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On the boundary  behav ior  o f  solut ions  to a class o f  
ell iptic partial  differential  equat ions  

By KJELL-0VE WIDMAN 

1. The object of this paper is to investigate the behavior at the boundary of 
solutions to the uniformly elliptic, semi-linear equation 

a~J(X)u~i(X) = F ( X ,  u, ut, uij), 

where a ~j are continuous or ttblder continuous and F satisfies 

(1.1) 

Here ~(X) denotes the distance from X to the boundary, and fl(t) and ~(t) are func- 
tions which in most of the cases considered tend to zero with a prescribed speed, 
as t '~0.  

In  particular our results are valid for the linear equation 

aiJuij + b~u~ + cu = / 

if b ~, c, and / satisfy corresponding inequalities. 
An important feature of this class of equations is that, in a certain sense, it is 

invariant under mappings between Liapunov regions, and this makes it possible 
to get results e.g. about harmonic functions in Liapunov regions which have been 
obtained earlier by different methods. For these results see Keldy~ and Lavrent 'ev 
[13], and Widman [27]. I t  may be noted that all the results of [27] are contained 
in this paper. 

Section 2 and 3 contain basic assumptions and definitions, and some lemmata 
of various types, respectively. 

Section 4 contains theorems assuring the finiteness of weighted integrals of deriva- 
tives of solutions, given some information about the integrability of the solution 
itself. These theorems are formulated for quite general regions. Specializing to the 
case of a half space, some other estimates of derivatives and integrals of derivatives 
are given. Finally we prove two theorems on solutions in cones, at least one of 
which is previously known for the case of harmonic functions. As a corollary we 
get a generalization of a theorem by Wallin. 

In  Section 5 we give the generalization to solutions of (1.1) of the theorem that  
a positive harmonic function in the unit disc belongs to the Hardy class H 1. 
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Section 6 contains results on the boundary behavior of Green potentials, one of 
which is needed in the sequel. 

Section 7 contains theorems on the existence and type of assumption of boundary 
values of solutions of (1.1). Apart from the case of harmonic functions results in 
this direction have earlier been obtained by Lojasiewicz [16] and implieitely by 
Serrin [19]. 

Section 8 finally gives a necessary and sufficient condition for the existence of 
boundary values to a solution of (1.1). In  the case of harmonic functions, this theorem 
can be found in [22]. 

Acknowledgement. Professor Lennart Carleson suggested the topic of this paper, 
and I wish to acknowledge my deep gratitude to him for his support and kind 
interest in my work. 

2. We place ourselves in R n, the points of which are denoted by X, Y ..... X = 
(xl ..... xn) etc., I X - y I 2 = ~ _ l ( x ~ - y ~ )  2. Points of R n-1 will often be denoted by 
X' ,  Y', and often X '  will be the orthogonal projection of X on R n 1. In  general 
our methods will be applicable in R ~ for n~>2, but since there are often speciai 
methods from the theory of generalized analytic functions available in the plane, 
see e.g. Vekua [24], and since some minor complications arise from the logaritmie 
singularity of the fundamental solution of the Laplacian in this case, we will con- 
centrate on R ~ with n/> 3. Integrals over n-dimensional regions will be denoted by 
SS(.)dX, over n-l-dimensional surfaces by S(.)dS, dS being the surface element. 
~(.)dX(i) can be interpreted as j ' ( ' )eosyidS, where eosy~ is the scalar product of 
the ith unit vector and the normalized outer normal of the surface. 

By a Liapunov surface we mean a closed, bounded n-l-dimensional surface S 
satisfying the following conditions: 

1 ~ At every point of S there exists a uniquely defined tangent (hyper-)plane, and 
thus also a normal. 

2 ~ There exist two constants C > 0  and y, 0<y~<l ,  such that  if 0 is the angle 
between two normals, and r is the distance between their foot points, then 
the inequality 0 < C. rv holds. 

3 ~ There is a constant p >0  such that if EQ is a sphere with radius Q and center 
X 0 E S, a line parallel to the normal at X 0 meets S at most once inside EQ. 

For the properties of Liapunov surfaces in R a, see Gunther [10]. I t  is easy to see 
that the simple facts about Liapunov surfaces in R n that  we need can be derived 
in the same way as in [10]. A Liapunov region is a region the boundary of which is 
a Liapunov surface. 

The boundary of any set D will be denoted by ~D, a n d / )  is the closed hull of D. 
(5(X) is the distance from X to ~D. R~ will as usual be the set {X]x~>0}. C~176 
Cm(~) denote the space of infinitely, and m times, continuously differentiable 
functions in ~,  respectively, and Cv(~) will be the space of ttblder continuous (with 
exponent y) functions in ~. 

The assumptions on the equation will be 
(i) a ij and F are measurable functions of their arguments. 

(ii) a ~j are defined in ~ and there exists a constant ~ >0, the ellipticity constant, 
such that 

for all X E ~ and all vectors ~ = ($1, ~2 . . . . .  ~n) :~=O. 
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(iii) air ji. We also assume de t (a  ~j) =1 ,  which is no fur ther  restriction. 

( i v )  la*J(X)-a'J(r)l < K ' ~ ( I X -  rl), X ~ ,  :Yc~. 

(iv)' [a"(X)-a'J(r)l  <K.o~(lX-  r i b  x, r e~ .  

(v) IF(X, u,j) l  < I I (X)l  I 
�9 

(vi) I / (x)  I <~ K .  ~-2(X). fi(~(X)). 

We shall work with three types  of equations: 
(A): where we assume (i)-(vi) with a(t) satisfying lim a(t) = 0  and fl(t) bounded; 

t--->+0 
(B): (i)-(vi) with a ( t )= t  ~, a >0 ,  fl(t) nondecreasing and satisfying j'~ (fi(t)/t)gt < oo; 
(C): where we assume the same as in (B) and in addit ion (iv)' and  tha t  F is inde- 

pendent  of u,j. 
W h e n  we say tha t  u is a solution of (1.1A) we mean  tha t  u is a solution of the equa- 
t ion (1.1), about  which we assume the conditions A, etc. 

Wi th  a solution of (1.1) in a general region ~ ,  we mean  a funct ion u belonging 
to C2(~), and satisfying (1.1) almost  everywhere. W h e n  we work with solutions in 
R~, or par ts  thereof, we can allow a weaker concept  of solution; u is a solution of 
(1.1) in R?~ if u has distributional derivatives of order ~<2 which are locally bounded  
functions, and satisfies (1.1) almost  everywhere. I n  some of the theorems it is even 
sufficient to assume the  second derivatives to be in L p locally, for some p > n. Al though 
we shall not  stress this point, we note tha t  it is well known, see e.g. [8], t ha t  in 
bo th  these cases the first derivatives of u are continuous functions which are locally 
absolutely continuous on all s traight  lines parallel to  one of the coordinate axis 
except  those issuing f rom a set of n- l-dimensional  Lebesgue measure zero on the 
or thogonal  hyperplane.  

I n  the case of (1.1 B and C) we will often have occasion to rewrite the equat ion 
in regular regions ~ .  To tha t  effect we use Lemma 3.9 to extend the functions 
a*J(X) on ~g2, into ~ in such a wa y  tha t  the new functions 5 *~ satisfy 

5~JEC~176 5~sEC~(~), 5~J=aiJ on ~ ,  

I grad 5~J(X) I ~< K .  5~- I(X). 

The H61der constant  and  K will no t  depend on ~ ,  which is seen from Lemma 3.9. 
A solution u(X) of (1.1) will then also be a solution of the equat ion 

5iJ(X)uij(X) = .F(X, u, u,, u~) + [5~J(X)-a*l(X)Juij. 

H p, 1 ~<p ~< ~ ,  will be the class of solutions u of (1.1) in R~, satisfying 

sup ~ [ u(x~, x~ ..... x ._ .  x~) I'dX' < ~ ,  p < 
0<xn< l  J IX'I<<.~ 

and  esssup u(X) < p 

respectively, for every ~ =0 .  
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When X 'E  R "-~ and h >0  we shall denote by Vh(X') the truncated cone 

y { ly~>h~.~7(y~-~,)~, 0<y~<U, 

and when XoEO~ Vh(Xo) will be a cone congruent to Va(O), with axis along the 
inner normal to ~ at X0, the normal always assumed to exist in case we use this 
notation, and with the convention that we truncate the cone more, if necessary, 
in order that  Vh(Xo) lie inside ~. If  F ~ R ~-1 we define 

Wh(F) = U Vh(X'). 
X ' ~ F  

With some obvious exceptions, subindices denote differentiation. 
The summation convention is used freely. We shall also use the convention that  

when the summation convention does not apply, u~ and u,~ are vectors in R n and 
R ~*, i.e. u, is the gradient vector, and In, I and [u,j I are the respective Euclidean 
norms. 

K will denote a generic constant which constantly changes its value. If  doubtful, 
we shall t ry  to indicate the important variables on which K does or does not depend. 

3. Lemmata 

Lemma 3.1. Let D be any bounded, open region in R ~, and let {S} be the set o/spheres 
S = S ( X ,  (~(X)/4) with center X and radius (~(X)/4, 6(X) being the distance/rom X to 
OD. Then there exists a denumerable sequence o/spheres {S,}F, S~=S(Xr,  O(X~)/4) 
with the property that LJ S~ = D and such that every point o / D  is inside at most K(n) 
o/the spheres {S:}~, S: =S(Xv,  3(~(X,)/4). K(n) depends only on n. 

Remark. From the  proof follows a crude upper bound of K(n): K(n)<~ (343/3) n. 
Proo/. I t  is sufficient to consider connected regions D. We use the following 

lemma of Aronszajn and Smith [1], p. 162: I t  is possible to find a sequence S~ such 
that ( J S , = ~  and such that the spheres S:=S(X~,  5(X~)/16) are pairwise disjoint. 

Now let X 0 be any point of D. A sphere S: containing X o has radius ~<46(Xo). 
This implies that the corresponding S: lies in a sphere with center X o and radius 
49(~(Xo)/12, i.e. all the S: of this type cover a region of volume ~ o  n. (49/12) ~. (~n(Xo). 
On the other hand, S: may not have radius <3~(X0)/7 if it is to contain X0, i.e. 
the corresponding S: has radius ~> (~(X0)/28. Since the S'~' are pairwise disjoint we get 

if K is the number of spheres S: containing X 0. Hence K ~ (343/3)L 
The following two lemmata are essentially contained in Stein [22]. 

Lemma 3.2. Assume / is measurable, locally bounded in R~+ and such that 

f f w~(~)llldX < o~ 
/or some measurable set E c R n-1. Then 
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/f l/I dX 
/or all k > 0 and almost all X '  E E. 

Lemma 3.3. Assume ] is measurable, locally bounded in R"+ and such that 

f f ,,(x,)lfldX < 
/or X '  belonging to some bounded measurable set E ~ R n-l, and where h may vary 
with X '. Then to every e > 0 and every k > 0  there is a closed set F ~ E, mes ( E - F ) < e  
such that 

f f I l l dZ  < oo. 
The proof of Lemma 3.3 uses the following Egorov like theorem by  CalderSn, 

which we shall use several times. See Lemma 1 in [22]. 

Lemma 3.4. Let ](X) be locally bounded and measurable in R~. Suppose we are 
given a bounded, measurable set E c Rn-1 with the/ollowing property. Whenever Xo E E, 
](X) is bounded as X ranges in some cone Vh(Xg). (The bound and h may depend on 
Xo. ) For any e > 0 there exists a closed subset F, F c E such that 

(1) m e s ( E -  F)<e,  
(2) i / k  i s / i xed , / (X)  is uni]ormly bounded in W~(F). 

I t  is also clear that  if we assume tha t  ]->0 as Xn'-->O in Vh(Xo) for every XoEE,  
with the same method of proof we can find an F such tha t  r u e s ( E - F ) < e  and ] 
tends to zero uniformly in Wk(F) when x n ~0 .  

Lemma 3.5. Let L=aiJ82/~x~xj be a differential operator with constant coe]]icients 
satis/ying 1}12A <~a~J}~}j <~l/;~l}] 2 for all (~1, ~2 . . . . .  Sn)=#O, and let det(a~J)=l.  I ]  
G(X, Y) is the Green ]unction o / L  in R~+, then G satis/ies the ]ollowing inequalities: 

G(X, Y) <~ K" [ X -  YI 2-n, (i) 

G(X,Y)<~K.  x~'yn 
IX - y i  n, (ii) 

IGx,( X,  Y)I 4 K .  I X -  YI ~-", (fii) 

IGx~(X ' y)i<~K" Yn [ x - Y I"' ( i v )  

[Gx,zj(X, Y)I < K .  Y" 
I X _  y p + l ,  (v) 

where K depends on n and 2 only. 

Proof. Let  A be the matr ix  (a ~j) and define B by  B . B = A .  By the coordinate 
transformation X ' = X B  -1, L is transformed into the Laplace operator A, i.e. 

489 



K.'O. WIDMAI~, Boundary behavior of solutions 

G'(X', Y ' )=G(X 'B ,  Y 'B)  is the Green function of A in some region, the boundary 
of which is a hyperplane. 

The corresponding inequalities for G', i.e. where xn and y~ are replaced by (~(X) 
and 6(Y) respectively, are either well known or easy to derive, since we know G' 
explicitly. Here K depends on n only. Now (i)-(v) follow easily, since the dilation 
of distance is bounded above and below with 1/~ and ~. 

Lemma 3.6. Let L be the di//erential operator o /Lemma 3.5, and let G(X, Y)  be 
the Green/unction o / L / o r  the sphere I X ] <~ 5. Then 

I G(X, Y) I < K. I X -  Y I"-", (i) 
IgradxO( X, Y)I < K .  I X -  rl '-", (ii) 

/or IXl, I r l  <5, and 

~y gradx G(X, Y) <~ q '~, (iii) K .  

~ g r a d x  G(X, Y) <~ ~-n-1, (iv) K" 

/or I rl <5/2, IXl : e ,  where K depends on ~ and n only. 

Proo/. The inequalities are evidently true for ~ = 1 (cf. the proof of Lemma 3.5), 
and the general case follows with a homothety. 

Lemma 3.7. Let D be an open bounded region, and let X o and X~ be arbitrary points 
in D and f)  respectively. Put 1 = (~(Xo)/4 and let p > 1. Then the/oilowing inequalities 
hold/or any solution o/ (1.1) in D. 

Il l  ~(X)[u~[~dX <" (i) 
_x-x,l<z Kff, {]u[~+~(i)[iE[~+]h*l'J}dX, 

f f l  62v(X)Iud~dX<~ x Xol<31 (ii) 
X- Xol~l 

+ E l f ,  x-  x., <st ~'(x)(I  F I" + ]h* ],}dZ, (iii) 

where h*=[aiJ(X)-#r and where K does not depend on u, X o, or XS. 

Proo/. We rewrite the equation (1.1): 

a~J(XS)u~j = F +h*. 

According to a well-known formula, almost everywhere 

~ ( (  o(x, r)(F + h*~dX: v~ + v~, o~nu(Y) = ( - - ( X ,  Y ) u ( X ) d S x +  
�9 ] I x - x d < q  ~Vx ddlX-Xol<q 

(3.7.4) 
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where 2l ~<Q ~< 31, G is the Green function of L =a~J(X~)~2/~x~xj in I XI <~ and ~/~v 
denotes the corresponding co-normal derivative. We observe tha t  the formula is 
valid because u and u~ are absolutely continuous on almost every line parallel to 
one of the coordinate axis, and thus partial integration is allowed. Now using 
Lemma 3.6, 

from which follows 

ff, I~V~(Y) "6"(Y)dY<~K.l. 
y- xol<z ~Yk I 

On the other hand, also by Lemma 3.5 

Oyk(Y) ~= ffx r) [F +h*]dX p 

IX_Xol=J uI€ 

< K" [ f f lx_ xo,<  ]X-- [f  f , x_ l Y-- + h*]  dX] 

rr rr or (Y) O'(Y)dY <.K. 12" IF +h*l'dX. 
3dlY-Xol<ll Yk ] d d Ix-x.I<3z 

Adding, integrating with respect to ~ from 21 to 3l and dividing by  l, we get 

X -  Xo ] <~31 J J  ] X - Xo] ~3 l  

which is equivalent to (i). 
To prove (ii) we use the sume method as above to get 

Now 

~2V~ :a 

~2G 
- -  (X, Y) = K(X,  Y) + L(X, Y), 
~Yk ~Ym 

where K is a Calder6n-Zygmund type kernel [6] and L(X, Y) satisfies [L(X, Y) <~ 
K . l  -~ for I Y -  X01 ~ 1. We use the well-known Calder6n-Zygmund theory from [6] 
to conclude that  

exists almost everywhere and tha t  
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ff, r x.,<., ~ v ~  (y)[Vdy 

ff, x x.,<.31F + h*]VdX + K ' l  -n(v-1)+n(v-1)" ffx + h*pdX. 

After multiplication by 1 ~v, adding, integrating with respect to ~, and dividing bY 
l, (ii) follows. 

Finally, still by Lemma 3.6 (ii) and (iv) 

lu(Y)l <~K" QX-~(J,x-x~ luldS + K f f, x-x.,<.~, [X- YlZ-=lF + h*[dX 

and after integration with respect to Q between 21 and 3l 

lu(Y)I<K'I-"/( luldX+Kff, IX--Yp-"lF+h*ldX. 
J J IX-X0l~3Z x-xol~SZ 

By HSlder's and Minkowski's inequalities 

f flx_xo,<, lu(Y)l'dY 

]" f f, <~K'l =-=v luldX + K .  ~(X)lF+h*l~dZ 
LJ g [X- Xel~31 X -  Xol<<.3l 

which proves (iii). 

Lemma 3.8. Assume/ELI(R~). Then/or every i, i=l ,  ..., n - l ,  and every y > 0  

f L I - t [  "-li/(X)[dX X~ 

is finite/or almost every t E Rx. 

Proo/. Obvious by Fubini's theorem. 

We need the following modification of the Whitney extension theorem. 1 We 
temporarily change the notation and put 0r = (~x, ~z ..... ~ )  zq non-negative integers, 
[~[  = ~ 1 + ~ 2  + "'" + ~ n ,  

Zemma 3.9. Let A be a compact set in R ~ and let ] E C ~ in R n. Assume also 

II('(x)-/(~)(Y)l <o~(Ix- yl), I~1 =l, 
where co(t) is a non-decreeing /unction, lira ~o(t)=O, sat is /y i~ co(2t)~<2.co(t.) 

t.--~+O 

Then there exists a/unction r ) with the/o/lowing properties 

A t  th i s  po in t  t he  a u t h o r  h a s  prof i ted  f rom a d iscuss ion  w i th  Dr.  L.  I. t t edbe rg .  
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1 o r  xCA, 
2 ~ ~(X)ECZ(R,~), 

3 ~ r = f=) (x) ,  X e A ,  lal < l, 

4 ~ Ir l~l = l + 1 ,  l / I r e ,  
5 ~ Ir162 [:,l=l, Ix[, I r l < e ,  

where (~(X) denotes the distance to ,,4 and K depends on n, ~, l and w only. 

Proo/. We follow the presentation of Whitney's extension theorem in HSrmander 
[12]. By Lemma 3 of that  paper there is a sequence of functions ~j E C~ with support 
in the complement of A with the following properties. 

~j(x)~>0, Zj~0j=], Xr (i) 

A compact set in CA intersects only a finite number of the support of ~s" (ii) 

Y, j I ~ ) ( x )  I < c=(~-~=l(x) + 1), where C~ is independent of A. (iii) 

There is a constant C independent of ] and A such that  the diameter of the 
support of ~j is < C times the distance to A. (iv) 

If X* is a point of J4 satisfying (~(X)= I X - X *  I and X j is any fixed point in the 
support of ~0j, we define (I) by 

r  = E~j(X)I , (X,  X j) =l,(X, X*) + Z~,(X){ t , (X,  X j) - l , ( X ,  X*)}, X C A ,  
1 j 

r  =1( / ) ,  ~eA,  

where/z(X, Y) is the Taylor expansion of order l at Y; 

l(X) = I,(X, Y) + R,(X, r ) .  

Our assumptions about / imply 

I x -  r F  '=s 
IRi=)(x'r)l< (1-1~l)~ ~( Iz - r l ) ,  I~l<t. 

Taking I a I = 1 + 1 we have 

r = ~ ~ ~}~){l~,,(x, xJ)  - l i , ) ( i , / * ) }  
fl+,/=cr 1 

Ifll>O 

= E ~ ~) {R~' (X ,  X~) - R~'(X, X*)} 

which implies, using that  I X - X J  I ~<(C+I)~(X) if X is in the support of ~j, 

I r I < ~ E I~,1 �9 K- ~'-','(x) �9 ~(~(x)) 

< K ~ ~,-I,I. ~-I~l. ~(~) < K .  ~-l(X) �9 eo(~(X)) 
fl,,/ 

and 4 ~ is proved. 
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To prove 5 ~ first assume that  I X - Y [  ~<�89 Then using 4 ~ for I~1 =l, 

I (I)(~)(X) - (I)(~)(Y)[ ~< IX - Y l "sup [ (I)@(Z) I 4 K.  ~o(]X - Y I), 

where the supremum is taken over those Z and fl for which [ Z - X  4�89 and 
fl = [~]  + l = l + l  respectively. On the other hand, if 5 (X)<2 X - Y ]  we have 

(~(Y)<~4]X-Y and 

[ r - l(~)(x*) I < I/i~)(x, x*) -/(~)(x*) ] 
+ 5 E I vi"l I R}')( X, XJ) - Ri')( X,  X*)] ~< K" ~o((~(X)) ~< K .  co(IX - r l)- 

Similarly, 
[ (I)(~)(Y)-/(~)(Y*)] <~K.w((5(Y)) <~K.w( [ X -  Y] ). 

Since by assumption 

I/(~)(x*)-/<~)(r*)[ < r e ( J / * -  Y*[)<K.o~([X- Y[), 

the lemma follows with the triangle inequality. 
Remark. If A is the boundary of a convex set ~,  say, and / is defined and has 

the properties required in theorem in ~ only, we can extend / from A to ~ by using 
only those ~vj which have support in g2. 

4. In this section we shall be concerned with the connections between the solu- 
tion and its derivatives. 

Theorem 4.1. I/  u(X) is a solution o/ (1.1A) in an open bounded region D which 
has the property that 

ff),  (X)dX< /or y>0, all C~3 

then, i/ p > 1, y >0, the finiteness o/ the /irst o/ the /ollowing integrals implies the 
/initeness o/the two others. 

f ~ ~'-l(X) Iu(X)I'dX, (4.1.1) 

~f y-l+'(X) [u~( X)l~dX, (4.1.2) 

f fDa2P-I+'(X) Iu,j(X) I~dX. (4.1.3) 

Remark 1. One important type of permissible regions are those whose boundary 
admits a local representation satisfying a Lipsehitz condition, i.e. to every point 
XoE~D there is a sphere E such that  the part of aD which is inside E may be 
represented as $~ =~v(~ 1 ..... ~=n-1), where the coordinate system (~1, ..., ~n) has X o as 
origin and ~ satisfies a Lipschitz condition of order one. 
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Remark 2. I f  D satisfies the condition of Remark  1, then the finiteness of any  
one of the integrals (4.1.1-3) implies the finiteness of the two others. This is a con- 
sequence of the representat ion of u (and u~) as an indefinite integral and the following 
inequal i ty  of Hardy;  

< x,+l/t .so(' x~ 
which is valid for p ~> 1 and s > - 1, see [11], Theorem 330. 

Proo]. Consider the region Dt defined by  

Dt : {X[~(X) >t},  

where ~(X) is the boundary  distance funct ion of D while 5t will be tha t  of Dr. 
We shall first prove tha t  there exists a sequence {t~}~, t~->0, such tha t  

Dt~ 

Suppose there is no such sequence. Then the funct ion 

g(t) = f f~aVll~l,dX 

tends to infinity as t->0. I t  is then easy to see tha t  there is a funct ion sl(t)-+0 such 
t h a t  

while I"  el(t) g(t) dt = c x ~  

J~ i t " 

I n  fact, if a v =infg(t)  where the inf imum is taken over (2 -p-l ,  2- . )  we can always 
f ind a convergent  positive series E b. with the proper ty  tha t  E a~bv=~, since 
av -> c~. Then define s l(t) - b ~ for 2 -  v-1 ~< t < 2 -  v. 

Now we get  

J0 t J J o  J0 t 

< / f  ]ut'[f_Le~(~)la(X)-ti~-ldt]dX < y /  lul'a~'-l(X)dX < ~, 

an  obvious contradiction. 
Choose a covering {S,}~ of Dt in the sense of Lemma 3.1. Assuming the centers 

of the spheres in the covering to be {X.}~,  define X~* as one of the points satisfying 
X*E~D, I X . - X *  I =8(i.). Then apply  Lemma 3.7 (i) for each v with Xo=X" and 
X~=X*. Since Kll~<~,~t(X ) ~K=l, for I i -x . I  <~31v, Iv=,~t(Xv)/4, we get 
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f f l  8v- l+r(X)]u~] 'dX <~ K f f, x x~l<~Z~Srllul'dX 
X- Xvl<~Z v 

+K.  I (  8~P ~+'(x){IFl~+"~(8(x))]u*sl~} dX" 
J J Ix-x),l~3lv 

Now sum over v on both  sides: 

~ , 8 ~  1]u,]VdX<-<Kff.sF1]ui'dX+Kff~,8~'-l*'{[F]'+.'(8)]u.,V}dX. (4.1.4) 

We have ] F  v] <--.K]uiVS-2v(X).av(8)+K[u, iVS-v'av(8)+K,V(8)]u, iV+ I/[P, and  
since K does not  depend on t, and ,(8) tends to zero with 8, we can find some t '  
which is independent  of t, and is such tha t  K .  ,v (8(X))<  �89 if 8 ( X ) < t ' .  Then if t < t'/2 

1 .< 

I I ut,/2 t 8~-1+ '  [u~ I~dX + K(t') = 1~ + I2. 
J J Dt 13 {~>t'} 

If  we combine this inequali ty with (4.1.4) and move I~ to the left hand  side in the  
resulting inequality, we get 

f c . . .  fro [u,],dX <K(t') + K 8V~]ulp + tf.-x+,{.~(8)]u.l~ +]/].}dX, (4.1.5) 
Joy 

where K(t') depends on u i and t', but  not  on t, and K does not  depend on u, t, or t'. 
Now use Lemma 3.7 (ii) in the same way  as above to get 

ffo.'+.lu..I.~KV~ ~'l~l.~x+I.(( 82p-I+Y{[.~~IP+"P<O)]uijlP}dX 
t J dDt d dDt 

in which we use (4.1.5): 

f f D s~.-i +.] u.r < K (t.) + K f f o sr ~ iul.dX + K f f o . i +.{ ./]" + ~ .  u.~.'> dX 

We choose t" such tha t  K..v(8(X))<1 when 8 (X)< t "  and get 

fro, ~"~ .,,t'~=<- ~<,", + Kffo, 8~-l].ll,[pdx-} - K j~,j Dt 82p l+?i/]PdX" (4.1.6) 

I f  we pu t  t=G and let v-+oo, (4.1.6) implies tha t  (4.1.3) is finite, with F a t o u ' s  
lemma, since it is easy to see tha t  

f fD~UP-l+ul IlVZY << K < Q 

t 

The finiteness of (4.1.2) follows f rom (4.1.5) and (4.1.6). The theorem is proved.  
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Corollary 4.2. 1 / u E H  p, p > 1, then 

(4.2.1) 

f fox O ~+'[ud'di < ~,  (4.2.2) 

/or every bounded subdomain ~ o/Rn+ and every 7 > O. 

Proo/. Put D={X[~>x~>O,  [x,[ <0, i = 1  ..... n - l } .  By Lemma 3.8, for almost 
every ~ E RI+, 

xi r-1 u ~dX < c~ 

and (4.2.1) and (4.2.2) follow from the theorem with 

Ix, l<e/2,i=a . . . . .  

I t  is clear that  the region used here fulfils the hypothesis of the theorem. 

Theorem 4.3. Let D be a region satis/ying the assumptions o/ Theorem 4.1. Assume 
that u is a solution o/(1.1 A) which/or some 7 > 0 satisfies 

f foY '(X) luldX < ~ .  (4.3.1) 

Then i/71 >~nT/(1 -Y )  and p <~ 1 +71/n we have 

f f f~- l lu l~dX < ~,  (4.3.2) 

f foa" l*"]u,l~dX < ~,  (4.3.3) 

f ro  ae" [u,jl'dX < ~.  
l+yl  (4.3.4) 

Proo/. We cover Dt using Lemma 3.1, the centers of the spheres being {X~}T 
as before. By Lemma 3.7 (iii) where we put X o = X  v and X~=X*~, we get, since 
5t is bounded above and below by lv times a positive constant, 

f f lx_x, l<l  (Sp llulPdX < ~ K ' l y ' [ ~ (  ~ - l [ u l d X ]  p 
LJ J [ x -  xvl<~at~, A 

+K. I (  a~" l+~{[Ft~+[h*l~}dX. 
d d [X-X~,143h, 
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Here  p '  = Yl - 1 - py  + p + n - np >~ O b y  the  assumptions.  Now sum over  v and use 
the  e lementa ry  inequal i ty  E ia~ I v ~< (E l a~ ])P to get 

I f  we combine (4.3.5) with the inequalities (4.1.5) and  (4.1.6) f rom the proof  of  
Theorem 4.1 we get 

ffo a~'-'lul~dx <K(t")+K[ffoa~-lluldX]" 

There is a t "  such tha t  K .  ~v(d)< �89 when d <t #" which with  the moving  of a sui table 
pa r t  of the r ight  hand  side gives rise to 

There  is also a sequence t , '~O such tha t  

f fo,fi;~luldX <~K < 
which proves  (4.3.2). The rest  of the theorem follows f rom Theorem 4.1. 

Corollary 4.4. Let u E H  1. 
bounded subdomain ~ o/R~+ 

Then to every ~ > 0  there is a p > 1 such that /or every 

fx~ -llu?dx < oo, (4.4.1) 

f f x~-"lu, l'dX < ~, (4.4.2) 

ffa ~-1" ~ (4.4.3) x~ [ut~[ d Z  < ~ .  

The following es t imate  is well known for a more  restr ict ive class of elliptic equations,  
see [18]. 

Theorem 4.5. Let D be a region satis]ying the assumptions o/ Theorem 4.1. Assume 
that u is a bounded solution o] (1.1B) in D. Then 

Igradu(X) I ~<g. (~-I(X). (4.5.1) 

Proo]. Since H " D H o0 we have  b y  Theorem 4.1 

f S o { ~ - l ,  I + ~2~-1+~ l u~ ?} dX < (4.5.2) l u, o o ,  
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Making obvious estimates in the representation formula (3.7.4) of Lemma 3.7 we get 

K 
~ k  (y) ~ )  ~-K" fflx_yl~�89 Y l l -n{~- l ( i ) ]u i l~-~(X) lu i ] l )  d i"  

Choose p > n/~ >~ n, use HSlder's inequality and apply (4.5.2) 

If f9 ~c~_2+(l_y)/p(n/p)+l(~y)~K(~_l(~y) x 2"-l+'{lu, l~+~-~lu, p}dX <~+K. 

if y is small enough. 

Remark. Whether [uu] = O ( &  ~) is also true remains an open question. We will 
not need this result in the sequel, however. 

Theorem 4.6. Let u be a solution o/ (1.1 B) belonging to H a, p ~ 1. Then 

f ,  . . . . .  yn-~, yn)lady ' < K @  . y J .  l u,(y, 
Y'I<~@ 

Proo/. By formula (3.7.4) 

o~ (y) <~K. ~-n; luleS+KI I iX_ yp_~{iFl+x:lu,,i}dX. 
~x k Yn J ]x_ Yi=Yn/2 J J Ix- Y]<yn/2 

If  p > 1 choose y >0  and use H61dcr's inequality: 

@u a C Pc ~ (Y) < K .yp -q  lulad~ + K y P - ~  I I Ix -  yji-n+~ 
J lX- Yl=Ynl2 J J IX- Zl~Ynl2 

• {IFla +~,a lu,2 ' id /  

s a I au (y)  ady, y~ - -  + 2na- l{ IFp+x~PluulV}~K< or Jlr'l<q laxk ~ K  oo 

by Corollary 4.2 if the double integral is taken e.g. over IXl ~<2e, ~>o. 
If  p =1, 

Y'I(~ yn (Y)  d ~ Y ' < K " l - n  ; -'Y'~ lul~S~ 
JIY'I<~q JIX-Yl=Ynl2 

+K.y.~ ay'ff, I x -  yll-~l/IdX 
d l Y'I<~ X- Yl~Ynl2 

+K.y.~ aY'ff Ix-  Yll-n{~-"lul+~-llu, l+x~lu, I}gx 
J] Y'I<~# x- Yl<~Ynl2 
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< K + ffllog Ix.- y.ll{x~ 11ul + ~ lu, I + x~+flu~A )dX 

-i ~la, 
K o~-1 

<~ g + gy~I2q" f f lxl<2o{x~-l]u I p" § xV~'-l+~lu~ [~" + x2~V'-l+~]uij [P'} dX <. g < ~o 

by  Corollary 4.4 if p '  is small enough. 

Theorem 4.7. I1 u is a solution o/ (1.1B), then ueH2 i! and only i/ 

/or every bounded ~ c R~. 

Proo/. Assume u E H 2. I t  suffices to take ~ =Qo, 

Q o = { x l o < x , < o ,  Ix, I <Q, i = 1, ..., n - l } .  

We will need a special type  of test  functions ~o(X)=~(s, X) with the following 
properties: 

1 ~ ~peC~(R~), supp(~) c Q w  

2 ~ When  XEQo, yJ depends on Xn (and s) only. 

3 ~ ~o(X)=0 for x,<s/2.  

4 ~ 0 ~< ~v(X) ~< x~ everywhere, ~o(X) = x~ for X E Qe, e < xn < ~. 

5 ~ [~vi ] ~< K, I~J  I ~< g .  x ;  1 where g does not  depend on s. 

6 ~ ~02e{ max  ]yhj(Xl, x 2 .. . . .  X~_l, t)]}dt<,.g where g does no t  depend on s. 
IX'l~<4q~ 

Such a funct ion clearly exists, e.g. ~v(X)=~l(xn).~2(l/x~ + ... +x~_~) where ~2(t)= 1 
for I t l < e  and =0, I tl>~2e and does not depend on ~, while ~1 satisfies 3 ~ and 4 ~ 
above, and d~l(t)/dt 2 changes sign, say, at  most  four times. 

Now regularize the equat ion (1.1) in R~, mult iply with ~v(X).u(X) and integrate 
partially: 

f ~ ~u[5'Ju~j - F + (a '~-5'~)u,~]dX=O, 
JQ2~ 

~v5%~u~dX = - ~p~ - ~ u u ,  + ~vu[ - F + (d ~ - ~ )  %] dX 
Q2~ Q2o 

rr  . ~_,, v~2a:~ idX+ 1~_,, 

Q2o 
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I f  ~ is small enough, 5 Y ( X ) ~ j  ~> 2/2[~12 for x~ < 3, and hence on the left hand 
side 

On the right hand side we have three integrals to estimate. We get using the prop- 
erties of ~fl and Corollary 4.2, 

f f %{W,u2a" + u~a~ j} (IX 

;~ f s ~<g" max  ] ~j (x  I . . . .  ,x~_x,t)[dt ]u]2dX'+g x~-l]u]2dXKK 
Ixq~<2e X'l~<2e 2~ 

independently of e. 

[I Of~aJJu2+~u~r xVllul ~dx, 
�9 ~ ,d Q2o~ ,d J Q 2 q  

[( ~ou[F+(a'-a')u,3eXl<K(( x:-~lul'dX 
J d Q2s J d Q2Q 

we get ( (  Thus y[uiI2dX <~ K + K(r) 
JdQ 2~ t3 {x n < ~:} 

�9 QO n {x n >~} 

Since K and K(r) do not depend on e, the necessity par t  of the theorem is proved. 
To prove the sufficiency, assume 

f foX=lu, l dX < 
for every bounded subdomain ~ of R~. An easy application of Schwarz's inequality 
then shows that  

ffx~ ~lul~dx < 

f f  ~(~=) lul~dx < ~. 
X n 

for  e v e r y  7 > 0 a n d  
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From Theorem 4.1 we conclude that  the following integral is bounded when 
is bounded 

f f~  3+cr 2 x~ I%1 dX. 

Let  D be a convex bounded region c R?~ the boundary of which is sufficiently 
regular and contains the set { X l x , = 0 ,  ]X'] <~} for an arbitrarily chosen Q>0. 
Such a region is easily constructed. I f  we denote by  5(X) the boundary distance 
function of D, while (~ is tha t  of D~, we can construct a positive function A(X), 
coinciding with 5(X) for 6(X) sufficiently small, and belonging to C2(/)). We observe 
tha t  A(X) - v  ~< O~(X) if ~ is small enough. 

Integrat ing partially, we find 

f f D a~J2uu~A~(X) dX = - f f D {5~J2uu~(A -- ~) + a~S2u~u~(A -- T) + 5~J2uu~j(A -- ~)) dX. 

On the other hand 

f f D S~J2uu~Aj(X)dX = faD Siiu2AjdX(o- f ~DT(5~iu"Ai + 5~Ju2Aj~}dX. 

Thus using the fact that  u is a solution and that  

5~'A, dX(o >~ ]t/2 ~An dS =~dS 

on tha t  par t  of OD, which is below xn=e for some e > 0  we get 

fODvN{Xn <e}n2dS ~ g fOD~N(Xn >e}u2dS -~ gffD~ { ~ - 1 ]  U ]2 ~_ X~IU 61Ui ] -~ X n U 2 

+  lui[If] m a x l u l 2 + K  �9 If{z:-llul2+xnlu l idX {x n >~} 

Since the right hand side is finite and independent of ~, we have 

f u2(xlxn-l, )dX'< fo . . . . .  u2dS<~K<oo X']~O Dvf~(Xn <~} 
and the theorem is proved. 

Theorem 4.8. Consider the equation (1.1 A) in Rn+. I] u is a solution, possibly de/ined 
only in Vh(X'), 1 satis/ying 

1 I n  th i s  case we assume t h a t  u, ui, a n d  uij  are  b o u n d e d  in {x n > �89 say. 
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it tt(X') 

[or some ~ > O, then/or all p >11 and all h" > h 

V h,( X') 

f f x~+~-"{u~l "dx < o0, 
Vh,(X')  

f f  ~ 2 p - n + P Y  ~" P ~ I X  
V h,(X') 

Proo/. We introduce the sets W = V ] ( X ' ) = V n ( X ' ) N  { X I x , > v > 0 } .  Let O,(X) 
denote the distance from X to OW. Using Lemma 3.1, we cover W with spheres 
having centers X,, then apply Lemma 3.7 (i) and (ii) with X ~ = X ' .  MSer multi- 
plication by x~ ~-~v" (~v-,~ we find 

+ Kff~_~K~ ~" +---~,.~,-"'{ IF? + ~'(~.)1~1 ~} dX. 

After summing over v we note that the constants do not depend on v and in a manner 
by now familiar we get the inequalities 

n x~r-Pn l ui~l~di 

t]~ n y-c 

Xvn?- I"} 

which combined give rise to 

v v  a"n I ~ i l  w~-  - -  
y v 

f f v  s~P+n~-~x~y -n~ vdX <<. U v v n ~j 

(4.8.2) 
+KI I ~W"'z~-"~lu['dX. K(C") 

j ,j v "c 

(4.8.3) 
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Using the same covering of W as above, we now apply Lemma 3.7 (iii) 

f f , ,  J J IX-X~l<l v L J J I X - X v l < < . 3 l  v 

+ K f ~  (5~P+"V-~x~y-nvtlFIV+aV(x.)lu~jl~}dX. 
JJIX- Xv1431 v 

Sum over v and use the inequality Z l a~[ v ~< (ZlanI)V: 

+ K {(5~ x,~ ~ (x.) lu [ ~+.v-.  ,y-sv v 
3 J  V ~ 

+ ~v +.v- -x,r--~ap(x.)lu,j p} dX.  

Applying (4.8.2) and (4.8.3) while noticing that  KaV(x,)->O independently 
we get 

3v~ 
Since the right hand side is independent of ~, Fatou's lemma gives 

of z 

f f np-n py-np (~ xn [u [VdX < c~. 
v h 

Now (4.8.2) and (4.8.3) give the corresponding results for ui and uij, and the theorem 
follows with the observation that  for every h' >h, (~(X)>~K'xn for XE Vh,. 

Remark. In  the case of Laplace's equation, Theorem 4.8 follows much easier if 
we use the Poisson representation. In fact, Fubini's theorem implies that  there is 
an h", h <h" <h' such that  

fo xVl-~luldS<~" Vh,, 

Since Vh,, is convex, I ~G/~n(X, Y) I <'K" I X -  r]  l_n and with H61der's inequality 

As Y E Vh,, [ X - Y [ >~ x~- K, and hence the first integral is finite. Multiplication with 
y~V-~ and integration over Vh, gives 

f fvh ,  yPy-nIu(Y)]PdY ~ K .  fOVh,,xn~(P-1)lu(i)[diffvhyP~'-n[ X -  YI 1-naY~ 
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The proof follows with the observation that  

yp-ndY <K.xr~+l-n" ,~i n .LI_ - -  

V h �9 

The following theorem for harmonic functions can e.g. be found in [22]. 

Theorem 4.9. Consider the equation (1.1 B) in R~. I / u  is a solution, possibly defined 
in Vn(X') only, satis/ying 

o o  

Then ~Iu,(X) I ~0 

as xn-+O in Vh,(X') /or every h' > h. 

Proo/. Using Schwarz's inequality, we see that  the assumption implies 

ff ~-~lul ~ x <  
V h ( X ' )  

for every y > 0 .  By Theorem 4.8, we can conclude the finiteness of the following 
integrals for every y > 0 and every h" > h. 

f f vh xr~ "]u ]PdX, (4.9.1) 
II(X p) 

f f v h,,r l u, l~dX, (4.9.2) 

f /  ~ - ~  -ludo~x. (4.9.3) 
Fh,,(X') 

Choose an arbitrary h' >h  and let h' >h">h. Then there is a constant k such that  
a sphere around Y E Vw with radius k. yn lies inside Vh,,. In this sphere we can write 
u as the sum of two functions 

u(z) =1- f, (X,Z)u(X)dSx 
(Dn  X -  Y l = k . y  n 

1 
f s  G(X, Z) [Y + {siS(X) - a*J(X')} u,j] dX = u a) + u (2), + 

~ n  X -  Y I ~ k . y  n 

where G is the Green function of the operator a~J(X')~/~x~xj in I X - Y ]  ~<k.y~. 
Since u a) is the solution of an operator with constant coefficients we find 

~U(1)(Y) 2~ [i= ~n[~l K f f  I~u(1)l ]2 
a X  l ~ - -  d X  In} 1)[2dX. 
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By the Dirichlet principle 

f f,~_ y,<~ ~nlu~l)l ~dX <K" f f x_ lu, l dX" 
On the other hand 

~ <g(~" Ix- yll-'~{I-Wl+x:]u,,I}dX 
J J  I X -  YI~Yn" k 

L J J  I X -  Yl<~Ic.y n 

if p > n. Combining these inequalities we get 

x - lu, 
k,.I J Vh, ,n{Xn~2Y n} 

~ n  t i l l  - - ~ n  I ~ i J l  - - ~ n  I ~ i l  - - ~ n  
Vh,,N{Xn~2Y n} 

By (4.9.1-3) above we find that  the right hand side tends to zero as y~-+0. 
Our next theorem is a corollary of Theorem 4.9 and the following theorem by 

Wallin [25]. 
I / u  is a continuous Beppo-Levi  /unction in R + such that /or  some 7, O ~ 7 < n  

yf x~ lu~12dX< 

/or every bounded subdomain ~ o/ R~+, then lim u(X)  exists and is /inite /or all 
X n --~O 

X '  E R ~-1 except when X '  belongs to a certain Borel set E o/ m -  2 § zero. 
A Beppo-Levi function is a function which is absolutely continuous on almost 

every line parallel to some coordinate axis. A Borel set E is said to be of m - 2 +  7- 
capacity zero if for every non-trivial non-negative mass function /~ with support 
in E the potential 

= J R J x -  yi 2--m u t L ( X )  7 d # (  Y )  

is unbounded. 

Theorem 4.10. I / u  is a solution o~ (1.1 B) in  R~ with the property that 

/or every bounded subdomain ~ o/ R~+, then u has a nontangential /inite limit at every 
X '  E R n-1 except in a set o/ m - 2 +7-capacity zero. 
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Proo]. Since, by our definition of solution, u is automatically a continuous Beppo- 
Levi function, Wallin's theorem shows that perpendicular limits exist except in a 
set of the right size. Moreover, it can be proved that  

Jgh(X') 

for every h > 0  and X ' E R  n-1 except for those X'  belonging to a set of n - 2 + ~ -  
dimensional Hausdorff measure zero. See Wallin [25], Lemma 5. Combining these 
facts with Theorem 4,8, the present theorem is proved. 

5. I t  is well known that a positive harmonic function in  the unit disc belongs to 
H 1. The traditional way of proving a theorem of this sort is to use the Poisson 
representation of the harmonic function and show that the normal derivative of 
Green's function is bounded away from zero. See e.g. [27]. However, it is possible 
to do without the Poisson representation. 

Theorem 5.1. Suppose u is a non-negative solution o/ (1.1C). Then u E H  1. 

Proo]. Choose an arbitrary ~ > 0. We shall prove that  

f l  lu(xl Xn_l, Xn) ldX'<~K<c~ as xn---> 0. 
x'l<~q 

Let D be the convex bounded region ~ R~ whose boundary contains 

{Xlxn =o, IX'l 
that was constructed in the proof of Theorem 4.7. D t, ~, ~, and A(X) will have 
the same meaning as there. Define 

~ ) t  (X)=~ 

We shall prove the inequality 

f l,dX + f 5,,-l§ <K(to) + (5.1.1) 

for some p > l ,  t<to, where e(t0) and K(to) do not depend on t, and ~(to) does not 
depend on u, while lira e(t0)=0. 

t0-~0 
To do that choose p < 1 +a/n and y < 1 -  l/p, and combine the inequalities (4.1.5) 

and (4.1.6) from the proof of Theorem 4.1, with ~=~ ,  and (4.3.6) of Theorem 4.3, 
with y~ = :r We get 

which proves inequality (5.1.1). 
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Now we regularize the equat ion in the region Dt the boundary  of which is suffi- 
ciently regular if t is small enough, due to our assumptions. Thus we can find func- 
tions a~J(t, X) E C~176 ] ~/~xk a~J] < K.  c5~ -1, 5 ~ E C~(/gt), 5~J(t, X) = a~J(X) for 5(X) = t, 
where K and the H61der constants  of 5 ~j are independent  of t. I t  is also clear t ha t  
2 ~ - 1 ~ > 5 ~ J ~ j > ~ 2 - 1 ~  when t < 5 ( X ) < T  for T small enough. We get 

I f f oyu~,(x)dx <, K f f ~ luldX < K(to) + K . t. im(t)]. (5.1.2) 

On the other  hand, using partial  integrat ion 

In  the surface integral 

,, 2 eAdS = ~ dS 

for 0(X) < T, f rom which we conclude, using the positiveness of u 

s  5"uA~dX(, >~ KLD lUldS. (5.!.3) 

The first par t  of the double integral  admits  the estimate 

K.  fro, 5"t X]u] dX <~ K(to) + K " e(to) "m(t ). (5.1.4) 

In  the second part ,  we integrate part ial ly and use the fact  t ha t  u is a solution: 

] f f o a% a,dX = l f o. 5 % ( A  - t) dX(, - f f ~ iai%(~ - O + a '%(A - t) } dX 

< ff., { a~lu, I + a~[lF I + ( a  t' - a s') "5,3} dX 

<~K-,-K t I IdX 
t L,J ,J Dt 

If  we use the inequali ty (5.1.1) we get 

] f foyu, A,dX <K(to) + e(to)m(t). (5.1.5) 

Combining (5.1.2)-(5.1.5) we get 

f~(x)=t [u]dS <- + [m(t)]. K(to) 6(t  o) 

As we m a y  assume tha t  re(t)= ~=t I u [dS for some sequence {t.}~, t , "a0,  

m(t,) <~K(to) +e(to)m(t,), v = 1, 2 . . . . .  
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If we choose t o so small that  e(to)<1, m(tv)<K(to), and since re(t) is a non-increasing 
function, it follows that  

f~ uldS<K<oo as  t-->O 
( x ) = t  

which implies the theorem. 
We might ask ourselves whether this theorem is sharp or if it is possible to weaken 

the conditions on the equation. I t  seems probable that  the coefficients in front of 
us and u in the assumptions on F may be replaced by ~(~(X))/(~(X) and ~((~(X))/(~2(X) 
respectively, where s(t) is a Dini function, i.e. is monotonic and satisfying 

fo? dt< ~ .  

However, in general it is not possible to go further with this type of assumption, 
as is seen from the following theorem. For further discussions, see after Theorem 7.3. 

T h e o r e m  5.2. Let ~(t) be a non-decreasing/unction on (0, ~ ) ,  satis/ying 

~S ( t )d t=~  s(2t)<2"s(t) .  t 
Then there exists a positive /unction u(x, y), y > 0  such that u-+oo as y->O /or all 
x E ( - 1, 1), and such that 

IAu] < K "  e(Y~)y luvl + K Sy(_~ y) lul. (5.2.1) 

Proo/. Define ~(x) = Sg s(ltl)dt, Ix 
tion r y), y >0 with the following 

r 0) = ~(x), 

~Y~(I) (x, y) - 1 < K" s(y), 

] D(2)(I) ] < K" s(y), 
Y 

~ (x, y) s(x) s(y), < K .  

] ~< 2, and use Lemma 3.9 to construct a func- 
properties: 

K . 9 <  O <~K.y + K . x .  

If we put (1 (~)(X + t, y) dt 
u(x, y) = J-1 r  ~ ~ + 0 2 ' 

elementary calculations show that  u satisfies (5.2.1). Also 

509 



K.-O. WIDMAN, Boundary behavior of  solutions 

u(x,y)>~ x_tl>y(~)2+(x+t)2dt) Jltl>y- ~- 

if Ix[ ~< 1, which proves the theorem. 

6. Before we go on with solutions to the equation (1.1) we shall investigate the 
boundary behavior of a special type of solutions to the equation Au=/ ,  namely so 
called Green potentials 

u( Y) = J J~+G(X, Y) f (X)dX,  

where G is the Green function of the Laplacian, or, more generally, of any  linear 
homogeneous second order elliptic operator with constant coefficients. 

We note first tha t  in order tha t  the defining integral exist as an absolutely con- 
vergent integral it is necessary tha t  

 nlllIp d X  < o o .  

ff~+l + 
As the behavior of u in the neighborhood of a boundary point depends on the 
values of f in a neighborhood of this point, we shall assume in this section that  / 
has compact support, say in { i  II i [  ~< 1, x~ ~>0}. The necessary condition above is 
also sufficient to guarantee the existence of perpendicular boundary values of u, 
a fact which was first proved by  Littlewood [15] for n = 2 .  The proof in the general 
case is similar and we state here without proof: 

Theorem 6.1. I /  

ffR xnl/(x) ldX < (:x:) 

then the Green potential u o/]  satis/ies 

lim u(yl, Y2 . . . . .  Y~-I, Yn) = 0 
y n.-).O 

/or almost every (Yl ..... Yn-1) e R ~ 1. 
In  order to ensure the existence of non-tangential boundary values, we have to 

assume higher order integrability o f / .  One such condition was given by  Solomeneev 
[20], namely essentially 

f fR ~llpdX < oo 

for some p > n/2. This result can be improved. We also believe our method of proof 
to be simpler than the ones used earlier. 

Theorem 6.2. I /  

f ~R xnl/(X)]dX < (6.2.1) 
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and i/there is a p >n/2  such that to every X '  belonging to some (measurable) set E ~ R n-1 
there is an h > 0 such that 

f f ~,-n Ill,dX < ~ ,  (6.2.2) Xn 
Vh(X') 

then the Green potential u o / ]  has non-tangential limit zero at almost all points o/ E. 

Proo/. By Lemmata 3.2 and 3.3 there is a set E '  c E such that  E - E '  has measure 
zero and 

d J  Vh(X') 

for all h > 0 and all X'C E'.  If 

= f II(X)ldX, 
then lim 8(3)=0. 

"g-->0 

Define the set function (I)(e), e c R n-l, by 

where the integration is performed over 

{ X l O < x .  <~, (xl ..... Xn_l) e e}. 

By a well-known theorem from the theory of integration (6.2.1) implies that  dp has 
a finite regular derivative almost everywhere, and a simple argument shows that  

except in a set E" of measure at most U(v). Let Xo E E'  13 CE". The proof shows that  
it is no restriction to assume X 0 -  O. We shall prove that  

lim sup lul ~<K'~(r) (6.2.4) 
Y--> O 

YeVh(O) 

for every h >0. By choosing a suitable sequence T~ tending to zero sufficiently fast, 
it is not difficult to see that the theorem is hereby proved. 

To prove (6.2.4) choose ~ so small that  

(I)(e) ~< 2co~_1 (6.2.5) 

i f p < 8  and e={/Ix~=0, I/'1 <e}- 
We have with a fixed Y E Vn 

lu(Y)l < a(x, Y)ll ldX<I,+Is+I'o+]o+ "~I,, 
j j  Rn+ r = l  
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where the regions of integration are 

I~: {xlx~>~}, 
h: {xllx'l>~}, 

/ Io: xl0<x.<~, IX'l~<20, Ix-rl~>?-, 

~0: {XlIX- rl -<y"/ 2J' 

Q= [ Y], and N is chosen so that  d~<2N+l~<2d. 

Now lim sup/~ ~< lim sup K .  3- =" Y, II  x~n/i d X  = O, 
Y n ">O d J X n > "r 

lim suplo<limsupK.d-".y,f~ x.[/]dX=O. 
yn-")O X'[>~6 

Moreover, by (6.2.5) 

ILl<K" Y" If, x"I/IdX <K Y" ( 2 ~ .  x,t<2,+l e "(2~2~(2 '+1e)"-I  = K ' 2 - ' ~  

N N 

and so ~I~<~K'~Z2-~=K'~, 
V=l  V=I 

I~ol<K'e 1 " I f  x~llndX~K'~. 
d d I x ' l < 2 o  

Finally, 

(( 

<. f f . I/l'dX, 
where the last integral is performed over Vh/~(O) fl {x~ < 2y~}. This integral tends to 
zero with y, by (6.2.3). The theorem is proved. 

By Lemma 3.2 we get the following Corollary. While this manuscript was in its 
final stage of preparation, Arsove and Huber [2] announced a similar result for n = 2. 

Corollary 6.3. I/ 

f fR x~P-: [/]PdX < 
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/or some p>n/2 ,  then u has non-tangential boundary values zero almost every. 
where. 

By HSlder's inequality we get 

Corollary 6.4. I /  

f i n  xy -~l/I ~dx < JJR+ 

/or some p >n/2 and some e >0,  then u has non-tangential boundary values zero almost 
everywhere. 

I t  is not possible to allow p =n/2  in Theorem 6.2, which is seen from the following 
example. 

Example 6.5. To every positive, locally bounded weight/unction g(t), 0 <t <~ 1, there 
exists an / such that 

while the Green potential u o / /does  not have non-tangential boundary values anywhere 
in IX' I <~ 1, with the possible exception o / a  set o/measure zero. 

Proo/. For each ~, construct a grid of points Xv~, lying in the plane Xn=2-v, the 
n - 1  first coordinates of which are integral multiples of 2 -~. Inside [ X I ~  < 1 there 
are roughly 2 -~a-n) such points for each v. Let  B ~  be the ball having center X ~  
and radius 2 -v-2. Define the sequence {k~}~, /c~ ~> 1, in such a way that  

2 -'~((n/2)-l)+~n sup g(t) <~ 1, 

where the supremum is taken over those t for which t>~2 -v-1. Now define 

/ ( X ) = I X - - X ~  I ~2 -k~ if XEB~, and exp (--2~)<~lX--X~]<<-2-'-2 

= 0 elsewhere. 

Then 
v j d B~,i v 

ffe(  ),/P/edi = ~ sup g(t) Z < c~. 2 y .  2- vk~( (n l2)- l) +~n 2 
y 

But  G ( X , Y ) > ~ K . ] X - Y I  ~-~ in B~ andhence  

f f ~2-~-i u(X~)>~g.2-~ ~ ]X-X~] -~dX>~g .2 -~ |  ~ dr>~g>o. 
Jexp( 2 ~ ) r 

Now if X '  is any  point satisfying I X ' I  ~< 1 and h is small enough, Vh(X') contains 
at  least one grid point Xvi for each v, and our assertion is proved, since by  Theorem 6.2 

lira inf u(X) = O. 
X->X" 

XeVh(X') 
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On the other hand, for a given p>n/2 ,  ~2v-1 is the largest weight function we can 
allow: 

Example 6.6. I /  /or some p 

t >~ 0 such that 

>n/2, lim g(t).tl-2v=O, then there exists a /unctiou 
t -+O 

ff~+x [l]dX< n 

but whose Green potential u does not have non-tangential limits anywhere in IX' I <~ I 
with the possible exception o[ a set o/ measure zero. 

"" " t 1.2v <~2-p. Proo]. Choose a suite tp, t~+l<2-itv such that  g(~v)" ~ In the plane Xn=t~, 
we construct a grid of points as in 6.5. If B~t is the ball with center X~i and radius 
tp.v -2 we d e f i n e / = O - t ;  2 in Bvi a n d / = 0  elsewhere. That  / satisfies the hypothesis 
and assertion of the theorem follows as in 6.5. 

Theorem 6.2 is, however, not the ultimate in this connection. 

Theorem 6.7. Suppose M(t) and N(t) are complementary in the sense o/ Young. 
I1 ] satisfies 

f f..+x.l/ldX < 

f f. xVlM(/(x)) dX < o o  

and i I I I N(IxI~-") dX < 
JJI  XI<I  

then the Green potential u o/] has non-tangential limit zero at almost all boundary points. 

Remark. As examples of M(t) which satisfy these requirements, we mention 

M(t) ,,~ t~/2(log t)(~m-a(log log t) (~/2) 1 . .  (log log. . ,  log t) (n/2)-1+~, s > 0, 

for large values of t. By [14], p. 75, we have 

N(t)~ n - 2  
n 

t("-~)/"[(log t) (log tog t ) . . .  (log log. . ,  log t)~(2~)t("-2)a+l] -1. 

We also remark that  Theorem 6.7 does not contain Corollary 6.3. 

Proo/. The proof proceeds with Lemma 3.2 as in Theorem 6.2, except that  u  
inequality is used instead of H61der's in the estimate of I~. 

From the theory of Orlicz spaces, see [14], we know that  if 

fs N(lXlU-")dX = ~ ,  
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we can find / such tha t  

f l x i~kM( / )dX <~ 1 

while f f, ix i 
can be made arbitrari ly large, for each k. Using this. it is possible to prove 

Example 6.8. I / M  and N are complementary, and 

ff~ N(IxI~-") dx = 

r 

XI<I 

then to every positive, locally bounded weight /unction g(t), 0 < t ~ < l  it is possible to 
/ind an / satis/ying 

f fR.+x.[/, dX < ~ .  

f f .~g(x.) M(II]) dX < 

but whose Green potential u does not have non-tangential boundary values in I X '  I <~ 1. 
disregarding a set o/measure zero. 

For  the sake of completeness, we state the corresponding results in the case n = 2. 

Theorem 6.9. I / / o r  n = 2, / satisfies 

I I(X)l log II(X) l d X  < ~, 

then the Green potential u o / / h a s  non-tangential limit zero almost everywhere on the 
boundary. 

Remark. This theorem was proved b y  Tolsted [23]. I n  [20], Solomeneev claims 
to prove a more general condition, namely  

Ill log [x~l/l]dX < ~. 

However,  if / satisfies Solomencev's  condition, it also satisfies Tolsted's,  since 
+ + + 

z, lll log Ill ~<2. <~ log 2<~ + 4x~lll log ~111. 

Contrary  to the case n ~> 3, M(t)= t logt is the best possible for n = 2. 

+ 

Example 6.10. 1] lim g(t)[tlogt] -1 =0 ,  then to every positive locally:bouvMed weight 
t-->r 

/unction h(t), 0 < t  ~< 1, there is an / such that 
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f f dX < 

f fR h(x ) g(lll) dX < oo 

but whose Green potential u does not have non-tangential limits in Ix1] ~1 ,  with the 
exception o/a set o/measure zero. 

The proof presents no new difficulties, and we omit  it. 
We shall investigate what  the integrabil i ty condition on / means when 1 < p  <~n/2. 

I n  order to do so, we need some new notat ion.  Consider the "k-dimensional cone" 

{Xlxk = X k + l  = . . .  = X n - 1  = 0 ,  h(x21 -~ . . .  + x2-1)<X2n < 1}, 

where 2~<k, ,<n-1  and h > 0 .  For  a fixed k we denote by  ~ga(O) the image of this 
"cone" after an or thonormal  mapping  of R n-1 into itself leaving the origin fixed. 
~gh(X') will be the usual t ranslat ion of ~gh(o). A typical  case where the si tuation 
can be visualized is n = 3, k =2 .  The convention tha t  / has support  c { IXl  < 1} is 
still in force. 

Theorem 6.11. I/~gh(O) is a/ixed k-dimensional cone, and / satis/ies 

fL and x~-l l / l 'dX < oo with p>~,  

then lim u(Y) = 0 
Y--~X" 

YEYk(X' )  

/or almost every X' fiR n-l, i/ u is the Green potential o/ ]. 

Proo/. With  a suitable coordinate t ransformation,  we can always assume tha t  
~a(0) is of the original type  considered above. Define 

*)= f -il/Pdx" 

An inspection of the proof of Theorem 6.2 shows tha t  it is sufficient to consider 
the in tegra l /~ ,  i.e. the integral over { Z l ]  X-Yl<~yn/2}.  

P u t  X : ( X ' ,  xn)  : ( X " ,  X ,tt, Xn) = (Xl, X 2 . . . . .  X k _ l ,  X k . . . . .  Xn_ 1, Xn) 

and define 
= { u  x") }  n 

where the union is taken over all X "  E R n-k. I f  ~v( Y, X") is the characteristic funct ion 
o f  ~ I ( X " ) ,  w e  have 

fR~ ~~ <~K'Y~-~" 
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Hence 

~. I I ( r ) l " d Y =  dX" X"~  ~ ' - ~  "~'dY 
k - 1  ~] ,] ~V(X,, ) n - k  ,d ,d Xn<V 

f(F . 2 . - 1  ~ ~'dX - ~ < K - ] [  Y~ I / I  -K.e(r), 
Q/ ~/ xn<Tr 

which implies that  

f f~ , ( x , , y~  ~-'~ Ill,dY = K" ]/s('r) K.~(~) 

except for X" in a set whose k-1-d imens iona l  measure is less than  ~(T). I f  X" is 
not in this exceptional set, the set function O(e), e c  R ~-k, defined by  

ce)= r ~x" j" yF~ll l ,~r"@. 
J e J { ~ h l n ( X " ,  X"')} n {x n <3} 

has a derivative <K.]/~(v) except in a set of at  most n -k-d imens iona l  measure 
]/~(~). I f  Xo = (Xo, Xo')  and X0 and Xo'  do not belong to the exceptional sets above, 
we have for y, small enough 

[ff i_,,;i,, .< 

~<K" ~,2~-~-:,. j ' j"  I11 ~ d X  ~ 
~" j j  I x - r p  -~-~ 

where s=(n-k-7+2p-np)/(p-1 ) > -n  if Y is small enough. 

f f lx-I / l l  ~'=1 ~ (2" ynl)n-tc-r f fD~,XZnP-kl/(X)pdX 

v = l  

where D~ = { U Vhln(Xg, X")}  17 {zn < 3}, 

the union being taken over those X "  for which I X " - X o " l  ~<2-~y~. Hence 

lim sup Iz;I • K "  [~](T)] l/2p, 
Y-'> Xa" 

Y e Yh(Xo') 

and since r/(T)-+0, the theorem follows in the usual way. 

Theorem 6.12. Suppose 

and 

f f x~lll ax < oo 
_<n 4~-*ltl~ax< oo, 1 <p-.,~, 
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then/or every p' <p** =np/(n-2p) we have 

f f Y~ nlu(X)iCdY < oo  

Vh(X ' )  

]or almost every X', all ? > 0 and all h > O. 

Proo/. Choose an  a r b i t r a r y  h > 0, and  let  X06 R n-1 be a po in t  where the  set funct ion 

has  a f ini te  de r iva t ive  and  where 

X--  Yl<~Y n /2 X -  Yl>~yn /2 

W i t h  Minkowski ' s  i nequa l i t y  

n ~=o J J  Ix,-xo, l<2 -~+1 
oo 

< K "  ~ 2 - ~ r <  c~, 
v = 0  

where the  double  in tegra l  wi thou t  in tegra t ion  l imits  is t a k e n  over  

{y=<~ IX'-Xol . g }  f~ Va(Xo). 

W i t h  H61der's i nequa l i ty  

(r Is(x)L ~ x  
lu,(y)l jj,,_,,<.~,~ Ix-zrt 

dX 1 TM [ (( W- ' I I I "  dZ} " ' ' r  t" : ]lip-lip" LJJl  r ~ [JJx~ ' - l l l l "dxJ  
2 p - 1  p 

.<, ,  . , r r r  x~ Ill l',,,' �9 d X ]  , 
~n L J j I x -  YI'" 

where p " = p ' [ n - 2 + ( y - n ) q - 1  ] and p"=7_,vq- l+(n-1)(p ' -p) (pp ' )  -1 from which 
follows 

ff yZ~l~(Y)l,'dy ~ g [ [  4,-=l l l ,dX < oo 
Vh(Xo') ,1 J Vhln(Xo')  

The theo rem is proved�9 
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+ 
Remark. B y  put t ing  //(X) =x~2(log(1/x,))-a(loglog(1/x,)) -2 in O <xn < l ,  I X ' ]  < 1, 

we see tha t  it is not  possible to allow y = 0  in the theorem above. Likewise, by  using 
the grid of Example  6.5 and def in ing / /=2  4~+("~/p') in I X - X v i  [ < 2 -2" we see tha t  we 
cannot  take p' >np/(n - 2 p ) .  I t  is probable, however, tha t  p' =up/(n - 2 p )  would do. 

7. I n  this section we state and prove some theorems on the existence of boundary  
values of solutions to (1.1), and how these are approached.  The first ones are exten- 
sions of the Fa tou  theorem [9]. 

Theorem 7.1. Suppose u is a solution o// (1.1B) in R~+, and uCH 1. Then at almost 
every point o// R ~-1, u has a//inite, non-tangential limit. The li~iit //unction is locally 
summable. 

Proof'. I t  is clearly sufficient to prove the existence of limits in bounded  sets, 
[X'[ ~ / 2  for arbitrari ly large ~. Pu t  

D~={XIv<x=<I+v, l x ~ l < e , i = l  ..... n - l } ,  T~>O 

and  Do=D. The par t  of ~D, satisfying xn=v will be denoted by  ~'D,.  
By  definition 

(7.1.1) 

for all ~ > O and  all bounded sets ~ R~. F r o m  Corollary 4.4 we conclude tha t  

(7.1.2) 

On the other  hand, (7.1.1) implies t ha t  

f f vh(~,)zFn lu[ dX < 
for all h > 0, all 7 > 0 and almost  all X ' E  R ~-1. B y  Theorem 4.8 

f f  p p--n+~ p Vh(X') 
(7.1.3) 

for all h > 0, 7 > 0, and  almost  all X '  E R ~-1. 
The next  step wilt be to find a suitable representat ion formula for u. To tha t  end 

we first note t ha t  by  (7.1.2) and Fubini ' s  theorem 

9 n {xi=t} 

for ?" = 1 . . . .  , n -  1 and almost  all t E R 1. We can assume tha t  

fo xnlu ldS<-<  and fo I ldS< . (7.1.4) 
D-O'D D-O'D 
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Consider the sequence d#(~)(X ') = u ( x  1 ..... x~_l, z(k))dX ' on I X ' |  ~<~. B y  the defini- 
t ion of H 1 we can pick out  a subsequence {T(~)}~ ~ such tha t  d# (kp converges weakly 
to d~u, say. By  the Lebesgue decomposit ion theorem, dla=~(X ' )dX '+dm,  where 

ELI(]X ' ] <~Q) and dm is a singular measure. Let  X0 be any  fixed point  in IX ' [  ~<~/2 
and let Vh(X'), h > 0 ,  be an a rb i t ra ry  cone. I f  Y is a point  in this cone, denote by  
Yr the point  Y § (0 .. . .  , T). G w will be the Green function in { X | x  n >T} of the operator  
a~J(Xo) (~2/~x~xj). Now apply  Green's formula in Dr. We get  

1 ~ ~G ~ 
~(Yr) = ~ jo.r ~ (x, Yr) u(X) dSx 

con D~-O'D~VV (X) Gr(X, Y~) dSx + r G~hiJ(X~ uijdX 

and after  using the fact  t ha t  u satisfies the regularized equat ion 

5~(Xo) u~j = F + [5~J(X) - a~J(X)] u~j + [hiJ(X0) - 5J~(X)] u~j, 

J ovr ~v J oo~-o,Dr~v 

+f f . f f (X ,  rr){F+[a'~(X)-a"(X)]u,3dX 

Before letting T tend to  zero we integrate partially in the last integral  over the 
region D~ - {X [ [ X - Y~ ] ~< a} = Dr - B,~, where y, J4 <~ a <~ y,~/2, 

f f ~ -~J ' a;a~Ju} dX. + {~[a  (X0) - a~J(X)] u + 
v --  B a r  

Now pu t  v =~(k) and let k-+c~. I f  we use (7.1.2), (7.1.4), the fact  tha t  d# r eonverges 
weakly and Lebesgue's  principle of domina ted  convergence, we see tha t  all passages 
to the limit are allowed. After  this we integrate with respect to a between y,J4 
and y,/2, divide by  yn/4, and get the following representat ion formula for u: 

COn" u(Y)  = z,l<q~ v (X, Y) {a(X')  dX'  + dm} (7.1.5) 

+ z l o t y ( x ,  Y)[a~J(x;)-a-(x)]{~(X')dX' +d~} (7.1.6) 
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+ | 5iJ(X) uGjdX(~) - Ggis(X) u~dXo) (7.1.7) 
JO Dv-O'D. r 

+ -  | d~{ |  e[~iJ(/0) : ~ J ( / ) ] u , d i ( ,  
Yn J yn/4 I,J OB a 

+ Gj[aiJ(Xo) - a~J(X)] udX(o } (7.1 

4 f.y~/2 f. [. 
+ - -  ] da [ [ G[5~i(X0) - 5~J(X)] uijdX (7.1.10) 

YnJ~I4  J JBo  

4 Yn/2 . , .. +-( I I 
Yn JYn/4 d J D-B a 

+ Gj ~Ju - G~i'~,} dX.  (7.1.11) 

We intend to prove  t ha t  u--->~(Xo) a t  a lmost  all points  of ]X'] <e/2.  To do so we 
note  t ha t  

~ (X, Y) dSx = ~on 

and hence if Xo is a poin t  in the Lebesgue set of 4dX'+ dm, i.e. a point  where 

h(t)=ti-n( {]4(X')-~(Xo)]dX' +dm}-+O, t-+O, (7.1.12) 
J I x ' -  Xo'l<~t 

we have  

~1 (7.1.5) - ~(Xo) I 
1" ~G , 

lx'l~<e ~V 

§ K . ( ~  -n  " Y n f l x , _ x o ,  l > ~ ( { l a ( i ' ) - q ~ ( X o ) ] d i '  § 2 4 7  K ' O  - n  " Y n f o D _ O , D ] U I d S  X 

N 

p-1 

where l =  ] Y-Xo[  and s((5)= sup h(t). 
0<t<(~ 

B y  (7.1.11) ~(5) tends to zero wi th  (~ and  hence for every  e > 0  

lira sup to~](7.1.5)-u(Xo)]  <~, 
Y-->Xo" 

Ye Vh(Xo') 
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i.e. (7.1.5) tends to co~'~(X0) as Y ~ X o  non-tangentially almost everywhere. In  the 
same way, 

1(7.1.6)1 <~ K.  (V + Ko.y~, 

whence (7.1.6)-+0 almost everywhere. The integral (7.1.7) admits the estimate 

K'Y'~" ~-'~ fOD-O'D {x=lu, l + l u t ) d &  

which tends to zero for all Xg, by (7.1.4). (7.1.8) and (7.1.10) can be estimated by  

K.N1 n ~ (  x~ lu i ldX 
J JIX-Yl<.Yn/2 

x~luldX+K IX- rl~-~x:luddX 
J ,J IX- Yl<~Yn/2 

f f f f x= f 
if p > 1, all the integrations in the last membrum being performed over Vh/n(Xo) N 
{x~<2y~} from which we conclude, using (7.1.3), that  (7.1.8) and (7.1.10) tend to 
zero for almost every Xo. Also by  (7.1.3), (7.1.2) and Theorem 6.2 we find tha t  
(7.1.9) and the last term in (7.1.11) tend to zero almost everywhere in the prescribed 
way. To estimate the first term of (7.1.11), put  

Then the set function 

e(r) = f f{zn<r}nDX(~ ~12, ~luldX. 

f f0 dX'  x~ ~/2) lluldx~, ecR ~-1, 

has a derivative ~< 1 except in a set of measure ~< s(r). If  Xo is outside of this set we 
have 

k [~'~a~ I I a,,[e"(Xo)-a',(x)].dX 
Yn Jyn/4 J J D-B o 

< . K ~  yn(2V+l'yn)= ~ (  I I _}_Kr.ynf ~ luld x 
(2~/) ~ - + 1  J Jlx_xo, r<.~+~,lUl dX v = l  JJ  I X- Xo'l>r l2 

N a t  �9 ~ , = / 2  f '  f '  N 
, y n  - "~KE ~ n | |  x~ ~/e) l l u ] d X + K r ' y ~ < ~ K ' r ~ / 2 E 2 - ' + K r ' Y n '  

,=l (2 l) JJ,~-Xo'l<2"+h ,=~ 
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where l= I Y - X o l  and r.2-1<~2N+l.l~r. Hence with the usual a rgument  we see 
tha t  this integral tends to zero for almost  every X0. The second term of (7.1.11) 
is est imated in the same way. Since ~(X ' )~L~( IX ' ]  ~ ) ) ,  the last s ta tement  of the 
theorem, and thereby the whole theorem, is proved. 

An examinat ion of the proof of Theorem 7.1 shows tha t  nowhere has the fact  
t ha t  u is a solution in R~ been used, only tha t  u is a solution in a region ~ ,  one 
par t  of the boundary  of which lies in a hyperplane H, or, more carefully, to every 
X in this par t  of ~ there is a neighborhood N such tha t  ~ ~ N ~ H .  This and 
the same remark  about  Theorem 5.1 imply  the following theorem. 

Theorem 7.2. I / u  is a non-negative solution o/ (1.1C) in a region ~1, some part F 
o/the boundary o/which lies in a hyperplane in the sense stated above, then at almost 
every point o/F, u has a/inite, non-tangential limit. 

Theorem 7.3. 11 u is a non-negative solution o/ (1.1C) in a Liapunov region ~, 
then u has a non-tangential, ]inite limit at almost every point o/the boundary ~ .  

Proo/. I t  is sufficient to prove the almost  everywhere existence of limits in a 
neighborhood of an arb i t rary  point  X 0 E a~.  B y  the definition of L iapunov  surfaces, 
there is a sphere Zo of radius ~ > 0  and center X 0 such tha t  a line parallel to the 
normal  at  X 0 intersects a ~  at  most  once inside ~:0" We can also choose ~ so small 
t ha t  any  two normals issuing from points of ag/ ins ide  Z 0 form an angle <:z/4, say. 
I t  will be no restriction to assume tha t  X 0 = O and tha t  the positive xn-axis is along 
the (inner) normal  of a ~  at X 0. Then, inside ~:0, a ~  is described by  x~ =~0(Xl, ..., x~_l) , 
where ~ E CI+v(]X'I  ~ § Let  A be this par t  of a~ ,  and use Lemma 3.9 to extend 
the funct ion x~-q0(x 1 .. . . .  x~_l) f rom A into R ~. We assume tha t  we have multiplied 
the extension (I)(X) by  a funct ion in C~ which is identically one in IX I ~ 10~o, say. 
Since ~@/Ox~=l on A we can consider the connected region D = t h a t  connected 
component  of the set {Z] IZ'l <~e,  ~r r which has A as par t  of its 
boundary .  I t  is clear t ha t  (I) has the following properties in D: 

1 ~ OCCI+~(D), 

2 ~ K~[xn-q:(X')] <OP<~K2[x~-~(X')], K~>O, 

3~ ] D(2)(]) I < K-  O ~ 1, 

4 ~ For  each X' ,  ] X '  ] < �89 (I) is strictly monotonic  considered as a funct ion of x n. 

The map_ping Y=H(X)=(h  1, h e . . . . .  h ~) =(Xl, x2 . . . . .  x~_l, O(X)), X e / ) ,  is one-one 
and maps D onto a r e g i o n / ) '  which contains the set (Y]] Y'] < �89 0 < Yn < T), for 
some z >0 ,  in such a wa y  tha t  A and (]Y'] ~< �89 correspond. Consider the funct ion 
v(Y) =u(H-l(Y)). We shall prove tha t  v satisfies the following differential equation, 
which is of admissible type  in D' :  

dk~(Y) vkz =/~(Y, v(Y), vk(Y)) - / ~ ( Y )  vk(Y), (7.3.1) 

where dkZ(Y) = a,J(H-~(Y)) h~(H-I(Y)) h~(H-I(Y)), 

F=F(H-~(Y),  v(Y), v~(Y)h~(H ~(Y)), 

~k( y) = a~(H-l( y) ) h~(H-l( y) ). 
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k 1 In  fact, since u = v ( H ( X ) )  we get ui = vk (H(X))  h~(X) and u~j = vklhi h} + vkh ~, and 
after subst i tut ion in (1.1): 

�9 " ~j , k l a ~ J v k h ~ = F ( X , u ( X ) , u ~ ( X ) ) .  a~ui) = a u~jvk~h ~ h i + 

B y  reordering and put t ing  X - H - I ( Y )  we get (7.3.1). To see tha t  (7.3.1) is of ad- 
missible type  we note tha t  the functional  determinant  H~/I[ of H is=~gP/~xn~>�89 
Hence 

inf rain I ~ I > ~ K > 0  
X~.D [~[=1 

and  (~, ~/A~'~)  = (~,~e, A~,~)~>~t[~,~[2~>K.~t[~[2, K > 0 .  

Here we have denoted by  ~/~ the matr ix  :I/ operating on the vector ~ of R ~, (.,.) is 
the inner product  in R n, and A is the matr ix  a ~j. Thus (7.3.1) is uniformly elliptic 
in D' .  Also since ~(P/~xn >~�89 H l ( y )  is H61der continuous, in fact  with exponent  
one. The  h~ being H61der continuous by  1 ~ we see tha t  d ~Z are too. Using 2 ~ and 3 ~ 
it is also easy to check tha t  the growth properties of P and Sk are the r ight ones. 

Thus v(Y) satisfies the requirements of 7.2 and we can conclude tha t  v has non- 
tangential  limits almost  everywhere in [ Y'[ ~<~/2. Again since ~O/~xn >~�89 the image 
of an essential par t  of every t runcated  cone with vertex in I X - X 0 [  <~/2 is con- 
tained in some cone Vh(Y ' ) .  The theorem is proved with the observat ion tha t  sets 
of measure zero in A correspond to null sets in [Y'[  ~Q/2 and inversely, due to 1 ~ 
and the fact  tha t  ~r ~> 1 on A. 

Remark .  I t  is easy to see tha t  the mapping  H works with solutions of (1.113) also. 

The question might  be asked, whether  the hypotheses on the equat ion can be 
weakened while the theorems just  proved still hold. I t  is not  difficult to  see tha t  if 
we assume the same growth conditions as in the discussion after Theorem 5.1 then 
u E H p with p > 1 implies the existence of non-tangent ial  boundary  values of u. I t  
seems probable tha t  p = 1 or u >~ 0 would suffice in this case also. However,  Theorem 
5.2 shows tha t  in general no more is true. I n  part icular  u = c o s l o g x n  is a bounded 
solution of 

1 1 
Au + ~ u ~  + x~ -~ u = 0 

in R~ without  boundary  values. 
On the other hand, if we consider the equat ion 

k 
L u  = A u  + - -  = 0 

Xn Uxn 

with k < 1, it is well known tha t  the boundary  value problem 

L u  = 0 in R~, 

u = ~ ( X ' )  X ,  E R  n 1, 

where ~ has suitable properties, has the solution 

K " l - k ~  n-1 q z ( X ' ) d X '  

u ( Y ) =  "yn JR'~-I [ ~ I ( Y ~ - X ' ~  + Y~] 
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see Weinstein [26]. Now it is easy to see that it is possible to represent a positive 
solution of Lu=O in a similar manner with a positive measure dlt(X' ) instead of 
9(X')dX',  and in a standard way it follows that  u has non-tangential boundary 
values almost everywhere. 

Whether the uniform ellipticity is necessary is not clear. If  we keep the other 
conditions, and a ~j satisfy only 

where s(t)~0, then it is necessary that 

fo e~(t)-dt = 
t 

since else u =sin (logx~) is a solution of 

~2u ~2u 
+ =/, 

[ e(x,)(sin log x , + c o s  log Xn)] ~ 2e(xn) 
where ]1]= - ~  ~ . 

I Xn I Xn 

The author hopes to return to the question of the "right" conditions in this context. 

Theorem 7.4. I / u  is a solution o/ (1.1B) and belongs to H p, p > l ,  then u(X', xn) 
converges in LP(g2) when x ~ O  to its almost everywhere boundary /unction ~(X') /or 
every bounded subdomain ~ o / R  ~-1. 

Proo/. We shall prove that  for every ~>0,  u(X ' , x~  )) converges to ~(X') in 
L ' ( IX '  ] <e/2) for every sequence {z~)}~=l tending to zero. Since the limit function 
is unique, the theorem follows. 

By Egorov's theorem it is sufficient to find an L ~ function which majorizes u 
independently of x,. This majorant function is constructed with the help of the 
maximal functions of Hardy and Littlewood. 

We use the representation formula from the proof of Theorem 7.1. Since uEH ~, 
the choice of the limit measure d# can be made in such a way that d# = ~dS where 

ELP( ] X '  I ~<Q)" Using some by now evident estimates we get the following inequality: 

J Ix']~q ~Y J J IX-Yl~Yn/2 

+KffDo(i,Y){I-Fl+x:lu ,l}dX+Kff a(i, )x:Iu:,ldi 
X : :  Yl~Yn/2 

f f, {I a, l I x -  Y'Hul + I ej]x:-'lu[ +a.x:-'lu, I}dX, § K -{IX- Y]<yn/4} 

where Y' is the orthogonal projection of Y on R n-1 and G is the Green function of 
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f0 ' x~+q Define (v(X')= {x~ llul+x~lu, l§ u,l}dx~ 

for I X'I ~<`0, ~v =0 elsewhere. H61der's inequality shows that  ~v EL'(R~-I). The maximal 
function a* and ~v* of l al and ~v respectively, defined by 

1 f ~(X'ldX', ~v*(Y')= sup r ~ 1" 
( r>0 n - 1  X ' - Y ' I ~ y  

~*(r') = sup 1 . s  ia(X,)ldX,; 
~ > 0 0 ) n - l ( Y  n 1 X'-Y'I<~(: 

both belong to LP(R~-I), cf. Zygmund [28], p. 32. We shall prove that  u(Y)<~ 
K[1 +fi*(Y')+~v*(Y')], I Y'I <0/2. In fact, using the inequalities of Lemma 3.5 and 
choosing N suitably large, 

X'l~<e ~ y  

x . - ~ . , < , =  .=o %<.,x. ~ . ,<.~%=~(x"  Y) l~tldX ' 

I~ldX'§ Y~ s I(,IdX ' 
x'- r'l<y~ = (2"Y~) ~ x'- r'l<~+ly~ 

N 

~ < g . ~ * + g 5 2  ~[~l* = K . ~ * .  
v = 0  

Moreover, 

ffD(')dX<~ ffx-rl<yn/2+ f f l x  yl>~Yn/2}flD 

X Yl<~yn/2 v = l J J 2  v lyn<~lX_yl<~ 2 ry n 

<~K'~ y~l ((  {x~ llul+x~lu, l+xP~lud}dZ --v.. \ n - 2  

VK. ~ 2-~*(Y')=K.~*(Y')+K 
V=I 

f s  ' <~K+K" Y Yn ( (  {x: -~ lu t§  I~d}dX 
v n v 

x -  r l>Y n /2  v=l (2 y.) ddtx- r,<.2 ~ 
N 

<~K. ~2-~q*(Y')=K.~*(Y')+K. 
V=I  

The remaining integrals are estimated essentially in the same way. As an example 

fro f f, IG, IzV~IuldX <-K �9 Y Y= ,v~t , , IdX <.K.w*Iy'). 
-(Ix- YKynl2} v=l (2Vyn) n x -  Yl<~2Vy n 

The theorem is proved. 
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Theorem 7.5. I / u  is a bounded solution o/(1.1 B) in a Liapunov region ~ ,  or u E H p 
in R~+, with p > 1 § ( n -  1)/2, and u--->0 almost everywhere on a set E on the boundary, 
then u--->O uni/ormly on every subset F o/ E whose distance to the complement o/ E 
is greater than zero. 

Proo/. If  we use the mapping of Theorem 7.3 we see that  it is sufficient to assume 
that  u is a solution in {Z I x~>0, IX I <2e} , tha t  u tends to zero almost everywhere 
in [X'l~< ~ and to prove the uniform convergence in I / ' l  ~<e/2. 

We use the representation formula of Theorem 7.1 with X0 = Y' = the  orthogonal 
projection of Y on R ~-1. Theorems 7.1 and 7.4 show that  ~ is identically zero. We 
get the inequality 

Iu(Y)' <~ K'Y~ + f /DG[/IdX + K f fDG{xV21uf + 4 llu, l + 41uu]}dX 

+lo,14 llul}dx 
for [ Y'[ ~<~/2. In  the remaining par t  of the proof K will denote constants indepen- 
dent of Y'. The first two terms on the right hand side tend to zero uniformly with 
Yn" In  the third term we divide the area of integration into two parts, I X -  Y I <~Yn/2 
and ] X - Y I >~ y~/2. With H61der's inequality 

I/f~x_y,<~n,~ (')dX 

~ K . y ~  -2+(1'p) (~/P)[f(x2nP-l+~247247 lip 
LJJD 

[/;, X I X  _ y [q(2 n)dX < K "  Jnat~+(1-n-cO/P = K" y~, 
X- Yl<~Yn/2 

where ~ > 0, from the assumption on p 

f f~x_~,~u+~(" )dX < K'Yn" [f fDx~ ~+={luul" § + x;2"lul'}dX] "" 
[(( xV 11,o 

• LJJ~-~,~.>y+~Ix- rl ~dxJ 

< K . y .  ( y ~ )  xn-ldX <~K" r~ y . ,  71>0. 
[J,= 1 J J IX- Yl<~2r+ly n 

The remaining integrals are t reated similarly after which the theorem is proved. 

8. In  [22] Stein proved that  a necessary and sufficient condition for the harmonic 
function u defined in R [  to have non-tangential boundary values at  almost every 
boundary point is that  the "generalized area integral" 
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f f ~-~ [ u~l~dX Xn 
Yh(X') 

is finite for almost every X'(h >0  may vary with X'). This theorem had been proved 
in the case n - 2  by Marcinkiewicz and Zygmund [17], and Spencer [21], and the 
necessity part of it for n >2  by Calder6n [5]. Widman [27] proved the same theorem 
for regions other than a half space. In  [4] Calder6n proved that a sufficient condition 
for u to have non-tangential boundary values is that  u is bounded in Vh(X') for 
almost every X'.  This was later generalized by Carleson [7], who proved that it is 
sufficient to assume boundedness below in almost every Vh(X'). See also the work 
of Brelot and Doob in [3]. We shall prove the theorems of Stein and Calderdn in 
the case when u is a solution of (1.1). The reader will notice that the manner of 
proof is somewhat different in some aspects. Thus Stein uses Calderdn's theorem in 
his proof, while we will get Calderdn's theorem as a corollary of that of Stein. The 
chief difference lies in the sufficiency part of Stein's theorem. The proof of the 
theorem corresponding to Carleson's generalization has so far escaped our efforts. 

Theorem 8.1. Suppose u is a solution o~ (1.1B), in a Liapunov region g2, with the 
property that/or almost every X o E ~  there is an h >0 such that u is bounded in Vh(Xo). 
Then 

f f (52-~(X)[u~' 2dX < 
Vk(Xo) 

/or all k > 0 and almost all X o E ~ .  

Proo/. Using the mapping of Theorem 7.3 we realize that it is sufficient to consider 
the case ~2 = R~. 

By Theorem 4.8 we see that the boundedness of u in Vh(X') implies that 

f f ~h,(x, ) x~ -'~ +:, l u~ I~dx < oc) 

for all ~>0 ,  h'>h and p > l .  Moreover by Theorem 4.5 x~lu~(X)l <~K<c~ in each 
Vh,(X'). If  we take an arbitrary e >0, an arbitrary Q >0  and an arbitrary k >0  we 
can find a closed set F {IX' I <0} such that mes(F)>m~_~'O~-~/(n-1)-e, and 
such that  

f f l u  pdX < X 2n p 
Wk(F) 

lu] and x~lu~] <~K in Wk(F). In  order to be able to integrate partially in Wk(F) 
we approximate the irregular part  of the boundary of Wk(F) with a sequence of 
regular surfaces F~: x~ =~vv(X')E C ~, the normal of Fv always making an angle with 
the x~-axis which is bounded above by ~ / 2 - z ,  where x > 0  depends on k. For this 
construction, see Stein [22]. The F~'s are constructed in such a way that  W~c W~ +1 
and U~ W~ - Wk(•) where W~ denotes Wk(F) N {XIx~ > ~ ( X ' ) } .  If  e is small enough, 
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and v large enough, the boundary of W~ consists of two parts, namely Fp and a 
section of the hyperplane x~ = 1. 

Now multiply the regularized equation by xn" u and integrate partially in W~. 

J W  k 

~ 1 + 1 fow xnu5%dX,,- ffw Xn  U,u, dX-  fow h" u2dX,,) fj'w h  u2dX 

J J w k J J w k 

By the ellipticity 

f f w x.u dX <K + K f f w 5%u,x.dX <K" fow X.'U,"uldS 

+ K( + K I ( {x:- lul + xVll n.u,l . lul +x l/l'lul +lul' :+ lu,,lidX. 
J O w  k d J w k 

The right hand side of this inequality is bounded independently of r, since the area 
of F~ is bounded by a fix constant over cos(1jr-u),  and hence 

By Lemma 3.2 we conclude that  

for almost every point of F and every h > 0. As the measure of F differs from that  
of {IX' I ~<e} by the arbitrary s, the theorem is proved. 

Theorem 8.2. I] u is a solution o/ (1.1 B) in a Liapunov region ~ ,  a n d / o r  almost 
every X o E ~ there is an h > 0 such that 

then u has a non-tangential limit at almost every boundary point. 

Proo/. As in the proof of Theorem 8.1, it is sufficient to consider the case s =R$ .  
Taking arbitrarily s > 0  and r and using Lemma 3.3 and Theorem 4.8 we see 
that  to every k > 0  we can find a closed set F ~  { [ / ' ]  ~<~} whose measure differs 
from that  of (Ix'l ~<e} by at most ~, such that  
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f f  2p-1+r162 2p 
Wk(F) 

(8.2.2) 

f f x~[u,[~dX < oo 
Wk(F) 

(8.2.3) 

wi th  p >n/2 and  also wi th  p =2 .  Moreover,  b y  Theorem 4.9 and  L e m m a  3.4 we m a y  
assume x~luil = a(1) when x~ -~ 0 un i fo rmly  in Wk(F). 

W e  shall  cons t ruc t  a r ep resen ta t ion  fo rmula  s imilar  to  t h a t  of Theorem 7.1, b u t  
f irs t  we have  to  p rove  t h a t  uEH 2, in a cer ta in  sense a t  least .  To t h a t  effect, l e t  
Wk.t(F) = {X I (x~ ..... x~- t )  E Wk(F)}. Then a p p r o x i m a t e  the  lower p a r t  of ~Wk.t(F) 
b y  surfaces Ft,~ l ike in the  previous  proof.  I f  WLt is t h a t  p a r t  of Wk, t which l ies 
above  I~t ~, W ~ is connected  if e is small  enough,  and  ~W~ t consists of I~t.~ and  a , k , t  
section of the  hype rp l ane  x~ = 1 + t. I n  W ~k.t we in tegra te  pa r t i a l l y  to  get,  wi th  [xn]j = 

On the  o ther  h a n d  

f f wL 5 tj 2uui[xn]j dX 
t 

J OWk, t J J W k  t 

W e  can assume t h a t  t, k and  e be forehand  were chosen so smal l  t h a t  5~J[x~]jdX(o 
]t/4dS on Ft,~ which implies,  using (8.2.2), (8.2.3), and  the  fac t  t h a t  u is a solut ion,  

fr u'eS<.K+Kff . fr luleS 
t,v J J Wk, t t,v 

LJ d Wk, t -] 

Since the  K ' s  can be chosen so as no t  to  depend  on v or t, we conclude t h a t  

f r u2dS <. K < oo . 

I n  par t i cu la r ,  

f lut(X')12dX' = f ]u(x, ..... xn-1, ~ ( X l  . . . . .  Xn_l) + t)[2dX ' ~ K < ~ ,  
J d 

where x n = ~ ( x  1 . . . . .  xn-1) is the  equa t ion  of t h a t  p a r t  of ~Wk(F) which does no t  lie 
in xn = 1, and  the  in tegra t ion  is pe r fo rmed  over  the  doma in  of this  funct ion.  Thus  
we m a y  select a subsequence t i ' ~ 0  such t h a t  u t~ converges weak ly  to  a func t ion  
~(X') in L 2. W e  choose a po in t  X0 which is in the  Lebesgue set of fi and  which is 
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also a point  of densi ty  of F.  Let  Vh(Xo) be any  appropr ia te  cone. Y is a point  of 
Vh and Yt denotes the point  Y + (0 ..... t). Using the  Green funct ion G t of the opera tor  
a~J(Xo)~2/~x~xj in {X [x~ > t}, and  integrat ing par t ia l ly  in W ~k,t - Bo.t, where B~.t = 
{X I IX-- Yt I ~< a}, we find 

o)nu( Yt) 

= ( ~G~ (X, Yt)u(X)dSx- fow~ t o~5%flX('~) - fow~ t G~[5"(XO) -a"(X)]udX(~ JowLt ~v 

+ fo.~. t Gt[a~'(X~ -5"(X)]u~dX(,)- fo.~, G~[ai ' (X~ 

f f { ~ [ ~ ( X o )  - a'~(x)] ~ + + wLt_~,t 

Now consider the project ion onto R n-1 of the absolute ly  continuous measure  
(c~Gt/~v)(X, Yt)dS on F~,t. We observe t h a t  this measure  is independent  of t, and  
is bounded  b y  

K -  y~ 
i cf~(~7~: y p dX.  (8.2.4) 

Thus  we can select a subsequence vj converging weakly  in L 2, say, to the measure  
y~(X')dX'. We use the fact  t h a t  

o~;~(Xo) = ( aG~ (X, Yt) (~(Xo) dS, 
JowLt ~ 

in tegrate  with respect  to a and let v~->~.  After  some obvious es t imates  we get  the  
following inequali ty:  

o~,~[ u( Y~) - ~(xo) l < K . y~ + ] f [u~(X') - ~(Xo) ] ~(x') gx' I 

+ at(x, + K f ' 
t 

+ Kf , {  -"lX-XolOlu, I +y:lx-x;l lul}dX 
X Ytl~Yn[2 

+Kffwk, tGt]F-[a'J-aii]u~i]dX+Kffwk,t_{ix_Ytl)Yn/4}{Gtx:-llu d 
+ IG~I Ix -x51~l~l + [a~lxVllul} dX. 

Since X0 is a point  of dens i ty  of F we find t ha t  x~Iu~[ < e  on Ft, if t is small enough 
and [X-Xo[ <~,  say. Thus  on this p a r t  of Ft 

Y" dS<~K.e. fG%~lgs<~" flx_ Li. 
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On the remaining part  of Pt 

f Gtl u, I dS <~ y~. K(~). 

Now put  t =ti, use the estimates just obtained, let i - ~  and use the weak convergence 
of ut; it is easy to check that  all the integrals involved are convergent. We get 

l u ( Y ) -  4(X0) I < K((~) �9 y~ + K .  e + f [ 4 ( X ' )  - ~(X0)] ~(X') dX' CO n 

+ ( I x ' - x 5 1  [a (X ' ) lv (X ' )d / '  + . . . .  
3 

Assuming that  X0 does not belong to a certain subset of F having measure zero, 
as in the proof of Theorem 7.1 we find that  the integrals represented by  dots tend 
to zero as Y-~Xo inside the given cone. The following estimate presents no diffi- 
culties, if we use (8.2.4) 

N Yn 
I f [(t(X') - u (  Xo) ] ~v( X') dX'[ <<" K " =o (2 ,G~i-,~ /,x,_ Xo,,<2~ ] (t(X') -(t(Xo) ] dX' 

" fl [4(X')-~t(Xo)[dX' < K ' e +  K(~)'yn, +K(5)  yn x',~>~ 

where l =  I X o -  Y[. Hence 

lim sup l u(Y) - a(X0) I ~< K .  e 
y...~.Xo, * 

Y e  Vh(Xo')  

being arbitrarily small we see that  u has a finite non-tangential limit at  almost 
all points of F. But  the difference in measure between F and IX' l  ~<~ can also be 
made arbitrarily small, and the theorem is proved. 

As immediate corollaries of Theorems 8.1 and 8.2 we get the following two theorems. 

Theorem 8.3. Suppose u is a solution o/ (1.1B) in a Liapunov region ~.  A necessary 
and su//icient condition/or u to have non-tangential boundary value8 almost everywhere 
is that to almost every X o E ~ there is an h > 0 such that 

yf ~2-n(X)]u'l  ~dx  < ~ .  
Vh(Xo) 

Theorem 8.4. Suppose u is a solution o/(1.1 B) in a Liapunov region ~.  I / t o  almost 
every X o E ~ there is an h > 0 such that u is bounded in Vh(Xo), then u has non-tangen- 
tial boundary values almost everywhere. 
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