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B y  R. M. DUDLEY 

1. Introduction 

This note will remove some unnecessary regularity assumptions from my first 
paper on the subject [1]. There, beyond the conditions of spatial and temporal 
homogeneity, Lorentz-invariance, the Markov property, and the requirement that  
speeds be less than that  of light, there were additional assumptions: continuity in 
probability ((E), p. 248) and existence of derivatives with probabilits; One at each 
time (first half of (C), p. 248). Both these assumptions will be shown to follow from 
the others. This makes easier the proof of the converse part  of the main theorem 
of [1], Theorem 8.2, as will be indicated below. 

I t  was assumed in [1] that  speeds remain less than (resp. equal to) 1, taken as 
the speed of light, if the initial speed is less than (resp. equal  to) 1. This follows 
the physical distinction between particles of positive and zero rest mass. In section 
3 we show that  this assumption is unnecessary for initial speed 1, but  that  there 
are processes with initial speeds less than 1, satisfying all our other assumptions, 
which jump to speed 1 at  later times. 

2. Removing regularity assumptions 

We shall use freely the notation and terminology of [1, sections 2 and 4]. Also, 
for any function / from the real line to three-space X let 

f(t) = <t(t), t> e M. 

As in [1], we consider families of measures {P~} where for each x in X and v in 
V, P~ is a starting probability at x on (14, I, X,  B(X)). We retain assumptions (A) 
(spatial homogeneity), (B) (initial velocity v), and (D) (Lorentz-invariance) of [1, 
section 4], and a weakened form of the Markov property (C) as follows. 

Each f in ~4 is differentiable almost everywhere (Lebesgue) and/ ' ( t )  fi V when- 
ever it is defined. By [1, Lemma 4.1] 

{</, t> :/'(t) exists} 

is product measurable for B~ • B(R+). Let 

T(v) = {t > 0 : P~(f(t) exists) = 1}. 
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(Clearly T(v)  is independent  of x.) We know tha t  the complement  of T(v)  has meas- 
ure 0 in R + for each v in V. Now rather  than  assuming T(v)  = (0, ~ )  we simply 
assume the s ta t ionary  Markov proper ty  wherever it makes sense: 

(C') For  any  v in V, x in X,  t in T(v) ,  and A in B t ( A ) ,  P ~ ( / 6 A  ] B~ _ ~r'(t)laI(t) tmA~, 
almost  everywhere for P~. 

Theorem 1. Let  {P~} on .,4 sa t i s / y  condit ions (A),  (B), (C'), and (D). Then  they 
also sa t i s / y  (C) and  (E) [1, section 4], thus  de/ ine a process given by an in / in i t e l y  
divisible radial  probabi l i ty  on Lobachevsky  space [1, Theorem 8.2], and conversely.  

Proo/ .  We first establish cont inui ty  in probabil i ty at  0 through T(v )  (a weakened 
form of (E)). We put  a natural  Lorentz- invar iant  metric on V. Let  U be the trans- 
format ion 

U(v) = (v ,  1 ) / ( 1  - Iv  12) 1/2. 

Then U transforms V one-to-one onto the hyperbolic space ~ (three-velocity to 
four-velocity).  On ~ ,  there is a natural  Lorentz- invar iant  Riemannian metric ~ [1, 
section 7]. Let  e be the metric on V defined by 

e(v, w) = e(U(v), U (w)). 

For  any  L in ~,  Vr. = U - 1 L U .  Hence e is VL-invariant. For  any  v in V, let 

L , ( x ,  t )  = ( x + vt, t + v : x )  / (1 - [ v [2) 1/~. 

Then L~ E s and if L = L~, VL(0)= v. 

Lemma 1. For  a n y  v and w in  V, (a) sinh e(v, w) = Iv - w [/((1 - v. w) 2 - Iv - w [2)1/~. 
(b) e(v, w) >1 I v -  w I. 

Proof .  Let  L = L  ~. Then 

e(v, w) = e(O, V L(W) ) = e(O, (w -- v ) / ( 1 -  v. w)) 

= e(U(0), ((w - v)/(1 - v- w), 1)/(1 - Iv - w [2/(1 - v. w)2) t/2) 

and (a) follows [1, section 7]. 
To prove (b), note  t ha t  v.  w/> - [ v -  w ]2/4. Let t ing x = I v -  w ], y = e(v, w),  this 

yields 

sinh y >~ x/((1 + x~14) 2 - x2) 1/9" >1 xl(1 - x214) = 4x/(4 - x2), 

y >/arg sinh (4x/(4 - x2)) -- In (4x/(4 - x ~) § (1 § 16x2/(4 - x2)2) l/2) 

= In ((4x + (x 4 § 8x 2 § 16)1J2)/(4 - x2)) =: In ((2 § x)/(2 T x)) =/(x) .  

N o w / ( 0 )  = 0 and / ' ( x ) />  1 for 0 ~< x < 2, so / (x)  ~> x and y >1 x, q.e.d. 
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Lemma 2. For any e > 0 there is a (~ > 0 such that/or all v in V, 0 ~ t <. (~ and t in 
T(v ) ,  

P~ ( / :  e(/'(t) ,  v) > ~) < ~. 

Proo/. We m a y  assume e ~ 1. Take a > 0 such tha t  [ v [ ~< 5~ implies e(0, v) < e. Thus  
a < 1/5. Since 

po (/'(0+) = 0) = 1, 
there  is a fl > 0 such tha t  

po (t l( t)  I > at  fo r  s o m e  t ~< 2fl) < el2. 

(The set of all / in A satisfying the given condition is in B~ since it  suffices to 
consider rat ional  t.) Le t  

K =  { (x , t )  :lxl <~at<2afl}, D={(x ,2 f l )  eK} .  

The idea of the rest  of the proof is t ha t  a large der ivat ive for small t would cause 
depar ture  from the cone K too soon. 

We have fo r  any  w in V 

1 - e/2 ~< P~0 (/: [(t) first leaves K through D) 

< P~  (g:~(s) first leaves L~(K) through Lw(D)) 

< P ~  (g :~(s) e L~(K) for all s < fl), 

since if L = Lw and (x, t)  6 D, L(~) (x,  t ) /> ft. 
Now we let (~ = fl/2. Given v in V, let L = Lv, t 6. T(v), and t ~< ~. Then  

P~ (e(g'(0, v)/> ~) = ~ (ei/'(~), 0) > e), 

where a = a(l, t) -- (L-1)(~)(L* t)^(0, i.e. 
Lf(a) = (L*/)^(t), a + v - / (a )  = t(1 - [ v 12) 1/~. Thus if [(a) e K,  a ~< 2t ~< ft. N o w  

1 - e/2 ~< S;(t) e z(K)P~i~ ) (h : (h(s), s + t) first leaves L(K) through L(D)) dP~ (g) 

= S&t) ~ LcK) Pg'(t)(h:s + ~(t) first leaves L(K) through L(D)) dP~ (g) 

= ~h-)~ K Pro'(")(i : ](r) + [(a) first leaves K through D) dP ~ (/) 

~< Sho,~ K Pro'(")(i : ](fl) § [(0) C K) dP~o (1). 

Now let w = w(/) =/'(a). If  [(a) E K,  I wl > 5~, and i(fl) E Lw(K), then  l i(fl)- wfl[ < 

a(fl  - w . i(fi) ) < 2~fi, 

I j(fl) I > 3 ~ ,  I J(fl) §  > 3 ~  - ~ -- 2 ~ ,  ~(~) + 1(o) r K. 

Thus t(o) e g ~nd I wl > 5~ imply 

P ~  (i : 1(fl) § ](a) e K) ~< P~  (i: ~(fl) ~ Lw(K)) <~ e/2 <~ 1/2. 

Thus  po (e(/'(a), 0) > e) ~< po (I / ' (a)  I > ha) ~< e, q.e.d. 
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Next,  let v E V and let W be a countable dense subset of T(v)U {0} with 0 E W. 
Given e > 0 and 8 > 0 let 

a(e, 8) = sup [P~'(e(l'(t), w) >1 e : w e V, t e T(w), 0 ~< t ~< 8]. 

For  each positive integer k and a/> 0 let 
A (k, a, e, 8) = {/E A : for some st in W with a <<. 81 < 8 2 < . . .  < 82k <~ a + 8, e(/'(s2i-1), 

/'(s~t)) >/4e for all i = 1 . . . . .  k}. 

Lemma 3. For any e > 0, 8 > O, positive integer k, a >~ 0, x E X, and v E V, P~ (A (k, a, 
~, 8)) < [2~(~, 8)] ~. 

The statement  and proof of Lemma 3 are essentially those of Lemma 6.4 of Dynkin 
[2]. We make only the following remarks: application of the strong Markov property 
is permissible since W is countable, as mentioned at  the end of section 5.8 of [2]. 
We need only the Markov property at each t in W. We cannot formally apply the 
s ta tement  of [2, Lemma 6.4] since we have the Markov property only on a set of 
times T(v), depending on the initial v. Our assumptions imply tha t  for any 8 ~< t in 
T(v), t -  8 E T(/'(s)) for P~-almost all / in :4. 

Lemma 2 implies tha t  for every e > 0, lira a(e, 8) = 0. Thus for any M > 0, we can 
~ 0  

take k large enough so tha t  a(e, M/k) < 1/2 and obtain from Lemma 3 

lim P~ (A(n, O, ~, M)) < lim kP~ (A([(n - k)/k], O, e, M/k)) = O, 
n --~ oo n -.~ oo 

where [x] is the largest integer ~< x. 
Let  G = U ~=1 n n~162 0, I/m, m). Then P~ (G) = 0. For / ~ G, the limits 

w(t) = l i m  /'(s),t>lO, and 
8J, t ,  s E W  

w(t-) = l i m  /'(s), t > 0  
s ~ t ,  s e W  

always exist, w is continuous from the right, and for all t > 0 

lim w(8) = w(t-). 
s i t  

For each fixed t in T(v), w(8)-->/'(t) in P~-probability as 8 ~ t through W, by the 
Markov property at  t and Lemma 2. Thus 

P~ (w(t) = / ' ( t ) )  = 1. 

Now since the maps </, t > -+/'(t) and </, t > ~ w(t) are both measurable [1, Lemmas 
4.1 and 2.1], we have P~(/'(t) =w(t) for (Lebesgue) almost all t~>0) = 1. Since / is 
Lipschitzian, / ' =  w almost everywhere implies tha t  / is the indefinite integral of w. 
Then by  the left and right limit properties of w, 

P~(l'(t+)=w(t) for allt>~O) 

=P~( / ' ( t - )  = w ( t -  ) for a l l t > O ) -  1. 

578 



ARKIV F6R MATEMATIK Bd 6 nr 30 

If t ~ T(v), we take s n f t and tn ~ t, sn, t~ E T(v). For any e > 0, limn~oo P~ (e(/'(s~), 
/'(tn)) > e) = 0, by Lemma 2 and the Markov property at Sn. Thus 

p~(l'(t+) :k l ' ( t - ) )  = O, 

and in fact T(v) = (0, cc ), i.e. assumption (C) holds. We have 

PV(lim I/(t)-x[ =o)= 1 
t,tO 

since the functions in A are Lipschitzian. Thus assumption (E) holds by Lemmas 
l(b) and 2. We have now obtained the full assumptions (A) through (E) of [1], and 
can draw all the inferences of [1, sections 4-8]. (In particular, we have by [1, Lemma 
5.3] that  for any t >/0 and A in B ( X  • V), 

(x ,  v} -~ P~(( / ( t ) , / ' ( t ) }  E A),  

is B ( X  • V)-measurable. Such a condition is made part of the definition of Markov 
process by Dynkin [2], but  not by all authors in the field. I t  is not needed for the 
earlier results in this paper (even for Lemma 3), since the weaker measurability 
implied by (C') suffices.) 

To finish the proof of Theorem 1 we now sketch a proof of the converse part  of 
Theorem 8.2 of [1], which was not proved there. Let  P1 be an infinitely divisible, 
radial probability measure on the Lobachevsky space ~ .  Then P1 can be imbedded 
in a convolution semigroup {P~,T~>0} of such measures, as is obvious from the 
"Ldvy-Khinchin"  representation formula [1, section 8]. Such a semigroup is always 
weak-star continuous, hence defines a strong Markov process {x~, ~>0}  having 
sample functions continuous from the right with left limits everywhere (see the 
remarks before [1, Lemma 8.1]). We take an "indefinite integral" of the process, 
obtaining paths in M. Then we can invert the arguments of [1, section 6], making 
a "random change of t ime" from proper time v to co-ordinate time t. We thus 
obtain a process which satisfies (A), (B), (C'), and (D), as desired. 

3. Mixing speeds less than 1 and equal to 1 

Let ~ be the set of functions from R+ to X satisfying 

for ans ,  t> o 

Each / in ~ is differentiable almost everywhere and II'(t) l < 1 whenever/ ' ( t)  is de- 
fined. 

Theorem 2. Suppose {P~} /or x in X and v in S 2 (i.e. v E X ,  Ivl =1)  is a/amily 
o~ probability measures on ~ satis/ying assumptions (A), (B), and (D). Then each 
P~ is concentrated in the one /unc t ion / ( t )  = x + vt, t >10. 

Proo/. The proof of [1, Theorem 11.1] is sufficient since it only uses the fact that  
initial speeds are 1, not that  speeds remain equal to 1. 

Next, we describe informally a class of invariant Markov processes for which 
transit ions/rom speeds less than 1 to speeds equal to 1 do occur. 

579 



R. M. D U D L E Y ,  A n o t e  o n  Lorentz-invariant Markov processes 

Suppose {P~} satisfy conditions (A), (B), (C'), and (D) on A, as in section 2. We 
construct  a new process on ~ as follows. Le t  T o be a random variable with a distri- 
but ion given, for some k > 0, by  

P ( T o > C ) = e  -kc for all c>~0. 

We assume T 0 is independent  of the P~. Now let a particle move according to P~ 
until proper  t ime v o has passed, say at t ime t. F rom then on, let it move in a 
s traight  line with velocity w, where w is uniformly distr ibuted over the sphere 
{w: I wl = 1} in a co-ordinate sys tem where the particle has zero veloci ty at  t ime 
t -  (and w is independent  of T o and other  events before t ime t). This defines a set 
{R~} of probabi l i ty  measures on y (using the usual deterministic ones for Iv I =  1) 
which have all the properties (A) through (E) of the P~ without  being concent ra ted  
in A for [ v ] < l .  

4. Diffusion processes 

Here we make some additions and corrections to [1, section 10]. First,  the de- 
finition of diffusion semigroup given there is too strong. I t  should read: for every  
6 > 0 ,  

lim Pt(@ ~ s)/t  = O. 
t 4 0  

The phase space M • ~ is acted on transit ively by  the Poincard group (inhomo- 
geneous Lorentz  group) s I thank  C. C. Moore for the following construct ion of  

~:-invariant Riemannian  metrics. Take a tangent  space V to M • ~ at  one point~ 
say (0,p). Then V is a seven-dimensional real vector  space R a • R • R a. I t  suffices 
to find the positive definite quadrat ic  froms B on V such tha t  

B(< x, t, y>) = B ( ( A ( x ) ,  t, A(y)>) 

for all or thogonal  t ransformations A of R a with determinant  1 (the lat ter  restr ict ion 
is also needed in the first paragraph of [1, section 7]). B satisfies the above condi- 
t ions if and only if 

where 

B(<x, t, y) )  = a 1 t 2 + a 2 [ x [~ + 2a s x .  y + a a [ y [2, 

a a > O, a s > O, a~ < a~a 4. 

The definition of diffusion process depends only superficially on the metric. F o r  
a homogeneous Riemannian  manifold, as here, it clearly depends only on the orig- 
inal topology of the manifold. On a general differentiable manifold, Dynkin  [3] 
defines a diffusion process as one whose generator  is a second-order differential 
operator.  

I n  any  case, the diffusion processes in M • ~ /wh ich  are also Lorentz- invar iant  
Markov processes as in Theorem 1 above are those defined by  "Brownian  motions '~ 
in ~/ [1, section 10]. 
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5. Note  

I n  [1, section 5], use was made of the relations between weak-star  convergence 
of probabi l i ty  measures and  convergence in  the dual  space of the bounded  Lip- 
schitzian functions.  Details  of these relations are given in  a paper  of mine,  "Con- 
vergence of Baire measures",  to appear  in  Studia Mathematica. 

University o] Cali/ornia, Berkeley, Cal. U.S.A. 
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