), ,A ) = O. 

Proo/. The assumption m(q(x),A)< co implies tha t  there exists some positive 
number  k, such tha t  {dn=g(kn)}~l  is a majorizing sequence for the set A (cf. 
Definition 1.1). 

Hence there exists some sequence {an}n~r of complex numbers such tha t  the 
circles 

cover the set A in the senee that  

A c  U C~ 
n = N  

for every N. 
Let  v be an arbi t rary  non-negative mass distribution with 

f Sv(~) > o. 

Denote v~ = fcdv(~)- 

Then, for every N > 0 we have the inequality 

Z ~ >~ d~(~) >t a~(~) > o 
N 

U Cn 
r~=N 

and therefore ~ v~ = + ~ .  

The kernel function q~(t) is monotonic and positive and v is non-negative, and 
therefore u(a~) is easy to estimate (el. Fros tman [5] p. 89). In  fact 

u(an) = f A~(lan -- r d~,(~) 

>10(g(kn)). f c  dv(~) = ~(g(kn)). vn. 
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This estimate of the potential u(an) gives 

U(an) (I)(g(kn))-I >~ ~ vn = + oo. 
n = l  n = 1  

The functions O(t) and g(x) are monotonic, and therefore 

O(g(n)) -1 < oo 
n = l  

o~ 

implies ~ O(g(kn))-l < oo. 
? t = l  

The upper bound for the potential  u(z) therefore turns out to be 

sup u(z) >~ sup U(an) = + c~ 

and this upper bound is independent of v, if SA dv(~)> 0. The capacity of the 
set A is therefore zero, 

C ( O ( t ) ,  A )  = 0 .  

This completes the proof of Proposition 3.2. 

C h a p t e r  II .  Coverings of  the set E t ( f )  

The main aim of this chapter is to prove and interpret a general result re- 
garding coverings of the set Et(/) (Theorem 5.3). 

We first define the generalized lower order of an entire function. This gen- 
eralization gives new classes of smaU sets A~(F(r),/(z)) of complex numbers. I t  
is an open question which set function (e.g. which function g(x) in Definition 1.1) 
is best suited for characterizing these sets A~(F(r),/(z)) for general F(r). 

4. The generalized lower order 

The function F(r) is continuous and strictly increasing from - ~  to + 
for r 0 < r <  + ~  (r 0 ~ > - ~ ) .  F(r) also satisfies 

lim ( F ( 2 r )  - F(r)) = 0 (4)  
r - + o o  

and lim ( F ( r )  - F ( l o g  r))  = + ~ .  (5)  

The inverse function is denoted by  F-l (x) .  By M ( r ) w e  denote maxl~l=r]/(z)[. 

Delinition 4.1. The generalized lower order o/ the/unct ion/(z)  with respect to F(r) 
is denoted by 

= 2(/(z)) = )~(F(r),/(z)). 
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I t  is de/fried by lim inf (F(log M(r)) - F(r)) = log ),. 
r---> ~ 

I /  the limit equals - ~ ,  then ~ = 0 .  

The same ~ can be ob ta ined  as the lower bound of posit ive numbers  t f o r  
which the inequal i ty  

log M (r) <~ F -1 (F(r) + log t) 

is val id for an  unbounded  set of r-values.  
Here  F - I ( F ( r ) + l o g t )  plays  the  role of r t. We denote 

g(r, t) = F - ~ (F(r) + log t) 

and  this funct ion satisfies the following funct ional  equat ion 

g(g(r, tl) , t2) = g(r, t 1 �9 t2) (6) 

(Proof of (6): App ly  F to bo th  sides of (6)). 
The usual definit ion of lower order  is obta ined  for  g(r, t ) =  r t, i.e. F ( r ) =  

log log r + const. 

Definition 4.2. When F(r), /(z) and t are given, the set Et(/)  =Et(F(r) ,  /(z)) is de- 
/ined as 

Et(/)  = {9~(z) ] ~(0) = 0, lim inf (F(log M~ (r)) - F(r)) < log t} 
r ---> r  

where M e (r) = m a x  [/(z) er I 
Izl ~r 

i.e. the set o/ entire /unctions q)(z) /or which the generalized lower order, with respect 
to F(r), o/ the product /(z)e ~(z) is less than t, and q~(O)= O. 

5. A covering theorem 

I n  this section we shall obta in  a covering of the set  E t ( / ) o f  entire functions. 
We therefore need a distance funct ion (say D) in the  space of all entire func- 
tions. 

Definition 5.1. Let q)(z) and y~(z) be two entire/unctions. For each r > 0 we de/ine 
the /ollgwing distance /unction D. 

D(r, 99, ~f) = ~ [Re (q)(r e ~~ -- q)(O) -- ~f(r e ~~ + ~v(0)) ] dO. 

Let  M,(r )  denote the following m a x i m u m  modulus  

M~(r) = m a x  [/(z)e~(Z)[ 
I z i = r  

where ](z) is the entire funct ion for  which the set  Et (F(r),/(z)) is to be examined.  
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We first prove a lemma. 

Lemma 5.2. Let /(z), q~(z) and vd(z ) be given entire /unctions with 

1(o) = 1, ~(o) = o, ~o(o) = o. 

Then, /or every r > 0 it holds true that 

log M r (r) <~ D(r, % ~p) ~- log M~ (r) >i. D(r, % ~p). (7) 

Proo/ o/ lemma 5.2. Let z = r .  e i~ The following inequali ty is obtained from 
Jensen's  formula and Definition 5.1. 

~ma~,  (log II(z) e~(~)l, log II(~) er(Z~l) dO 

= �89 log I I(z) e ~(z)" l(z) er(~)l dO + �89 IRe (~(z) - v / ( z ) ) [  dO 

~> ~rlog 1/2(0) e~(~176 + 2reD(r, % ~p) = 2reD(r, % 70. (8) 

How, assume tha t  (7) is not  true. Then we have 

log My (r) < D(r, % ~p) 

and log M r ( r  ) <~ D(r, % ~p). 

These inequalities applied to (8) give 

log I/(z ) e~(Z) I < D(r, % ~?) 

and log I/(z ) eV(Z) l = D(r, % y~) 

for Izl=r. 
Using ~(0)=~p(0) in the Jensen formula we obtain 

f? f? 2~ D(r, % ~p) = log I/(z) eV(Z) I dO = log ]/(z) e~(Z'[ dO < 27~ D(r, % ~p). 

This is a contradiction which proves the lemma. 
We now proceed to the covering theorem. 

Theorem 5.3. Let /(z) be an ent ire /unct ion which is not a constant. Let the num- 
bers x~> 1, n =  1,2 . . . .  , be given such that 

m-1 
Ym = I~ Xn has lim Ym = + ~ "  

7Z = 1  r/Z -"-~ ~ 
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Take a number rl such that F(rl)  > -  ~ and then let 

r~=g(rl ,  yn) , n = 2 , 3  . . . . .  

Let t > O. Then there exists some sequence o/ ent ire/unct ions q)~(z) so that the /unc-  
tion sets Sn de/ined by 

S~ = {q~(z) I D(r~, q~, 9~) < g(rn, x~ t)} (9) 

cover the set Et(F(r) , / (z) )  in the sense that 

E t ( F ( r ) , / ( z ) ) c  n 5 sn. (10) 
m = l  n = m  

F, g and Et are de/ined in Section 4, D in De/init ion 5.1. 

To get  a " s t rong"  result  in this theorem,  we mus t  Iet the  choice of the  num-  
X oo hers ( n}n=l depend on the  given g(r, t). 

Proo/ o/ Theorem 5.3. The funct ion F(r) satisfies 

l im (F(2r) - F(r)) = 0. (4) 

The entire funct ions /(z) and  k" zn. /(z)  have  the  same lower order  with respect  
to 2'(r) since i t  follows f rom (4) t h a t  

lim (F(log I kl + n log r + log M(r))  - F log M(r))  = 0 
r - - > ~  

when /(z) is not  a constant .  I n  the  sequel we assume t h a t  

1 (0)=1 ,  ~ ( 0 ) = 0 ,  ~%(0)=0. 

r When  the sequence { n}n=l i8 given, we define the  funct ions sets B~ b y  

Bn = {~(z) I ~(0) = 0, F( log Mr (r)) - F(r) <~ log t for  some r in r~ ~< r < r~ +1}. (11) 

Then  it  follows f rom the Defini t ion (4.2) of Et(/)  t h a t  {Bn}~=l cover  the  set 
Et(/)  in the  sense t h a t  

m - 1  n = r n  

This is because rn ~ + oo  which follows f rom 

F(r~) = F(r~) + log y~-+ + ~ .  

To p rove  (10) it is now sufficient to prove  t h a t  it is possible to choose the centre 
~ ( z )  of S~ so t ha t  

B~ c sn. (12) 
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For  the  special case t h a t  the  set  Bn is empty ,  there is nothing to prove.  I f  the 
funct ion set B~ is not  empty ,  let  ~v(z) and  ~v(z) denote  a rb i t r a ry  elements  in 
B~. Le t  r and ~ denote  corresponding r-values (cf. (11)). i.e. 

log M~(r) <~ g(r, t), log My (~) ~< g(~, t). 

The  nota t ions  can be chosen so t h a t  o~< r, i.e. 

r~ ~< ~ ~< r < r~+l. (13) 

I f  we can now prove  the  inequal i ty  

D(r~, q~, ~p) < g(rn, xnt), (14) 

then  we have  proved  Theorem 5.3, and  we have  also proved  t h a t  any  e lement  
F(z) in B~ can be chosen as the centre of the sphere S~ in (9). 

The  proof  of (14) is indirect.  We  assume 

D(rn, q~, ~) >~ g(rn, xn t). (15) 

The L e m m a  5.2 is applied to  the  inequal i ty  

log My (r,) ~< log M~ (e) ~< g(e, t) < 9(r, +1, t) = g(r 1, y= +1 t) = g(rl, ynX~t) = 

= g(rn, xnt) <~ D(r~, ~v, ~v), 

and we obtain  

log Mr (r~) >1 D(r,,  ~, ~f). 

The final es t imate  becomes 

g(r, t) >~ log M~(r) >~ log Mv(r~) >1 D(r~, ~, ~p) >1 g(r~, x~t) = g(rn+l, t) 

and r >/rn + 1. 

This contradicts  (13), and  the assumpt ion  (15) therefore was false. Hence  (14) 
is proved,  and the proof of Theorem 5.3 is complete.  

Definition 5.4. Let ](z) be an entire ]unction, t a real number and p a natural 
number. The set A~(])=A~(F(r) ,  ](z)) is de]ined as the set o] complex numbers a 
]or which 

lim inf (F(log M~(r)) - F(r)) < log t 

MPa(r) = m a x  ]/(z)" e~ZP I. 
Izi = r  

where 
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Thus, A ~ ( / )  is the set of complex numbers a, for which the generalized lower 
order of /(z) .e a :  with respect to F ( r )  is less than  t. 

I n t e r p r e t a t i o n  o/ T h e o r e m  5.3. Let p be a given natural  number. We intro- 
duce the assumption that  all functions denoted ~(z), ~ ( z )  and ~(z) are of the 
form : .  constant. Under this assumption we could once again formulate and 
prove (the old proof works) Theorem 5.3. 

However, for the present situation, we can actually compute the distance 
function D, as follows. 

1 f~IRe(a.rP.e~a-b.rP.e~'O)ldO=IrPla-b I. D ( r ,  az ' ,  bz ' )  = 

For a given b, bz ~ =~n(z), the sphere Sn in (9) corresponds to a circle for the 
a-values. The sphere of functions az ~ for which 

D ( r ,  az  p, bz ~) < g(r~, x~t)  

holds, corresponds to the following circle for the a-values: 

1 

or ]a - b ! < ~ . r ;  ~ . g(rn, xnt)  = dn. 

We now define the numbers xn by  

r ;  p" g(rn, xn( t  + s)) = 1 

for some arbi t rary  s >  0. 
For the special case g(r, t ) = r  t ( F ( r ) = l o g  log r) i t  then follows that  all the xn 

are equal: 

From Theorem 5.3 we recall tha t  

_ . :  r x n- l~ x n-1 r n = g ( r l ,  y n ) - y ~  1, 1 j = r l l  

- -  X l  which gives r , + l  - r~ .  

Together with 1 dn = : i t - ,  
- n  7g 
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this  becomes -1 dn+l = dn �9 (16) 

W e  not ice  t h a t  r 1 > 1 (F(rl) > - c~) implies  

d = : ~ . r - , ' x ' ~ O  
1 

a s  n - - ~  . 

As a consequence of (16) the re  exis ts  a n u m b e r  N > 0  such t h a t  

dn+N< e X~=e-e~l~ n > 0 .  

d ~ ma jo r i z ing  sequence for the  set AV(/) and  i t  now The sequence { =}~=1 is a 
follows f rom the  def ini t ion of major iz ing  sequences,  in Sect ion 1, t h a t  

_en.logxl r162 {e }n=l 
is also such a major iz ing  sequence for the  set A~(/). F r o m  Def in i t ion  1.2 i t  t hen  
follows 

p 1 
/x(A~([)) <~ (log xl)-~= (log ~ )  . 

Since s is a rb i t r a ry ,  i t  follows t h a t  

( ~ ( A I ' q ) )  < log . 

This resul t  can be fo rmu la t ed  as a theorem.  

Theorem 5.5. Let [(z) be an entire [unction, and let p > 0 be a given integer. The 
set A~(f) o/ a-values [or which the entire [unction 

f ( Z )  e azp 

is o] lower order less than t (0< t<p) satis/ies 

p - 1  

t~ is the set [unction of De[inition 1.2. 

The phrase  " lower  o rde r "  is here  used in i ts  o rd ina ry  sense. 

Chapter III. Subsets of the set Et(f) 
I n  Sect ion 6 of th is  chap te r  we p rove  t h a t  a n y  given countab le  set {~v~ (z)}~=l 

of ent i re  funct ions  can be con ta ined  in a set Et(F(r),/(z)). This s t a t e m e n t  (Theo- 
r em 6.1) holds t rue  for eve ry  admiss ib le  F( r ) .  
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The result in Section 7 concerns the special case F ( r ) =  log log r (i.e the lower 
order has the usual meaning). The sets of a-values for which azPEEt(/)  are in- 
vestigated, and  this gives a theorem (Theorem 7.1) converse to Theorem 5.5. 

6. Countable subsets of El(f)  

The function F(r) satisfies the assumptions in Section 4. 

lira (E(2r) -- F(r)) = 0 (4) 
r - - ->  oo  

lira (F(r)-  F( log  r ) ) =  + oo. (5) 
r ---> oo  

Theorem 6.1. For an arbitrary countable set {q~n(Z)}~=l o/ entire /unctions there 
exists some corresponding entire /unction /(z) with 

/or every n. 
2(F(r),/(z). e ~.~))  = 0 

This means tha t  
lira inf (F(log M~,  (r)) - F(r)) = - ~ ,  

r - - ->  o~ 

(is) 

where Me,  (r) = m a x  I I(z). eV"(z)[. 
Izl=r 

The proof of Theorem 6.1 makes use of the following theorem. 

Theorem 6.2. Let {~(z)}~=l "be a given sequence o/ entire/unctions,  and let h(r) 
be a monotonic /unction with 

lira h(r) = + cr 

Then there exists an entire /unction /(z) such that /or every n > O, 

log m a x  I / (z )  " e~"(~) I 
lira inf I~l=," = O. (19) 

r~  ~ h(r) " log r 

Proo/ o/ Theorem 6.2. Withou t  loss of general i ty  we m a y  assume tha t  every  
element of the sequence {~n( )}n=l occurs an  infinity of times in this sequence. 
Denote  

k(r) = ~h-~ .  log r. 

To prove Theorem 6.2 it is now sufficient to define an  entire funct ion ](z) which 
satisfies 

log m a x  /(z) e ~"~)] < k(r~) (20) 
I z  = r n  
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r r for some sequence { n}n=l with 
lim r n = -4- c ~ .  

n- ->  oo 

We now give the notations needed for the definition of the function [(z). Let 

9~(z) = ~ a.z ~. 
V = 0  

N 

Then we denote qn(N,z )=  ~ a . z  ~. 
v = 0  

P.(z) is the following polynomial 

where M~ and L .  are defined as follows. 

To begin with, let r 0=1,  L 0=1,  M 1=1.  

To obtain a recursive definition, assume that  the 3n numbers 

ro, Lo, M1, rl, L1, ..., rn-1, L~_~, Mn 
are already known. 

We then choose a number r .  which satisfies both 

logl-~]P.(z)[+ M='log 1+ q~"(Mn'z) <~�89 (21) 
~=1 Mn 

for Izl=r=, and r=> 2r~_l. 
The natural number L .  is then chosen, so that  for ]zl=rm~rn ( l<m~<n) ,  

8 = •  there holds, both for v = n  and v = n + l  

log(1  s'q"(~L"'z!]L"'eS'~"(z)l<2m-"-3k(rm)'L. ] ] (22) 

Finally M~+I is defined as 

We now consider a function /(z) defined by 

/(z)= f iP . ( z ) .  (23) 
n = l  

The inequality (22) shows that  the infinite product is convergent. For [z I = r m 
we then estimate log I/(z)e~"(z) I. Formula (21) gives: 

I logl-ilP~(z)l+Mm.log l+cYm ,z) ~�89 (24) 
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N o w  write Pn (z) = e -~'(z). Pn (z)" e ~(~) for n > m, in (23). First,  let s = 1 and v = 
n~>m in (22), 

l ~  L''e~n(z~ L ,  < 2m- ' -ak(r~)  (25) 

for H=rm. 
Then, let s = - 1 and v = n + 1 > m, i.e. Mr = Ln in (22). For  ]z I = rm we then  get  

~(M. z) ~ .  e_,~(~ ) log I (1 + ~ ) I<2m-*-~lc(rm). (26) 

The sum of (24)~ and (25) for all n ~> m, and (26) for all v > m, gives (20). Because 
rn ~> 2 ~ the condition 

lim r~ = + o~ 
n ---> oo  

of (20) is satisfied, and the proof of Theorem 6.2 is complete. 

Proo/ o/ Theorem 6.1. The funct ion F(r) is given and we intend to define a 
funct ion h(r) (h(r)+ ~ ,  and h(r) depends on F(r)) so tha t  (19) of Theorem 6.2 
implies (18) of Theorem 6.1. When  this is done, Theorem 6.1 follows from Theo- 
rem 6.2. 

The problem is now reduced to t ha t  of defining h(r) f rom F(r) so tha t  

whenever 

lira inf (F(log Mr (r)) - F(r)) = - oo (27) 
r - - +  oo  

lira inf IogM,. ( r )  0 
~ h(r) . log r 

or even when lim inf log M~,,(r) (28) < + c ~ .  
r~oo ]/h(r).log r 

Let  the funct ion h(r) be defined by 

F ( l / h ~  �9 log r) = 1 + F( log r). (29) 

B y  repeated use of (4) we obtain, for each fixed n 

lira (F(2 n. x) - F(x)) = O. (4') 
X---> Oo 

I t  follows f rom (4') and (29) t ha t  lira inf h(r)> 2 n, i.e. 

lim h(r )  = + oo. 
r ---> oo  

F r o m  (28) and (4') i t  follows tha t  
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tim inf (F(log M~,(r)) - F ( ~ h ~ ) .  log r)) ~< 0 
r ---> r 

but we also have: 
lim (F( l /h~  .log r) - F(log r)) = I 

(30) 

(29') 

and l i m  ( F ( l o g  r )  - F ( r ) )  = - ~ .  ( 5 ' )  
r ---> r 

The sum of (30), (29') and (5') gives (27) and the proof of Theorem 6.1 is com- 
plete. 

7. Subsets o f  the set A~ ( f )  

Our aim in this section is to show that  the constant (log19/t) -1 in Theorem 5.5 
cannot be replaced by any smaller real number. The question that  will remain 
unsolved is whether we can replace the inequality by strict inequality in (17) or 
vice versa for (31). 

As before, # denotes the set function of Definition 1.2. 

Theorem 7.1. Let t be a given real number, and 1o a given natural number, 
0 < t<19. A denotes a set o/ complex numbers. I n  order that there exist an entire 
/unction /(z) with 

A ~ A ~ ( / ( z ) ) ,  

a necessary condition is (Theorem 5.5) 

19 -1 

and a su//icient condition is 

(17) 

19 - 1  

The sufficiency condition remains to be proved. We first give the proof for 
the case 19 = 1. 

Because A and t are given, the strict inequality in (31) implies the existence 
of x such that  

I -i I -i 
/t(A) < (log x) 1 k <  (log t- ) . (32) 

We shall now try to find an entire function /(z) such that, whenever a E A ,  the 
lower order of 

/ ( z ) e  ~ 

is less than t. For this purpose we define four sequences, with elements 

dn, rn, a n and C n .  
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L e t  the  f irst  two sequences be 

_ x - n  _ e k n  
d n = e  = e  , 

W e  not ice  t h a t  
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n = l , 2 ,  . . .  

r n = tin(X/I-x). 

~ l / x  dn+l -r and  _ ~-1 rn+l - n  , - -  ~ n  d n  - ~en+l" 

As a consequence of # (A)  < ( l / k )  in (32) and  Def in i t ion  1.2 there  exis t  sequences 
of complex  numbers  

a co { n}n  =1 

such t h a t  e v e r y  a E A satisfies 

l a - - a n l <  e ek~=d n 

for an  in f in i ty  of values  of n. W e  t ake  one such sequence to  be our  t h i rd  se- 
quence. A n  o the r  sequence of this  k ind  is 

{Cn)n~=l 

where cn = an if Jan I < bn = n 
10 

~b 
and  c n = 0  if ]a ,~ l>~b ,~ = -  ~ .  

This is because those  n for  which 

la-anl<dn 
bu t  no t  l a - Cnl < dn  

holds,  cons t i tu te  a f ini te  set. Thus  for  eve ry  a E A the  i ne qua l i t y  

holds for an  in f in i ty  of values  of n. W e  t ake  {Cn}n•l  aS our  fou r th  sequence. 
We now in t roduce  the  following no t a t i on  for MacLaur in  po lynomia l s  of e c~z 

(Cn~) m 
~-~ - e c ~ -  ( 3 3 )  

I f  N is no t  an  integer ,  the  f irst  sum is to  be t a k e n  over  0 ~< m < N.  The  func- 
t ion  [(z)  is t hen  defined b y  

/(z) = y [  P~ (~) 
n = l  

where Pn (z) = e( n rn ,  cn z ) " e( ( n + 1) rn +1, - cn z ) . 

The convergence of the  inf ini te  p roduc t  follows f rom the  es t ima te  of l l - P , ~ ( z ) [  
on page  451. 
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I t  now remains to  give an est imate of the lower order  o f / ( z )  e az for  an arbi- 
t r a ry  a EA .  This a EA is kept  constant  f rom now on. Le t  n >  2 be one of those 
infinitely m a n y  natura l  numbers  for which 

l a -  cnl < dn. 

For  I z I = rn +1 we est imate log [/(z) e=]. The expression for / (z )  e a~ is divided into 
five factors.  

Ql(z) = P I ( Z ) ' P 2 ( z ) ' . . . ' P n - I ( Z )  

Q2(z) = e(nrn, cnz) 

Qa (z) = e ~ e . . . .  

Q4(z) = e c~z. e((n + 1) r n + l ,  - -  CnZ) 

Q5 (z) = Pn +1 (z). Pn +2 (z) �9 ... 

For  the est imate of Ql(z), let  

l <~m<~n-1  and Iz]=rn+l. 

log [Pm(z)] = log  l e(mrm, cruz), e((m + 1) rm+l, - CmZ)[ 

< 2" log e(nr., nr.+l) 

< 2.  log ((nr.+l) "r") = 2nr.  log (nr.+l). 

For  Ql(z) this becomes 

log [Q1 (z)[< 2 n ( n -  1) r .  log (nr=+l). 

The same est imate for Q,(z) gives 

log I Q2 (z)[ < nr~ log (nr.  +1). 

For  Q3 (z) we use [ a - -  cn ] < d~ = rn+l *- 1 

which gives log ]Q3 (z)] = ]a - cn ]" rn +1 < r~+l. 

Wi th  N = (n + 1) r n +  1 § 1, Q4(z) becomes 

Q 4 ( z ) = l - e  c"~ ~ ( - e ~ z ) ~  
m=N L~_ 

The inequalities [ m >  (m/3) m, m >t N > 10b~+l [z I > 10 Ic~zl give: 

(b~r~+l) u _ [ ! 3 ~N 1 

log I Q, (z) l < 1. and it  follows 
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For  Qs(z), let m > n. The second par t  of (33) gives 

( = 
~=mr~+l ~=<m+l.,o+,+~ I_k / 

(mrn+l~mrm (3 Imrm II-e~(z)l<3.+ ~r-+~ ~ (bmrn+a)k<Z6.eb'r'. _ _  < 6 . 2  - m .  
k=mr~ Ik \ 10 ] \mrm/ 

For  m > n > 2  i t  follows, for [z l=r~+l  

[log ]p~(z)[ [ < 12" 2 -~ 

and log ]Q5 (z)[ < 2. 

The final estimate of ](z)e ~ for [zl--r~+~, n > 2 ,  and ]a-c~l<d~ becomes 

log [ / (z)e~l< ( 2 n ( n -  1) + n) r~ log (nrn + ~) + r~ +~ + 1 + 2 -=~+~ - -  ~ n + l  �9 

Therefore it  follows from lim r~ = + oo 
n--> oo 

tha t  the lower order of / (z)e  ~ is at  most  equal to x. 
Since a E A  was arbitrari ly chosen, i t  follows tha t  

A ~ A](/)  

and this proves Theorem 7.1 for the case p - - 1 .  
For p > l ,  put  t = v p ,  0 < T <  1. Let  A be a given set with 

/ 1\ - 1  / p ~  - I  

We have just proved tha t  there exists an entire function /(z) with 

A cA~( / ( z ) ) .  

The function /(z ~) gives the final solution, and this is because 

A : A~ (/(z)) = A~(/(zV)) 

which follows from the definition of lower order. The proof of Theorem 7.1 is 
now complete. 
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Chapter IV. Miscellaneous results 

8. Strong subadditivity 

The strong subadditivity is a property of certain set functions, A set function 
(denoted m) is said to be strongly subadditive, if the inequality 

m(A U B) + m(A f) B) <~ m(A) + m(B) 

holds for arbitrary sets A und B. 
We first mention an example of a strongly subadditive set function. Let C(A) 

denote the capacity (Definition 3.1). The G-capacity is then defined by 

G-cap (A) = (b(C(A)) -1 

(cf. [4] Def. 12 p. 43). Then the G-capacity is strongly subadditive ([4] Theo- 
rem 8 p. 47), for certain kernel functions (I)(t). 

The result of this section concerns the subadditive ([9] Satz 3) set function 
m(g(x),A) of Definition 1.1, which turns out not to be strongly subadditive. 

Proposition 8.1. Let m be the set /unction o/De/inition 1.1. Then there exist sets 
A 1 and B 1 o/ complex numbers with 

m(A1 N B1) = m(Aa) = m(B1) = �89 

and re(A1 U B1) = 1. 

Proo/ o/ Proposition 8.1. We now use the same construction as in the proof 
of Hilfssatz 2, [9]. The constant k in Hilfssats 2 is here k = 1. The set A is de- 
fined by means of a sequence of circles C~, and we here list all important prop- 
erties of these sets. 

d ~ majorizing sequence for the set A. 1. { .=g(n)} .= l  is a 
(This implies m(g(x), A) <~ 1). 

2. m(g(x), A) =re(A) = 1. 
3. The circles Cn uniquely define the set A by means of the following covering: 

5on. 
t;,l = 1 n ~ ~-,. 

The radius of the circle Cn is g(n). 
The center an of Cn is a real number, and the set A is thus restricted to 

the real axis. 
4. For the circles C, there also holds (for certain numbers H(1), H(2), ...) 

n = H ( p + I ) - I  n = H ( p + 2 ) - I  

U Cn~ U Cn ~ . . . D A  
n = H ( p )  n = H ( p  + 1 )  

if p is big enough (p>lm). 
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6. :For all n with 

we have 

where 

The sets A1, B1, As: 

The definit ions are: 

5. :For a given na tu r a l  n u m b e r  h r with 

H ( p ) < ~ N < H ( p + I ) ,  (p>~m) 

those n for which bo th  

H ( p +  l ) < ~ n < H ( p + 2 )  

and  C~ = CN 

hold, are those given by  the relat ion 

2 ~ ~< n < ( 2 ~ )  2. 

22~ ~< n < (22'1) 2 - -  1 

an+l - -  an = 2g(~) �9 2 -2"+1 �9 (1 _+ en) 

lira r = 0. 
n - -~o r  

5 5C2n+  
m ~ l  n = m  

BI= 5 5c . 
m ~ l  n = m  

A2 ~ n=H(p+l)-I 
= U C~ 

p = m  n ~ H ( p )  
n + p = e v e n  n u m b e r .  

For  every po in t  x E A there exists a sequence hi, n2, . . .  such tha t  

XECn~ i = 1 , 2 , . . .  

and  H(m) <~ n 1 < H(m + 1) ~< n 2 < . . . .  

I f  x EA 2 this sequence is of the form 

... odd, even, odd, even, ...  (34) 

For  each x E A 1 the sequence nl, n~ . . . .  contains a n  in f in i ty  of odd number s  (an 
in f in i ty  of even numbers  if x EB1). I t  follows 

A 2 c A 1 c A ,  A ~ c B I ~ A  

and  A2 c A 1 (I B1, A = A 1 U B 1 

and  m(A 1 tJ B1) = m(A) = 1. 
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We deduce from the preeeeding that  the sequence {9(2n)}~%1 is a majorizing 
sequence for the set A~, and also for the set B~. This gives (cf. Definition 1.1) 

m(A1) ~< �89 m(B1) <~�89 

The subadditivity of m ([9], Satz 3) gives 

re(A1) + m(B1) >~ m(A 1 (J B1) = 1, 

and it follows re(A1) = re(B1) = �89 

There remains to prove m(A 1 rl BI)= �89 

and for this purpose it  is sufficient to prove 

m(A~) >7 �89 (35) 

This is because A 2 c A 1 t3 B~ 

and m(A 1 t3 B1) <- �89 

The proof of (35) is indirect, and we assume that  9((2 + e ) n )  is a majorizing 
sequence for the set A 2. From this assumption it follows that  there exists a se- 
quence C~ of circles of radii g ( (2+e)n)  with 

m = l  n ~ r n  

i.e. (36) 
n = N  

for every N. 
We now consider the following two families of circles, subsets of {Cn}n~l and 
t or 

~ 1 - ~ + 2 ~ < n < ( 2 ' ~ ) ~ + e + 2 }  ' 2 + e  / = 1 , 2 , . . .  

2 2hi-1 ~< ni < (22~-1) 2, where 

and 

fl, = {C, ] H(p,)  < 22"` < n < (22n') 2 < H(p,  + 1) = H(p,+I), and n +p ,  is even}, 

i = 1 , 2 , . . . .  

The same estimate as in [9] (the proof of Hilfssatz 2) gives tha t  there exists 
one CnEfll (say Cn~+~) which does not intersect any C~E ~,. This holds if n, is big 
enough. Therefore C n ~  C~,+~  C ,~+~  ... defines a point x E A  2 with 

n = N  
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(if N is big enough). This contradicts (36). Thus the sequence 

n 00 {g ( (2  § ~) ) } n : i  

is not a majorizing sequence for the set A2 and 

m(A2) >~ �89 

The proof of l~roposition 8.1 is now complete. 

(35) 

9. The vector sum of nullsets 

The sum, A §  of two sets of complex numbers is defined as 

A § B = { z ] z = a §  aeA,  beB}. 

I f  the set A has m(g(x), A)~<(1/]c) and if the set B is countable, then 

m(g(x), A + B) -< 1 

([9] Satz 5). 
I f  the sets A and B are only assumed to have 

m(g(x),A)<~ 1- and m(g(x),B)<~, ]c 

then the vector sum A + B can contain all complex numbers. This s ta tement  is 
independent of the choice of the function g(x). An example where the vector 
sum A § B contains all complex numbers is the following: 

a ca Let the set { n}n=l be dense and denote 

C,~={z[Iz-an[<g<kn) } 

aud let : "  : 5 5 
m = l  n ~ m  

For a given arbi t rary complex number z we can define a sequence nln z ... 
such tha t  

Cm+,c(~l lz - : -a~, l<g(kn~)  } 

This is possible since (an}n%1 is dense and limn-~+ g(kn)=0. 

I t  follows tha t  C~+~ c C~ 

and the set N 5 C,~ 
rn=l i = m  

therefore defines two complex numbers, say a E A and b E B, with a § b = z. Thus, 
we have shown tha t  each complex number  z belongs to A + B .  This example 
originates from [3]. 
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We now investigate the special case when the sets A and B are assumed to  
have capaci ty  zero with respect to  some arb i t rary  given positive kernel funct ion 
q)(t). How does this assumption on A and B restrict the vector  sum A + B ?  

I t  is here sufficient to apply  Proposi t ion 3.2. The funct ion g(x) is at  our dis- 
posal, and the result is t ha t  the sets A and B can be chosen so tha t  each 
complex number  z belongs to A § B. 

10. A functional equation 

I n  this section we s tudy  the  functional  equat ion from Section 4 of this paper:  

g(g(r, t l )  , t2) = g(r, t l"  t2). (6) 

This functional equat ion is impor tan t  in the theory  of i terated functions, and 
log t here indicates the  "num be r  of i terat ions" of the funct ion r ~ g ( r ,  e). 

The most  immediate  solutions of (6) are g(r, t) = rt and g(r, t) = r t. I n  this paper  
the funct ion g(r, t) generalizes the funct ion r t in funct ion theoretic applications 
(Section 4, 5, 6). We now give a solution of the functional  equat ion (6), and then 
s tudy  the convexi ty  of g(r, t) for fixed values of t, t > 1. The funct ion g(r, t ) i s  
assumed to be twice differentiable with respect to bo th  variables. 

The  solution o/ (6): The following assumptions are made  

g(r, 1) = r 

~g(r, t) > O. 
~t 

For  t = 1 we denote 
~g(r, t) -/(r). (37) 

~t 

We also assume t h a t  dF(r)  (38) 
/(r) 1 _  dr 

and F ( r o ) =  - oo, F ( R o ) =  + oo, - co <~r o < R o ~ + ~ .  

The solution is then given for 

r 0 < r < R o, 

0 < t <  + ~ .  

The functional  equat ion (6) is applied with t 1 = t  and t~ = 1 + (dt/ t) .  

g ( g ( r , t ) ,  1 + ~ ) = g ( r , t + d t ) .  

The left and r ight  hand  sides are, up  to first order terms 
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x + ~ / ( x )  and x+dt~cxt, 

where x=g(r , t ) .  From this we obtain  

t(x)=~_x 
t ~t 

For  r = const, the relation to be integrated becomes 

dt dx 
t /(x)' 

which gives log t - log 1 = F(g(r, t)) - F(r). 

Then the solution of the functional  equat ion is 

g(r, t) = ~ -1  (/~(r) § log t). 

A check shows tha t  this solution fulfils all assumptions made.  

Convex solutions: 

A problem concerrSng the  convexi ty  of the solutions g(r, t) of (6)is  indicated 
in [2] (No. 5). 

Let  g(r, tl) be a convex function of r for some given t 1>  l .  IS g(r, t) then 
convex for all t > 1 ? 

The answer is in the negative 

Proo/. Differentiation of 

F(g(r, tl)) = F(r)  + log t 1 

shows t h a t  the convexi ty  condition ~g(r,  tl">~ 0 is equivalent  to 
~r 2 

~(x) > ~(x + log tl) (39) 

where the funct ion ~,(x) is defined b y  

E"(r) (F'(r)) -u = cf(F(r)). 

The same method,  or direct use of (37) and (38) shows tha t  g(r, t ) is  convex for 
every t > 1 if and only if the funct ion ~(x) is monotonic  decreasing, or, which 
is the same, ~ ' ( r )  -1 is convex. Ev iden t ly  (39) does not  force the funct ion ~(x) 
to  be monotonic.  
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