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On the asymptotic distribution of  eigenvalues 

By ERIC LARSSON 

Introduction 
Let ~ be the union of a finite number of open, bounded and connected subsets 

of R n, A the n-dimensional Laplace operator and Q a real-valued function defined 
in ~. Consider the eigenvalue problems 

A/+ ;re/= o 

with / or its normal derivative vanishing at the boundary. I t  has been shown 
by Courant ([1] p. 321) that, when ~ is a bounded Riemann integrabl e func- 
tion and ~ satisfies a regularity condition, the asymptotic distribution of the 
eigenvalues is given by 

iV(h) ~ (2 ~ ) - "  w. ~n/2|e./2, (1) 
J a  

where N(2) stands for the number of eigenvalues smaller than ~, and Wn is the 
volume of the n-dimensional unit sphere. The object of this note is to show 
that (1) holds also when ~ has a finite number of singular points y in s More 
precisely, we assume that  Q is O(Ix-y[  -2~) in a neighbourhood of y, where 
0 < fl < 1 when n ~> 2, and 0 < fl < 1/2 when n = 1. The method adopted can also 
be used to treat cases when ~ becomes singular on manifolds of dimension < n. 

Preliminaries 
We shall use the notations 

(/,a)O=foV, I]1  = <],])o, n/uo~ : ( fo  nn,]~/'l~ 

(Vl, Vg)o = foVl~, I v / l ~  = (vl ,  Vl)o, 
where 0 is an open subset of R n, the integrals are taken with ordinary Lebesgue 
measure and V/ is the gradient of /, taken in the weak (distributional) sense. 
Whenever it is convenient we shall leave out the index O. 
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Define F 1(0) = (1; I VII + I11 < ~ )  

and let Fo(O ) be the  closure in F I ( 0  ) of all cont inuously  differentiable funct ions 
wi th  compac t  suppor t  in O. The  elements  of F0(O ) vanish a t  the bounda ry  of 
0 a t  least  in a weak  sense. W i t h  the  scalar p roduc t  (/, g) + (V/, Vg) bo th  F x (0) 
and  F0(O ) are Hi lber t  spaces. 

An open set  0 is said to be  permi t ted ,  if i t  consists of a finite n u m b e r  of 
bounded  and connected subsets,  

the  form (/,g) is compac t  (i.e. complete ly  continuous) in .Fl(O ) (2) 

and Illq is major ized  by  a cons tan t  t imes lol l  +111, (a) 

where 0 < q < 2 n / (n  - 2) when n > 2, and 0 < q when n = 1, 2. These two proper t ies  
hold if the  bounda ry  of 0 is sufficiently smooth  (see [2] p. 471 and  [3] respec- 
t ively).  I n  part icular ,  t hey  hold when 0 is the sum of a finite n u m b e r  of rec- 
tangles.  

A funct ion ~ ~> 0 is said to be pe rmi t t ed  in 0 if 

and  

o.~ > 0 for every  componen t  0 '  of 0 (4) 

f o  Q'nl2 < ~ ,  (5) 

where m = n  when n > 2 ,  and  m is some n u m b e r  > 2 when n = 1 , 2 .  Le t  us p u t  

(Q/,g)=(Ql, g)O=foe/Y. 
Theorem 1. I1 ~ is a permitted tunction in a permitted set O, then 

the lorm (el, g) is compact in FI(O ) (6) 

and (~/,/)  + IV/12,~ I/[ s + IV/I s in FI(O),  (7) 

i.e. either side is majorized by a constant times the other ]or all / in FI(O ). 

Proo]. B y  HSlder ' s  inequal i ty ,  (3) and  (5), 

(,ol, t) I 11122,.,(., ~) ~ ~ I~lm~ ( l ip  + I v/l~), (s> 

where C is a constant .  Hence  (Q/,/) is bounded  in FI(O ). P u t  ~ ( x )  = r a i n  (4, Q(x)). 
I t  follows f rom (2) t ha t  (ok/,/) is compac t  in FI(O), and (8) applied to ~ - ~  
shows tha t  ((Q - Q~) /, /) tends  to zero as 2-+oo,  un i formly  on bounded  sets in  
FI(O ). F r o m  this (6) follows. 

At  the  same t ime  (8) proves  tha t ,  with a suitable constant  C, 
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(el, I) + I v / l  ~ < C(lll ~ + lwl=) in F~(O). 

To prove the reverse inequality, it suffices to show that  there is no sequence 
(/j)~ such that  

lvlJl2+llJl~=1 and lvlJl~+(elj, l j )+o.  

I t  is no restriction to assume that  the sequence is weakly convergent to an 
element / in F I ( 0  ). Now 

I/j[~-~{/{ 2 and (e/j, /j) -> (e/, /) 

since the forms are compact. In particular (el,/)=O, IV/j{-~0 and ]/1=1. We 
also have 

(v/j, Vl) + (lJ, I ) + l v l l  ~ + I / l  ~ 

since the sequence is weakly convergent. Here 

l(vl,, v l ) i  < lvl~l Ivl l  

tends to zero and (I,,I) tends to III ~. Consequently 

111=I and Ivll~+(el, l)=O. 

But by (4), the last relation implies that  / =  0, which is a contradiction. 
proof is complete. 

When e is permitted in a permitted set 0, we can use 

The 

((/, g)) = (v / ,  Vg) + (e/, g) 

as a scalar product in F(0)=.Fo(O ) or F I ( 0  ). Then, there is a compact, self- 
adjoint and linear transformation G defined in F(O) such that  

(el, g) = ((G/, g)) 
for all / and g in F(0).  

From a theorem of Hilbert we have that  

(a) F(O) has an orthonormal basis, consisting of eigenfunctions of G; 

(b) every eigenvalue # of G is positive and every/~ + 0 has finite multiplicity; 
the eigenvalues are enumerable and 0 is the only possible limit point. 

If G~ = # %  it follows that  

(e% g) = #(V~, Vg) +/~(e~0, g) 

and from this by Green's formula that  

A~ + te~  = 0 

with 2 = (1 -# ) / /~ ,  

when g6.F(O), 

(9) 

(1o) 
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where A is the Laplace operator, taken in the weak sense. Further,  if F(O)= 
FI(O ), it follows tha t  the normal derivative of ~ vanishes at the boundary and, 
if F ( O ) =  F0(O), tha t  ~ itself vanishes at the boundary. We shall in the following 
always interpret (9) in terms of the operator G, and t and # shall be connected 
by  (10). 

Our aim is to prove the asymptotic  formula (1), using the well-known Weyl -  
Courant principle. 

Weyl-Courant's principle 

Let  ~ be a permit ted set and e a permit ted function in ~,  and let (~j)t~0 
be a division of ~ into permit ted open subsets (their closures cover the closure 
of ~).  I t  is clear tha t  e is permit ted in ~ j  unless (4) fails to hold in ~j. Let  
(~j)]-0 be the sets for which this does not happen, and let the function a~> 0 
satisfy (5) in ~ .  Pu t  

H = ~ |  
i - 0  

where F(E2j)=F0(~j) o r  F1(~-2i)  , and introduce the notations 

$ 

(/, g) = ~ (/, g)~j, (vl, vg) = ~ (v/, vg)nj, 
j =0  i =0  

(el, g)= ~(el ,  g)~j, (~l ,g)= ~(~l,g)~,.  
j = 0  J = 0  

As a scalar product in the Hilbert  space H we use 

((1, g)) = (V/, Vg) + (e/, g) + (al, g). 

I t  is clear that  ( e / , / ) 4  ((/,/)) is compact in H, and hence 

(el, g) = ((G/, g)), (/, G], gEH) 

defines a compact, self-adjoint and linear transformation G from H to H such 
tha t  1 > G > 0. An eigeafunction V of G with the eigenvalue 

= ( 1  2[- 4 ) - 1  

satisfies A~0 + (t e - a) ~ = 0 

in every ~j,  and its normal derivative vanishes at  the boundary if $ ' (~ j )=  ~l(~j). 
Otherwise ~ 6 Fo(~j) vanishes itself at  the boundary. I f  f = 0 except in one E2j, 
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G/ has the same property. Hence G is the direct sum of its restrictions Gj to 
~j, 0 ~< j ~< 8. By the spectral theorem, F(~j)  has an orthonormal basis consisting 
of eigen/unetions of G~, 0 ~ ~ ~< s, and since these are also eigenfunctions of G and 
constitute an orthonormal basis of H, we have, provided every eigenvalue is counted 
with its multiplicity. 

Theorem 2. The eigenvalue8 o/ G are the union o/ the eigenvalue8 o/ the Gj. 

Now let (~,)~o be a complete orthonormal set of eigen/unctions of G and 
(/~i)F the corresponding eigenvalues, ordered so that  #t>~ #2~ . . . .  Then, if 

~uj = (1 + ).j)-l, 
we have )'t ~< 3.2 ~< . . . .  Let  

N(2)  = N(~,  ~: o, H) = ~ 1 
~.~<~l 

be the number of eigenvalues below 2. We have 

Theorem 3. N(,~, Q, (~, H) i8 a non-decreasing /unction o/ ~ and H and a non- 
increasing /unction o/ a. 

Proo/. I t  suffices to prove that  2j(~,a ,H) has the reverse properties. 
minimum-maximum principle gives 

~ j = ~ ( e ,  ~, H) =in/  sup (&, /)/((/, /)), 
L f e z  

The 

where L runs through all subspaees of H of eodimension < j. 

F~ = (1 + ~tj) -1, 

we get ~j = Xj(Q, a, H) = sup in/ (IWl 2 + (~/, /))/(el, /). 
L l ' e L  

Since 

Hence, it is clear that  ks is a non-increasing function of 0 and a non-decreasing 
function of o. Next,  let H '  D H be of the same type as H. Since cod L <  j in 
H, there is a subspace M ' ~ H '  of dimension < j  such that  ] E H  and [ •  
implies [ E L. Hence, 

~J(e, o, H) =sup  ~(M'), 
M" 

where x(M') = in /  (iV//2 + (a/, [))/(Q],/) when [ E H  and / • M'.  
Replacing H by H', we get a new function 

~' (M ' )<  ~(M'). 

Since sup ar (M') = 2)(q, a, H'), 
M" 
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E. LARSSON, On the asymptotic distribution of eigenvalues 

t j(  e, a, H) > li(e, a, H'). 
This completes the proof. 

We conclude this section by proving two lemmas, which will be used later. 

Lemma 1. I /  Q >~ 1 is a permitted /unction in a permitted set O, then 

N(2, e, 0, F x (0)) < N((1 + v) 2 + v, e, a, F 1 (0)), 

where v -- C la [m/2 

with C depending onl.7 on m and O. 

Proo]. By HSlder's inequality, (3) and (5), 

(~l, l) < c I olm,2(Ivl l  ~ + liP). 
Hence, since o ~> 1 in O, 

(I vt~l + (~1, ~))~(El, 1) < (1 + v) Iv/ IV(Q/, I) + v. 

Consequently, with L running through all subspaces of F 1 (0) of codimension < ?', 

t ,  (o, a, F1 (0)) = sup inf (I V/12 + (al,/))/(El, I) 
L f G L  

<sup  inf ((1 +v)IVllV(el ,  l)+v)=(1 +v)i,(e,o,~',(o))+v. 
L f G L  

Thus, ).j (e, 0, F 1 (0)) < 1 implies t j  (e, a, F1 (0)) < (1 + v) / + v and the lemma follows. 

Lemma 2. I /  Gq~=l~9 and # =  (1 +),) 1, then the support o/qp cannot be contained 
in the set where i e - a <  O. 

Proo/. Gq) =~q) gives (oq~, q~) =#((q~, ~0)), i.e. 

Iv~]  2 = ( ( l e - ( , ) %  ~), 

and hence we have the lemma. 

The asymptotic formula 

The case, where ~:) is a n-dimensional rectangle, e a constant and H = ~ ' o ( ~  ) 
or FI(~)), is classical. Since (V/, Vg) is invariant under translations and orthogo- 
nal transformations, we can assume that  

= (x ;0<xk<ak ,  1 ~<k~<n). 

Then the eigenfunctions are 

f l  sin 7~ltx~at 1, if H=Fo(~-~ ), 
t = 1  
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and I~I COS 2T,~jxfaj -1, if H= Fx(~2), 
i=1 

where / j = l i 2 ,  3 . . . .  in the first and 0, 1 ,2 ,3  . . . .  in the second case. Thus, the 
eigenvalues are 

7~ 2 0 -1 ~ (lJaj) ~ 
t=1 

which gives N(~, e, 0, H) = (2~)-~w~f (2e) ~/2 + 0(2(~-1)/2), 

where Wn is the volume of the n-dimensional unit sphere, (w I = 2). This estimate 
will be used later. We shall also need 

L e m m a 3 .  I /  a ~ a  and al~b when 14i,  then 

~V(~, ~, 0, F 1 (~~)) < 2 n-1 (1 + b n 1 (~)(n-1)/3)  (1 + a(~)�89 

Proo/. The number  of non-negative integral solutions of 

(lJaj)U < ~ -  2 Q~ 
J = l  

is majorized by  FI (1 +Tr-laj(q~) �89 
J-1 

so tha t  the lemma follows. 
Now, to simplify the notations, write 

N ( ~ , a , H ) = l i m  sup 2-n/2 N(~,~,a,H), ( ~ - ~ ) ,  

_N(~ ,a ,H)=l im inf 2-nl2 N(~,Q,a,H), (~->~) 

a n d  N(~, a, H ) = _ ~  =_N when the limits are equal. Also, pu t  

M(~, ~) = (2 ~)-n w, fa ~12. 
When ~ = (~2j)~_0 

is a sum of rectangles, and Q and ~ are constants in these rectangIes such tha t  

Q~<# and 0 < ~ > ~ ,  Theorem 2 and Theorem 3 give 

~'N(2, Q, o, F o (~j)) < N(2, ~, o, Fo (f~)) < hr(2, ~, 0, FI(~)) < ~/V(2, ~, 0, F1 (f~j)), 

where ~ '  denotes that  we only sum over such 7" tha t  ~ > 0 in ~j.  Hence, 

M(e, ~) <~(e,  0, Fo(~)) <N(e, 0, FI(~)) <M(~, ~). 
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I f  5 is bounded and Jordan  measurable, the first and the last term can be made 
arbitrari ly close by  choosing a fine subdivision of ~ ,  and hence 

N(5, 0, F) = M(5, ~), ( n )  

where F = Fo(~ ) or F 1(~). 

This is the asymptot ic  formula in this very regular case. We shall see that  
the same formula holds also when 5 has moderate singularities, more precisely, if 

(a) ~ is a finite sum of rectangles, 

(b) 5>~0, S n S > 0  and 5 is bounded except for a finite number  of singular 
points y in ~ ,  where 

5(x) = o ([ x - y I - ~ )  (12) 

with 0 < f l < l  when n~>2, and 0 < f l < � 8 9  when n = l ,  
and 

(c) 5 is Jordan measurable. 

For convenience, the norm Ix I is defined as maxjlxj[. We have made the 
first assumption, since we are interested only in the singularities of the function 
5 and not  in the complications tha t  arise from the boundary.  For  generaliza- 
tion to more general regions we refer to [1]. The third condition implies tha t  
5 hI2 is Riemann integrable. 

Now, let ~0 be such a sum of rectangular neighbourhoods of the y tha t  ~ -  ~o 
is also a sum of rectangles. Then we have by Theorem 2 and Theorem 3 

.IV(/~, 5, 0, ~0 (s - ~0)) ~- N(•, 5, 0, -~0 (s ~- N(~, 5, 0, F 1 (~)) < N(~, 5, 0, F 1 (~"~0)) 

+ N(~, 5, 0, F~ (s - ~o)) 
and hence 

M(5, ~ - ~o) < -N(5, 0, F o (s ~< 27(5, 0, F1 (s < 2?(5, 0, F 1 (~o)) + M(5, ~ - s 

Here  we see tha t  in order tha t  

N(q, O, $'(~)) = M(5, n) 

with F = F  o or F1, it is sufficient to prove that  

/V(5, 0, F1 (~0))-> 0 

as the diameter of ~0 tends to zero. Hence, if 

Dt stands for the cube I x] < t 
we have, putt ing 

~(x) = Ix 1-28, 
t ha t  it suffices to show that  
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Consider 

where D = Dr. 
Lemma 1 

where 

with C depending on m and D and hence on r. 

w e  put o(x) = I~1-~r '~, 

( f l < f l + e < l  when n>~2, f l < f l + e < � 8 9  when n = l )  

inside a cube D' with its centre at  the origin and 

a(x) = 0  

outside, and choose D' so small tha t  v ~< 1. Then 

N(X, ~, O, FI (D)) < N(X', ~:, a, F~ (D)), 

where 4 ' =  2)t + 1. Consider D~cD. By Theorem 2 and Theorem 3 

N(~', ~, a, F I(D)) < N(X', ~, 0, F 1 (D - D,)) + N(~t', ~, a, F~ (D,)). 

Now determine s=s(~) so that  DscD' and 

This is possible, if e.g. 

and ~ is sufficiently large. 

AIRKIV FfR MATEMATIK. Bd 6 nr 29 

.~(~, O, FI(Dr))~O when r-*0.  (13) 

N(2) = N(~, ~, 0, F 1 (D)), 

When ~>~ 1 in D and a~> 0 satisfies (5), we have according to 

N(2, ~, 0, F1 (D)) ~< N((1 + v) 2 + v, ~, a, F1 (D)), 

v = v I~lm~ 

2 ' ~ - a < 0  in Ds. 

~t' = 2) ,+  1 = s  e' 

(14) 

(15) 

A more precise choise will be made later. Put  Dj=Drt. 
and Theorem 3, 

p - 1  
N().) ~< ~ N().', ~, O, FI(D , - D,+I)). 

J - 0  

Then by  Theorem 2 

( 1 6 )  
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r=ro>rl> ...rr=s. 

Now it  is easy to estimate the right side. 
We choose p numbers such that  

Then, by Lemma 2, the second term on the right side of (14) vanishes, and 
we get 

N(2) ~< N(2', ~, 0, E 1 (D - Ds)). 



E. I~RSSON, On the asymptotic distribution of eigenvalues 

Now Ds-Dt~  1 is obviously a sum of a fixed number  of rectangular regions of 
diameter  < rj, having one side equal to (r~-rl+l). Further ,  ~<rj-+2[ in D~-Dt+I. 
Hence, by  (15), (16), Lemma 3 and Theorem 3, there is a constant C such tha t  

1o--1 
N() , )  < C ~. (1 -~- r~ -1 rt~.B1 (n -1) ).(n-1)/2) (1 + r/-4fll ( r j -  r j+ l )  ) . ] )  

t -o  
and hence 

r - I  
).-n/2AV()~) < C ~. ((~1,) - ( n  1)I~ ~- rj ~ -1 rt-+~(n-1)) (() , )-  ~ _{_ r j &  (r j  --  r ]+ l )  ), 

J=o 

By virtue of (15) we may  write 

p - I  

"~N(~) < C 5 (s <"- ~)" + r?-I  r ;+~-  1>) (s~ + r;+', ( r j -  rt § 
t - 0  

provided we increase the constant. 
We now choose the numbers r t so that  

2<.rJrt+l<4 for all ~. 

I t  is easy to see tha t  this is always possible if s < r /2.  Then we have 

(17) 

s=rp<~2-~r 

and hence s~p~O as s-~0. (18) 

Further,  (17) gives, with still another  C, 

p - I  

~-~JZN(A) < O N (s (~-1)~ + r~ ~-l)u-a>) (g + rj a (rj - rj+i)). 
i = 0  

Since 1 - 8 >  0, we obtain the following majorant  for the right side 

and hence by  (18) 

lira sup ~.-n/ZN(~.) ~< Cr (~-1~1-~ t-~ dt = O(rn(1-~)), 

which tends to zero with r and the proof is finished. 

Remark. Using the Weyl-Courant  principle and the fact  tha t  $ is homogeneous 
of order - 2 f l ,  it is easy to see that  

This gives 
2j(~, O, Fl(Dr)) = r~-l )  ]tj(~, O, FI (D1)). 
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N(2,  ~, 0, F 1(Dr)) = ~ ( r  2(1-~) ~, ~, 0, F 1 (D1)). 

H e n c e  (13) is a consequence  of 

~ ( ~ ,  0 ,  F 1(D1) ) < ~ ,  

a n d  th i s  fol lows if we p u t  r = l  i n  t h e  proof  above .  
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