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Extension of functions satisfying Lipschitz conditions 

B y  GUNNAR A n o ~ s s o N  

Introduction 

Le t  F be a compac t  set  in Euc l idean  n-space RL Suppose  t h a t  the  funct ion ~(P)  
is def ined on F and  t h a t  i t  satisfies a Lipschi tz  condit ion.  1 I t  is known  t h a t  ~0 can be 
e x t e n d e d  to R ~ in such a w a y  t h a t  the  new funct ion  / satisfies t he  same Lipsehi tz  
condit ion.  An  expl ic i t  cons t ruc t ion  was given in [1], where  even more genera l  s i tua-  
t ions  were t r ea t ed .  I t  is ea sy  to  give uppe r  and  lower bounds  for the  solutions.  W e  
shal l  do this,  and  also discuss quest ions of uniqueness.  I t  t u rns  out  t h a t  a l l  solut ions 
agree on a set  E which has  a ve ry  s imple  s t ruc ture  (Theorem 2). 

I n  ana logy  wi th  the  t r e a t m e n t  in [2] a n d  [3], we shal l  consider  a subclass  of solu- 
t ions (called absolu te  minimals)  which have  the  add i t i ona l  p r o p e r t y  of being solu- 
t ions of a corresponding p rob lem on each subregion of R ~ - F .  The pa r t i a l  d i f ferent ia l  
equa t ion  ~ .  j=l, tx~ r tx~xj = 0  is de r ived  in a pu re ly  fo rmal  m a n n e r  and  i t  t u rns  out  
t h a t  a smooth  funct ion  satisfies th is  equa t ion  if and  on ly  if i t  is an  absolu te  min ima l  
(Theorem 8). W e  shal l  also give an  exis tence proof  for abso lu te  minima]s.  

I n  a l a t e r  paper ,  the  two-d imens iona l  case, a n d  in pa r t i cu l a r  the  d i f ferent ia l  equa-  
t ion  r = 0, more  r162 r tzu +Ca tuu will  be s tud ied  closely. 

Notations and conventions 

(Xl ,  X 2 . . . . .  3~n) are  Car tes ian  coordinates  in R n. 
As a rule,  the  poin ts  will  be cal led A,  B, C . . . . .  
(Xl, x2 .... .  xn) will  somet imes  be wr i t t en  as x. 
PQ = t h e  Euc l idean  d is tance  = ( ~ - 1  (xt(P)-x~(Q))2) 1/2. 
Q1Q2 is t he  vec tor  wi th  components  x~(Q2)- x~(Q1 ). 
I f  t he  funct ion  g is def ined on the  set  E,  t hen  

I g(Pi)  - g(P~) ] 
/x(g, E)  = sup  

v~. e~E P1P2 

The funct ion  ~ to  be ex t ended  is given on the  compac t  set  F .  W e  wri te  ~ =/x(% F )  a n d  
assume 0 < ~ < c r  ~ G = t h e  b o u n d a r y  of G; G=GUaG; C G = R ~ - G .  0 n l y  rea l  
quant i t i es  will  be considered.  

A solution of the  extens ion p rob lem is an  extens ion / of r to  some specified set F 1 ~ F ,  
such t h a t  ~u(/, F1) =~.  F i r s t ,  we t ake  F 1 = R n. 

1 I.e. a H6lder condition with the exponent = 1. 
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G. ARONSSON, Functions satisfying Lipschitz conditions 

1. The upper and lower functions 

Consider now the extension problem which was proposed above. We have 
~t =/~(~, F)  > 0. Assume t h a t / ( P )  is a solution of the problem. This means t h a t  

q~(Q) -;r PQ <~ tiP) <~ q~(Q) + )~ PQ 

for all Q E F and P E R n, and consequently 

sup (~(Q) - 2P-Q) ~</(P) <~ inf (~0(Q) + 2PQ). 
Q ~ F  QF.F 

I t  is easy to verify tha t  the functions 

u(P) sup (~(Q) - 2P-Q) (1) 
Q e F  

and v(P) = inf (~(Q) + XP--~) (2) 
Q e F  

agree with ~ on F and satisfy Lipschitz conditions with the constant  ~t in R n. Hence 
they  are solutions of the extension problem. This method of extension was proposed 
in [1] and [4] (footnote on p. 63). 

We have thus 

Theorem 1. The/unctions u and v, de/ined by (1) and (2), are solutions o~ the exten- 
sion problem and an arbitrary solution / satisfies the inequalities u <~/ <~ v (in Rn). 

We call u and v the lower and upper functions, respectively. The following asser- 
tions follow easily from the fact  t ha t  u and v are the extreme solutions of the exten- 
sion problem. 

Corollary. I / G  is a bounded region such that G and F have no points in common, then 

u ( P ) -  sup (u(R)- ,~PR) for all P E g ,  
ReOG 

v(P) = inf (v(R)+,~P--R) for all P e g .  
ReOG 

2. Questions of uniqueness 

I t  is clear from Theorem 1 tha t  all solutions of the extension problem agree at  a 
point  P r F if and only if u(P) : v(P). In  this case there exist Q1 and Qe E F such t h a t  

~(Q1) +), ~DQ1 = T(Q2) -~t/~Q2, i.e. 

A(PQ1 + PQe) = q~(Q2) -- ~(Q1) ~<), Q1Q2 <~ 2(PQ1 + PQ2). 

I t  follows tha t  

and 
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PQ1 + PQ2 = Q1Q~ 

~(Q2) -q~(Q1) = ~ QIQ2. 
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I t  is seen from the first relation tha t  P,  Q1 and Q~ are situated on a straight line, with 
P between Q1 and Q~. 

Conversely, if Q1 and Q2 are points in F such tha t  [~0(Q1) -~0(Q2) ] =~ QIQ~, then it is 
clear tha t  all solutions agree on the straight segment Q1Q2 (which we call a critical 
segment). I t  is also clear tha t  the solution on Q1Q2 is a linear function of arc length. 

We introduce the notation E = {PIP (~ F, u(P) =v(P) }, i.e. E is the set of uniqueness. 
Consider a point P E E and let l be a critical segment through P. Let  / be an arbi trary 
solution of the extension problem. We assert tha t  / is differentiable at  P and tha t  
g rad / (P)  =~ e, where e is a unit vector along l in the direction of increasing/. 

In  order to verify this we consider a point Q in some neighbourhood of P,  and its 
projection B on l. See Fig. 1. 
We have 

/(C) - ~ Wr 2 + (~2 <~/(Q) <~/(A ) + ~ V~ + (~2, 

/ (c)  - 2r = / (B)  = / ( A )  + hr. 

Hence [I(Q) - / (B)]  < 2(V~ + ~ -  r). If Q is restricted to a suitable neighbourhood 
of P, then r can be chosen independently of Q and we get 

[ / (Q)- / (B)[<~r(~ l  + ( ! )2-1)=O(62) .  

The rest of the proof follows easily, since / is linear on I. 
I t  follows from this tha t  the vector e is uniquely determined by  P E E, and if there 

are several critical segments through P,  then they all constitute parts  of one and the 
same line through P. Finally, since e = e(P) is unique, it is easily proved (indirectly, by 
a selection argument) tha t  e (P) is a continuous function on E. 

The above considerations are summarized in the following theorem: 

Theorem 2. The set o/uniqueness E is determined by q~ a~wl F in the/ollowing way: 
Let F~ be the collection o/straight segments between points Q1, Q2 E F/or which 
[~~ -q~(Q2) [ =,~ Q1Q2. Let L be the point set covered by I~. 

Then 
E = L A C E .  

There exists a continuous vector/unction e (P), de/ined on E, with the/oUowing property: 
i/ P E E and Q1, Q, are the endpoints o/ any critical segment passing through P, then 

QIQ2 e (p) = sign (~(Q2) - ~(Q1)) ~ -  

5 5 3  



G, AR01~SS01~I', Functions satisfying Lipschitz conditions 

Finally, every solution ] o/the extension problem is di/]erentiable on E and satis/ies the 
relation 

grad tiP) = 2" e (P). 

I t  can occur tha t  E is empty,  as can be seen from the example in the end of the next  
section. 

So far, we have considered the problem to extend q from an arbi trary compact set F 
to the whole space R n. However, one can consider each component G of R ~ - F sepa- 
rately, and it is then sufficient to know ~v on aG. In  the rest o/ this  paper, we shall 
assume that q~ is given on the boundary ~ D o/a bounded region D and discuss the extension 
(interpolation) o/q~ into D. The results derived so far hold in this case with obvious 
modifications. (We have 

2= sup [~(P)-~(Q)I 
P, QeOD PQ ' 

P=# Q 

u(P) = sup (~(Q)) - 2P--Q), v(P) = inf (~(Q) + 2P--Q) 
Q cOD Q cOD 

and the set of uniqueness E = L N  D.) 
The following theorem is a consequence of Theorem 2: 

Theorem 3. Suppose that the solution is unique in D (i.e. E =  D and u = v  in D). 
Then uECI(D) and [grad u I =2 in D. 

This theorem should be compared with the corollary of Theorem 9 in [2]. 

Lemma 1. Let ~ be an arbitrary region in RL Assume that r E CI(~) and that 
] grad r [ = M in ~,  where M is a constant > O. 

Then each point o / ~  belongs to one and only one trajectory o/the vector field grad r 
Every such trajectory is a straight line, and it can be continued up to the boundary ~ .  

(The trajectories coincide with the characteristics of the differential equation 
(grad r By a trajectory we mean a smooth curve, such tha t  its tangent  is 
always parallel to grad r 

Proo]. The differential equation (grad r = M s is t reated by  means of characteristic 
theory in [5], p. 40, and [6], p. 88. However, the following simple argument  leads 
directly to the desired result: Consider a point P E~. According to Peano's  existence 
theorem, there is a trajectory y through P. Let  Q, R be two points on V, such tha t  the 
segment Q R c ~ ,  and let r <r Then 

f o r  grad r ds = frQR grad r  ds = M .  L(yQR), 

where L(~QIr the length of the arc ~'QR. But  

/o - 

R grad ~" ds <~ M" QR. 

Hence L()PQR)<~Q--R, i.e. ~'QR is a straight line, and the rest of the proof is obvious. 
Observe tha t  existence of second-order derivatives is not needed in the proof. 
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Theorem 4. (I) I /one  el the upper and lower/unctions belongs to CI(D), then they are 
identical, u-----v, and E = D. 

(II) In  each case below, / is assumed to be a/unction in CI(D) [7 C(/)) with the proper 
boundary values: 

A. I /  [grad/[ is constant in D, then ] is a solution el the extension problem (but not 
necessarily the only one). 

B. I /  grad 11 ='~ in D, then E =  D and u=v~--/. 
C. I /  grad/I is constant in D, and D is a convex region, then E = D and u - - v - - / .  

Proo/. (I) Suppose tha t  v E CI(D). I t  is evident tha t  [grad v[ =~ in D, and it follows 
from Lemma 1 tha t  the solution is unique in D. (Clearly, the trajectories of grad v are 
critical segments.) 

( I IA) The relation 

/~(/, D ) = m a x  (/~(1, aD), sup [grad I(P)I) 
P c D  

(*) 

is easy to verify, and the assertion follows from this and Lemma 1. 
The reasoning is similar in the other eases. This theorem will be illustrated in 

Example  3 below. 
The assertion I I B ,  in combination with Theorem 3, leads to 

T h e o r e m  5. Let / be an admissible/unction. Then / is the only solution o/the extension 
problem i/ and only i/ /ECI(D) and Igrad /I ='~ in D. 

Examples. (1) Let  D be an arbi trary bounded region in R ~ and let the boundary 
f u n c t i o n b e g i v e n b y ~ = A 0 + ~ = l A p X ~  (A~=constants).  I r i s  c l e a r t h a t ~ - ~ z ~ = l  ~j , 
and it follows from I I B  in Theorem 4 tha t  there is a unique solution, namely 
/(x 1 ..... x~) = A  0 + Z ~ I  A ~x~. The critical segments are precisely those which have the 
direction (Ai, A 2 ...... A~). 

(2) Choose ~(Q)=PoQ, where P0 is a fixed point not in D. Clearly, ~ = 1, and the 
critical segments are those which are parts  of "half-rays" emanating from Po.  The 
solution is unique, namely / (P)  =PPo. 

(3) Consider the case n = 2  and write x 1 =x, x2=y. Let ~ be t h e  region obtained 
from the xy-plane by  deleting the semi-axis y =0,  x ~>0. Define the function/(x,  y) as 

/ x ~  y2, for y >~ 0 

/ ( x , y )=  V ( x - 1 ) 2 - F y 2 - 1 ,  fory<O.  

I t  is easy to verify tha t  /E C1(~), and I g rad / [  = 1. Thus Lemma 1 is applicable. See 
Fig. 2, where the straight lines are the trajectories of grad / .  

We shall now consider the extension problem on various domains D. In  each case 
we assume t h a t / ~ c ~  and put  ~ = / o n  ~D. 

1. I f  D 1 is a region in the half-plane y > 0, then it follows (as in the previous example) 
tha t  A = 1 and tha t  / represents the unique solution. (Case I I B  in Theorem 4.) 

2. Let  D 2 be a convex region. Then the segment between any two points in D 2 lies 
in ~ and it is clear tha t  A = 1. Here, too, ] represents the unique solution, and the  
critical segments are the trajectories of g rad / .  (Case IIC.)  
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c. ARONSSON, Functions satisfying Lipschitz conditions 

0,o) ) 

Fig. 2 

3. The function / is discontinuous across the  positive x-axis and one can find a 
region D a (as shown in Fig. 3) for which ~ =/x(%ODa) > 1. I t  follows f rom Theorems 4 
and 5 t h a t  / is a solution of the  extension problem but  not  the  only one. (Case I I A . )  
Clearly, E is e m p t y  in this case. 

However,  it is also clear t h a t  if gECI(Da) and 9=cf=/ on ~D3, then  
supD 3 ]grad g[ > 1, unless g=--/. (Compare Section 5.) 

4. Consider again the  case n = 2 and let D be an  open circle. Let  A and B be two 
diametrically opposite points  on DD. Pu t  ~v(A) = 1, ~o(B) = 0  and  let q0 be a linear func- 
t ion of are length on each of the  two semi-circles AB. 

I t  is then  easy to  verify t h a t  E consists of the s traight  segment  AB, which is the  
only critical segment.  

3. The connection between the extension problem and the partial 
differential equation 

= o  
~.j~1 ~x~ ~x~ ~x~x s 

Consider, for a moment ,  a convex region D and a funct ion C e C I ( D ) N C ( D ) .  I t  is 
evident t h a t  

~u(r = sup I grad ~b(P) I. 
PeD 
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Fig. 3 

Therefore, for such regions and such functions, our minimization problem (for 
/z(r is equivalent to a minimization problem for the functional sup Igrad r 
Because of this, some of the results of this section will have corresponding interpreta- 
tions for the latter problem. This will be treated more generally in the supplement. 

I t  is natural to consider the functional H(r Igradr as a "limit" of the 
sequence of funetionals 

(fo )1 IN(r = Igrad r ~ ;  5" = 1, 2, 3 . . . . .  

The Euier equation for the problem IN(~)= minimum is 

Remove the first factor and let N tend to infinity: This leads to the new equation 
~t~.j:lCx,~x~x~x~=0, which is quasi-linear and parabolic. I t  is the object of this 
section to study the connection between the basic extension problem and the above 
differential equation. 

We introduce the notation A(r162 n I t  is an easy matter  to 
verify that  

A(r = �89 grad {(grad r grad ~b. 

The meaning of the differential euqation A(r =0  is therefore simply tha t  I grad r is 
constant along every trajectory o/the vector field grad ~b. Thus ~b is a linear function of arc 
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G. ARONSSOr% Functions satisfying Lipschitz conditions 

length on every such trajectory. I t  is also clear that  every function r E C 2, for which 
]grad C J is constant, satisfies A(r = 0. 

Now let D be a region with smooth boundary and let r E C 2 in a neighbourhood of / ) .  
Assume that  grad ((grad r 4= 0 on/5.  Now J grad C J must take its maximum M (in 
/~) at some point PoE~D and at such a point, grad ((grad r is orthogonal to aD. If 
A(r ~0,  then it follows that  grad r is tangential to ~D at Po and then/~(r ~D)~> M, 
which means that  /~(r =p(r (Compare the relation (*) in the proof of 
Theorem 4.) 

However, if A (r =~ 0, then grad r is not tangential to ~D and we may have 

/~(1, ~D) </~(/,/)). 
This suggests the next theorem. 

Theorem 6. Assume that /EC 2 in a neighbourhood o~ the paint Po and that A(/)4=0 
at Po_. I /  D is a sphere with center at Po and with su//iciently small radius, then 
/~(/, D) >/~(/, ~D). 

Proo]. The proof is almost clear from above. Let  us complete it by means of a 
variational technique. 

Let D be a sphere with center at  P0 such that  A (/) ~ 0 on / ) .  Assume, for example, 
that  A( / )<0  on /5. Put  M = m a x ~  [grad /[ and E ={PIPE/ ) ,  [ g r a d / ( P ) [ - M } .  
Then E ~  ~D. If P E E, then grad {(grad/)2}, evaluated at P, is parallel to the outer 
normal n(P) of ~D. I t  follows, since A(/) <0, that  grad f - n < 0  at all points of E. 

Therefore, there exists a function g(x), of the form h( ] x -  xp, ] ), such that  

(1) g(x)EC I in an open set containing/) .  
(2) g(x) = 0 on ~D. 
(3) grad g(x).grad/(x) < C < 0 on E. 

Now it follows by a standard argument that  max~ ]grad (/+),g)] <max~ Igrad/I  
if the parameter 2 is positive and small enough. This technique is quite analogous to a 
method used in approximation theory, compare [7], p. 14, Satz 17. 

The reasoning which preceded Theorem 6, also indicated a result in the converse 
direction. However, the following theorem is more general: 

Theorem 7. Let D be an arbitrary bounded region and assume that/ECZ(D) N C(/5), 
/ =cp on ~D and A(/) =0 in D. Then/~(/,/5) =/~(~, OD), i.e: / is a solution o/the extension 
problem. 

Proo/. Since/~(/,/5) =max  (/~(~0, ~D), SUpD [grad/[) ,  it is sufficient to prove that  
supD [grad/[  ~</~(q~, 09). Choose a point PoE D such that  [grad/(P0)l =k0 > 0. The 
functions ~//Oxt are in C 1, and hence there is a unique trajectory y through P0- Now y 
cannot terminate inside D, because [ grad/I  = k 0 on y. However, / is a linear function 
of arc length on 7, and / is bounded. Therefore, ~ must have finite length S. Conse- 
quently, 7 must approach ~D in both directions from P0, and have two definite limit 
points Q and R on ~D. I t  follows that  ~(R) -~(Q) --k o" S ~> k 0 �9 Q-R. Hence/~(~, ~D) ~ k 0 
and the rest of the proof is evident. 

Remark. Suppose that  g EC~(D)N C(/5) and g =~  on ~D. Then it follows from the 
proof tha t  SUpD [grad g[ />SUpD [grad/[ .  
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The concept of absolutely minimizing functions (absolute minimals, a.s. minimals), 
was introduced in [2] for a class ,of minimization problems for functions of one 
variable. I t  can be carried over to the present case in the following way: Let  ~ be 
an arbi trary region in R n. The function / is said to be an absolute minimal in ~ if 
#(/, D)=#(/ ,  ~ D ) < ~  for every bounded region D such tha t  / ) c ~ .  We have then  
the following theorem: 

Theorem 8. I / / E  C2( ~ ), then / is an absolute minimal in ~ i /and only i /A( / )  = 0 in ~.  

Proo/. One half of the theorem follows from Theorem 6 and the other half follows 
from Theorem 7 and the fact tha t  /sat isf ies  a Lipschitz condition on every compact 
subset of ~ .  

Theorem 9. Let D be a bounded region, and let /E C2(D) N C(.D). Assume that A(/) = 0 
in D and 

n 

Then the same inequality holds in D. 

Proo/. If  the proposition were not true, then there would be a subregion D 1 ~ D, 
such t ha t / ( x )  =L(x)=--A o + ~  A vx v on ~D1, and/ (x)  >L(x) in D 1. Consider then the 
extension problem on D1, with ~ (x )= / (x )=  L(x). I t  follows from Theorem 7 t h a t / i s  
a solution and it follows from Example  l, Section 2, tha t  L(x) is the only solution. 
This gives a contradiction and the proof is complete. Naturally,  the inequality sign 
may  be reversed in the theorem. 

I t  is clear tha t  the theorem remains valid for any function in C(/)) which is abso- 
lutely minimizing in D. 

Example. Let ~ be the region obtained from the xy-plane by deleting the negative 
x-axis and let r be an arbi trary continuous determination of arctg y/x in ~ .  The 
trajectories of grad r are then circles with center at  the origin, and I grad r [ is con- 
s tant  on each such circle. Therefore, A(r  Let  D be a bounded subdomain of 
such t h a t / ~ c  ~ and consider the extension problem on D with the boundary function 
r One solution is given by  r itself, according to Theorem 7. Since the trajectories of 
grad r are circles, it follows tha t  the set of uniqueness E is empty.  

4. The existence of  absolutely minimizing functions 

The object of this section is to carry out an existence proof for a.s. minimals. The 
first par t  of~the proof is analogous t o t h e  corresponding par t  of the proof of Theorem 
2.1 in [3] and it will therefore be brief. 

Consider then a/ ixed extension problem, on the region D with boundary values ~. 
Let  / be a solution of this :problem and consider the extension problem on a subregion 
D' c D, with boundary values/ .  Let  u' and v' be the lower and upper functions on D'. 

De/inition. / is said to have the property A in D(i f  / >~ u' on D',  for every choice of 
D ' c  D. Further,  / has the property B on D, if/<~v' on D', for every D ' c  D. 
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Let G be the class of those solutions of the extension problem on D which have the 
property A on D. G is not empty, since the upper function belongs to G. 

We introduce the/unction 

h ( x  I . . . . .  Xn)  = i n f  g ( x  I . . . . .  Xn) 
g ti G 

and assert that it is an a.s. minimal. Evidently, h is a minimizing function (i.e. a solu- 
tion of the extension problem). Further, h has the properties A and B in D. Since the 
verification of this is analogous to the corresponding arguments in [3], it will be omit- 
ted. 

To complete the proof, consider a subregion D I =  D and put m=/x{h, SD1), 
M=lx(h, D1). Assume that  M > m .  Then there must be two points A, BED1, such 
that  the chord A B =  D 1 and such that  h(A) - h ( B )  >m.-A'~. 1 If  S denotes arc length 
on the chord AB,  measured from B, there must be a point P where dh/ds exists and 
dh/ds > m. Choose a number M 1 such that  m < M  1< (dh/ds)p. 

Now at least one of these two statements is true: 

h(Q) <h(P) + M  1 ~QQ 
h(Q) > h(P) - M x ~QQ 

for every QE~D1, 

for every QEaD 1. 

In  the opposite case there would be Q1, Q2 E~D1 such that  

h(Q1) >~h(P) A- M 1 PQ1 

and h(Q2) < h(P) - M  1 PQ~, 

which gives h(Qx) -h(Q~) >~MI(PQ1 +PQ2) >m Q1Q~. This contradicts the definition 
o f  m .  

Suppose then, for example, that  h(Q) <h(P) + M  1 P-Q for every Q EaD 1. Put  v2(Q) = 
h ( P ) + M  1 i~Q. Then y~(P)=h(P) and v2>h on ~D 1. Since (dh/ds)p>M1, there is a 
subregion D2= D 1 such that  ~ < h  in D~ and y~ = h  on ~D 2. The function y~ is the only 
solution of the extension problem on D e with the boundary values yJ =h, as can be 
seen from Example 2 in Section 2. But then the relation ~ < h contradicts the fact 
that  h has the property B. Hence the assumption M > m leads to a contradiction and 
h is therefore absolutely minimizing on D. 

Theorem 10. For a given extension problem (D, qD), there is a solution which is ab- 
solutely minimizing in D. 

5. Supplement 

I t  should be mentioned that  some of the preceding ideas can be carried over in a nat- 
ural way to the following problem: minimize the functional H(r [grade(P) ] 
over those functions which take on given values q at ~D and which are suffi- 
ciently wellbehaved in D. I t  is convenient to consider only those functions r which 
satisfy a Lipschitz condition in some neighbourhood of every point P fi D (the constant 
in this condition may depend on r and P). Such functions are differentiable a.e. in D, 
and H(~) is well-defined (see [8]). 

1 Compare  t h e  re la t ion  (*) in  t he  proof  of T h e o r e m  4. 
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NOW the following distance is defined for points in D: d(P, Q) =inf~GrL(7), where F 
is the class of polygonal  arcs which connect  P and Q and which lie in D. L(7 ) = t h e  
length of 7. (d(P, Q ) = t h e  distance, measured within D.) After  excluding some 
pathological  types  of regions, d(P, Q) can be properly defined for P ,  Q EJg. 

Now, the  method  of the  upper  and lower functions can be carried over if the  
Eucl idean distance ~ is replaced by  d(P, Q) in the formulas. I t  turns  out  t h a t  there 
is an  admissible r with H(r < o~ if and only if ~ satisfies on ~D a Lipsehitz condition 
with respe~ to the distance within D (i.e. d(P, Q)), and in t h a t  case, the  (best) constant  
in this Lipschitz condition is equal to mine H(r 

I t  is also easy to  obtain this theorem: An admissible funct ion / represents a unique 
solution of the  minimization problem if and only if / e  CI(D) and ]grad ][ is constant  
in D. (Compare the corollary of Theorem 9 in [2].) One half  of the theorem follows 
f rom L e m m a  1, and the  other  half  follows from Theorem 3, when applied to  convex 
subregions of D. (For convex regions, the  functionals #(4) and  H(r are identical). 

Compare Example  3 in Section 2, the  proof of Theorem 6 and the  remark  to  
Theorem 7. 

Department o] Mathematics, University o/ Uppsala, Uppsala 

R E F E R E N C E S  

1. MCSHA~E, E. J., Extension of range of functions, Bull. Amer. Math. Soc. 40, 837-842 (1934). 
2. ARO~SSO~, G., Minimization problems for the functional supzF(x,](x),]'(x)), Arkiv f6r Mate- 

matik 6, 33-53 (1965). 
3. ARO~SSO~, G., Minimization problems for the functional supxF(x,/(x), f(x)), II ,  Arkiv f6r 

Matcmatik 6, 409-431 (1966). 
4. WHITNEy, H., Analytic extensions of differentiable functions defined in closed sets, Trans. 

Amer. Math. Soc. 36, 63-89 (1934). 
5. GARABEDIAI~, P. R., Partial Differential Equations. Wiley & Sons, New York, 1964. 
6. COURA~T, R. and HILBERT, D., Methods of Mathematical Physics, Vol. II. Interscience, New 

York, 1962. 
7. MEI~r~DUS, G., Approximation yon Funktionen und ihre numerische Behandlung. Springer- 

Verlag, Berlin, 1964. 
8. RADEMACHER, I-I., ~ber partielle und totale Differenzierbarkeit, Math. Annalen 79, 340-359 

(1918). 

Tryckt den 14 m a r s  1 9 6 7  

Uppsala 1967. Alinqvist & Wiksells Boktryckeri AB " 

561 


