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R e a l  a l g e b r a s  w i t h  a H i [ b e r t  s p a c e  s t r u c t u r e  

B y  LARS INGELSTAM 

1. Introduction 

In  the theory of Banach algebras, it would seem natural  to give special at tention 
to such algebras that  are also Hilbert spaces. With one notable exception (the 
H*-theory, [1]) there are rather  few interesting results known along these lines. This 
must, at  least in part,  be due to the fact that  if one assumes identity and the con- 
ventional axioms for a normed algebra, there are only trivial realizations [2]. Some 
further general remarks on algebras with a Hilbert  space structure are given in 
this paper (sec. 3) and in [4]. 

The now classical paper  by  W. Ambrose [1] established very definitive structural 
results for complex H*-algebras. The interest in these was chiefly mot ivated by  the 
L2-algebras of a locally compact group. The main objective of this paper  is to give 
a structure theory for real H*-algebras. I t  is shown tha t  a real H*-algebra with 
sufficiently non-degenerate multiplication is the Hilbert SPaCe direct sum of matr ix  
algebras, each consisting of all matrices with real, complex or quaternion entries 
and whose sums of squares of the absolute values of elements are finite (sec. 4). 

I t  is not obvious tlhat the complex H*-result should extend to the case of real 
scalars (cf. the related case of B*-algebras [3, p. 265], which does not). The fact tha t  
it does makes it possible to weaken the assumptions of a complex H*-algebra, so 
tha t  relations are required to hold essentially only for "real  par ts"  (Theorem 4.3). 
We have not found reason to extend the closely related theories of [9] and [10] to 
the real case. With the H*-theory known, however, this should be easy. 

The most interesting consequence of the result is that  the real L2-algebra of a 
compact group is the Hilbert space direct sum of finite-dimensional algebras, each 
consisting of all matrices with either real, complex or quaternion entries (Theorem 
5.1). In  this cormection it is also pointed out tha t  real group algebras in general give 
rather  more structura]L information than the corresponding complex ones. 

2. Preliminaries on H*-algebras 

Let A be an algebra over the real numbers (R). An involution on A is a linear map 
x->x*, of A into A, satisfying x** =x and (xy)*=y*x*. An algebra with involution 
(*-algebra) is called proper if x*x # 0  whenever x 4:0. 

An H*-algebra is a *-algebra tha t  is also a Hilbert space and in which involution, 
multiplication and inner product are linked to each other by  the identity 
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(xy, z)=(y ,  x*z)=(x,  zy*). (1) 

I t  is not assumed tha t  either the algebra multiplication or the involution are 
continuous in the topology defined by  the Hilbert  space norm. We will notice tha t  
both these are in fact consequences of (1). The following result, which is valid for 
complex as well as real scalars, has been obtained by  Saworotnow [8] (cf. also [6]). 

Theorem 2.1. Let A be a Hilbert space which is also an associative algebra. On A are 
de/ined two/unctions, x ~ x ,  x x , so that 

(xy, z )= (y, x ' z )= (x, zy") 

/or all x, y, z. Then multiplication on A is continuous. 

Proo/. The uniform boundedness principle shows that  multiplication with a fixed 
element is continuous. But  in a Banach space, this implies (simultaneous) continuity 
of multiplication. 

Corollary 2.2. I n  an H*-algebra, multiplication is continuous. 

Hence, if necessary after adjusting by  a constant, we can assume 

llxyll < II II llyll. 
Granted this Corollary, we have [1, Theorem 2.3]: 

Theorem 2.3. I n  a proper H*-algebra Ilxll = IIx*ll and so involution is continuous. 

I t  is clear that  the real numbers (R) themselves form an H*-algebra over R" 
Together with R, the complex numbers (C) and the quaternion algebra (Q) are 
building blocks in the theory. For Q we denote a typical element ~ § ~, :r E R, ~ E R a. 
Then 1 ( =  1 §  is identi ty element and the product of two "vectors" ~, ~ is defined 

~ s  = - ( ~ ,  ~> + ~ x s; 

here the products are respectively the usual inner product on R a and the vector 
cross-product. 

We make some elementary observations regarding C and Q. 

Proposition 2.4. The only involutions on C are the identity map and complex conjuga- 
tion. Only the latter makes C a real H*-algebra. 

Proposition 2.5. The involutions on Q are all o / t h e / o r m  ~ + ~t --> ~r + T~t where T is 
either a re/lexion in a plane through the origin or minus the identity. Only the latter 
makes Q a real H*-algebra. 

The verifications are left to the reader. 
From here on we let R, C and Q carry with them the usual inner product and the 

H*-involution. For F any  given set and K = R, C or Q define 

12 (F, K)  = { / ; / :  F -+  K,  ~ If(a)] ~ < ~ }, 
a e F  
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which is a Hilbert  space of functions, with the inner product  

(/, g) = ~ r / *  (Y) g (r) + g* (~)/(7). 

I f  F is a set of pairs, F = A  •  12(A,K) can be made into an algebra by  defining 
"ma t r ix"  multiplication 

I g(~, fl) = Z I(~, r) g(r, fl). 
yeA 

With involution/-~/* defined by  

/ * (  :c, f l)  = (/(fl, ~))*, 

it is not hard to verify tha t  12(A • A, K) is an H*-algebra. We will prove tha t  every 
real H*-algebra is a Hilbert  space direct sum of algebras of this type. 

3. Hilbert spaces as algebras 

I t  is well known that  any real Hilbert  space H is congruent to 12(A, R), where A 
is a maximal orthonormal set in H. But  for every infinite cardinal number  u it is 
true that  ~ =~, in other words, every infinite set ~, is in one-to-one correspondence 
with Z • ~,. Hence any  Hilbert  space of infinite dimension is congruent to 12(A • A, R). 
But  then it can be given the "mat r ix"  multiplication of sec. 2 and we have 

Proposition 3.1. Any  Hilbert space o] in/inite dimension can be given a multiplication 
that makes it a topologically simple (i.e. without closed two-sided ideals) associative 
Banach algebra, the norm satis/ying HxyH <~ Ilxll . Ily[I. 

In  the direction of this observation it is natural  to ask what Banach spaces can 
be given an associative multiplication which makes them topologically simple 
Banach algebras. We have shown tha t  this is possible for all Hilbert  spaces of in- 
finite dimension; it is quite clear, however, tha t  these are not the only ones, and tha t  
it is not possible for all Banach spaces. In  finite dimension it follows from the Wed- 
derburn structure theory tha t  the only possible dimensionalities and the correspond- 
ing algebras are 

n 2 { :  odd ~ n ( R )  

even ~ n ( R )  and ~ / 2 ( Q )  

2 n ~ ~ , ( C ) .  

Here n is an integer and ~ n ( K )  the algebra of all n • n matrices with entries from K. 
(For K = C the only possibility is dimension n 2 and the algebra ~ , (C) . )  

In  a slightly different direction we can ask for Hilbert  spaces H tha t  can be made 
into topological (not necessarily associative) algebras H A with identity, satisfying 
certain additional assumptions and whose norm satisfies 

Ilell =1, 

Hxyll  <0Hxll'llyH. 
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For 0 = 1 the problem is completely solved in [2] and [4]: if alternativity is assumed 
there are just four non-isomorphic cases (R, C, Q and the Cayley algebra D), but if 
no assumption stronger than power associativity is made, every infinite-dimensional 
Hilbert space is possible. 

For HA associative and 0 > 2/V3 again every H of infinite dimension is eligible. 
First notice that  H ~ R | H '  and introduce a multiplication on H'  according to 
Proposition 3.1. Then we regard H as H '  with "adjoined identity"; its norm is given by 

I l l~§247162 a E H ' ,  ~>~1. 

We notice that  max0<~. ,<1 ~ + ~ - ~ § 2 ~ V~ - ~2 = I. 

For x = a + a ,  y = f l + b  we have xy=o: f l+o~b+f la+ab  and 

[H xy  ][12 = ~2 f12 + ~1~ [I o~b § fla § ab ][2 <~ 

+ r Ilabll(liabll + 21 1 llb II + 2 liall)< 

< ( 4 + 5 ]  ill lli2" IllYlll2<O lllxlll 2 [llYlll2 \3 V/ 

if ~ is chosen big enough. 
Other examples in the same direction are found in [4]. 

4. Structure of H*-algebras 

The Ambrose structure theory of complex H*-algebras is given in two steps, the 
first of which goes over without change to the real case [1, Theorem 4.1]: 

A proper H*.algebra is the Hilbert space direct sum o / i t s  minimal  closed two-sided 
ideals. 

Hence we can concentrate on the structure of H*-algebras that are topologically 
simple (i.e. have no closed two-sided ideals). The key notion is that  of a self-adjoint 
idempotent (sai). A sai e is called reducible if there exist sai's el, e2 # 0  so that  e = e 1 + e2; 
otherwise e is called irreducible. 

Lemma 4.1. Let e be an irreducible sai in a proper real H*-algebra A .  Then eAe is 
isomorphic to R,  C or Q. 

Proo/. If  O # x C e A e  then A x c A e  and A x = A e  since Ae is a minimal left ideal. 
Hence there exists a y E A  such that  y x = e .  But (eye)(exe)=e, and eAe is a division 
algebra. Since the only real normed division algebras are R, C and Q the conclusion 
follows. 

For the formulation of the main theorem, we let {e~}~EA be a maximal collection 
of mutually orthogonal irreducible sai's. The algebra 12(A • A,K) is defined in sec. 2. 

462 



ARKIV F6R MkTEMATIK. Bd 6 nr 24 

Theorem 4.2. A topologically simple proper real H*-algebra is homeomorphically 
*.isomorphic to the algebra 12(A • A,  K) with K = R, C or Q. 

Proo/. A is n o t  empty [1, Th. 3.1] and we let e 0 denote a certain element of A. 
Then A o = e 0Ae o is isomorphic to R, C or Q according to Lemma 4.1. Take an arbitrary 
~r The linear span of Ae~A is an ideal in A, hence it is dense in A since A is topo- 
logically simple. I t  then follows that  (eoA%)(eoAea)*=eo(AeaA)e o is non-zero and 
eoAea contains an element # 0, say e0~. But  e0~e~ is a self-adjoint element of A 0 and 
since A o is isomorphic to R, C or Q it follows from Proposition 2.4 or 2.5 that eoae~ is 
a positive multiple of e0, we can take 

* 

e0~ eo~ = e0. 

We now define e~0=e~ and e~p=eaoe0p and have (~p is the Kroneeker S-symbol) 

eap -~ epa , 

eapev~ = Opv eap, 

ect~t ~ ect  ~ 

Let S~z=eaAe p. For every pair :r fl the vector space S ~  is homeomorphieally iso- 
morphic to A o =S0o under the map 

hap: x ~ eoaxepo 

For any x E A  we have [1, Th. 4.1]. 

x = Z  e ~ x = Z  x e ~ = ~  e~ze  z 
~ ~.~ 

and since all Sap are orthogonal 

II x II e = o ~  If e~ x e~ II 8 

Let k: A o ~ K  ( K = R ,  C or Q) be the mapping of Lemma 4.1 and take 

x~p = k(hap(e a x ep)). 

The mapping of the theorem is 
h: x-+ (x~p) 

and we first demonstrate that  h maps into/2{A • A, K) and is continuous (we assume 
for simplicity that  II~ull < 11~1111yll, cf. Corollary 2.2): 

IIh(~) II '~ = ~ I x ~ l  s ~< ~ II k II 8 II h~ll ~ Ile~ �9 e~118 

~< Ilkll ~ II eoll~ 7. II ~ �9 ezll ~ =  Ilkll ~ II eolP II ~11 ". 

In  the same manner we can show that  h is an isomorphism and has continuous 
inverse. I t  is routine to verify that h is a real *-algebra homomorphism, and so the 
theorem is proved. 
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The fact that  a successful H* structure theory exists for real scalars makes it  
possible to weaken somewhat the assumptions of the complex theory. 

Theorem 4.3. Let A be a complex Hilbert space which is also a complex associative 
algebra. On A there is defined a mapping x-+ x* which satisfies 

(x +y)* =x* +y*, 

(~x)*= (zx* /or real scalars ~, 

X** = X~ 

(xy)* = y* x*, 

Re (xy, z) = Re (y, x'z) = Re (x, zy*). 

I / A  is proper it is the Hilbert space direct sum o/algebras 12(A • A, C). 

Proo/. By restricting scalar multiplication to R and defining (x, y> = R e  (x, y )A  
becomes a real H*-algebra. The conclusion then follows from Theorem 4.2 and the 
fact that  the possibility of reextension to C of scalar multiplication on 12(A x A, K) 
rules out all but K = C. 

In  direct analogy with [1, Corr. 4.1] we also have 

Corollary 4.4. An  abelian proper real H*-algebra is the Hilbert space direct sum o/ 
real and complex fields. 

5. On the real L2-algebra of a compact group 

The main importance of the Ambrose H*-theory is that  it yields a complete struc- 
ture theory for complex L2-algebras of a compact group G, i.e. the square-integrable 
(in the Haar  measure) complex functions with convolution multiplication, L~c(G). 
For the corresponding algebra of real-valued functions, L~(G), we easily verify 
that  these are real H*-algebras and get (cf. [5, p. 158]): 

Theorem 5.1. For a compact group G, the algebra L~(G) is homeomorphicaUy iso- 
morphic to the Hilbert space direct sum o/finite-dimensional/ull matrix algebras with 
real, complex or quaternion entries. 

As is fairly widely realized, the real group algebras can yield more structural in- 
formation about the group than the complex. This is seen already in finite, low orders. 
Let  Zk denote the cyclic group of order k. 

Example 1. We have 

L~ (Z2| ~ R 4, 

L~ (Z4) ~_ R 2 | C, 

L 2 (Z2(~ Z2) ~.~ C 4, 

L~ (g4) ~ C 4, 

i.e. Z2|  2 and Z 4 can be distinguished by their real, but  not by their complex, group 
algebras. 
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I t  is true, however, t ha t  L2c(G) is the complexification [7, p. 6] of L~(G), which 
i l lustrates the (sometimes overlooked) fact tha t  a good deal of in teres t ing s t ructure  
m a y  vanish  in  complexification. This is even more str iking in  the non-commuta t ive  
L2-theory. The building-blocks of Theorem 5.1 are thus t ransformed in  complexi- 
fication: 

?~.(R) -~ ~ . ( c ) ,  

~ . ( c )  -~ 7n.(c)|  ~ . ( c ) ,  

The quaternions,  which are a new bu t  not  wholly unexpected  feature of the real 
theory,  show up already in  finite order. 

Example 2. Let Qs be the qua te rn ion  group, i.e. { • e, • i, • ?', • k) where e, i, ],/c 
are the basis elements of the qua te rn ion  algebra. Then  

whereas 

L 2 (Qs) - R4| 

L~ (Qs)-~ c 4 |  (c). 
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