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Polar sets and removable singularities of partial 
differential equations 

B y  WALTER LITTMAN 

O. I n t r o d u c t i o n  

The question of removable singularities for partial differential equations is essen- 
tially the following: If  u is a solution of such an equation in a domain V c R = with 
a closet set S (of measure zero) removed; and if u is assumed to belong to a class 
limiting its size near S (for example u CLp), what conditions can be put  on the size 
of S to insure tha t  u (after being redefined in S) is a solution in all of V ? For example, 
every bounded harmonic function in a punctured disk has a removable singularity 
at  the "puncture".  Here the class limiting the size of u may  be taken to be the class 
of bounded functions; and S may  be taken to be a single point. 

L. Carleson [4] has shown that  if u is harmonic in V - S  (V a bounded n-dimen- 
sional domain, S a compact set ~ V) and S has finite n -  2p' dimensional t tausdorff  
measure ( l ip+l ip '  =1) then the singularities of u on S are removable provided 
u ELv. Serrin [10] has extended this result to second order linear elliptic equations 
with tt61der continuous coefficients, and has given a different sufficient condition 
for second order (linear or quasilinear) elliptic equations [11]. 

Our aim is to treat  linear equations of arbi trary order. (Some results of this nature 
are contained in [3]). We begin by  observing (in section 1) that  the question of 
removable singularities of solutions in Lp is closely tied to the notion of " m - p  
polar" sets in R ~ (A compact set S is m - p  polar if every element in H_m.v,(R n) 
with support in S vanishes), a notion apparent ly first introduced by  H5rmander  
and Lions [6]. The relationships between the two concepts is expressed in theorems 
1 and 2. These theorems are proved in sections 1 and 2 where they are applied to 
second order equations. 

In  section 3 generalizations of the Hm, v spaces called "A spaces" are introduced, 
and, using these, sharper results are obtained for equations which are assumed to 
be of a more special form. Section 4 deals with geometric sufficient conditions for 
m - p  polarity of sets, which seems to be of interest independently of the question 
of removable singularities (see for example [5]); while in section 5 similar results 
are obtained for the A-spaces introduced earlier. Finally, as an illustration, the 
latter results are applied to give geometric conditions for removabili ty of singularities 
of the heat equation. 

The author would like to take this opportunity to thank Professors Hans Wein- 
berger and Richard Juberg for a number  of helpful discussions. 
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l .  Basic notions 

Throughou t  this  paper ,  R ~ will denote  Euc l idean  n-space,  S a compac t  subset  
of R ~, U an  open subset  of R ~ conta in ing  S, and  V a bounde d  domain  in R ~ wi th  
C ~~ bounda ry ,  conta in ing  S. 

I f  B is a B a n a c h  space,  i ts  dua l  space will be deno ted  b y  B' .  
B y  a solution to  a pa r t i a l  d i f ferent ia l  equa t ion  we shall  a lways  mean  a weak  

solution.  
W e  use the  s t a n d a r d  defini t ions of the  spaces C~(U)~O(U) ,  H,n.p(U)--Hm, Lp(U), 

H~.~(U), as con ta ined  for  example  in [1]. 
Le t  B be a Banach  space such t h a t  C~(U)  is conta ined  dense ly  in B. W e  assume 

t h a t  the  topo logy  of Cff(U) is s t ronger  t h a n  t h a t  of B. 
Definition. S is said to be polar with respect to B i/ the only element in B' having 

support in S is the zero element. A set polar with respect to Hm.~(R ~) is called m - p  
polar. 

Le t  L be a l inear  pa r t i a l  d i f ferent ia l  ope ra to r  which we wri te  in the  form 

L u =  ~ D~(a~(x)u), 
Ial <~ m 

where, D ~ - ~ 
t = 1  

and  where the  a~ are bounded  measurab le  funct ions  def ined on V. 
Suppose the/oUowing holds: I] u is a (weak) solution to Lu  = 0 in V -  S and u ELv(V) 

then Lu=O in V. Then we say that S is removable with respect to (L, V, Lv). 
B y  a weak  solut ion to  Lu = T in an  open set ~ ,  where T is a d i s t r ibu t ion ,  we mean  

a d i s t r ibu t ion  u such t h a t  (L*r u ) = ( r  T> for all  r in C~(~ ) .  As s t a t ed  earl ier  b y  
" so lu t ion"  we shall  a lways  mean  "weak  solut ion" .  

W e  shall  assume 1 < p <  ~ ,  except  in the  r ema inde r  of this  section, (where p 
m a y  equal  1) or as specified. Also th roughou t  l ip + lip'  = 1. 

The following close re la t ionship  be tween the  two concepts  in t roduced  is an  a lmos t  
immed ia t e  consequence of the  definit ions:  

Theorem 1. A su//icient condition /or S to be removable with respect to [L, V, Lv] 
is that S be m - p '  polar. 

W e  shall  need a few lemmas.  The following l emma is essent ia l ly  s t a t ed  b y  Grusin [5]. 

L e m m a  1. / / m u l t i p l i c a t i o n  by an arbitrary but/ixed r C C~ ( U) is continuous in B, 
then S is polar with respect to B i/ and only i/there exists a sequence r CC~r such 
that each r = 1 in some neighborhood o/ S (possibly depending on r) and [r I->0. 

Proo/. Suppose there  exists  such a sequence ~ and  T E B '  has  suppor t  in S. W e  
wish to show T = 0 .  I t  suffices to show (~,  T > - 0  for all  yJEC~(U) since C~r is 
dense in B. Now 

[VCv [B ~'~ cons tan t  (V) [r -> 0 

and  since ~p-y~. r vanishes  near  S and  T has  suppor t  on S, 

(yJ-yJr T~ = 0 all  ~; 



ARKIV FOR MATEMATIK. Bd 7 nr 1 

But  %0-%0r in B, hence 

<%0, T> = liE <%0 -- %0r T> = 0. 

Conversely, suppose S is polar. Let  B~ denote the set of elements vanishing near  
S. We claim tha t  B s is dense in B. If  this were not  the case, there would exist a 
non zero T 6 B '  such tha t  <Bss, T } = 0  (bar=closure)  and T would have to vanish. 
Now let %0 6 C~ ~ (U) such tha t  %0 = 1 near S. Then there exists a sequence % 6 C~(U) 
and  vanishing near S such tha t  %-+%0 in B. The sequence %0-%0~r ( = 1  near S) 
has compact  support  and [ r [B--~ 0. 

Lemma 2. S is polar with respect to Hm.,(R~)~ft,~.~(R n) i / a n d  only i~ it is polar 
with respect to Hm.~(U). 

Proo/. The "if" par t  is immediate  f rom lemma 1. Suppose S is m - p  polar. Then 
if r is the sequence guaranteed  b y  lemma 1, r162 is the sequence needed to conclude 
tha t  S is polar with respect to Hm.p(U), where r ~ and equals 1 near S. 

2. m- -p  polarity and removable singularities 

We first prove theorem h Suppose u6LP(V) then Lu6H_m.~(V) and has suppor~ 
in S. Now the dual of H_m.~(V) is Hm.~,(V ) and since, by  lemma 2, S is polar with 
respect to flm, p,(V), Lu  must  be the zero element in H_,~.p(V). Thus u is a weak 
solution to Lu = O. 

Next  we wish to give a part ial  converse to Theorem 1. Let  L* denote the formal 
adjoint  of L. We say tha t  the wealc unique continuation property holds for L*u = 0  
in the open set W if every solution to L*u = 0 having compact  support  in W vanishes 
identically in W. 

Theorem 2. Let W be a bounded domain with C ~ boundary containing V, but having 
no common boundary points with it. Suppose that L* is strongly elliptic and its coe//i- 
cients are HSlder continuous in W, that L*= 0 has the wealc unique continuation pro- 
perry 1 in W. Then the condition o/theorem 1 is also necessary. 

Proo/. First, suppose tha t  the Dirichlet problem for the equat ion L*u = 0  in V 
has a unique solution. Then L* can be extended (see, for example [1]) as an isomor- 
phism s 

s H,~,v,(V) N/t(m/2).~,(V)-+Lp,(V) (onto). 

The Banach  space adjoint  s of C1 then is an isomorphism 

s Lv(V)-*(Hm.v,(V) • [I(m/2).p,)' (onto). 

I n  particular,  the equat ion s u = T can be solved for u in L,(V) provided T 6 ~r_m.v(V). 
For  in tha t  case T is a bounded linear functional on Hm.v,(V ), hence it is also (by 
restriction) a bounded linear functional  on Hm. p,(V) A H(m/2).p,, and thus s = T can 
be solved with u tiLT(V). I t  is easily checked tha t  this solution is a weak solution of 
Z u =  T. Now suppose S is not  polar. Then there exists a non zero T in H_m.p(V ) 
with support  in S. Bu t  this, in turn,  implies tha t  Tfi~I_m.p(V ) and hence we can 
solve L u =  T with u in L~(V). Thus we have a u in Lp(V) which satisfies Lu=O in 

* This last assumption is not essential. 
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V - S  but  not  in V. I n  the above argument ,  V could have been replaced by  W 
equally well. 

Nex t  suppose tha t  the Dirichlet problem for L* in W has a non-trivial  null space. 
This mus t  be finite dimensional. Suppose it is generated by  eigenfunctions v~, v2, ... vk, 
which are assumed l inear ly ' independent  in W. B y  the weak unique cont inuat ion 
p roper ty  it follows tha t  they  mus t  also be linearly independent  in W - V. Let  v~ = vj 
in W -  V, 0 otherwise. We m a y  assume tha t  the vj are or thonormal  with respect to  
L2. Now the equat ion 1 2 2 u = T - ~ z j v ;  can be solved for u in Lp(W) provided 
0 = ( T - ~ j .  v/, v,) for i = 1 ,  ... k, i.e., if at = ( T ,  v~). Wi th  this choice of the aj solve 
for u. Then in V Lu  = T and we argue as before. 

Remark 1. Applications to second order linear equations. 
For  second order elliptic equat ions of the forms 

a) ~(a,iU)xi~.j+~(a~u)x~+au = O, 

b) (b~jux~)~j+b~ux~+bu =0, 

c) ~c~ju~j+ciu~+cu = 0  

let us assume tha t  the a 's  are bounded measurable; the b~j and b~ have bounded 
measurable derivatives (for example if they  are Lipschitz continuous) and  b is 
bounded; or tha t  the c~j have bounded measurable second derivatives, the c~ bounded 
measurable first derivatives and the c~ are bounded. In  tha t  case it follows from 
what  has been said tha t  sets are removable for a, b, c provided they  are for the 
Laplacian. Now L. Carleson [4] has shown tha t  a sufficient condition for S to be 
removable with uEL~ is tha t  S has finite n - 2 p '  Hausdorff  measure. Thus the 
same conclusion holds for the above equations. Let  us note  tha t  for case b) our 
results do no t  imply Serrin's, nor  do his imply ours. For  the case c), however, Serrin's 
results are stronger than  ours. 

Remark 2. Suppose tha t  in theorem 1 instead of being told tha t  the funct ion u 
is in Lp(V) we are told tha t  uEHk.~(V ). Let  us assume for simplicity tha t  the coeffi- 
cients are sufficiently smooth. Then Lu EH k m ~ with support  in S. Thus S is remov- 
able provided it is polar with respect to Hm-k. p, Here k m a y  be positive or negative. 
The converse holds under  the same addit ional assumptions as occur in theorem 2. 

3. A-polarity 

We would like to improve the results so far obtained for equations which are no t  
elliptic. To tha t  end we first consider the following general situation. Suppose A 
is the closure of C~ (V) in a certain norm [ [A. Suppose fur thermore tha t  for u E C~ (V) 
the following a priori inequalities are valid: 

Ci[U]A ~ [i*u[p,~C2[u[A. (3.1) 

Then L* has a bounded extension 121 

Ct: A ~L~,(V) 

with closed range. Hence the Banach  Space adjoint  operator  122 

4 
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E2: L~(V)-~A' 

is also bounded and has a closed range. Since IZ1 is one to one, Cz is onto. This implies 
that  there exists a weak solution in Lp(V) to Lu= T where TEA' .  

From now on we are going to specialize the space A. Suppose 

' L*--  ~ a~(x)D ~, (3.2) 
a e J  

where J is some finite collection of n-tuples of non-negative integers a = (a 1 .... , an). 
We suppose that the order of the differential operator (3.2) is m. We may then choose 
for [ [A the norm 

7, I D~u [L~,--I u [A. (3.3) 
] 

Theorem 3. Let A be the closure o/ C~(V) with respect to the norm (3.3). Then S is 
removable with respect to [L, V, L~] i / S  is polar with respect to A. I / i n  addition, the 
inequality . . . . . .  

IL*u[~,>~Clu]A (3.4) 

holds/or all u E Cgr V) then the converse holds. 
Proo/. Using the notation already introduced, E1 is a bounded map from A-->L~(V). 

Hence I~ is bounded from Lp(V)~A' .  Now suppose uELp(V) and L u = 0  in V - S ;  
then F~2u=TEA( and has support in S. But if S is polar with respect to A this 
implies that T must vanish and hence IZ~u=0 i.e. Lu=O in V (weakly). 

To prove the converse, we note that  under the additional assumptions made, 
(3.1) holds and hence the map E2: L~(V)-+A' is onto. Thus if S is not polar we can 
find a TEA '  with support in S and solve the equa t ion / :~u=  T with uEL~(V). 

Example. The heat equation. Au = ut. 
Here we take 

lul2---  ~ +l u 

From what has been said we see that a su//icient condition /or S to be removable 
with respect to [heat operator, V, L~] is that there exist a sequence Cj: o//unctions in 
C~(R n) which equal 1 in a neighborhood o / S  such that ]r ]A 4 0 .  A different criterion 
has been given Aronson [2] and Pini [9]. The necessity of our condition follows from 
the Lp estimate for the heat equation of Jones [7] and the second part of theorem 3. 

4. Sufficient condit ions for m m p  polarity 

In  this section we wish to derive a geometric criterion for a compact set S to be 
m - p  polar. Let us here note that  from now on we interchange the roles of p and p' 
(for the purpose of simplicity). 

Given a compact set S consider a covering of S by open spheres of radius r and 
let N(r) denote the smallest number of such spheres (or radius r) required for such 
a covering. We then define 

M~-- M~(S) --~lim inf N(r)r ~. 
r-->0 
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Theorem 4. I /  M~(S)<cr then S is m - p  polar /or n -mp>~a  ( l < p < ~ ) .  (For 
p = 1 we have to assume M~(S)=0.) 

Remark. Let us note here that, for integral ~, if S is a compact set contained in 
a smooth a dimensional manifold then  certainly M~(S) < c~. (For this case, if p = 2, 
theorem 4 was proved in [6].) However, fractional a is not devoid of meaning. For 
example the usual one dimensional Cantorset has M~< c~ where a - l o g  2/log 3. By 
changing the lengths of the intervals used in the definition of the Cantor set one 
can arrive at arbitrary :r Let us also note that  M ~ is not quite the same as ~ dimen- 
sional Hausdorff measure, which is a somewhat more refined measure of dimension. 

Lemma 3. A suHicient condition/or S to be m - p  polar is that there exist a sequence 
~j o//unctions in C~(R ~) which equal 1 near S, are uni/ormly bounded in R ~, such 
that the measure o/their supports ~ 0 and ] Cj I,~,p <~ const. 

Proo/. We know Cj~0 in Lp(R~). Now there exists a subsequence converging 
weakly in H~. v to a limit ~b. By the Banach Saks theorem there exists a (further) 
subsequence whose arithmetic means y~j-~r strongly in Hm,v. But then this con- 
vergence must also take place strongly in Lv, ~0r ~q~, which implies r =0.  The sequence 
~j satisfies all requirements of lemma 1. Note: the above lemma is not valid for 
p = 1. We now proceed with the proof of theorem 4 (we treat only the case 1 < p  < ~ ) .  

We consider the grid Gr which divides R a into cubes of side length r, with sides 
parallel to the coordiante axes and with one cube centered at the origin. Denoting 
by N(r) the minimal number of cubes of this grid needed to cover S, we similarly 
define 

lim inf N ( r ) r ~ M ~ - - M ( S ) .  
r - ~ 0  

I t  is easily seen that the following inequalities hold with positive constants C 
depending only on n. 

CI M~(S) <- M_ ~(S) < C2 M~(S). 

Let ~(t) be a C ~ function of t having the following properties 

1. :r is symmetric about t =0. 

2, = 1 for I tl < 
3. 0~<:c(t)~<l for�88 

4. at(t)=0 for Itl >~. 
5. ~ ( t ) + a ( t - 1 ) = l  for �88 

(This will then automatically hold for all t in 

Define fl(x)= ~(xl). ~(x2)... �9 ~(xn). Now pick an r >0. Consider the collection C of 
all cubes in Gr covering S and add all cubes in G~ having at least one common 
boundary point with the cubes in C to obtain the (larger) collection C' of cubes. 
Similarly let C" denote the (even larger) collection obtained by adding to C' all 
cubes with common boundary points. Let H denote the set of all centers of cubes 
in C'. Then define 

6 



ARKIV FOR MATEMATIK. Bd 7 nr 1 

The  funct ion Cr is C ~176 equals 1 in a neighborhood of S, never  exceeds 1, and  vanishes 
in the complement  of the union of the cubes in C", hence a t  points  whose dis tance 
f rom S is grea ter  t han  3rl/n. 

Nex t  let us es t imate  ]r ]~. v. F r o m  dimensional  considerations it follows t h a t  for 
a fixed h E H 

I m. p 

Now in each cube e in C" all bu t  a t  mos t  a finite n u m b e r  (which depends only on n) 
of the t e rms  in the sum defining ~r vanish.  Hence  

let I'm.,.o < eonst, r 

Now, since M~(S)  is finite, we can find a sequence rj such t h a t  

_._._N(rj) ~< eonst r[  =, 

hence [ Cr;[~,, ~< const r~ - ~ ' - ~ .  

If,  as has  been assumed,  n -  m p  >~ ~, it follows t h a t  the norms  on the  left hand  side 
are bounded  and  hence the sequence Crj satisfies all the  requi rements  of the  lemma.  

Remark .  The above theorem remains  t rue  if m is fractional,  where the ] ]m,r 
no rm is defined b y  complex interpolat ion,  for example  [8]. To  see this, let m 0 and  
m I be two consecutive integers such t h a t  m = m o § O(m x - m o ) .  Then  we have  as before 

]r [,n0., ~< const, r~ (n/p)- mo-(alp)), 

the  same inequal i ty  for m~, hence 

[r [~,~ ~< const. [ 1-0 0 .< Crj ]~,., ~ eonst. r [,no. ~ ] r (1/')(~- ~P-~) < eonst.  

and  the  proof proceeds as before. 

5. Sufficient conditions for A-polarity 

We would like to app ly  the  methods  in the preceding section to derive sufficient 
conditions for sets to be polar  with respect  to spaces of the  type  A discussed earlier. 
Here  we take  A to be the complet ion of C ~ ( R  ~) with respect  to the norm defined b y  

D = 
~ E K  

where K is some finite subset  of all n- tuples  of non-negat ive  integers. We  proceed 
�9 as in the last  section, except  t h a t  ins tead of coverings b y  spheres or cubes we now 

consider coverings b y  rec tangular  solids having side lengths 

rS,r s~ . . .  r sn, 

where the  s 's  are f ixed non-negat ive  numbers  ~s t  = n .  We define _Ns(r) as before 
and  let 

M ~ - - l i m  inf N~(r)r ~. 
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W e  proceed as before and  e s t ima te  

I k X P rn  r_(S.k)p 

Thus  

~< const ,  r n - m s ,  k 

where we le t  ms, ~--  m a x  (s.  k). 
k e K  

Proceeding  as before,  i t  follows t h a t  

I Cr IA <~ const,  r n-v" ms, k Ns(r). 

A n d  we cu lmina te  wi th  the  

Theorem 5. Suppose S is a compact set such that /or some choice o/ s = ( s  I ... sn) 
(with ~ s  = n) 

Then S is polar with respect to A .  
Note. I n  proving  theorem 5 l emma (3) used in the  proof  of theorem 4 mus t  be 

modif ied.  This causes no t rouble .  
Example.  The hea t  equat ion .  
The one d imens iona l  hea t  equa t ion  leads us to  choose 

Now suppose S is a compac t  set s i tua ted  on the  x axis,  and  M ~ ( S ) <  ~ .  H o w  small  
does ~ have  to  be to  insure t h a t  S is A-po la r  ? The p rob lem is to  choose s in such a 
w a y  t h a t  theorem 5 will give op t ima l  results .  To t h a t  end,  consider  a covering of 
S b y  N~(~) equal  rectangles  of l ength  ~ = r  s' and  height  r s~ ( s l §  Now suppose 
f irst  t h a t  

N(~) ~< const.  ~-~. (*) 

Then  Ns(r) <~ const,  r . . . .  . 

I t  thus  would suffice to have  

~s I ~< 2 - p  m a x  [2s 1, 2 - sl], 

where the  m a x i m u m  on the  r igh t  is no t  t a k e n  wi th  respect  to  s 1. W e  wish to  choose 
s to  maximize  the  al lowable  a, i.e., we wish to  maximize  the  express ion 

1 
- (2 - p  m a x  [2Sl, 2 - sl] ) 
81 
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over  the in terva l  (0 ~<s I <2) .  This m a x i m u m  is a t t a ined  a t  s I =~ s2=  ~ and the best  
is 3 - 2 p .  Thus if 1 < p  <~ and  M 3 - 2 p ( S ) <  oo then  S is polar  wi th  respect  to A, 

p rov ided  S lies on the x axis. (If (*) does not  hold for all 0 < r < l ,  we s imply  pick a 
sequence of r for which i t  holds and  argue as before.) 

For  the  corresponding s i tuat ion in higher  dimensions we conclude by  similar 
calculat ions t h a t  if S lies in the hyperp lane  t = 0  then  S is A polar  if M"+1-2~(S) < oo. 
This shows tha t  if u satisfies the n dimensional  ( n - 1  space dimensions) hea t  equa- 
t ion in R ~ - S ,  S lies on t = 0 ,  and u 6 L ~ , ( R ~ ) ,  then  u is a solution in all R ~ provided  
M"+I-2P(S) < c~. This is cer ta inly t rue  if, for example  S lies in an [ n + 1 - 2 p ]  
dimensional  surface. 
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