On the asymptotic distribution of eigenvalues

By Eric Larsson

Introduction

Let Ω be the union of a finite number of open, bounded and connected subsets of R^{n}, Δ the n-dimensional Laplace operator and ϱ a real-valued function defined in Ω. Consider the eigenvalue problems

$$
\Delta f+\lambda \varrho f=0
$$

with f or its normal derivative vanishing at the boundary. It has been shown by Courant ([1] p. 321) that, when ϱ is a bounded Riemann integrable function and Ω satisfies a regularity condition, the asymptotic distribution of the eigenvalues is given by

$$
\begin{equation*}
N(\lambda) \sim(2 \pi)^{-n} w_{n} \lambda^{n / 2} \int_{\Omega} \varrho^{n / 2} \tag{1}
\end{equation*}
$$

where $N(\lambda)$ stands for the number of eigenvalues smaller than λ, and w_{n} is the volume of the n-dimensional unit sphere. The object of this note is to show that (1) holds also when ϱ has a finite number of singular points y in Ω. More precisely, we assume that ϱ is $\mathrm{O}\left(|x-y|^{-2 \beta}\right)$ in a neighbourhood of y, where $0<\beta<1$ when $n \geqslant 2$, and $0<\beta<1 / 2$ when $n=1$. The method adopted can also be used to treat cases when ϱ becomes singular on manifolds of dimension $<n$.

Preliminaries

We shall use the notations

$$
\begin{gathered}
(f, g)_{o}=\int_{o} f \bar{g}, \quad|f|_{o}^{2}=(f, f)_{o}, \quad|f|_{o, p}=\left(\int_{o} \mid f f^{p}\right)^{1 / p} \\
(\nabla f, \nabla g)_{o}=\int_{o} \nabla f \overline{\nabla g}, \quad|\nabla f|_{o}^{2}=(\nabla f, \nabla f)_{o}
\end{gathered}
$$

where O is an open subset of R^{n}, the integrals are taken with ordinary Lebesgue measure and ∇f is the gradient of f, taken in the weak (distributional) sense. Whenever it is convenient we shall leave out the index O.
E. LARsson, On the asymptotic distribution of eigenvalues

Define

$$
\boldsymbol{F}_{1}(O)=(f ;|\nabla f|+|f|<\infty)
$$

and let $F_{0}(O)$ be the closure in $F_{1}(O)$ of all continuously differentiable functions with compact support in O. The elements of $F_{0}(O)$ vanish at the boundary of O at least in a weak sense. With the scalar product $(f, g)+(\nabla f, \nabla g)$ both $F_{1}(O)$ and $F_{0}(O)$ are Hilbert spaces.

An open set O is said to be permitted, if it consists of a finite number of bounded and connected subsets,
the form (f, g) is compact (i.e. completely continuous) in $F_{1}(O)$
and $\quad|f|_{q}$ is majorized by a constant times $|\nabla f|+|f|$,
where $0<q \leqslant 2 n /(n-2)$ when $n>2$, and $0<q$ when $n=1,2$. These two properties hold if the boundary of O is sufficiently smooth (see [2] p. 471 and [3] respectively). In particular, they hold when O is the sum of a finite number of rectangles.

A function $\varrho \geqslant 0$ is said to be permitted in O if

$$
\begin{equation*}
\int_{O^{\prime}} \varrho>0 \text { for every component } O^{\prime} \text { of } O \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0} \varrho^{m / 2}<\infty \tag{5}
\end{equation*}
$$

where $m=n$ when $n>2$, and m is some number >2 when $n=1,2$. Let us put.

$$
(\varrho f, g)=(\varrho f, g)_{o}=\int_{0} \varrho f \bar{g} .
$$

Theorem 1. If @ is a permitted function in a permitted set O, then

$$
\begin{equation*}
\text { the form }(\varrho f, g) \text { is compact in } F_{1}(O) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
(\varrho f, f)+|\nabla f|^{2} \sim|f|^{2}+|\nabla f|^{2} \text { in } F_{1}(O) \tag{7}
\end{equation*}
$$

i.e. either side is majorized by a constant times the other for all f in $F_{1}(O)$.

Proof. By Hölder's inequality, (3) and (5),

$$
\begin{equation*}
(\varrho f, f) \leqslant|\varrho|_{m / 2}|f|_{2 m /(m-2)}^{2} \leqslant\left.\left. C\right|_{\varrho}\right|_{m / 2}\left(|f|^{2}+|\nabla f|^{2}\right), \tag{8}
\end{equation*}
$$

where C is a constant. Hence ($\varrho f, f)$ is bounded in $F_{1}(O)$. Put $\varrho_{\lambda}(x)=\min (\lambda, \varrho(x))$. It follows from (2) that ($\varrho_{\lambda} f, f$) is compact in $F_{1}(O)$, and (8) applied to $\varrho-\varrho_{\lambda}$ shows that $\left(\left(\rho-\varrho_{\lambda}\right) f, f\right)$ tends to zero as $\lambda \rightarrow \infty$, uniformly on bounded sets in $F_{1}(O)$. From this (6) follows.

At the same time (8) proves that, with a suitable constant C,

$$
(\varrho f, f)+|\nabla f|^{2} \leqslant C\left(|f|^{2}+|\nabla f|^{2}\right) \quad \text { in } F_{1}(O) .
$$

To prove the reverse inequality, it suffices to show that there is no sequence $\left(f_{j}\right)_{1}^{\infty}$ such that

$$
\left|\nabla f_{j}\right|^{2}+\left|f_{j}\right|^{2}=1 \quad \text { and } \quad\left|\nabla f_{j}\right|^{2}+\left(\varrho f_{j}, f_{j}\right) \rightarrow 0
$$

It is no restriction to assume that the sequence is weakly convergent to an element f in $F_{1}(O)$. Now

$$
\left|f_{j}\right|^{2} \rightarrow|f|^{2} \quad \text { and } \quad\left(\varrho f_{j}, f_{j}\right) \rightarrow(\varrho f, f)
$$

since the forms are compact. In particular $(\varrho f, f)=0,\left|\nabla f_{j}\right| \rightarrow 0$ and $|f|=1$. We also have

$$
\left(\nabla f_{j}, \nabla f\right)+\left(f_{j}, f\right) \rightarrow|\nabla f|^{2}+|f|^{2}
$$

since the sequence is weakly convergent. Here

$$
\left|\left(\nabla f_{j}, \nabla f\right)\right| \leqslant\left|\nabla f_{j}\right||\nabla f|
$$

tends to zero and $\left(f_{j}, f\right)$ tends to $|f|^{2}$. Consequently

$$
|f|=1 \quad \text { and }|\nabla f|^{2}+(\varrho f, f)=0
$$

But by (4), the last relation implies that $f=0$, which is a contradiction. The proof is complete.

When ϱ is permitted in a permitted set O, we can use

$$
((f, g))=(\nabla f, \nabla g)+(\varrho f, g)
$$

as a scalar product in $F(O)=F_{0}(O)$ or $F_{1}(O)$. Then, there is a compact, selfadjoint and linear transformation G defined in $F(O)$ such that

$$
(\varrho f, g)=((G f, g))
$$

for all f and g in $F(O)$.
From a theorem of Hilbert we have that
(a) $F(O)$ has an orthonormal basis, consisting of eigenfunctions of G;
(b) every eigenvalue μ of G is positive and every $\mu \neq 0$ has finite multiplicity; the eigenvalues are enumerable and 0 is the only possible limit point.

If $G \varphi=\mu \varphi$, it follows that

$$
(\varrho \varphi, g)=\mu(\nabla \varphi, \nabla g)+\mu(\varrho \varphi, g) \quad \text { when } g \in F(O),
$$

and from this by Green's formula that

$$
\begin{equation*}
\Delta \varphi+\lambda \varrho \varphi=0 \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda=(1-\mu) / \mu \tag{10}
\end{equation*}
$$

where Δ is the Laplace operator, taken in the weak sense. Further, if $F(O)=$ $F_{1}(O)$, it follows that the normal derivative of φ vanishes at the boundary and, if $F(O)=\boldsymbol{F}_{\mathbf{0}}(O)$, that φ itself vanishes at the boundary. We shall in the following always interpret (9) in terms of the operator G, and λ and μ shall be connected by (10).

Our aim is to prove the asymptotic formula (1), using the well-known WeylCourant principle.

Weyl-Courant's principle

Let Ω be a permitted set and ϱ a permitted function in Ω, and let $\left(\Omega_{j}\right)_{j=0}^{\infty}$ be a division of Ω into permitted open subsets (their closures cover the closure of Ω). It is clear that ϱ is permitted in Ω_{j} unless (4) fails to hold in Ω_{j}. Let $\left(\Omega_{j}\right)_{j=0}^{s}$ be the sets for which this does not happen, and let the function $\sigma \geqslant 0$ satisfy (5) in Ω. Put

$$
H=\sum_{j=0}^{s} \oplus \boldsymbol{F}\left(\Omega_{j}\right)
$$

where $F\left(\Omega_{j}\right)=F_{0}\left(\Omega_{j}\right)$ or $F_{1}\left(\Omega_{j}\right)$, and introduce the notations

$$
\begin{aligned}
& (f, g)=\sum_{j=0}^{s}(f, g)_{\Omega_{j}}, \quad(\nabla f, \nabla g)=\sum_{j=0}^{s}(\nabla f, \nabla g)_{\Omega_{j}}, \\
& (\varrho f, g)=\sum_{j=0}^{s}(\varrho f, g)_{\Omega_{j}}, \quad(\sigma f, g)=\sum_{j=0}^{s}(\sigma f, g)_{\Omega_{j}},
\end{aligned}
$$

As a scalar product in the Hilbert space H we use

$$
((f, g))=(\nabla f, \nabla g)+(\varrho f, g)+(\sigma f, g) .
$$

It is clear that $(\varrho f, f) \leqslant((f, f))$ is compact in H, and hence

$$
(\varrho f, g)=((G f, g)), \quad(f, G f, g \in H)
$$

defines a compact, self-adjoint and linear transformation G from H to H such that $l>G>0$. An eigenfunction φ of G with the eigenvalue
satisfies

$$
\begin{gathered}
\mu=(1+\lambda)^{-1} \\
\Delta \varphi+(\lambda \varrho-\sigma) \varphi=0
\end{gathered}
$$

in every Ω_{j}, and its normal derivative vanishes at the boundary if $F\left(\Omega_{j}\right)=F_{1}\left(\Omega_{j}\right)$. Otherwise $\varphi \in F_{0}\left(\Omega_{j}\right)$ vanishes itself at the boundary. If $t=0$ except in one Ω_{j},
$G f$ has the same property. Hence G is the direct sum of its restrictions G_{j} to $\Omega_{j}, 0 \leqslant j \leqslant s$. By the spectral theorem, $\boldsymbol{F}\left(\Omega_{j}\right)$ has an orthonormal basis consisting of eigenfunctions of $G_{j}, 0 \leqslant j \leqslant s$, and since these are also eigenfunctions of G and constitute an orthonormal basis of H, we have, provided every eigenvalue is counted with its multiplicity.

Theorem 2. The eigenvalues of G are the union of the eigenvalues of the G_{j}.
Now let $\left(\varphi_{i}\right)_{1}^{\infty}$ be a complete orthonormal set of eigenfunctions of G and $\left(\mu_{i}\right)_{1}^{\infty}$ the corresponding eigenvalues, ordered so that $\mu_{1} \geqslant \mu_{2} \geqslant \ldots$. Then, if

$$
\mu_{j}=\left(\mathbf{l}+\lambda_{j}\right)^{-1}
$$

we have $\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots$. Let

$$
N(\lambda)=N(\lambda, \varrho, \sigma, H)=\sum_{\lambda_{j}<\lambda} 1
$$

be the number of eigenvalues below λ. We have
Theorem 3. $N(\lambda, \varrho, \sigma, H)$ is a non-decreasing function of ϱ and H and a nonincreasing function of σ.

Proof. It suffices to prove that $\lambda_{j}(\varrho, \sigma, H)$ has the reverse properties. The minimum-maximum principle gives

$$
\mu_{j}=\mu_{j}(\varrho, \sigma, H)=\inf _{L} \sup _{f \in L}(\varrho f, f) /((f, f)),
$$

where L runs through all subspaces of H of codimension $<j$. Since
we get

$$
\mu_{j}=\left(1+\lambda_{j}\right)^{-1}
$$

get

$$
\lambda_{j}=\lambda_{j}(\varrho, \sigma, H)=\sup _{L} \inf _{f \in L}\left(|\nabla f|^{2}+(\sigma f, f)\right) /(\varrho f, f)
$$

Hence, it is clear that λ_{j} is a non-increasing function of ϱ and a non-decreasing function of σ. Next, let $H^{\prime} \supset H$ be of the same type as H. Since cod $L<j$ in H, there is a subspace $M^{\prime} \subset H^{\prime}$ of dimension $<j$ such that $f \in H$ and $f \perp M^{\prime}$ implies $f \in L$. Hence,

$$
\lambda_{j}(\varrho, \sigma, H)=\sup _{M^{\prime}} \alpha\left(M^{\prime}\right),
$$

where $\alpha\left(M^{\prime}\right)=\inf \left(|\nabla f|^{2}+(\sigma f, f)\right) /(\varrho f, f)$ when $f \in H$ and $f \perp M^{\prime}$.
Replacing H by H^{\prime}, we get a new function

$$
\alpha^{\prime}\left(M^{\prime}\right) \leqslant \alpha\left(M^{\prime}\right)
$$

Since

$$
\sup _{M^{\prime}} \alpha^{\prime}\left(M^{\prime}\right)=\lambda_{j}\left(\varrho, \sigma, H^{\prime}\right),
$$

E. Laksson, On the asymptotic distribution of eigenvalues

$$
\lambda_{j}(\varrho, \sigma, H) \geqslant \lambda_{j}\left(\varrho, \sigma, H^{\prime}\right)
$$

This completes the proof.
We conclude this section by proving two lemmas, which will be used later.
Lemma 1. If $\varrho \geqslant 1$ is a permitted function in a permitted set O, then

$$
N\left(\lambda, \varrho, 0, F_{1}(O)\right) \leqslant N\left((1+v) \lambda+v, \varrho, \sigma, F_{1}(O)\right),
$$

where

$$
v=C|\sigma|_{m / 2}
$$

with C depending only on m and O.
Proof. By Hölder's inequality, (3) and (5),

$$
(\sigma f, f) \leqslant C|\sigma|_{m / 2}\left(|\nabla f|^{2}+|f|^{2}\right)
$$

Hence, since $Q \geqslant \mathrm{I}$ in O,

$$
\left(\left|\nabla f^{2}\right|+(\sigma f, f)\right) /(\varrho f, f) \leqslant(1+v)|\nabla f|^{2} /(\varrho f, f)+v
$$

Consequently, with L running through all subspaces of $F_{1}(O)$ of codimension $<j$,

$$
\begin{aligned}
& \lambda_{j}\left(\varrho, \sigma, F_{1}(O)\right)=\sup _{L} \inf _{f \in L}\left(|\nabla f|^{2}+(\sigma f, f)\right) /(\varrho f, f) \\
& \quad \leqslant \sup _{L} \inf _{f \in L}\left((1+v)|\nabla f|^{2} /(\varrho f, f)+v\right)=(1+v) \lambda_{j}\left(\varrho, 0, F_{1}(O)\right)+v
\end{aligned}
$$

Thus, $\lambda_{j}\left(\varrho, 0, F_{1}(O)\right)<\lambda$ implies $\lambda_{j}\left(\varrho, \sigma, F_{1}(O)\right)<(1+v) \lambda+v$ and the lemma follows.
Lemma 2. If $G \varphi=\mu \varphi$ and $\mu=(1+\lambda)^{\mathbf{1}}$, then the support of φ cannot be contained in the set where $\lambda \varrho-\sigma<0$.

Proof.

$$
G \varphi=\mu \varphi \text { gives }(\varrho \varphi, \varphi)=\mu((\varphi, \varphi)), \quad \text { i.e. }
$$

$$
|\nabla \varphi|^{2}=((\lambda \varrho-\sigma) \varphi, \varphi)
$$

and hence we have the lemma.

The asymptotic formula

The case, where Ω is a n-dimensional rectangle, ϱ a constant and $H=F_{0}(\Omega)$ or $F_{1}(\Omega)$, is classical. Since $(\nabla f, \nabla g)$ is invariant under translations and orthogonal transformations, we can assume that

$$
\Omega=\left(x ; 0<x_{k}<a_{k}, \mathbf{l} \leqslant k \leqslant n\right)
$$

Then the eigenfunctions are

$$
\prod_{j=1}^{n} \sin \pi l_{j} x_{i} a_{j}^{-1}, \quad \text { if } \quad H=F_{0}(\Omega)
$$

and

$$
\prod_{j=1}^{n} \cos \pi l_{j} x_{j} a_{j}^{-1}, \quad \text { if } \quad H=F_{1}(\Omega)
$$

where $l_{j}=1 ; 2,3, \ldots$ in the first and $0,1,2,3, \ldots$ in the second case. Thus, the eigenvalues are

$$
\pi^{2} \varrho^{-1} \sum_{j=1}^{n}\left(l_{j} / a_{j}\right)^{2}
$$

which gives

$$
N(\lambda, \varrho, 0, H)=(2 \pi)^{-n} w_{n} \int_{\Omega}(\lambda \varrho)^{n / 2}+O\left(\lambda^{(n-1) / 2}\right)
$$

where w_{n} is the volume of the n-dimensional unit sphere, $\left(w_{1}=2\right)$. This estimate will be used later. We shall also need

Lemma 3. If $a_{i} \leqslant a$ and $a_{l} \leqslant b$ when $l \neq i$, then

$$
N\left(\lambda, \varrho, 0, F_{1}(\Omega)\right) \leqslant 2^{n-1}\left(1+b^{n-1}(\lambda \varrho)^{(n-1) / 2}\right)\left(1+a(\lambda \varrho)^{\frac{1}{2}}\right) .
$$

Proof. The number of non-negative integral solutions of

$$
\sum_{j=1}^{n}\left(l_{j} / a_{j}\right)^{2}<\pi^{-2} \varrho \lambda
$$

is majorized by

$$
\prod_{j=1}^{n}\left(1+\pi^{-1} a_{j}(\varrho \lambda)^{\frac{1}{2}}\right)
$$

so that the lemma follows.
Now, to simplify the notations, write

$$
\begin{array}{ll}
\bar{N}(\varrho, \sigma, H)=\lim \sup \lambda^{-n / 2} N(\lambda, \varrho, \sigma, H), & (\lambda \rightarrow \infty), \\
\underline{N}(\varrho, \sigma, H)=\lim \inf \lambda^{-n / 2} N(\lambda, \varrho, \sigma, H), & (\lambda \rightarrow \infty)
\end{array}
$$

and $N(\varrho, \sigma, H)=\bar{N}=\underline{N}$ when the limits are equal. Also, put

$$
M(\varrho, \Omega)=(2 \pi)^{-n} w_{n} \int_{\Omega} \varrho^{n / 2} .
$$

When

$$
\Omega=\left(\Omega_{j}\right)_{j=0}^{p}
$$

is a sum of rectangles, and ϱ and $\bar{\varrho}$ are constants in these rectangles such that $\varrho \leqslant \varrho$ and $0<\varrho \geqslant \varrho$, Theorem 2 and Theorem 3 give

$$
\Sigma^{\prime} N\left(\lambda, \varrho, 0, F_{0}\left(\Omega_{j}\right)\right) \leqslant N\left(\lambda, \varrho, 0, F_{0}(\Omega)\right) \leqslant N\left(\lambda, \varrho, 0, F_{1}(\Omega)\right) \leqslant \Sigma N\left(\lambda, \varrho, 0, F_{1}\left(\Omega_{j}\right)\right)
$$

where Σ^{\prime} denotes that we only sum over such j that $\varrho>0$ in Ω_{j}. Hence,

$$
M(\underline{\varrho}, \Omega) \leqslant \underline{N}\left(\varrho, 0, F_{0}(\Omega)\right) \leqslant \bar{N}\left(\varrho, 0, F_{1}(\Omega)\right) \leqslant M(\bar{\varrho}, \Omega) .
$$

E. LARSSON, On the asymptotic distribution of eigenvalues

If ϱ is bounded and Jordan measurable, the first and the last term can be made arbitrarily close by choosing a fine subdivision of Ω, and hence

$$
\begin{equation*}
N(\varrho, 0, F)=M(\varrho, \Omega), \tag{ll}
\end{equation*}
$$

where

$$
F=F_{0}(\Omega) \text { or } F_{1}(\Omega)
$$

This is the asymptotic formula in this very regular case. We shall see that the same formula holds also when ϱ has moderate singularities, more precisely, if
(a) Ω is a finite sum of rectangles,
(b) $\varrho \geqslant 0, \int_{\Omega} \varrho>0$ and ϱ is bounded except for a finite number of singular points y in Ω, where

$$
\begin{equation*}
\varrho(x)=O\left(|x-y|^{-2 \beta}\right) \tag{12}
\end{equation*}
$$

with $0<\beta<1$ when $n \geqslant 2$, and $0<\beta<\frac{1}{2}$ when $n=1$,
and
(c) ϱ is Jordan measurable.

For convenience, the norm $|x|$ is defined as $\max _{j}\left|x_{j}\right|$. We have made the first assumption, since we are interested only in the singularities of the function ϱ and not in the complications that arise from the boundary. For generalization to more general regions we refer to [1]. The third condition implies that $\varrho^{n / 2}$ is Riemann integrable.

Now, let Ω_{0} be such a sum of rectangular neighbourhoods of the y that $\Omega-\Omega_{0}$ is also a sum of rectangles. Then we have by Theorem 2 and Theorem 3

$$
\begin{aligned}
N\left(\lambda, \varrho, 0, F_{0}\left(\Omega-\Omega_{0}\right)\right) \leqslant N\left(\lambda, \varrho, 0, F_{0}(\Omega)\right) & \leqslant N\left(\lambda, \varrho, 0, F_{1}(\Omega)\right) \leqslant N\left(\lambda, \varrho, 0, F_{1}\left(\Omega_{0}\right)\right) \\
& +N\left(\lambda, \varrho, 0, F_{1}\left(\Omega-\Omega_{0}\right)\right)
\end{aligned}
$$

and hence

$$
M\left(\varrho, \Omega-\Omega_{0}\right) \leqslant \underline{N}\left(\varrho, 0, F_{0}(\Omega)\right) \leqslant \bar{N}\left(\varrho, 0, F_{1}(\Omega) \leqslant \bar{N}\left(\varrho, 0, F_{1}\left(\Omega_{0}\right)\right)+M\left(\varrho, \Omega-\Omega_{0}\right) .\right.
$$

Here we see that in order that

$$
N(\varrho, 0, F(\Omega))=M(\varrho, \Omega)
$$

with $F=F_{0}$ or F_{1}, it is sufficient to prove that

$$
\bar{N}\left(\varrho, 0, F_{1}\left(\Omega_{0}\right)\right) \rightarrow 0
$$

as the diameter of Ω_{0} tends to zero. Hence, if

$$
D_{t} \text { stands for the cube }|x|<t
$$

we have, putting

$$
\xi(x)=|x|^{-2 \beta}
$$

that it suffices to show that

$$
\begin{equation*}
\bar{N}\left(\xi, 0, F_{1}\left(D_{\tau}\right)\right) \rightarrow 0 \quad \text { when } r \rightarrow 0 . \tag{13}
\end{equation*}
$$

Consider

$$
N(\lambda)=N\left(\lambda, \xi, 0, F_{1}(D)\right)
$$

where $D=D_{r}$. When $\xi \geqslant 1$ in D and $\sigma \geqslant 0$ satisfies (5), we have according to Lemma 1

$$
N\left(\lambda, \xi, 0, F_{1}(D)\right) \leqslant N\left((1+v) \lambda+v, \xi, \sigma, F_{1}(D)\right)
$$

where

$$
v=C|\sigma|_{m / 2}
$$

with C depending on m and D and hence on r.
We put

$$
\sigma(x)=|x|^{-2(\beta+\varepsilon)}
$$

$$
\left(\beta<\beta+\varepsilon<1 \text { when } n \geqslant 2, \beta<\beta+\varepsilon<\frac{1}{2} \text { when } n=1\right)
$$

inside a cube D^{\prime} with its centre at the origin and

$$
\sigma(x)=0
$$

outside, and choose D^{\prime} so small that $v \leqslant 1$. Then

$$
N\left(\lambda, \xi, 0, F_{1}(D)\right) \leqslant N\left(\lambda^{\prime}, \xi, \sigma, F_{1}(D)\right)
$$

where $\lambda^{\prime}=2 \lambda+1$. Consider $D_{s} \subset D$. By Theorem 2 and Theorem 3

$$
\begin{equation*}
N\left(\lambda^{\prime}, \xi, \sigma, F_{1}(D)\right) \leqslant N\left(\lambda^{\prime}, \xi, 0, F_{1}\left(D-D_{s}\right)\right)+N\left(\lambda^{\prime}, \xi, \sigma, F_{1}\left(D_{s}\right)\right) \tag{14}
\end{equation*}
$$

Now determine $s=s(\lambda)$ so that $D_{s} \subset D^{\prime}$ and

$$
\begin{equation*}
\lambda^{\prime} \xi-\sigma<0 \text { in } D_{s} . \tag{15}
\end{equation*}
$$

This is possible, if e.g. $\quad \lambda^{\prime}=2 \lambda+1=s^{2}$,
and λ is sufficiently large.
Then, by Lemma 2, the second term on the right side of (14) vanishes, and we get

$$
N(\lambda) \leqslant N\left(\lambda^{\prime}, \xi, 0, F_{1}\left(D-D_{s}\right)\right) .
$$

Now it is easy to estimate the right side.
We choose p numbers such that

$$
r=r_{0}>r_{1}>\ldots r_{p}=s
$$

A more precise choise will be made later. Put $D_{j}=D_{r_{i}}$. Then by Theorem 2 and Theorem 3,

$$
\begin{equation*}
N(\lambda) \leqslant \sum_{j=0}^{p-1} N\left(\lambda^{\prime}, \xi, 0, F_{1}\left(D_{j}-D_{j+1}\right)\right) \tag{16}
\end{equation*}
$$

e. latsson, On the asymptotic distribution of eigenvalues

Now $D_{j}-D_{j+1}$ is obviously a sum of a fixed number of rectangular regions of diameter $\leqslant r_{j}$, having one side equal to $\left(r_{j}-r_{j+1}\right)$. Further, $\xi \leqslant r_{j+1}^{-2 \beta}$ in $D_{j}-D_{j+1}$. Hence, by (15), (16), Lemma 3 and Theorem 3, there is a constant C such that

$$
N(\lambda) \leqslant C \sum_{j=0}^{p-1}\left(1+r_{j}^{n-1} r_{j+1}^{-\beta(n-1)} \lambda^{(n-1) / 2}\right)\left(1+r_{j+1}^{-\beta}\left(r_{j}-r_{j+1}\right) \lambda^{\frac{1}{j}}\right)
$$

and hence

$$
\lambda^{-n / 2} N(\lambda) \leqslant C \sum_{j=0}^{p-1}\left((\lambda)^{-(n \cdot 1) / 2}+r_{j}^{n-1} r_{j+1}^{-\beta(n-1)}\right)\left((\lambda)^{-\frac{1}{1}}+r_{j+1}^{-\beta}\left(r_{j}-r_{j+1}\right)\right) .
$$

By virtue of (15) we may write

$$
\lambda^{n / 2} N(\lambda) \leqslant C \sum_{j=0}^{p-1}\left(s^{(n-1) \varepsilon}+r_{j}^{n-1} r_{j+1}^{-\beta(n-1)}\right)\left(s^{\varepsilon}+r_{j+1}^{-\beta}\left(r_{j}-r_{j+1}\right)\right)
$$

provided we increase the constant.
We now choose the numbers r_{j} so that

$$
\begin{equation*}
2 \leqslant r_{j} / r_{j+1} \leqslant 4 \text { for all } j . \tag{17}
\end{equation*}
$$

It is easy to see that this is always possible if $s<r / 2$. Then we have
and hence

$$
s=r_{p} \leqslant 2^{-p} r
$$

$$
\begin{equation*}
s^{8} p \rightarrow 0 \text { as } s \rightarrow 0 \tag{18}
\end{equation*}
$$

Further, (17) gives, with still another C,

$$
\lambda^{-n / 2} N(\lambda) \leqslant C \sum_{j=0}^{p-1}\left(s^{(n-1) e}+r_{j}^{(n-1)(1-\beta)}\right)\left(s^{\beta}+r_{j}^{-\beta}\left(r_{j}-r_{j+1}\right)\right)
$$

Since $1-\beta>0$, we obtain the following majorant for the right side

$$
C\left(s^{(n-1) \varepsilon}+r^{(n-1)(1-\beta)}\right)\left(s^{\varepsilon} p+\int_{0}^{r} t^{-\beta} d t\right)
$$

and hence by (18)

$$
\lim \sup \lambda^{-n / 2} N(\lambda) \leqslant C r^{(n-1)(1-\beta)} \int_{0}^{r} t^{-\beta} d t==O\left(r^{n(1-\beta)}\right)
$$

which tends to zero with r and the proof is finished.

Remark. Using the Weyl-Courant principle and the fact that $\boldsymbol{\xi}$ is homogeneous of order -2β, it is easy to see that

$$
\lambda_{f}\left(\xi, 0, F_{1}\left(D_{r}\right)\right)=r^{2(\beta-1)} \lambda_{j}\left(\xi, 0, F_{1}\left(D_{1}\right)\right) .
$$

This gives
572

$$
N\left(\lambda, \xi, 0, F_{1}\left(D_{r}\right)\right)=N\left(r^{2(1-\beta)} \lambda, \xi, 0, F_{1}\left(D_{1}\right)\right)
$$

Hence (13) is a consequence of

$$
\bar{N}\left(\xi, O, F_{1}\left(D_{1}\right)\right)<\infty,
$$

and this follows if we put $r=1$ in the proof above.

REEERENCES

1. Courant-Hilbert, Methoden der matematischen Physik, I.
2. Courant-Hilbert, Methoden der matematischen Physik, II.
3. Deny-Lions, Les espaces du type de Beppo Levi. Annales de l'Institut Fourier, 5.
