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Uniqueness  in Cauchy's prob lem for  elliptic equations with 
double  characteristics 

By R. N. PEDERSON 

1. Introduction 

This paper is concerned with the question of local uniqueness of solutions of 
Cauchy's problem for elliptic partial differential equations with characteristics of 
multiplicity not greater than two. Let  P(x,~) be a homogencous,mth degree elliptic 
polynomial in ~=(~1,~:2 ..... ~n) with complex coefficients of class C 2 in a closed 
neighborhood D of the origin in Rn. For a given vector O#NERn,  we define S(N) 
to be the class of all C m surfaces having normal N at  the origin. We are interested 
in determining conditions on P which insure tha t  solutions of Cauchy's problem 
for the equation 

P(x, D)u +Q(x, D)u = 0  

are unique for every ( m - 1 ) s t  degree polynomial Q(x, ~) with bounded coefficients 
and for every initial surface S E $(N). For equations with simple characteristics and 
real coefficients a relatively complete answer to this question was given by  Calder6n 
[1]. Various improvements were given by  HSrmander [5], [6]. I t  follows from the 
work of Cohen [3] and Pli~ [10] tha t  one cannot in general allow characteristics of 
multiplicity exceeding two. Uniqueness results for P ' s  with double characteristics 
have been obtained by  the author [9], Mizohata [7], HSrmander [5] and Shirota [11]. 
The best result to date is tha t  of HSrmander for the case where P is the product  
of two polynomials with simple characteristics. Pli~ gave an example of a fourth 
order equation with real C OO coefficients having non-trivial solutions which vanish 
in a half-space. 

The question arises as to whether or not there are any irreducible P ' s  for which 
solutions of Cauchy's problem for (1.1) are unique. An examination of Pliw counter- 
example shows that  the characteristic roots have unbounded partial derivatives 
near the initial surface. Douglis [4] proved uniqueness for first order systems in 
two variables provided that  the roots satisfy a smoothness condition and the double 
roots occur in pairs (that is two roots are either distinct or always equal). 

In  this paper  we obtain a uniqueness theorem for equations with at  most double 
characteristics by  imposing a smoothness condition similar to that  of Douglis. We 
do not, however, require tha t  the double roots cannot separate. An example of an 
irreducible polynomial which satisfies our condition is given by  

P(r162  ( ~ + ~  22 2 2 = +~3) +~(r +~8). 
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I t  is easily seen that  the above equation has double characteristics with respect to 
(1, 0, 0) (in the sense of condition A of section 2) if and only if $2 =0. Our smooth- 
ness condition precludes the possibility of an equation with double characteristics 
having non-singular characteristics or of a surface being strongly pseudo convex in 
the sense of H6rmander (see Lemma 5.1). 

One novelty of our approach is that  we reduce all integral inequalities which do 
not follow directly from pointwise inequalities to inequalities for first order ordinary 
differential operators. The method is too crude to handle the case of simple real 
characteristics. 

In  section 2 we state our smoothness condition and prove that it is invariant 
under a local change of coordinates which maps the initial surface onto a convex 
surface. In  section 3 we state our uniqueness theorem and our version of Carleman's 
inequality. Sections 4-8 are devoted to proving the basic inequality stated in sec- 
tion 3. 

As is becoming the custom, we denote by D k the differential operator -i~/~x~ 
and D = (D1, D 2 ..... D.). If P(x, ~) is a polynomial in ~ whose coefficients depend 
on x, the polynomials pk and Pk are defined by ~P/~k  and ~P/~x k respectively. If  

= (r :r ..... ~q) is a multi-index of length q, the polynomials P~ and P~ are defined 
similarly. A brief exception to the latter convention is made in Lemmas 6.4 and 6.5 
where for a polynomial Q(r) we let Q(k)(~)=dkQ/&k. The letters C and K represent 
positive constants, not necessarily the same ones as in previous appearances. R~ 
and C~ denote the real and complex euclidean n-spaces. If  ~ = (~1, ~2 ..... ~ )  E R~, 
~' = (0, ~2 ..... ~n). For u e Cy we denote by 4(x ,  ~') and ~/(~) the Fourier transforms of 
u with respect to x' and x. 

2. The smoothness  condit ion 

If  the initial surface is convex with normal N=~0 at the origin, we shall prove 
uniqueness in Cauchy's problem for elliptic operators which satisfy the following 
condition. This allows us to generalize the results of H6rmander [5] and Nirenberg 
[8] for equations with constant coefficients. 

A. The roots ~l(x, ~), re(x, ~) . . . . .  Tin(x, ~) o / P (x ,  ~N § have multiplicity at most 
two and are o/class C 1 with respect to (x, ~) /or x E D and ~ E R n not proportional to N.  

In  case the initial surface is not convex we add the following condition. 

B. For each fixed x E D, rl(X , ~), r2(x , ~) ... . .  v,n(x, ~) are analytic in ~ /or each ~ e R~ 
not proportional to N.  For each ~o the radius o/convergence o/the power series expansion 
o] vj(x, ~) about ~o has a positive lower bound ~o which is independent o] x. 

We remark that  we could have equivalently restricted ~ to be in any n - 1 dimen- 
sional hyperplane not containing hr (for example/V'). This amounts to translating 
each of the roots by the component of ~ in the direction N which cannot effect 
either the multiplicity or the smoothness. We also remark that  A and B are to be 
understood in the local sense only. We do not require that the roots be globally 
single valued. 

An example of a polynomial which satisfies A but which does not satisfy B is 
given by 

P(x, ~) = (~ + ~ + ~)2 + x~(~2- ~3) 3 (~ + ~)5. 
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The purpose of B is to insure that  A is satisfied after a preliminary local change 
of coordinates which maps a non-convex surface onto a convex surface. Before 
proving this we examine the effect of a change of coordinates on the characteristic 
polynomial. For this purpose we write 

P(x, D) = ~ A i. i ...... ~" (x) Dxi,  Dxi . . . . . .  Dxim. 
~, ~, .... im = 1 

(23) 

By elementary calculus, if x-+y(x) is of class C m, then 

n ~yJ~ 
Dxl,, Dx~ . . . . .  , Dx~m = ~ Dyj,  Dyj . . . .  Dyj,~ 

Y.]v . . . , ] .~=l  ~ X ~ '  ~Xi~ ~ " ' "  ' ~X~ m'  "' 
(2.2) 

modulo a differential operator of order m - 1 .  By substituting (2.2) into (2.1), we 
see that  in the y-coordinate system the characteristic polynomial is given by  

P(x(y), JS), (2.3) 

where J is the Jacobian matr ix  of the transformation x~y(x ) .  

Theorem 2.1. Let S 1 and S 2 be sur]aces o~ Class C m each having the same normal 
N 4:0 at the origin. Let P(x, S) be a polynomial satis]ying A and B. There exists a 
local C m change o/ coordinates o/ the /orm x ~ y = x + O ( ] x ]  2) which maps S 1 onto S 2 
and such that P(x(y), JS) satis/ies A.  

Proo/. The power series expansion of ~j(x, S) about  So EN •  {0} provides an ana- 
lytic continuation of T~ into I~-S0] <90, S EC~. By permanence of functional rela- 
tions, rj(x, ,~) is a root of P(x, TN+$) when ]$-So] <90. Since, by  A, ~j(x, S)eC', 
the coefficients in its power series expansion about  to are of class C' for x E D, and 
hence Tj(x, ~) is of class C' for (x, ~ ) eD  • {]~-S0] <90}. 

Assume tha t  S~ is parametrized by ~(x)  = 0 where ~i C C m, i = 1,2. Since N = grad 
~i(0) 4= 0, one of its components, say N1, is not zero. The transformation T~ : Yl = 
9i(x), Yk=Xk, /C>~2, is locally l - l ,  and maps S~ onto y l=0 .  The transformation 
T~IT1 then is locally 1 - 1 ,  maps S~ onto $2, and is of the form x->y=x+O(Ixl2);  
hence J = I + O ( x )  where I is the identi ty and 0(x)EC m-1. The fact that  x->y is a 
perturbat ion of the identi ty allows us to interchange 0(x) and 0(y). I t  then follows 
from (2.3) tha t  the characteristic polynomial in the y coordinate system is given by  

Q(y, S) = P(x(y), (I  + 0(y)) S). 

For y sufficiently small, ~ in a neighborhood of ~j(0, to) and S in a neighborhood 
of ~0, the quanti ty 

= S +0(y) (~N +S) 

satisfies [~-S0] <90. I t  then follows from the implicit function theorem tha t  for 
each j = 1, 2 ... . .  m, there exists a unique solution ~ =v;  (y, S) of 

=rj(x(y), S + 0(y) (rN + S)) 

which is of class C' for (y, S) in a neighborhood of (0, to). Evidently, ~(y,  S) is, for 
each 1", a root of 
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Q(y, ~37 +~) =- P(x(y), ~37+~+0(y)@37+~)). 

I t  follows from continuity and ~;(0, ~)=rj(0,  ~) that  the roots ~; have multiplicity 
no greater than two. Hence Q(y, ~) satisfies A. This completes the proof. 

3. The uniqueness theorem and basic inequality 

The main result of this paper is 

Theorem 3.1. Let P(x, ~) be an elliptic polynomial (that is P(x, ~) # 0/or  real ~ # O) 
with complex coe//icients o/class C z in a closed neighborhood D o/the origin. Suppose 
that S :~ (x )=0  is a sur/ace o/class C m with normal 37=4=0 at the origin. I / P  satis/ies 
A and B, or i / S  is convex and P satisi/ies A, then solutions o/(1.1) which vanish/or 
cp < 0 are identically zero in a neighborhood o/the origin. 

The smoothness condition is, of course, superfluous if the characteristics are 
simple. If  the characteristics are double, the roots of P(x, ~37 +~) are algebraic func- 
tions and we would expect trouble at  the branch points. The crux of our smoothness 
condition is that  ~ is a real vector. That  is, we can prove uniqueness for initial 
surfaces 37 such tha t  the branch points of P(x, ~37 + ~) occur only for complex values 
of $. 

Suppose that  for ~o =~o + i~0(~o =~ 0), P(x, v37 + ~0) has a branch point a t  ~ = x o + iy o. 
Then if 2~ = Y0 37 + ~0 and ~ = u,37 + ~0, the polynomial P(x, ~N + g) has a root which 
fails to be analytic at  T - i .  Our uniqueness theorem then does not apply to initial 
surfaces with normal proportional to 37. HCrmander 's  result may  be the best 
possible for uniqueness with respect to every initial surface. 

The essential tool in uniqueness proofs to date has been a weighted L 2 inequality 
analogous to a n  L 1 inequality used by  Carleman [2]. Our version of Carleman's 
inequality is given by  

Theorem 3.2. Let P(x, ~) be an elliptic polynomial with complex coe/ficients o/class 
C ~ in a neighborhood D o/the origin in R ,  and which satis/ies A with respect to 37 = 
(1, 0 ..... 0). There exists a K > 0  and ~0<l  such that, i] (~<d0 and ;t>(~ -3, then 

f K f e~(X'-O)~lP(x,D)ul2dx>~ ~ ~ e~(Z'-o)']D~u]2dx 
M~<m-1 

/or all u E C~ [0 ~<x 1 ~<(~/2]. 

Proo/ o/ Theorem 3.1. We may,  without loss of generality, assume that  N =  
(1, 0 ..... 0). By  Theorem 2.1 we may  assume that  the initial surface is convex. 
Suppose then tha t  u is a solution of P(x, D)u+Q(x, D)u=O which vanishes, say, 
for xl<x~+ ... +x~. Let ~ be a C r176 function of x 1 such tha t  $=1  for x<(~/4, and 
~ = 0  for x1>(~/2. Since Q has bounded coefficients there exists a constant C such 
that  

[P(x,n)u[~<~C ~ [n~u[ 2. 
I~l<,n-1 

The function f i=~u has compact support in 0 ~<x 1 ~<~/2. By Theorem 3.2 we have 
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f0 . . . .  ~1~ e~(x'-~)~lP(x'D)~i2 dx>~ ~ ~m l fo<x,<~12 e~(x'-o).iD~l~ dx" 

Mter  splitting the range of integration at  x 1 = 8 / 4  and using the fact that  ~2 = u  
when x 1 <8/4 we obtain 

I~l<m-i 

We next choose 8 so tha t  K/8 2 -  C > 1. We then shrink the region on the right side 
of the above inequality to 0 < x  1 <8/8 and use the monotonieity of (x 1 -8)  2 to obtain 

d 614<x1<6/2 d 0<xt<~/s I~l<m-x 

which is clearly impossible for large 2 unless u is zero for x 1 E [0, 8/8]. This completes 
the proof of Theorem 3.1, 

4. Reduction of  the proof of  Theorem 3.2 

In  this section we reduce the proof of Theorem 3.2 to proving L 2 inequalities 
between differential operators with constant coefficients acting on functions whose 
support  is small with respect to 2-1/2. We use a slight modification of the parti t ion 
of unity used by  H6rmander.  

Lemma 4.1. There exists a sequence o/points {xg} in R~ and a partition o/ unity 
{~tr~} such that xg E supp ~tzg and diam supp ~Fg < K,~-~/28 -~/4. At  most 2 ~ o/the supports 
o] the xg's intersect at one point. There exists a constant K m such that i] [ ~ ] < m, then 

Proo/. Let 0 ~< Z E C~ r [0 ~< xk ~< 1/2] and assume tha t  

f R, X(x) dx = 1. (4.1) 

The non-negative function f~(x) defined by  

~2 (x) = f o<yk<lZ(x -- y) dy 

is in C ~ [ - 1 / 2  ~ x  k ~< 3/2]. I t  follows from (4.1) tha t  if (E} denotes the set of lattice 
points in Rn, then 

~ 2 ( x -  s  = 1. 
E 

I t  is clear from the fact that  the support  of [2 is in the cube [-1/2<~xk<~3/2] that  
at  most 2 ~ of the supports of the functions ~(x  - / : )  intersect at  a point. There exists 
a common bound K m for f 2 (x - / : )  and its first m derivatives. The sequence {~F~} 
with ~ g  =~2(21/281/4x - s and xg =2-~/28-1/4C satisfies the requirements of Lemma 4.1. 
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Lemma 4.2. Let u~C~[R~] and define % Jt~ou. I] P(x, D) is an m-th order homo- 
geneous differential operator with C ~ coe//icients, then there exists a K such that 

IP(x, D) u[ ~ >1 1/2 ~ {IP(xo, D) uol ~ -  K~t~/2,:~ 11P:(x~, D) ual ~ 

_K) -~  1/2 y ip=(xg, D)%[2_KA-2~-I ~ iD~uol ~ 
{~1:1 I~l=m 

- K,~,~,~-, ID=u~I~}- K,~,<~m-~E (A~'~) m '~' ID~ul ~. (4.2) 

Proo/. I t  follows from Leibniz formula that  

~T'gP(x, D) u = P(x, D) uo - X I~ T. D ~ g  " P:'(x, D) u. 

Since 2 ~Km(~1/2~1/4)1~1 2 n ~lFg = 1, I D~tPo] and at most of the supports of the ~Fo's 
intersect at a point, it follows from the inequality 2xy <.ex 2 +e-~y ~ that  

IP(x, D) ul 2 > 1/2 E IP( x, D) uol 2 - K E (~(~1/2) [al [P~(x, D) ut 2. 
g [~z[~>l 

for some large K. 
After re-introducing the partition of unity into each of the above terms where 

] ~1 = 1, we obtain by similar reasoning 

[P(x, D)ul  2 > 1/2 ~ {IP(x, D)ugl ~ -  K I ~  IP~(x, D)ug[ 2) 

- K ~ (~1/2)1~11p~(x, D) ul 2. (4.3) 
1~1>2 

By expanding each of the coefficients of P(x, D) to two terms about x =xg, we obtain 

P(x, D) ug = P(xg, D) ug + ~ (xk - xg. k) Pk (xg, D) ug 
k 

+ �89 ~ ( x j -  xg.j) (xk - xg.k) Pjk @, D) %. 

Within the support of % we have I x - x  g I< K2-1/28 -1/a. Hence 

Ip(x, D) uol~> I P(x~, D) ugl ~ - KZ '~-'~ ~ IP~ ( x g , ~  D) uol ~ - K Z - ~  -~,~,~E I D~u~l ~ 
(4.4) 

Similarly, by expanding the coefficients of P~(x, D) to one term about xg, we obtain 

I~lIP~(x'D) ugl2<l~l  [P:'(xg'D)u~ + g'~-ld-~121~l=,n ~ liD=uglY" (4.5) 

The proof of Lemma 4.2 is completed by substituting (4.4) and (4.5) into (4.3) 
and using the fact that  P~(x, D) is a homogeneous operator of degree m -  ] a ] with 
bounded coefficients. 
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5. Pointwise  inequalities between polynomials  

In  this section we derive pointwise inequalities between various polynomials 
related to a given elliptic polynomial P(x, $) which satisfies condition A and has 
at  most double characteristics. The analyticity condition B is needed only to insure 
tha t  conditon A is preserved after a preliminary change of variables. Once tha t  
change of variables has been made, we make no further use of analyticity. 

We assume, as we may,  that  N = ( 1 ,  0 ..... 0) and tha t  the coefficient of $~ in 
P(x, $) is equal to one. Condition A then implies that  we may  write 

m 

P(x, $) = l~ ($1 - ~k(x, ~')), (5.1) 
k=l 

where ~k(x, ~') is of class C 1 with respect to x e D and ~ ' =  (0, $~ ..... tn) E R=_ 1. We 
shall have use for the Lagrange interpolation polynomials defined by  

kP(x, $)=P(x ,  ~)/($l-vk(x, ~')) 

and jkP(x, ~) =P(x,  ~)/($1-~j(x, ~'))($1-7:k(x, $')), ] # k .  

We begin by  proving an identi ty relating the polynomials p(k)= ~P/~k and the 
polynomials jP(x, $). I t  will be convenient to rewrite (x, ~)= (x, $1, $'). 

Lemma 5.1. There exist bounded /unctions Ajk(x, $') such that P(k)(x, ~1, $ ' )=  
~T-1Ajk(x, $') jP(x, ~1' ~') /or (x, ~1, ~') e D • C 1 • Rn_ 1. 

Proo/. I f  k>~2, we differentiate (5.1) in order to obtain 

P(k) ( x, $1, ~')= m~ ~Tj (x,~'~ jp(x, ~1, $')" 

The functions ~j(x, $'), being roots of a homogeneous polynomial in ($1, $'), are 
homogeneous of degree one in ~'. Hence their derivatives, Ajk= ~Tj/~k, are homo- 
geneous of degree zero in ~' and are therefore bounded by  a bound for their restric- 
tions to the compact set D • { I~'1 =1}. I f  k =  1, we have A j l = l .  This completes 
the proof of Lemma 5.1. 

Corollary 5.2. There exists a constant K such that i / ~  E R1, $' E Rn_ 1, y E D and 
u E C m-l, then 

]P(~)(y, D1 § $')u(xl) ] 2 <~K ~ liP(y, D 1 +i~ ,  $')u(xl) ] 2. 
J 

(5.2) 

Proo/. Since the Ajk's of Lemma 5.1 are independent of $1, we have the identity 

P~(y, D 1 d-i~, $ ' )u (x l )  = ~ Ajz(x, $') jP(y, D1, § $')U(Xl). 
J 

The proof of Corollary 5.2 is then an immediate consequence of the boundedness 
of the Ajk's. 
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Lemma 5.3. There exists a constant I f  such that i/(x, ~) = (x, ~1, ~t) ~ D • C 1 X Rn-1, 
then 

l ~12<,n 1)~<g{~ l~P(x, ~)12 + (Im ~1) ~ Z IJ~P( x, ~)12}, (5.3) 
j J~-k 

]~]2m <~ K {IP(x, ~)12 + (Im ~"1) 4 ~ Ij~P(x, r 
j=~k 

(5.4) 

and I P~ (x, C)[ 2 < K {[P(x, C)12 + (Im ~1) 2 ~ liP(x, ~)12}. (5.5) 
J 

Proo/. By homogeneity it is sufficient to prove (5.3) and (5.4) when I~] = 1. If 
Im ~1 =0 (and hence ~ is real), the interpolation polynomials ~P are not zero since 
P(x, ~) has no real zeros. If Im ~1 # 0 the polynomials jkP(x, ~) have no common 
zero since P has at most double characteristics. I t  follows that  the right-hand side 
of (5.3) is never zero and hence by continuity has a positive lower bound on D • 
{[~1 =1}. Similarly, using the fact that  P(x, ~)~0 for real ~, it is seen that  the 
right-hand side of (5.4) has a positive lower bound on D • {]~[ = 1}. 

In proving (5.5) we assume, by homogeneity, that ]~'1 = 1. Since, by  ellipticity, 
Im ~(x, ~ ' )#0  for ~ '~  0, and ~:k(x, ~) is continuous, there exists an v/>0 such that  

I Im v~(x, ~')l >v 

for (x, ~') C D • { I~'1 = 1 }. We obtain by differentiating (5.1) that  

_P~ (x, ~ ,  ~') = - ~. ~ j ( x ,  ~') ~P(x, ~1, ~'). 
i ~xk 

Since V~j/~x~ is bounded on D • {1~'1 = 1 } ,  there exists  a K such that  

IRk( x, ~1, ~')12 < ~  (Im ~-)2 2, liP( x, ~1, ~,1 ] 2, (5.6) 

if lira Cl1 >7 and (x, r215  =1}. If [Ira C1[ <7, P(x, C1, ~ ')#0.  As a 
polynomial in ~1 P is of higher degree than Pk. I t  follows that  there exists a constant 
K such that  

[ Pk( x, ~1, ~') [ 2 < K IP( x, ~1, ~t)] 2 (5.7) 

if Jim ~1] <~/ and (x, ~')ED • {]~'[ =1}. The proof of (5.5) (with a different K) is 
concluded by combining (5.6) and (5.7). This completes the proof of Lemma 5.3. 

6. L 2 inequalities between ordinary differential operators 

In section 4 we reduced the proof of Theorem 3.2 to proving inequalities between 
expressions of the form 

f e~<X'-~ u[ 2 dx, 

where Q is a partial differential operator with constant coefficients. By taking the 
Fourier transform with respect to x' =@2 ..... xn) and applying Parseval's identity 
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the problem can be further reduced to considering weighted Ls norms of ordinary 
differential operators. In  this section, we therefore prove some preliminary L 2 
inequalities between ordinary differential operators. The first is the simplest case 
of a general inequality of Trgves [12] p. 137. For completeness we repeat his proof. 

Lemma 6.1. I1 itEC 1 and (gER1, then/or  every uEC~(R1)  

f l (Dr + iX (t - ~) + it) u I S dt >~ 2~fl u [3 dt. 

Proo/. Let the operator A be defined by  A = D t + i 2 ( t - 6 ) + i t .  The commutator  of 
A and its formal adjoint .ff = D t - i ~ ( t - ~ )  +fi  is given by 

_/iA -A_/i  = 2L 

I t  follows tha t  if u E C~, then 

I IAnlp = II ulp + 2, llulP 2 II IP. 

This completes the proof of Lemma 6.1. 
We note tha t  Lemma 6.1 places no restriction on It or on the support of u. I f  

# = 0 and the support of u is suitably restricted, we can obtain an inequality which 
is stronger for large X. 

Lemma 6 . 2 . / ]  u E C•[O, (~/2], then 

Proo/. The right-hand side of the above inequality is equal to (recall tha t  D r =  
- i (d/dO 

{ [ n'(t) ] ~ - 2X(t -(~) Re u '4 +~2(t -6)21 u 12} dt. 

By writing 2 Re u'~ =d/dt tu]2 and integrating by  parts,  we see tha t  the second te rm 
is non-negative for X >~0. The proof is completed by  noting that  (t-(5) 2 ~>(~/4 within 
the support of u. We obtain from Lemma 6.1 immediate relations between a given 
polynomial with constant coefficients and the corresponding Lagrange interpolation 
polynomials. 

Lemma 6.3. Let P@) be a polynomial o/ degree m with roots Tz, T2 .. . . .  ~m. I / j P @ )  = 
P@)/(7: -'~j) and jkP(T) =P(T)/(v -- ~Q) (7: - ' ~ ) ,  ] # k, then 

(6,1) 

f IjP(D`+i2(t-~)uPdt (m- 1) (6.2) 
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f and Ie(D,+i2( t - -5))ul2dt>~m(m_l)  ~,~ I,~P(D,+i,l(t-@updt (6.3) 

/or all u ~ C~ (R~). 

Proo/. (6.1) is proved by writing P(~')=('~-~'~)~P(~), applying Lemma 6.1 with 
/z = -~y, and summing with respect to ]. The proofs of (6.2) and (6.3) are similar. 

The next  two lemmas will be used to determine the error resulting when an ope- 
rator R( D t + i2(t-~) is replaced by the constant coefficient operator R(D t § i2(t o -(~)). 

Lemma 6.4. Let Q(~) be a polynomial o/ degree m. There exist constants Ck,j such 
that/or any quadratic polynomial co(t) we have 

m [k/2] 

Q(Dt + i~o'(t)) = ~ ~ Ckj [~o'(t)] k-2j [~o,,(t)jJ Q(k)(D~). 
k - O  j = 0  

(Here Q(k)(3) = dkQ/dt ~.) 

Proo/. We first note that  Q(Dt + ieo'(t))u- e'~176 We then apply Leibniz 
formula in order to obtain 

k=O 

I t  is easily verified that  there exist constants Ckj such that  

~ e - ~  [k/2] 
k~. D~ e -~(t) ~ Ckj[~o' (t)]k-2J[a)" (t)]( (6.5) 

i=0 

(It can be shown that  Cgj= (-1)k/2J?'!(k-2])!.) The proof of Lemma 6.4 is completed 
by substituting (6.5) into (6.4). 

Lemma 6.5. Let Q(z) be a polynomial and let I ~  be an interval o/length C(A~) -1/2, 
0 <7 < 1. I / t  o E I ~  and u E C~ [I~], then there exists a constant K > 0 such that 

~lQ(D,+i2(t-to))ul2+K Y IQ(~)(Dt+i,~(t-to))ul2>~ IQ(D3ul 2. 
k>~l 

Proo]. Let eo(t)=�89 2. If tClx~, we have Io~'(t)[ <c(z/@/2 and lo~"(t)l <4. 
I t  follows that  

Ckj [o~'(t)] ~-2' [o~" (t)] j < K(,~/~) k/2. (6.6) 

Hence, by Lemma 6.4, we have 

IQ(Dt + i~o~'(t)) u -Q(Dt )  ul <<. K ~ (~-Ik/21Q(k)(Dt) u I 
k~1 \~/  

(6.7) 
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~or tEI~.  By applying (6.7) to each Q(k). k>~ 1, we obtain (with a larger K) 

(~t  k/2 ]Q(Dt+iZo)'(t))u-Q(Dt)ul<~Kk~j~ \~ / [Q(~)(D~+i2co'(t))u I. (6.8) 

The proof of Lemma 6.5 follows by  squaring both sides of 6.8 and using the in- 
equali ty between geometric and arithmetic means in the form 2xy=sx2+e-~y 2. 

7. L 2 inequalities between partial differential operators 

We now use the results of the previous section to prove inequalities suggested 
by Lemma 4.2. We begin with an inequality which gives an estimate for lower 
order derivatives in terms of ( m -  1)st derivatives. 

L emma 7.1. I] u C C~ [0 ~ x 1 <~(5/2], then there exists a constant K such that 
]or all ,~ >~ 0 and k < m - 1. 

M =.*-1 

/or all ~ >~ 0 and k < m - 1. 

Proo/. By applying Lemma 6.2 to v =e~(::-o):JeD:u, we obtain 

: fe~(x~-~)~,DiD~ut2dx>~(2~)~ Z fe~(X.-~)~,D~u,2dx. 

I f  we sum the left side of the above inequality over all (? '§ derivatives, we 
obtain an inequality which, when interated, yields Lemma 7.1. 

The next lemma shows that  Theorem 3.2 is true for functions whose support  
is small with respect to ~. 

Lemma 7.2. Suppose that ~ E R ~  is a subdomain o/ [0<x1<(~/2 ] whose support 
is o/diameter 0(~t-1/2(~-1/4). There exist constants K >0  and (5 o < 1 such that i/(~ <(~o 
and 2 >8 -3, then 

f e~(Xl-~)'l P(Y.D) u I2 dx >J ~ i~l_~m_l f l2 dx 

/or all u E C ~ ( ~ )  and yE~a~. 

Proo/. Let v=e~(Xl-o)~12u, ~(Xl, ~') the Fourier transform of v with respect to 
(x2 ..... xn), and ~(~) the Fourier transform of v with respect to (x 1 ..... xn). I t  is a 
consequence of Parseval 's identity that  

f e~(X'-~)' lP(y, D) u 12 dx = f [  P(Y, D1 § i2(xl - 8), ~') ~ ]2 dx~ d~'. (7.1) 

By using (6.1) and (6.3), we see that,  if 2 > 1/(~ 2, the right-hand side of (7.1) dominates 
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~ f {~  J~P(y, D, + i,~(x, - (~), ~')~ I s + (~)~ Z J~P(y, D, + i,~(x, - ~), ~')~ I ~} dx, d~' (7.2) 

for some K >0. We next multiply both sides of (5.3) by J ~(~) ] s and integrate in order 
to obtain 

f ~ J~P(y, ~ § i2(y,  - ~) ) js + 2., (y, _ ~)s 2 I~P(y,  ~ + i2(y,  - (~))J~} J ~(~)J~ d~ 

K f l § - (7.3) 

By  using Parseval's identity (with respect to x,) and (y, - (5) s ~< (~s in (7.3) we obtain 

f { ~  liP(y, D, + i2(y, - (~), ~') ~ I s + (~5)s ~ I jkP(y, D, + i2(y, - (5), ~') ~ I s} dx, d~' 
j 4 k  

K f l (D 1 § i~(y, - (~), ~') ~ t e('n -~) dx, d~'. (7.4) 

Again using Parseval's identity, we see that  

fl(Di+i2(xx-D),~')~lu(m-X)dxxd~ '= ~ fe~(X'-O)'lD~u]Sdx. 
[~1 =~-1 

(7.5) 

We note that  the left side of (7.5) is the right side of (7.4) with Y, replaced by x,. 
In  order to complete the proof of Lemma 7.2 it therefore suffices to examine the 
error introduced by  replacing Yl by x I in (7.4). Since diam supp g2a~ =O(~-l/sS-x/4), 
it follows from Lemma 6.5 with ~7 =5,/2, that  this error is bounded by 

+(2a)2  / .  ~a~J2r r JD=uJSdx . (7.6> 
I~l~<m-3 \ / 

By using Lemma (7.1) together with ~-1 ~(~3 we see that  (7.6) is bounded by 

K6l/s 2 f e  ~(xl ~)~]D~u]Sdx. (7.7) 
I~l=m-1 

The proof of Lemma 7.2 is completed by using (7.1)-(7.7) together with the remark 
following (7.5). 

The next  lemma shows that  when the characteristics are smooth we can get a 
better estimate for Pk than we can for arbitrary ruth derivatives (compare with 
Lemma 7.4). 

Lemma 7.3. Suppose that ~A~c Rn is a subdomain o/ [0<x ,<~/2  ] whose support 
has diameter o/ order 0(~-1/s5-1/4). There exist constants K > 0  and ~o < 1 such that if  
(~ <~0 and ,~ >(~-a then 
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f e~(x' ~'le~(y, D) ul ~d~ < KZ~f~(x'-~>'lP(y, D) u]2 dx 

+ ~ i:[ =~ _ i K ; t  fe~<x:-~):lD:u l: dx 
/or all u e C F ( ~ )  and y C ~ 8 .  

Proo[. Let v, ~, and ~ be defined as in the proof of Lemma 7.2. We multiply both 
sides of (5.3) by  I v(~) ]2 and integrate in order to obtain 

f l Pk (Y, ~ + i~(Yl -- 8)) ~($) I ~ d~ <~ K f l P(y, $ + i2(y~ - 8)) ~(~) I ~ d$ 

+K2:(y~-~):~f[+P(y,~+i~(y~-~))~($)[:d~. (7.8) 

As in the previous proof we apply Parseval 's formula with respect to x~ and then 
use Lemma 6.5 to estimate the error introduced by  replacing (y1-(5) by  (x l -5) .  
The result is 

f lPk(y, D~ i~(x I - (~), ~') +12 dxld ~' + 

K f lP(y, D~ + i2(x~ - (~), ~') ~1 ~ dx, d~' 

+ KA2~u~ fl,P(y, nl +iA<xx--D),~')+lUdxld~ ' 

(-~_Y-z=~ (+(x,+~,D u,2d~ 
I=l<~-x 

I:1 - 

T h e  proof of Lemma 7.3 is completed by  using Lemma 6.3 to estimate the term 
involving +P and by using Lemma 7.1 to estimate the error terms. 

The next  lemma gives an estimate for arbi trary mth derivatives in terms of 
.P(y, D)u. 

Lemma 7.4. I / ~ $ c  [0 < x  1 <6] and has ~upport o/diameter 0(~--1/26--1/4), there exist 
constants K > 0  and 8 o < 1 such that i] ~ <80 and ~ >8 -3 then 

I~1 =m 

/or all u E C~ r [ ~ ]  and y E ~ .  

Starting with (5.4), the proof of Lemma 7.4 follows the same line as the two 
previous proofs. We leave the details to the reader. 

547 



R. !'q. PEDERSON, Cauchy's problem for elliptic equations 

Finally we state a lemma which shows that  when the characteristics are smooth 
we can obtain better estimates for Pk(x, D)u then we can for arbitrary (m-1)st 
derivatives. 

Lemma 7.5. There exists a constant K > 0 such that 

f e~(Xl-~)' l p(y, D) u l2 dx >~ K2 f e~(X~-~)' ] Pk (y, D) u ]2 dx 

/or all u E C~ r [0 < xl < (~/2] and k = 1, 2, ..., n. 

Proo/. Corollary 5.2 applied to ~(Xl, ~') gives 

The proof is completed by applying Lemma 6.3 to the right side of the inequality 
and using Parseval's identity. 

8. Completion of the proof of Theorem 3.2 

After multiplying both sides of (4.2) by e ~(xl-~)~, integrating, and applying Lemma's 
7.2-7.5, we obtain 

re'( ~, ~)'lP(x,D)ul~dx>~{(1/4-O(~i12),fe~(~1-~)~lP(x,,D, ul~dx 

+~(1-O(5))l.,~_lfe~(X'-~ } 

- K  y (2(~'/2) m '~lfe~(~' o)~lD~ul~dx. (8.1) 
M<m 2 J 

I t  follows from Leibniz formula as in the proof of Lemma 4.2 that  

5 ID~%1~>1/2 5 ~lD~ul ~-g  5 (~'/~)m-~-E~lD~ul ~" (S.2) 
l~l=m-1 I~l-m-1 I~l<m-2 

We next  substitute (8.2) into (8.1), use Lemma 7.1 to estimate the derivatives 
of order ~ m.2 and choose d sufficiently small. 

The result is 

The proof of Theorem 3.2 is completed by using Lemma 7.1 together with the above 
inequality to show that  

ea(x,-~)'le(x, Dlul2dx~-~ Y~ ea(~'-~ 

This completes the proof. 
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