1.66022 Communicated 26 January and 16 August 1966 by O. FROSTMAN and L. Gårding

Generalized hyperbolicity

By Eric Larsson

Introduction

Let $x = (x_1, x_2, ..., x_n)$ be coordinates in \mathbb{R}^n with the scalar product $(x, x') = \sum_{j=1}^n x_j x'_j$ and the norm |x|. We define

$$D = \left(rac{1}{i} rac{\partial}{\partial x_1}, rac{1}{i} rac{\partial}{\partial x_2}, \dots rac{1}{i} rac{\partial}{\partial x_n}
ight), \quad D^{lpha} = \prod_{lpha_k \neq 0} \left(rac{1}{i} rac{\partial}{\partial x_k}
ight)^{lpha_k} \quad ext{and} \quad \left|lpha\right| = \sum_{k=1}^n lpha_k,$$

where $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ is a multiindex with non-negative integer components. As in Schwartz [1], let $\mathcal{E}(O)$ be the Fréchet space of all infinitely differentiable functions on the open non-empty set $O \subset \mathbb{R}^n$ topologized by the semi-norms $\sup_{x \in K} |D^{\alpha}\varphi(x)|$, where K is compact in O. A complex polynomial P is called hyperbolic with respect to $N \in \mathbb{R}^n$ if P(D) has a fundamental solution, locally in the dual space $\mathcal{E}'(\mathbb{R}^n)$, with support in a cone $(x, N) \ge \varepsilon |x|, \varepsilon > 0$. Let P_m be the principal part of P. Then, according to Gårding [1], P is hyperbolic with respect to N if and only if there is a constant C such that $P_m(N) \neq 0$ and $P(\xi + i\tau N) \neq 0$ when $\xi \in \mathbb{R}^n$ and $\tau \le -C$. We shall here investigate hyperbolicity in other suitable distribution spaces.

For fixed d > 1 we consider in $\mathcal{E}(O)$ the quasi-norms

$$\left|\varphi, K\right|_{d,l} = \sup_{\substack{\alpha \\ x \in K}} l^{-|\alpha|} \left|\alpha\right|^{-|\alpha|d} \left|D^{\alpha}\varphi(x)\right|,$$

where l > 0 and K is compact in O. Set

$$G(d, O) = \{\varphi; |\varphi, K|_{d,l} < \infty \text{ for every } l > 0 \text{ and every compact } K \subset O\}$$

topologized by the semi-norms $|\varphi, K|_{d,l}$ (cf. Hörmander [1], p. 146). We observe some simple properties of G(d, O) and related spaces. For instance, G(d, O) is a Fréchet space and it contains non-vanishing functions with compact support exactly when d > 1. Let H be the half space $(x, N) \ge 0$ and denote by $\overline{G_0(d, H)}$ the subspace of all functions in $G(d, \mathbb{R}^n)$ supported by H. We prove that the mapping

$$P(D): \overline{G_0(d, H)} \to \overline{G_0(d, H)}$$

is injective and has a continuous inverse if and only if there is a constant C such that $P_m(N) \neq 0$ and $P(\xi + i\tau N) \neq 0$ when $\xi \in \mathbb{R}^n$ and $\tau \leq -C(1 + |\xi|^{1/d})$. This is also the precise condition for the existence of a fundamental solution of P(D), locally in the dual space $G'(d, \mathbb{R}^n)$, with support in a cone $(x, N) \geq \varepsilon |x|$, $\varepsilon > 0$. We call such polynomials *d*-hyperbolic with respect to N. When $d = \infty$, we get formally the hyperbolic

case and generally, the theory of d-hyperbolic polynomials parallels that of hyperbolic polynomials. For instance, if P is d-hyperbolic with respect to N, then P is also dhyperbolic with respect to every N' in the open cone Γ which is the largest connected N-component of $\{\xi; P_m(\xi) \neq 0\}$. The above fundamental solution of P(D) is supported by the dual cone of Γ . Further, if $\xi \in \mathbb{R}^n$, then $P_m(\xi + \tau N)$ has only real zeros τ when P is *d*-hyperbolic with respect to N. A special feature of *d*-hyperbolicity is that $P_m(\xi + \tau N)$ has at most a s-fold zero τ for ξ non-proportional to N if and only if $P_m + Q$ is d-hyperbolic with respect to N for all Q of order $\leq l$ where 1/d + (m-l)/s = 1. The presentation mainly follows Hörmander [1] which we often refer to.

The generalized distribution spaces¹

We use the notations $\mathcal{E}(O)$, D^{α} and $|\alpha|$ as in the introduction. For fixed $d \ge 0$ we consider in $\mathcal{E}(O)$ the quasi-norms

$$|\varphi, K|_{d,l} = \sup_{\substack{\alpha \in K \\ x \in K}} l^{-|\alpha|} |\alpha|^{-|\alpha|d} |D^{\alpha}\varphi(x)|,$$

where l > 0 and K is compact in O. They are continuous from below, i.e.

$$\varphi_j \rightarrow \varphi \text{ in } \mathcal{E}(O) \Rightarrow \underline{\lim} |\varphi_j, K|_{d,l} \ge |\varphi, K|_{d,l},$$

and they have a countable basis obtained by taking sequences $l_k \searrow 0$ and $K_k \nearrow 0$.

Definition 1. Let G(d, O) be the space

$$\{\varphi; | \varphi, K |_{d,l} < \infty \text{ for every } l > 0 \text{ and every compact } K \subset O \}$$

with the topology given by the quasi-norms $|\varphi, K|_{d,l}$. Let further

$$G_0(d, O) = \bigcup_{K \in O} G_0(d, K)$$

be the inductive limit of all

$$G_0(d, K) = \{\varphi; \varphi \in G(d, O), \operatorname{supp} \varphi \subseteq K\},\$$

where K is compact in O and $G_0(d, K)$ is topologized by our quasi-norms $|\varphi, K|_{d,l}$. If $O = R^n$ we omit R^n and write G(d) and $G_0(d)$ respectively.

Clearly, G(1, 0) is the set of all entire analytic functions on C^n and $G(d_1, 0) \subset$ $G(d_2, O)$ if and only if $d_1 \leq d_2$. Thus $G_0(d, O)$ only contains the null function for $d \leq 1$. When d > 1, we have the following theorem.

Theorem 1. If d > 1, there exist functions $\varphi \in G_0(d, O)$ with the support in an arbitrarily given open set of O such that $\varphi \ge 0$ and $\int \varphi(x) dx = 1$. G(d, O) and $G_0(d, O)$ are algebras under pointwise multiplication.

Proof. The existence part of the theorem is a consequence of the Denjoy–Carleman theorem. For a direct proof see Lemma 5.7.1, p. 146 in Hörmander [1]. In the following we only consider d > 1.

¹ Cf. for instance the spaces in Beurling [1], Gelfand-Shilov [1] and Roumieu [1]. Se also Gevrey [1].

We observe that G(d, O) is a Fréchet space. In fact, the quasi-norms $|\varphi, K|_{d,l}$ have a countable basis and every Cauchy sequence $\{\varphi_j\}_{j=1}^{\infty}$ in G(d, O) has a limit φ in $\mathcal{E}(O)$ which belongs to G(d, O) since

$$\varphi_{j} - \varphi, K|_{d,l} \leq \lim_{k \to \infty} |\varphi_{j} - \varphi_{k}, K|_{d,l}$$
$$\sum_{j=1}^{\infty} c_{j} |\varphi, K_{j+1} \cap \mathbf{C} K_{j}|_{d,l},$$

The quasi-norms

where $\{c_j\}_{j=1}^{\infty}$ is an arbitrary sequence of positive numbers and $K_j \nearrow O$, define the topology of $G_0(d, O)$.

G(d, O) and $G_0(d, O)$ have properties analogous to the spaces $\mathcal{E}(O)$ and $\mathcal{D}(O)$ in Schwartz [1]. In this connection it is even natural to write $\mathcal{E}(O) = G(\infty, O)$ and $\mathcal{D}(O) = G_0(\infty, O)$. The dual spaces G'(d, O) and $G'_0(d, O)$ are considered under the weak and strong topology. They are analogous to the Schwartz spaces $\mathcal{E}'(O)$ and $\mathcal{D}'(O)$ respectively. For instance, G'(d, O) is the set of all elements in $G'_0(d, O)$ which have compact support in O. Further, a sequence $(\varphi_v)_{\nu=1}^{\infty}$ converges to 0 in $G_0(d, O)$ if and only if \bigcup_v supp φ_v is contained in a fixed compact set $K \subset O$ and $\varphi_v \to 0$ in $G_0(d, K)$. From the general theory of topological spaces we know that a linear form Ton $G_0(d, O)$ is continuous precisely when T is continuous on $G_0(d, K)$ for every compact K in O. This implies that a linear form T on $G_0(d, O)$ is contained in $G'_0(d, O)$ if and only if $T(\varphi_v) \to 0$ for every sequence $(\varphi_v)_{\nu=1}^{\infty}$ which tends to 0 in $G_0(d, O)$. Another consequence is

Theorem 2. A linear form T on $G_0(d, O)$ belongs to $G'_0(d, O)$ if and only if to every compact set $K \subset O$ there are constants l and C > 0 that such

$$|T(\varphi)| \leq C |\varphi, K|_{d, l}$$
 when $\varphi \in G_0(d, K)$.

Mainly according to this theorem and Hahn-Banach, $T \in G'_0(d, O)$ exactly when $T = \sum_{\alpha} D^{\alpha} \mu_{\alpha}$ where μ_{α} are measures on O satisfying $(\int_{K} |d\mu_{\alpha}|)^{1/|\alpha|} = O(|\alpha|^{-d})$ for every compact $K \subset O$.

Convolutions. To be able to work with convolutions we give some definitions and theorems, well-known in the Schwartz case. We write

 $A_{(-)}^{+}B = \{x_{(-)}^{+}y; x \in A, y \in B\}, \text{ where } A \text{ and } B \text{ are sets in } R^{n}.$

Definition 2. Let $T \in G'_0(d)$ and $\varphi \in G(d)$ with supp $T \cap (K$ -supp $\varphi)$ compact for every compact set K. We then define

$$(T \star \varphi) (x) = T_y(\varphi(x-y)) = T_y(\chi(y)\varphi(x-y)),$$

where $\chi \in G_0(d)$ and $\chi \equiv 1$ on a neighborhood of supp $T \cap (x \operatorname{supp} \varphi)$.

It is immediate that the definition is independent of χ . If we write $\varphi(x-y) = \varphi_x(y)$, we have

$$(T \star \varphi) (x) = T(\chi \dot{\varphi}_x) = T(\dot{\varphi}_x).$$

The requirements of the definition are fulfilled, for instance, when $T \in G'_0(d)$, $\varphi \in G(d)$ and supp T, supp $\varphi \subset \{x; (x, N) \ge 0\}$ with one of the supports in a cone $(x, N) \ge \varepsilon |x|$ where $\varepsilon > 0$.

Theorem 3. Let T and φ have the properties stated in Definition 2. Then $D^{\alpha}(T \times \varphi) = (D^{\alpha} T) \times \varphi = T \times D^{\alpha} \varphi$ and supp $T \times \varphi \subset \text{supp } T + \text{supp } \varphi$. Further, $T \times \varphi$ belongs to G(d) and $T \times \varphi_{\nu} \to T \times \varphi$ in G(d) when $\varphi_{\nu} \to \varphi$ in G(d) and $\bigcup_{\nu} (\text{supp } T \cap [K - \text{supp } \varphi_{\nu}])$ is bounded for every bounded K.

Proof. We consider first $D^{\alpha}(T \star \varphi) = (D^{\alpha}T) \star \varphi = T \star D^{\alpha}\varphi$ where $D^{\alpha}T$, defined by $D^{\alpha}T(\varphi) = (-1)^{|\alpha|}T(D^{\alpha}\varphi)$, belongs to G'(d). Set $D_{k} = \frac{1}{i} \frac{\partial}{\partial x_{k}}$. It is enough to prove that $D_{k}(T \star \varphi) = T \star D_{k}\varphi$.

Let e be the unit vector along the x_k -axis.

$$D_k(T \star \varphi)(x) = \lim_{h \to 0} T\left(\frac{1}{i\hbar} [\check{\varphi}_{x+he} - \check{\varphi}_x]\right).$$

Now $1/ih [\check{\varphi}_{x+he} - \check{\varphi}_x]$ tends to $(D_k \varphi)_x^*$ in G(d) for the mean value theorem implies

$$\left|\frac{1}{i\hbar}[\check{\varphi}_{x+\hbar e}-\check{\varphi}_{x}]-(D_{k}\varphi)\check{x},K\right|_{d,l}\leq |h|\left|(D_{k}^{2}\varphi)\check{x},K'\right|_{d,l}$$

when $0 \neq |h| \leq 1$ and $K' = K - \{t \ e; \ |t| \leq 1\}$. Since supp $T \cap \text{supp}[\check{\varphi}_{x+he} - \check{\varphi}_x]$ is compact when $|h| \leq 1$, this gives

$$D_k(T \star \varphi) = T \star D_k \varphi.$$

In order to prove that $T \times \varphi \in G(d)$, take an arbitrary compact set K and choose χ in $G_0(d)$ so that $\chi \equiv 1$ in a neighborhood of supp $T \cap [K - \operatorname{supp} \varphi]$. We write $\operatorname{supp} \chi = K_0$. From Theorem 2 we then obtain constants l_0 and C_0 such that

$$\left| (T \times \varphi)(x) \right| = \left| T(\chi \check{\varphi}_x) \right| \leq C_0 \left| \chi \check{\varphi}_x, K_0 \right|_{d, l_0}$$

when $x \in K$. This implies

$$\begin{aligned} \left| D^{\alpha}(T \star \varphi)(x) \right| &= \left| T(\chi(D^{\alpha}\varphi)_{x}^{`}) \right| \leq C_{0} \left| \chi(D^{\alpha}\varphi)_{x}^{`}, K_{0} \right|_{d, l_{0}} \\ &\leq C_{0} l^{|\alpha|} \left| \alpha \right|^{|\alpha|d} \left| l^{-|\alpha|} \left| \alpha \right|^{-|\alpha|d} \chi(D^{\alpha}\varphi)_{x}^{`}, K_{0} \right|_{d, l_{0}} \\ &\leq C_{0} l^{|\alpha|} \left| \alpha \right|^{|\alpha|d} \left| \check{\varphi}_{x}, K_{0} \right|_{d, l'} \end{aligned}$$

for all $x \in K$ where $l' = 2^{-1}e^{-d} \min(l, l_0)$. Hence $T \neq \varphi \in G(d)$. The same estimate gives also that $T \neq \varphi_v \rightarrow T \neq \varphi$ in G(d) when $\varphi_v \rightarrow \varphi$ in G(d) and $\bigcup_v [\operatorname{supp} T \cap (K - \operatorname{supp} \varphi_v)]$ is bounded for every compact K. Finally it remains to localize the support of $T \neq \varphi$. $(T \neq \varphi) (x) \neq 0$ only if supp T meets supp $\check{\varphi}_x$, i.e. only if there is $y \in \operatorname{supp} T$ such that $x - y \in \operatorname{supp} \varphi$, which means that $x \in \operatorname{supp} T + \operatorname{supp} \varphi$. The proof is complete.

The following three theorems are easy generalizations of theorems for \mathcal{D}' (cf. Hörmander [1], pp. 14–17). We omit the proofs.

Theorem 4. Let T and φ have the properties in Definition 2 above and let $\psi \in G_0(d)$. Then

$$(T \star \varphi) \star \psi = T \star (\varphi \star \psi) = (T \star \psi) \star \varphi$$

Theorem 5. Let V be a linear mapping from $G_0(d)$ to G(d) which commutes with translations and is continuous in the sense that $V\varphi_j \rightarrow 0$ in G(d) if $(\varphi_j)_{j=1}^{\circ}$ tends to 0 in $G_0(d)$. Then there is one and only one $T \in G'_0(d)$ such that $V\varphi = T \star \varphi$ when $\varphi \in G_0(d)$. Let now T_1 and T_2 belong to $G'_0(d)$ with supp $T_1 \cap (K - \text{supp } T_2)$ compact for every compact K. Then, according to Theorem 3,

$$G_0(d) \ni \varphi \rightarrow T_1 \star (T_2 \star \varphi) \in G(d)$$

satisfies the requirements of Theorem 5. Hence, there is a unique distribution T in $G'_0(d)$ such that

$$T_1 \! \times \! (T_2 \! \times \! \varphi) = T \! \times \! \varphi.$$

We use this for the definition of the convolution $T_1 \times T_2$.

Definition 3. The convolution T of two distributions T_1 and T_2 in $G'_0(d)$ with supp $T_1 \cap (K - \text{supp } T_2)$ compact for every compact K is defined by

$$T_1 \times (T_2 \times \varphi) = T \times \varphi$$

and denoted by $T_1 \times T_2$.

If $T_3 \in G'(d)$, we can define $(T_1 \times T_2) \times T_3$ and $T_1 \times (T_2 \times T_3)$. We obtain

$$(T_1 \times T_2) \times T_3 = T_1 \times (T_2 \times T_3).$$

Finally we note that our results give

Theorem 6. Let T_1 and T_2 have the properties in Definition 3. Then $T_1 \times T_2 = T_2 \times T_1$ and supp $T_1 \times T_2 \subset \text{supp } T_1 + \text{supp } T_2$.

Clearly, $D^{\alpha}T = (D^{\alpha}\delta) \times T$ where δ is the Dirac measure. Together with the associativity and the commutativity of the convolution this implies

$$D^{\alpha}(T_1 \times T_2) = (D^{\alpha}T_1) \times T_2 = T_1 \times D^{\alpha}T_2.$$

Fourier-Laplace transforms. We are also interested in the Fourier-Laplace transform of the elements in $G_0(d)$ and G'(d). For $\zeta \in C^n$ we write $\zeta = \xi + i\eta$, where ξ and $\eta \in \mathbb{R}^n$, and

$$\hat{\varphi}(\zeta) = \int e^{-ix\zeta} \varphi(x) dx,$$

where $x\zeta = \sum_{k=1}^{n} x_k \zeta_k$. Further, we use the notation

$$|arphi|_{\lambda} = \int |ec arphi(\xi)| \ e^{\lambda |\xi|^{1/d}} d\xi.$$

We have the following characterization (cf. Hörmander [1], p. 21 and p. 147).

Theorem 7. Let Φ be an entire analytic function and K a closed convex set in \mathbb{R}^n . Define $S(\eta) = \sup_{x \in K} (x, \eta)$. Then, Φ is the Fourier–Laplace transform of a function in $G_0(d)$ with support in K if and only if to every real number λ there is a constant C_{λ} such that

$$\left|\Phi(\zeta)\right| \leq C_{\lambda} \exp\left(S(\eta) - \lambda \left|\xi\right|^{1/d}\right).$$
(7.1)

15

Further, Φ is the Fourier-Laplace transform of an element in G'(d) with support in K if and only if for some constant λ_0 there is to every $\varepsilon > 0$ a constant C_{ε} such that

$$\left|\Phi(\zeta)\right| \leq C_{\varepsilon} \exp\left(S(\eta) + \varepsilon \left|\eta\right| + \lambda_0 \left|\xi\right|^{1/d}\right).$$
(7.2)

Proof. Let $\varphi \in G_0(d, K)$. It is clear that $\hat{\varphi}$ is entire analytic. Obviously,

$$\zeta^lpha \widehat{arphi}(\zeta) = \int e^{-ix\zeta} \, D^lpha arphi(x) dx$$

implies

$$\begin{aligned} \left| \zeta^{\alpha} \right| \left| \hat{\varphi}(\zeta) \right| &\leq C \, e^{S(\eta)} \, l^{|\alpha|} \, \left| \alpha \right|^{|\alpha|d} \sup_{\substack{x \in K \\ \alpha}} l^{-|\alpha|} \left| \alpha \right|^{-|\alpha|d} \left| D^{\alpha} \varphi(x) \right| \\ &= C \, e^{S(\eta)} \, l^{|\alpha|} \, \left| \alpha \right|^{|\alpha|d} \left| \varphi, \, K \right|_{d, l} \end{aligned}$$

so that

so that
$$|\zeta|^k |\hat{\varphi}(\zeta)| \leq C |\varphi, K|_{d,l} (nl)^k k^{kd} e^{S(\eta)}$$
,
where C is the measure of K. Hence

$$ig| \hat{arphi}(\zeta) ig| \leqslant C ig| arphi, \, K ig|_{d,\,l} \, (nl \; k^d ig| \zeta ig|^{-1})^k \, e^{S(\eta)}.$$

Let k be the largest integer $\leq |\zeta|^{1/d} (nel)^{-1/d}$. Then,

$$|\hat{\varphi}(\zeta)| \leq C |\varphi, K|_{d,l} e^{-k} e^{S(\eta)}.$$

Because $k > |\zeta|^{1/d} (nel)^{-1/d} - 1$, we obtain

$$\left|\dot{\varphi}(\zeta)\right| \leq C e \left|\varphi, K\right|_{d,l} \exp\left(S(\eta) - \lambda \left|\zeta\right|^{1/d}\right),\tag{7.3}$$

where $\lambda = (nel)^{-1/d}$. This proves the necessity of (7.1). In particular we observe that

$$|\varphi|_{\lambda} \leq C' |\varphi, K|_{d,l}, \tag{7.4}$$

where $\lambda = (nel)^{-1/d} - 1$ and C' only depends on the measure of K.

We turn to the sufficiency of (7.2). Suppose that the entire function Φ satisfies this inequality. Consider the linear form

$$T(\varphi) = (2\pi)^{-n} \int \Phi(\xi) \, \hat{\varphi}(-\xi) \, d\xi \tag{7.5}$$

on $G_0(d)$. Because of (7.2), (7.4) and Theorem 2, T belongs to $G'_0(d)$. Set $K_{\varepsilon} = K + K_{\varepsilon}$ $\{x; |x| \leq \varepsilon\}$ and consider $x_0 \notin K_{\varepsilon}$. We can choose a > 0 and $v \in \mathbb{R}^n$ such that |v| = 1 and K_{ε} is contained in $(x-x_0, v) \leq -2a$. Let $\varphi \in G_0(d, O)$ where $O = \{x; |x-x_0| \leq a\}$. According to (7.3), (7.2) and the analyticity, we can shift the integration of (7.5) into the complex domain which gives

$$T(\varphi) = (2\pi)^{-n} \int \Phi(\xi + i\eta) \, \hat{\varphi}(-\xi - i\eta) \, d\xi,$$

where η is arbitrarily fixed in \mathbb{R}^n . Thus,

$$|T(\varphi)| \leq C_{\lambda,\varepsilon} \exp \left(S(\eta) + (a+\varepsilon) \left|\eta\right| - (x_0,\eta)\right) \int e^{(\lambda_0 - \lambda) |\xi|^{1/d}} d\xi.$$

In particular, for $\lambda > \lambda_0$ and $\eta = vt$ we obtain

$$|T(\varphi)| \leq C e^{-at} \rightarrow 0 \text{ when } t \rightarrow +\infty.$$

Hence supp $T \subseteq K_{\varepsilon}$ for every $\varepsilon > 0$ which implies supp $T \subseteq K$. It is also easily seen that $T_x(e^{-ix\zeta}) = \Phi(\zeta)$ so (7.2) is sufficient.

For the proof of the necessity of (7.2), assume that $T \in G'_0(d)$ with $\operatorname{supp} T \subset K$. Take ψ in $G_0(d, 0)$ so that $\psi \equiv 1$ on $K_{\varepsilon/2}$ and $\operatorname{supp} \psi \subset K_{\varepsilon}$. According to Theorem 2 we have

$$\left|T_{x}(e^{-ix\zeta})\right| = \left|T_{x}(\psi(x)e^{-ix\zeta})\right| \leq C \left|e^{-ix\zeta}\psi(x), K_{\varepsilon}\right|_{d,l}$$

for some l and C. This gives (7.2). Since $\sum_{k=0}^{N} (-ix\zeta)^k/k!$ tends to $e^{-ix\zeta}$ in $G(d, \mathbb{R}^n)$, it is also clear that $T_x(e^{-ix\zeta})$ is entire analytic.

Finally we have to prove that (7.1) is sufficient. The sufficiency of (7.2) implies that every entire function Φ , which satisfies (7.1), is the Fourier-Laplace transform of a T in $G'(d, \mathbb{R}^n)$ with support in K. From (7.5) it follows that T is the infinitely differentiable function

$$(2\pi)^{-n}\int \Phi(\xi)\,e^{ix\xi}\,d\xi.$$

According to the assumption, $|T|_{\lambda} < \infty$ for every λ . Further,

$$egin{aligned} &|D^{lpha}T(x)ig| &\leq (2\pi)^{-n} \int ig| \xi^{lpha} ig| \, \hat{T}(\xi)ig| \, d\xi &\leq (2\pi)^{-n} ig| Tig|_{\lambda} \sup (ig| \xiig|^{|lpha|} \exp ig(-\lambdaig| \xiig|^{1/d}ig) \ &\leq (2\pi)^{-n} igg(rac{d}{\lambda e}ig)^{a|lpha|} ig| lphaig|^{|lpha|d} ig| Tig|_{\lambda} &= (2\pi)^{-n} igl|^{|lpha|} igg| lphaigg|^{|lpha|d} igg| Tig|_{\lambda} \end{aligned}$$

when $l = d^d (\lambda e)^{-d}$. This implies

$$|T, K|_{d,l} \leq (2\pi)^{-n} |T|_{\lambda}$$

$$(7.6)$$

for an arbitrary compact set K. The proof is complete.

Remark. If we define the singular support of $T \in G'_0(d, O)$ as the set of points in O having no neighborhood where T is in G(d), it is possible to prove a result analogous to the last theorem for the singular support.

We observe that (7.6) and (7.4) give

$$|\varphi, K|_{d,l} \leq (2\pi)^{-n} |\varphi|_{\lambda}$$
 and $|\varphi|_{\lambda} \leq C |\varphi, K|_{d,l'}$

when $\varphi \in G_0(d, K)$. Thus, the semi-norms $|\varphi, K|_{d,l}$ and $|\varphi|_{\lambda}$ define the same topology on $G_0(d, K)$ and by that the same inductive limit on $G_0(d, O)$ (cf. Beurling [1]). Write finally $|\varphi|_{\lambda, \varphi} = |\psi\varphi|_{\lambda}$ for fixed ψ in $G_0(d, O)$ when $\varphi \in G(d, O)$. It is immediate that the semi-norms

$$\{ [\varphi]_{\lambda,\psi}; \psi \in G_0(d, O), \lambda > 0 \}$$

are equivalent to the semi-norms

$$\{ | \varphi, K |_{d, l}; l > 0 \text{ and } K \text{ compact in } O \}.$$

Hence we can define the topology of the Fréchet space G(d, O) by the semi-norms $|\varphi|_{\lambda,\psi}$.

2:1

The necessity of *d*-hyperbolicity

As in the introduction, let H be the half space $(x, N) \ge 0$ and $\overline{G_0(d, H)}$ the set of those functions in G(d) which have the support in H. Set $\inf_t |\eta - tN| = |\eta|_N$ when $\eta \in \mathbb{R}^n$.

Theorem 8. Assume that the mapping $\varphi \rightarrow P(D)\varphi$ in $G_0(d, H)$ is injective and that its inverse is continuous. Then there is a constant C > 0 such that

$$P(\zeta) = P(\xi + i\eta) \pm 0 \, if \, (\eta, N) \leq -C(1 + |\eta|_N + |\xi|^{1/d}).$$

Proof. We use the semi-norms $|\varphi|_{\lambda,\psi}$ of G(d). The continuity of $P(D)\varphi \rightarrow \varphi$ in $\overline{G_0(d, H)}$ means that to every $\lambda > 0$ and $\psi \in G_0(d)$ there are constants $C, \lambda_0 > 0$ and $\psi_0 \in G_0(d)$ such that

$$|\varphi|_{\lambda, \psi} \leq C |P(D)\varphi|_{\lambda_0, \psi_0}$$
 when $\varphi \in G_0(d, H)$.

Let $\psi \in G_0(d)$ with $\psi(N) = 1$. Then

$$\big| arphi(N) \big| = \big| arphi(N) \psi(N) \big| \leqslant \big| arphi ig|_{0.\,arphi}$$

which together with the continuity implies

$$|\varphi(N)| \leq C |P(D)\varphi|_{\lambda_0, \psi_0}$$

for some constants C and $\lambda_0 > 0$ and a fixed $\psi_0 \in G_0(d)$. Take $\chi \in \overline{G(d, R)}$ so that $\chi(t) = 0$ for $t \leq 2^{-2}(N, N)$ and $\chi(t) = 1$ for $t \geq 2^{-1}(N, N)$. We can then apply the inequality to $\varphi(x) = e^{i(x-N,\zeta)} \chi((x, N))$ and get

$$I \leq C |P(D) e^{i(x-N,\zeta)} \chi((x, N))|_{\lambda_0, \psi_0}$$

= $C |\psi_0(x) P(D) e^{i(x-N,\zeta)} \chi((x, N))|_{\lambda_0}.$ (8.1)

When $P(\zeta) = 0$, we have

$$\psi_{0}(x) P(D) e^{i(x-N,\zeta)} \chi((x,N)) = \sum_{\gamma \neq 0} \frac{1}{\gamma!} P^{(\gamma)}(\zeta) e^{i(x-N,\zeta)} \psi_{0}(x) D^{\gamma} \chi((x,N)).$$

Here the support of $g_{\gamma}(x) = \psi_0(x) D^{\gamma} \chi((x, N))$ is contained in a bounded set B of $\{x; 2^{-2}(N, N) \leq (x, N) \leq 2^{-1} (N, N)\}$ when $\gamma \neq 0$. According to (7.1), there is thus to every $\lambda > 0$ a constant C > 0 so that

$$|\hat{g}_{\gamma}(\zeta)| \leq C \exp(S(\eta) - \lambda |\xi|^{1/d})$$

for $\gamma \neq 0$ where $S(\eta) = \sup_{x \in B} (x, \eta)$. This gives for $\alpha \in \mathbb{R}^n$

$$\left| \int e^{-i\alpha x} g_{\gamma}(x) e^{i(x-N,\zeta)} dx \right| = e^{(\eta,N)} \left| \hat{g}_{\gamma}(\alpha-\zeta) \right| \leq C \exp\left((\eta,N) + S(-\eta) - \lambda \left| \alpha - \xi \right|^{1/d}\right)$$
$$\leq C \exp\left((\eta,N) + S(-\eta) + \lambda \left| \xi \right|^{1/\alpha} - \lambda \left| \alpha \right|^{1/d}\right)$$

Hence (8.1) implies that there is a polynomial Q such that

$$1 \leq Q(\lfloor \zeta \rfloor) \exp((\eta, N) + S(-\eta) + 2\lambda_0 \lfloor \xi \rfloor^{1/d}).$$
(8.2)

18

In order to estimate $S(-\eta)$ we write x=sN+y where (y, N)=0. Then $2^{-2} \le s \le 2^{-1}$ and $|y| \le D$ for some fixed D if $x \in B$. When $(\eta, N) < 0$, we obtain

$$S(-\eta) = \sup_{x \in B} (x, -\eta) \leq \sup_{2^{-2} \leq s \leq 2^{-1}} s(N, -\eta) + \sup_{|y| \leq D} (y, -\eta) \leq -2^{-1}(\eta, N) + D \inf_{t} |\eta - tN|.$$

From (8.2) it hence follows that

$$0 \leq (\eta, N) + C(1 + |\eta|_N + |\xi|^{1/d})$$

for some constant C > 0 when $P(\zeta) = 0$ and $(\eta, N) < 0$. Consequently, $P(\zeta) = 0$ when $(\eta, N) \leq -C(1 + |\eta|_N + |\xi|^{1/d})$ and the proof is complete.

We let m be the order of P and denote the principal part by P_m .

Theorem 9. $P_m(N) \neq 0$ if there exists a constant C such that $P(\xi + i\eta) \neq 0$ when $(\eta, N) \leq -C(1 + |\eta|_N + |\xi|^{1/d}).$

Proof. Assume that N = (1, 0, ..., 0) and $P_m(N) = 0$. Since $P_m \equiv 0$, there are constants $(\alpha_j)_{j=2}$ so that $P_m(1, \alpha_2, ..., \alpha_n) \neq 0$. We consider the polynomial

$$Q(\lambda, \mu) = P(\lambda, \lambda \mu \alpha_2 \dots \lambda \mu \alpha_n) = \sum_{\nu=0}^m \lambda^{\nu} R_{\nu}(\mu),$$

where $R_m(\mu) = P_m(1, \mu\alpha_2, \dots, \mu\alpha_n) \equiv 0$ according to the choice of $(\alpha_j)_{j=2}^n$. Because of the assumption, the zeros $\lambda(\mu)$ of $Q(\lambda, \mu)$ satisfy

$$\operatorname{Im} \lambda(\mu) \geq -C(1 + |\mu \lambda(\mu)| + |\operatorname{Re} \lambda(\mu))|^{1/d})$$
(9.1)

for a suitable constant C>0 when $|\mu| \leq 1$. As $R_m(\mu) \equiv 0$, we further know that the zeros can be developed into a Puiseux series around $\mu = 0$. We obtain

$$Q(\lambda,\mu) = R_m(\mu) \prod_{j=1}^m (\lambda - \lambda_j(\mu))$$

where every $\lambda_j(\mu)$ for some positive integer p is an analytic function of $\mu^{1/p}$ when $0 < |\mu| < \delta$, without any essential singularity at $\mu^{1/p} = 0$, i.e.

$$\lambda_j(\mu) = \sum_{k=N_j}^{\infty} a_k \mu^{(1/p) \cdot k},$$

where N_j is a whole number.

We have assumed $R_m(0) = 0$. Because of (9.1) at least one $R_\nu(0) \neq 0$. Hence, if $\mu \to 0$ so that $R_m(\mu) \neq 0$, at least one quotient $R_\nu(\mu)/R_m(\mu)$ tends to infinity. Consequently, $|\lambda_{j_0}(\mu)| \to \infty$ for some j_0 when $\mu \to 0$, i.e. $N_{j_0} = N$ is a negative integer. Thus $\lambda_{j_0}(\mu)$ behaves asymptotically as $a_N(\mu^{1/p})^N$ when $\mu \to 0$, which is a contradiction to (9.1) since d > 1. The theorem is proved.

Remark. If $P_m(N) = 0$, we can construct functions $0 \neq \varphi \in G_0(d, H)$ such that $P(D)\varphi = 0$ (cf. Hörmander [1], p. 121). Hence $P_m(N) \neq 0$ is properly a direct consequence of the injectiveness of the considered mapping.

If $P(\xi + i \eta) \neq 0$ when $(\eta, N) \leq -C(1 + |\eta|_N + |\xi|^{1/d})$, we obtain, in the special case $\eta = \tau N, \tau \in R$, that $P(\xi + i\tau N) \neq 0$ when $\xi \in R^n$ and $\tau(N, N) \leq -C(1 + |\xi|^{1/d})$. According to the last theorem, such polynomials also satisfy $P_m(N) \neq 0$. We make the following definition.

Definition 4. A polynomial P is called d-hyperbolic with respect to N if there is a constant C such that $P_m(N) \neq 0$ and $P(\xi + i\tau N) \neq 0$ when $\xi \in \mathbb{R}^n$ and $\tau \leq -C(1 + |\xi|^{1/d})$. We consider $1 < d \leq \infty$ with the convention that $|\xi|^{1/\infty} = 1$ so that $d = \infty$ is formally the Gårding case. According to Lemmas 1 below, d = 1 is the Cauchy-Kovalevsky case. The following theorem is now immediate.

Theorem 10. P is d-hyperbolic with respect to N if $P(D)\varphi \rightarrow \varphi$ is a continuous mapping in $\overline{G_0(d, H)}$.

We also have

Theorem 11. P is d-hyperbolic with respect to N if the mapping $\varphi \to P(D)\varphi$ is bijective in $\overline{G_0(d, H)}$, i.e. if the equation $P(D)\varphi = \psi$ has a unique solution $\varphi \in \overline{G_0(d, H)}$ for every $\psi \in \overline{G_0(d, H)}$.

Proof. Since $G_0(d, H)$ is a closed subspace of the Fréchet space G(d), $G_0(d, H)$ is itself a Fréchet space. The mapping $\varphi \rightarrow P(D)\varphi$ is continuous in $\overline{G_0(d, H)}$. According to Banach's theorem the inverse is then continuous too. The application of Theorem 10 completes the proof.

Algebraic properties of *d*-hyperbolic polynomials

The following theorems, which give some algebraic properties of our polynomials, are easy generalizations of the corresponding theorems for ∞ -hyperbolic polynomials (cf. Hörmander [1], p. 132). We need the following lemma.

Lemma 1. If $P_m(N) \neq 0$, there is a constant C such that $|\tau| \leq C(1+|\zeta|)$ when $\tau \in C, \zeta \in C^n$ and $P(\zeta + \tau N) = 0$.

Proof. It is no restriction to assume $P_m(N) = 1$. Then $P(\zeta + \tau N) = \tau^m + \sum_{\nu=0}^{m-1} P_{\nu}(\zeta)\tau^{\nu}$ where the order of $P_{\nu} \leq m-\nu$. Hence, there is a constant C such that $|P_{\nu}(\zeta)| \leq (C2^{-1}(1+|\zeta|))^{m-\nu}$, which gives

$$\left|\sum_{\nu=0}^{m-1} P_{\nu}(\zeta) \tau^{\nu}\right| \leq \left|\tau\right|^{m} \sum_{\nu=0}^{m-1} 2^{\nu-m} < \left|\tau\right|^{m} \text{ if } |\tau| > C(1+|\zeta|).$$

This proves the lemma.

For the sake of completeness we also prove the converse of Lemma 1.

Lemma 2. $P_m(N) \neq 0$ if P is of order m and $|\tau| \leq C(1+|\zeta|)$ for some constant C when $\tau \in C$, $\zeta \in C^n$ and $P(\zeta + \tau N) = 0$.

Proof. Assume that $P_m(N) = 0$. Then

$$P(\zeta + \tau N) = \sum_{\nu=0}^{\mu} P_{\nu}(\zeta) \tau^{\nu},$$

where $\mu < m$ and the order of $P_{\nu} = m - \nu$ for at least one $\nu = \nu_0$ since the order of P is m. First we prove that $P_{\mu}(\zeta)$ is a constant. The polynomials P_{ν} cannot have a common zero since this violates our assumption. If P_{μ} depends on ζ , it has a zero ζ_0 . Let ζ tend to ζ_0 so that $P_{\mu}(\zeta) \neq 0$. Then at least one quotient

$$\frac{P_{\nu}(\zeta)}{P_{\mu}(\zeta)}, \quad \nu < \mu,$$

tends to infinity and by that also at least one zero $\tau(\zeta)$ of $P(\zeta + \tau N)$. This is again a contradiction to the assumption so that $P_{\mu}(\zeta)$ is a constant. Now we know that P_{r_o} is the sum of all possible $(\mu - \nu_0)$ -products of the roots of $P(\zeta + \tau N) = 0$. We have assumed that the roots satisfy $|\tau| \leq C(1 + |\zeta|)$ for a suitable constant C. With another constant C we thus get

$$\left|P_{\boldsymbol{\nu}_{0}}(\zeta)\right| \leq C(1+\left|\zeta\right|)^{\mu-\boldsymbol{\nu}_{0}}$$

which contradicts that the order of P_{ν_0} is $m - \nu_0$. The proof is complete.

Let P be d-hyperbolic with respect to N. Then $P_m(N) \neq 0$, and $P(\xi + i\tau N) = 0$ implies Re $\tau \ge -C(1 + |\xi|^{1/d} + |\operatorname{Im} \tau|^{1/d})$ for a suitable fixed C > 0 when $\xi \in \mathbb{R}^n$. According to Lemma 1, there is another C such that $|\tau| \le C(1 + |\xi|)$ when $P(\xi + i\tau N) = 0$. Hence, if P is d-hyperbolic with respect to N, we have a constant C such that $P_m(N) \neq 0$ and $P_m(\xi + i\tau N) \neq 0$ when $\xi \in \mathbb{R}^n$ and Re $\tau \le -C(1 + |\xi|^{1/d})$.

Theorem 12. P is d-hyperbolic with respect to -N if P is d-hyperbolic with respect to N.

Proof. The homogeneity of the principal part P_m gives that $P_m(-N) = (-1)^m P_m(N) = 0$. All the roots of $P(\xi + i\tau N) = 0$ satisfy $\operatorname{Re} \tau \ge -C(1 + |\xi|^{1/d})$ for some fixed C when $\xi \in \mathbb{R}^n$. We know that the coefficients of τ^m and τ^{m-1} are $i^m P_m(N) \neq 0$ respectively a linear function of ξ . Denoting the zeros of $P(\xi + i\tau N)$ by τ_j , $\sum_{j=1}^{\infty} \tau_j$ is thus a linear function of ξ . This implies that $\sum_{j=1}^m \operatorname{Re} \tau_j$ is a linear function of $\xi \in \mathbb{R}^n$ bounded from below by $-C(1 + |\xi|^{1/d})$. But then $\sum_{j=1}^m \operatorname{Re} \tau_j$ must be a constant l since d > 1. This gives

Re
$$\tau_k = l - \sum_{j \neq k} \operatorname{Re} \tau_j \leq l + C(1 + |\xi|^{1/d}).$$

Consequently, $P(\xi + i\tau N) \neq 0$ when $\xi \in \mathbb{R}^n$ and $\tau > l + C(1 + |\xi|^{1/d})$. The proof is complete.

The theorem can also be written in the following form.

Corollary. If P is d-hyperbolic with respect to N, there is a constant C > 0 such that

$$|\operatorname{Re} \tau| \leq C(1+|\xi|^{1/d}) \text{ when } \xi \in \mathbb{R}^n \text{ and } P(\xi+i\tau N)=0.$$

Theorem 13. If P is d-hyperbolic with respect to N, then P_m is ∞ -hyperbolic with respect to N.

Proof. Let $\sigma > 0$. According to the corollary of Theorem 12 we have a constant C > 0 such that $\sigma |\operatorname{Re} \tau| \leq C(1 + |\sigma\xi|^{1/d})$ when $\xi \in \mathbb{R}^n$ and $P(\sigma\xi + i\sigma\tau N) = 0$. Further,

$$P_m(\xi+i\tau N)=\lim_{\sigma\to+\infty}\sigma^{-m}P(\sigma\xi+i\sigma\tau N).$$

 $\mathbf{21}$

Since $P_m(N) \neq 0$, the zeros τ of $\sigma^{-m} P(\sigma \xi + i\sigma \tau N)$ depend continuously on σ^{-1} in a neighborhood of $\sigma^{-1} = 0$. Hence $|\operatorname{Re} \tau| = 0$ if $P_m(\xi + i\tau N) = 0$ and $\xi \in \mathbb{R}^n$. The proof is complete.

Theorem 13 and the definition of d-hyperbolicity give immediately

Theorem 14. A homogeneous polynomial P is d-hyperbolic with respect to N if and only if $P(N) \neq 0$ and the zeros τ of $P(\xi + \tau N)$ are real when $\xi \in \mathbb{R}^n$.

As in the special case of ∞ -hyperbolicity, we make the following definition.

Definition 5. If P is d-hyperbolic with respect to N, we define $\Gamma(P, N) = \Gamma(P_m, N)$ as the set of all real vectors ϑ such that $P_m(\vartheta + \tau N)$ has only negative zeros τ .

Then the following theorem is well known.

Theorem 15. $\Gamma(P, N)$ is the N-component of the open set $\{\vartheta; P_m(\vartheta) \neq 0\}$.

Proof. We refer to the proof of Lemma 5.5.1, p. 133, in Hörmander [1].

Next theorem will make it possible to prove that P is d-hyperbolic with respect to every $\vartheta \in \Gamma(P, N)$ if it is d-hyperbolic with respect to N.

Theorem 16. Let P be d-hyperbolic with respect to N and let $\vartheta \in \Gamma(P, N)$. Then there is a constant C such that $P(\xi + i\tau N + i\sigma\vartheta) \neq 0$ when $\xi \in \mathbb{R}^n$, $\operatorname{Re} \sigma \leq 0$ and $\tau \leq -C(1 + |\xi|^{1/d})$.

Proof. We consider first the case Re $\sigma = 0$. The corollary of Theorem 12 gives a constant C such that $|\tau| \leq C(1+|\xi|^{1/d}+|\sigma|^{1/d})$ when $\tau \in R, \xi \in \mathbb{R}^n$ and $P(\xi + i\tau N + i\sigma\vartheta) = 0$. Further, since $P_m(\vartheta) \neq 0$, we have according to Lemma 1 a fixed D > 0 so that

 $|\sigma| \leq D(1+|\xi|+|\tau|) \text{ when } P(\xi+i\tau N+i\sigma\vartheta)=0.$

Hence, with a suitable C>0, $|\tau| \leq C(1+|\xi|^{1/d}+|\tau|^{1/d})$ when $\tau \in R$, $\xi \in R^n$ and $P(\xi+i\tau N+i\sigma\vartheta)=0$. Because d>1, this gives the existence of still another constant $C_0>0$ such that $P(\xi+i\tau N+i\sigma\vartheta)=0$ implies $|\tau| \leq C_0(1+|\xi|^{1/d})$ when $\tau \in R$ and $\xi \in R^n$. This completes the proof in the special case Re $\sigma=0$.

For the general proof we study $P(\xi + i\tau N + i\sigma\vartheta)$ as a polynomial in σ when ξ is an arbitrary vector in \mathbb{R}^n and τ varies in $\tau \leq -C_0(1+|\xi|^{1/d})$. Here C_0 is the constant obtained above. The zeros σ of this polynomial vary continuously with τ since the coefficient $i^m P_m(\vartheta)$ of σ^m is unequal to zero. As $P(\xi + i\tau N + i\sigma\vartheta)$ has no zeros when $\xi \in \mathbb{R}^n$, $\operatorname{Re} \sigma = 0$ and $\tau \leq -C_0(1+|\xi|^{1/d})$, it follows that the number of zeros σ with negative real part is constant when $\tau \leq -C_0(1+|\xi|^{1/d})$. It is thus enough to prove that there are no zeros σ when $\operatorname{Re} \sigma < 0$ and τ is large negative. We set $\sigma = \mu\tau$. Then the equation $P(\xi + i\tau N + i\sigma\vartheta) = 0$ can be written $i^{-m}\tau^{-m}P(\xi + i\tau(N + \mu\vartheta)) = 0$. When $\tau \to -\infty$, this equation converges to $P_m(N + \mu\vartheta) = 0$ which has only negative roots. Since $P_m(\vartheta) \neq 0$ is the coefficient of μ^m in our equation, the roots μ depend continuously on τ^{-1} . Hence, all zeros σ of $P(\xi + i\tau N + i\sigma\vartheta)$ must have a positive real part when $\xi \in \mathbb{R}^n$ and $\tau \leq -C_0(1 + |\xi|^{1/d})$. The proof of the theorem is complete.

Theorem 17. P is d-hyperbolic with respect to every $\vartheta \in \Gamma(P, N)$ if P is d-hyperbolic with respect to N.

Proof. Let $\vartheta \in \Gamma(P, N)$ and consider real σ and τ such that $\tau = \varepsilon \sigma$. According to Theorem 16, P is *d*-hyperbolic with respect to $\vartheta + \varepsilon N$ for every $\varepsilon > 0$. Since $\Gamma(P, N)$ is open, $\vartheta - \varepsilon N \in \Gamma(P, N)$ for small $|\varepsilon|$. Hence, for small $\varepsilon > 0$, P is *d*-hyperbolic with respect to $(\vartheta - \varepsilon N) + \varepsilon N = \vartheta$.

Theorem 18. The cone $\Gamma(P, N)$ is convex.

Proof. See the proof of Theorem 5.5.6, p. 134, in Hörmander [1].

We now need the following definitions.

Definitions. Let P_m be a homogeneous polynomial of order m. We set

$$abla^k P_m(\xi) = \sum_{|\alpha|=k} |P_m^{(\alpha)}(\xi)|^2$$

and $V_k = \{\xi; \xi \in \mathbb{R}^n \text{ and } \nabla^k P_m(\xi) = 0\}.$

Euler's theorem for homogeneous polynomials gives that

$$V_0 \supset V_1 \supset \ldots \supset V_m = \phi.$$

Further, $V_k \supset \{0\}$ when k < m. We set

$$s = \inf (j, V_i = \{0\})$$

and call P_m s-singular or singular of order s.

Theorem 19. Let P_m be a homogeneous polynomial of order m which is s-singular and hyperbolic with respect to N. Let further Q be a polynomial of order l < m. Then $P_m + Q$ is d-hyperbolic with respect to N where 1/d + (m-l)/s = 1 with the convention that $d = \infty$ when $1/d \leq 0$.

Proof. We define $|\tilde{P}_m(\zeta)| = (\sum_{\alpha} |P_m^{(\alpha)}(\zeta)|^2)^{1/2}$ and prove first that

$$\left|\tilde{P}_{m}(\xi+iN)\right| \leq C \left|P_{m}(\xi+iN)\right| \tag{19.1}$$

for some constant C when $\xi \in \mathbb{R}^n$. Since $\Gamma(P_m, N)$ is open, the Theorems 17 and 14 imply $P_m(\xi + iN + i\zeta) \neq 0$ for all ξ in \mathbb{R}^n when $|\zeta|$ is smaller than a suitable constant $\varepsilon > 0$. This gives

$$\left|P_m(\xi+iN+i\zeta)\right| \leq 2^m \left|P_m(\xi+iN)\right|$$

when $\xi \in \mathbb{R}^n$ and $|\zeta| < \varepsilon$, so by the Cauchy integral formula we have a constant C such that

$$\left|P_{m}^{(\alpha)}(\xi+iN)\right| \leq C \left|P_{m}(\xi+iN)\right|$$

when $\xi \in \mathbb{R}^n$ (cf. Lemma 4.1.1, p. 99, in Hörmander [1]). This proves the above inequality.

We write $Q = \sum_{j=0}^{l} Q_j$ where Q_j is homogeneous of order j. $|\tilde{P}_m(\xi)|^2$ contains $\nabla^s P_m(\xi)$ which is of order 2(m-s) and elliptic since P_m is s-singular. Hence,

$$|\tilde{Q}_{j}(\xi)|^{2} \leq C |\tilde{P}_{m}(\xi)|^{2} (1+|\xi|^{2})^{j+s-m}, \quad \xi \in \mathbb{R}^{n},$$
(19.2)

for a fixed C > 0. Applying (19.1), (19.2) and the Taylor formula we obtain the existence of two constants C and C' such that

$$egin{aligned} & |Q_j(\xi+iN)|^2 \leqslant C' \, |\, ilde{P}_m(\xi+iN)|^2 \, (1+|\xi+iN|^2)^{j+s-m} \ & \leqslant C \, |\, P_m(\xi+iN)|^2 \, |\, \xi+iN|^{2(j+s-m)} \end{aligned}$$

when $\xi \in \mathbb{R}^n$. The homogeneity implies

$$\begin{aligned} |\tau|^{-j} |Q_j(\tau\xi + i\tau N)| &= |Q_j(\xi + iN)| \leq C |P_m(\xi + iN)| |\xi + iN|^{j+s-m} \\ &= C |\tau|^{-j-s} |P_m(\tau\xi + i\xi N)| |\tau\xi + i\tau N|^{j+s-m}. \end{aligned}$$

Hence,

 $|Q_{j}(\xi+i\tau N)| \leq C|\tau|^{-s} |P_{m}(\xi+i\tau N)| |\xi+i\tau N|^{j+s-m}$

when $\xi \in \mathbb{R}^n$ and $0 \neq \tau \in \mathbb{R}$. This gives

$$|P(\xi+i\tau N) - P_m(\xi+i\tau N)| \leq \sum_{j=0}^l |Q_j(\xi+i\tau N)|$$

$$\leq C|\tau|^{-s} |P_m(\xi+i\tau N)| \sum_{j=0}^l |\xi+i\tau N|^{j+s-m}.$$

If $|\tau| \ge D(1+|\xi|^{1/d})$ where 1/d + (m-l)/s = 1 and D is a sufficiently large constant, we have

$$C|\tau|^{-s}|\xi+i\tau N|^{j+s-m}\leq \frac{1}{2(l+1)}.$$

Hence $\frac{1}{2} \left| P_m(\xi + i\tau N) \right| \leq \left| P(\xi + i\tau N) \right| \leq 2 \left| P_m(\xi + i\tau N) \right|$

for all such τ in R. Since $P_m(\xi + i\tau N) \neq 0$ for $\tau \in R$, the proof is complete.

To be able to prove the converse of this theorem we need the following result. We let [x] stand for the integral part of x.

Theorem 20. Let P be d-hyperbolic with respect to N and set for fixed ξ and ϑ in \mathbb{R}^n

$$\deg_{\tau} P(\tau \xi + \vartheta) = l \quad and \quad \deg_{\tau} P_m(\tau \xi + N) = g.$$

 $l \leq g + \left[\frac{m-g}{d} \right].$

Then

Proof. We consider $P(\tau\xi + \vartheta + \sigma N)$ and give an estimate of deg_{τ} $P(\tau\xi + \vartheta + \sigma N)$ from above for every fixed ϑ in \mathbb{R}^n . We study the zeros σ as functions of τ . If we set $\sigma = \omega \tau$, the equation $P(\tau\xi + \vartheta + \sigma N) = 0$ can be written

$$\tau^{-m}P(\tau\xi + \vartheta + \omega\tau N) = P_m(\xi + \omega N) + Q(\tau^{-1}, \omega) = 0,$$

where $Q(\tau^{-1}, \omega)$ is a polynomial in τ^{-1} and ω which vanishes for $\tau^{-1}=0$. The polynomial $P_m(\xi + \omega N) = \omega^m P_m(\omega^{-1} \xi + N)$ has, according to the assumption, a (m-g)-fold zero $\omega = 0$. Since $P_m(N) \neq 0$, the zeros ω of $P_m(\xi + \omega N) + Q(\tau^{-1}, \omega)$ are bounded when $\tau^{-1} \rightarrow 0$, and m-g of them converge to zero. The Puiseux series expansion of these (m-g) zeros around $\tau^{-1} = 0$ can thus be written

$$\omega(\tau) = \sum_{j=1}^{\infty} c_j \tau^{-j/p}.$$

24	Ĺ
49	t

ARKIV FÖR MATEMATIK. Bd 7 nr 2

Let c_r be the first non-vanishing coefficient. The corresponding zeros $\sigma = \tau \omega$ of $P(\tau \xi + \vartheta + \sigma N)$ then behave asymptotically as $c_r \tau^{(p-r)/p}$ when $\tau^{-1} \to 0$. In particular, the argument of σ tends to arg $c_r + ((p-r)/p)\nu\pi$ when arg $\tau = \nu\pi$ and $\tau^{-1} \to 0$. Since *P* is *d*-hyperbolic with respect to *N*, we also have $|\operatorname{Im} \sigma| \leq C(1 + |\vartheta|^{1/d} + |\tau|^{1/d} |\xi|^{1/d})$ for a fixed *C* when $\tau \in R$. A suitable choice of ν then gives the condition

$$\frac{p-r}{p} \leqslant \frac{1}{d}.$$

Hence, m-g zeros of $P(\tau\xi + \vartheta + \sigma N)$ are $O(|\tau|^{1/d})$ when $|\tau| \to \infty$. For the rest of the zeros we have $O(|\tau|)$ when $|\tau| \to \infty$. The connection between the coefficients and the zeros of our polynomial then implies that the coefficients satisfy $O(|\tau|^{g+(m-g)/d})$ when $|\tau| \to \infty$. Hence,

$$\deg_{\tau} P(\tau\xi + \vartheta + \sigma N) \leq g + \begin{bmatrix} m-g \\ -d \end{bmatrix}.$$

The theorem is proved.

For fixed m and l we define d_s by

$$\frac{1}{d_s} + \frac{m-l}{s} = 1$$

with the convention that $d_s = \infty$ when $m \ge l + s$.

Corollary. Let P_m be a homogeneous polynomial of order m. If $l \ge m-s$ and P_m+Q is d_s -hyperbolic with respect to N for all Q of order $\le l$, then $P_m(\xi + \tau N)$ cannot have more than s coinciding zeros τ for any ξ in \mathbb{R}^n non-proportional to N.

Proof. Assume that the corollary is not true. Then there is t > s such that $P_m(\xi_0 + \tau N)$ has a *t*-fold zero $\tau = 0$ for some $\xi_0 \neq 0$ in \mathbb{R}^n non-proportional to N. This and $l \ge m-s$ gives $\deg_{\tau} P_m(\tau \xi_0 + N) = \deg_{\tau} \tau^m P_m(\xi_0 + \tau^{-1} N) = m - t < l$. Applying Theorem 20 with g = m - t and $d = d_s$, we obtain

$$\deg_{\tau}\left(P_{m}(\tau\xi_{0}+N)+Q(\tau\xi_{0}+N)\right) \leq \left[l-\frac{(t-s)\left(m-l\right)}{s}\right] \leq l-1$$

for every Q of order $\leq l$. Since $\deg_{\tau} P_m(\tau \xi_0 + N) < l$, this implies that $\deg_{\tau} Q(\tau \xi_0 + N) \leq l-1$ for all Q of order $\leq l$ which is a contradiction. The corollary is proved.

We can now give a theorem in the opposite direction to Theorem 19.

Theorem 21. Let P_m be a homogeneous polynomial of order m such that $P_m + Q$ is d_s -hyperbolic with respect to some N for every Q of order $\leq l$. Assume further that there is at least one such Q so that $P_m + Q$ is not d_{s-1} -hyperbolic with respect to N. Then P_m must be s-singular.

Proof. $P_m + Q$ is not d_{s-1} -hyperbolic for every Q of order $\leq l$. Then, Theorem 19 implies that P_m is at least s-singular. But because of $d_s < \infty$, i.e. l > m - s, and the corollary of Theorem 20, P_m can at most be s-singular, so the proof is complete.

Fundamental solutions and the sufficiency of *d*-hyperbolicity

We shall now prove that d-hyperbolicity with respect to N is necessary and sufficient for the existence of a fundamental solution in $G'_0(d)$ if we require the support to be contained in a cone $(x, N) \ge \varepsilon |x|$, $\varepsilon > 0$. As above, let $H = \{x; (x, N) \ge 0\}$.

Theorem 22. Assume that a differential operator P(D) has a fundamental solution E in $G'_0(d)$ with the support in a cone $(x, N) \ge \varepsilon |x|, \varepsilon > 0$. If then $\psi \in G'_0(d)$ and $\operatorname{supp} \psi \subseteq H$, the equation $P(D)\varphi = \psi$ has a unique solution φ with the same properties. When $\psi \in G(d)$, the solution $\varphi \in G(d)$.

Proof. Supp $E \subset \{x; (x, N) \ge \varepsilon |x|\}$ for some $\varepsilon > 0$. Let ψ belong to $G'_0(d)$ or G(d) with the support in H. Then, according to the section on convolutions (p. 3), $E \times \psi$ exists in $G'_0(d)$ respectively G(d) with its support in H. Further, $E \times \psi$ solves the equation $P(D)\varphi = \psi$. This proves the existence. If $P(D)\varphi = 0$ with $\varphi \in G'_0(d)$ and $\operatorname{supp} \varphi \subset H$, $\varphi = \varphi \times P(D)E = P(D)\varphi \times E = 0$. The proof is complete. This gives the uniqueness.

Theorem 23. Let P(D) be a differential operator with a fundamental solution E in $G'_0(d)$ such that the support is contained in a cone $(x, N) \ge \varepsilon |x|, \varepsilon > 0$. Then P is d-hyperbolic with respect to N.

Proof. The theorem is an immediate consequence of the Theorems 11 (p. 10) and 22.

Theorem 24. Let P be d-hyperbolic with respect to N. Then the operator P(D) has one and only one fundamental solution E in $G'_0(d)$ with support in the closed half space H. More precisely, the support of E is contained in the convex cone

$$\Gamma^*(P, N) = \{x; (x, \vartheta) \ge 0 \text{ for every } \vartheta \in \Gamma(P, N)\}$$

but in no smaller convex cone with vertex at 0.

Proof. The uniqueness follows from Theorem 22 when the existence is proved. Let $\vartheta \in \Gamma(P, N)$. Then P is d-hyperbolic with respect to ϑ . If we write

$$P(\xi + i\tau\vartheta) = i^m P_m(\vartheta) \prod_{k=1}^m (\tau - \tau_k(\xi, \vartheta)),$$

we thus have a constant $C(\vartheta) > 0$ such that

$$\operatorname{Re} \tau_k(\xi,\vartheta) \geq -C(\vartheta) \ (1+|\xi|^{1/d}) \ \text{when} \ \xi \in R^n.$$

Specializing τ to $t(1+|\xi|^{1/d})$ with $t \leq -2 C(\vartheta)$ we get

$$\left|P(\xi+i\tau\vartheta)\right| \geq \left|P_m(\vartheta)\right| \left|2^{-1}t\right|^m (1+\left|\xi\right|^{1/d}).$$

For such τ we let $\sigma(\vartheta, t)$ be the surface

$$\begin{split} & (\xi_1 + i\tau\vartheta_1, \, \xi_2 + i\tau\vartheta_2, \, \dots \, \xi_n + i\tau\vartheta_n) \text{ in } C^n. \\ & \left| P(\zeta) \right| \geq \left| P_m(\vartheta) \right| \left| 2^{-1} t \right|^m (1 + \left| \xi \right|^{1/d}) \text{ when } \zeta \in \sigma(\vartheta, t). \end{split}$$

Hence,

We define E on $G_0(d)$ by

$$\check{E}(\varphi) = (2\pi)^{-n} \int_{\sigma(\vartheta, t)} \frac{\hat{\varphi}(\zeta)}{P(\zeta)} d\zeta,$$

where we use the notations $\check{\varphi}(x) = \varphi(-x)$ and $\check{E}(\varphi) = E(\check{\varphi})$. Theorem 7 (7.3) gives to every compact set K in \mathbb{R}^n a constant C such that

$$\left| \hat{\varphi}(\zeta) \right| \leq C \left| \varphi, K \right|_{d, l} \exp\left(t (1 + \left| \xi \right|^{1/d}) S'(\vartheta) - \lambda \left| \xi \right|^{1/d} \right)$$

when supp $\varphi \subset K$ and $\zeta \in \sigma(\vartheta, t)$. Here $\lambda = (\text{ne } l)^{-1/d}$ and $S'(\vartheta) = \inf_{x \in K} (x, \vartheta)$ since t < 0. Our estimates of $\varphi(\zeta)$ and $P(\zeta)$ imply the convergence of the integral and, for fixed t and ϑ , the inequality

$$\left| \tilde{E}(\varphi) \right| \leq C \left| \varphi, K \right|_{d, l},$$

where the constant C only depends on K and $\lambda > t S'(\vartheta)$. Hence, E belongs to G'(d). Because of the estimates and the analyticity of $\hat{\varphi}(\zeta)$ and $1/P(\zeta)$ in the considered regions of C^n , we also have that the integral is independent of ϑ and $t \leq -2 C(\vartheta)$ when $\vartheta \in \Gamma(P, N)$. Further,

$$\check{E}(P(D)\,\varphi) = (2\pi)^{-n} \int_{\sigma(\vartheta,\,t)} \frac{P(\zeta)\,\hat{\varphi}(\zeta)}{P(\zeta)}\,d\zeta = (2\pi)^{-n} \int_{\mathbb{R}^n} \hat{\varphi}(\xi)\,d\xi = \varphi(0).$$

Consequently, $P(D)E = \delta$.

Now it only remains to localize the support of E. If $\sup \varphi \subseteq \{x; (x, \vartheta) > 0\}$, we have $S'(\vartheta) > 0$. The estimates of $P(\zeta)$ and $\hat{\varphi}(\zeta)$ then give for l > 0

$$\left|\check{E}(\varphi)\right| \leq C \left|\varphi, K\right|_{d,l} \left|t\right|^{-m} e^{tS'(\vartheta)} \int_{\sigma(\vartheta, t)} \exp\left(-\lambda \left|\xi\right|^{1/d}\right) \left|d\zeta\right| \to 0$$

when $\vartheta \in \Gamma(P, N)$ and $t \to -\infty$. Hence, $\check{E}(\varphi) = 0$ when $\sup \varphi \subset \{x; (x, \vartheta) > 0\}$, i.e. $\sup p E \subset \{x; (x, \vartheta) \ge 0\}$ when $\vartheta \in \Gamma(P, N)$. This proves that $\sup p E \subset \Gamma^*(P, N)$. Let finally K be a closed convex cone with vertex at 0 and containing the support of the constructed fundamental solution. According to Theorem 23, all proper planes $(x, \theta) = 0$ of support of K must then be non-characteristic, i.e. $P_m(\theta) = 0$. The open convex set

$$K^* = \{\vartheta; (x, \vartheta) > 0, \text{ for every } x \neq 0 \text{ in } K\},\$$

containing N, is thus contained in $\{\vartheta; P_m(\vartheta) \neq 0\}$, which gives that $K^* \subset \Gamma(P, N)$. Hence $K \supset \Gamma^*(P, N)$ and the proof is complete.

(The rest of this paper from here on has been added to proof as a partly rewritten MS, presented to the academy on 16 August 1966. Editor.)

If P is d-hyperbolic with respect to N, we can, according to the Theorems 24 and 22, solve $P(D)\varphi = f$ uniquely in $\overline{G_0(d, H)}$ for every $f \in \overline{G_0(d, H)}$. Theorem 10 states the reverse implication, so d-hyperbolicity with respect to N is both necessary and sufficient for the unique solvability of $P(D)\varphi = f$ in $\overline{G_0(d, H)}$.

We can now go a step further and consider the following Cauchy problem where P is of order m and D_N denotes derivation along N:

$$\begin{cases} P(D) \varphi = f \\ D_N^j \varphi = g_j \text{ for } (x, N) = 0 \text{ and } \theta \leq j < m, \end{cases}$$

when f and $\{g_j\}_{j=0}^{m-1} \in G(d)$.

In order to solve this problem we first prove the following theorem (cf. Hörmander [1], p. 149). Choosing N = (1, 0, ..., 0) we write

$$D = \left(\frac{1}{i} \frac{\partial}{\partial x_1}, \frac{1}{i} \frac{\partial}{\partial x_2}, \dots \frac{1}{i} \frac{\partial}{\partial x_n}\right) = (D_1, D')$$

and $\zeta = (\zeta_1, \zeta_2, \dots, \zeta_n) = (\xi_1 + i\eta_1, \xi_2 + i\eta_2, \dots, \xi_n + i\eta_n) = (\zeta_1^0, \zeta') = (\xi_1 + i\eta_1, \xi'_1 + i\eta').$

Hence, $P(D) = P(D_1, D')$ and $P(\zeta) = P(\zeta_1, \zeta')$. Further, we set $T(\varphi) = (T, \varphi)$ when $T \in G'_0(d)$ and $\varphi \in G_0(d)$.

Theorem 25. Let P be of order m and d-hyperbolic with respect to N = (1, 0, ..., 0). Then, when $0 \le k \le m$ and $x_1 \in R$, there is a unique $H_k(x_1) \in G'(d, R^{n-1})$ such that

$$D_1^j H_k(x_1) \in G'(d, \mathbb{R}^{n-1})$$
 for every integer $j \ge 0$,
 $P(D_1, D') H_k(x_1) = 0$, $D_1^j H_k(0) = 0$ when $k \neq j \le m$,
and $D_1^k H_k(0) = \delta$ where δ is the Dirac measure.

Further, $(H_k(x_1), \varphi) \in G(d, R)$ when $\varphi \in G(d, R^{n-1})$, and $(x_1^0, \operatorname{supp} H_k(x_1^0)) \subset \operatorname{supp} E$ $\cap \{x; x_1 = x_1^0\}$ for $x_1^0 \ge 0$ where E is the fundamental solution in Theorem 24.

Proof. We write
$$P(\zeta) = P(\zeta_1, \zeta') = \sum_{j=0}^m \zeta_1^{m-j} q_j(\zeta')$$

and define

$$p_k(\zeta_1, \zeta') = \sum_{j=0}^k \zeta_1^{k-j} q_j(\zeta').$$

Let Γ be a simple, positively oriented curve which for fixed ζ' surrounds the zeros ζ_1 of $P(\zeta_1, \zeta')$. We consider

$$\hat{H}_{k}(x_{1},\zeta') = (2\pi i)^{-1} \int_{\Gamma} e^{i\zeta_{1}x_{1}} p_{m-1-k}(\zeta_{1},\zeta') / P(\zeta_{1},\zeta') d\zeta_{1}.$$
$$D_{1}^{j} \hat{H}_{k}(x_{1},\zeta') = (2\pi i)^{-1} \int_{\Gamma} e^{i\zeta_{1}x_{1}} (\zeta_{1})^{j} p_{m-1-k}(\zeta_{1},\zeta') / P(\zeta_{1},\zeta') d\zeta_{1}.$$

Then

is an entire function of $\zeta' = (\zeta_2, ..., \zeta_n)$ for every $x_1 \in R$ and every integer $j \ge 0$. According to Lemma 1 and the Theorems 8 and 12, respectively,

$$|\zeta_1| \leq C(1 + |\zeta'|)$$
 and
 $|\eta_1| \leq C(1 + |\eta'| + |\xi'|^{1/d} + |\xi_1|^{1/d})$

 \mathbf{q}_{i}

for a constant C when $P(\zeta_1, \zeta') = 0$. In order to estimate $D_1^j H_k(x_1, \zeta')$ we can then choose Γ as the rectangle defined by

$$|\xi_1| = C(1 + |\zeta'|); \ |\eta_1| = C(1 + |\eta'_2| + |\xi'|^{1/d})$$

 $\mathbf{28}$

ARKIV FÖR MATEMATIK. Bd 7 nr 2

where C is a suitable constant. Since $|p_{m-1-k}(\zeta_1, \zeta')|$ is majorized by a constant times $(1+|\zeta'|)^{m-1-k}$, and both $|\zeta_1|$ and the length of Γ by a constant times $(1+|\zeta'|)$, we get

$$|D_1^j \hat{H}_k(x_1, \zeta')| \leq C^{j+1} (1 + |\zeta'|)^{m-k+j} \exp(C|x_1| (1 + |\eta'| + |\xi'|^{1/d}))$$

$$\sup j^{-jd} |D_1^j \hat{H}_k(x_1, \zeta')| \leq \exp C(1 + |x_1|) (1 + |\eta'| + |\xi'|^{1/d})$$

and

for some constants C. Hence, because of Theorem 7, $\hat{H}_k(x_1, \zeta')$ is the Fourier-Laplace transform of an element $H_k(x_1) \in G'(d, \mathbb{R}^{n-1})$ given by

$$(H_k(x_1), \varphi) = (2\pi)^{-n+1} \int \hat{H}_k(x_1, \xi') \,\hat{\varphi}(-\xi') \,d\xi'$$

when $\varphi \in G_0(d, \mathbb{R}^{n-1})$. We define $(D_1^j H_k(x_1), \varphi) = D_1^j(H_k(x_1), \varphi)$. Our estimates imply

$$D_1^j(H_k(x_1), \varphi) = (2\pi)^{-n+1} \int D_1^j \hat{H}_k(x_1, \xi') \hat{\varphi}(-\xi') d\xi'$$

and $(H_k(x_1), \varphi) \in G(d, R)$. Hence $D_1^j H_k(x_1) \in G'(d, R^{n-1})$ and $[D_1^j H_k(x_1)]^{\uparrow}(\zeta') = D_1^j \hat{H}_k(x_1, \zeta')$. Further,

$$P(D_1,\xi')\,\hat{H}_k(x_1,\xi') = (2\pi i)^{-1} \int_{\Gamma} e^{i\zeta_1 x_1} p_{m-1-k}(\zeta_1,\xi')\,d\zeta_1 = 0$$

since the integrand is analytic. This means that $P(D_1, D')H_k(x_1) = 0$.

For the proof of $D_1^k H_k(0) = \delta$ and $D_1^j H_k(0) = 0$ when $k \neq j \leq m$, we use that

$$D_1^j \hat{H}_k(0,\zeta') = (2\pi i)^{-1} \int_{\Gamma} \zeta_1^j p_{m-1-k}(\zeta_1,\zeta') / P(\zeta_1,\zeta') \, d\zeta_1.$$

The integrand is

$$\zeta_1^{j} p_{m-1-k}(\zeta_1,\zeta') / P(\zeta_1,\zeta') = \zeta_1^{j-k-1} + \zeta_1^{j-k-1}(\zeta_1^{k+1} p_{m-1-k}(\zeta_1,\zeta') - P(\zeta_1,\zeta')) / P(\zeta_1,\zeta').$$

The degree of ζ_1 in the numerator of the second term is majorized by j-k-1+k=j-1, hence by m-2 when j < m. Since the degree of ζ_1 in the denominator $P(\zeta_1, \zeta')$ is m, we get

$$D_1^j \hat{H}_k(0,\,\zeta') = (2\pi i)^{-1} \int_{\gamma} \zeta_1^{j-k-1} d\zeta_1 \,\,\, ext{for} \,\,\, 0 \! \leqslant \! j \! < \! m,$$

where γ is a positively oriented circle surrounding the origin. Consequently, $D_1^k H_k(0) = \delta$ and $D_1^j H_k(0) = 0$ when $k \neq j \leq m$.

Finally we localize the support of $H_k(x_1^0)$. Let $\varphi \in G_0(d, \mathbb{R}^{n-1})$ with $(x_1^0, \operatorname{supp} \varphi) \cap$ supp $E = \phi$ and take $\psi \in G_0(d, \mathbb{R})$ satisfying supp $\psi \subset [-1, 1]$ and $\int \psi(x) dx = 1$. We set

$$\chi_{\varepsilon}(x_1, x_2, \dots x_n) = \chi_{\varepsilon}(x_1, x') = \varepsilon^{-1} \psi(\varepsilon^{-1}(x_1 - x_1^0)) \varphi(x')$$

Then, $\hat{\chi}_{\varepsilon}(\zeta) = \hat{\chi}_{\varepsilon}(\zeta_1, \zeta') = e^{-i\zeta_1 x_1^{\varrho}} \hat{\psi}(\varepsilon\zeta_1) \hat{\psi}(\zeta')$ and $\operatorname{supp} \chi_{\varepsilon} \cap \operatorname{supp} E = \phi$ when $\varepsilon > 0$ is small enough. Hence, for such ε

$$0 = E(p_{m-1-k}(-D_1, -D')\chi_{\varepsilon})$$

= $(2\pi)^{-n} \int_{\sigma(N,t)} e^{i\zeta_1 x_1^0} p_{m-1-k}(\zeta_1, \zeta') \hat{\psi}(-\varepsilon\zeta_1) \hat{\varphi}(-\zeta')/P(\zeta_1, \zeta') d\zeta$

where $\sigma(N, t)$ is the surface

$$(\xi_1 + it(1 + |\xi_1|^{1/d} + |\xi'|^{1/d}), \xi_2, \dots, \xi_n)$$
 with $t \leq -C(N) < 0$

(see the definition of E in Theorem 24). From Theorem 7 we know that to every $\lambda > 0$ there is a constant C_{λ} such that

$$\left|e^{i\zeta_1 x_1^0} \hat{\psi}(-\varepsilon \zeta_1)\right| \leq C_{\lambda} \exp\left(-\eta_1 x_1^0 + \varepsilon \left|\eta_1\right| - \lambda \left|\varepsilon \xi_1\right|^{1/d}\right).$$

Integrating first with respect to ξ_1 for fixed ξ' , this estimate and the analyticity of the integrand implies that the integration path

$$(\xi_1 + it(1 + |\xi_1|^{1/d} + |\xi'|^{1/d}), \xi_2, \dots, \xi_n), t \leq -C(N) < 0,$$

can be deformed to a positively oriented circle Γ surrounding the zeros ζ_1 of $P(\zeta_1, \xi')$ when $0 < \varepsilon < x_1^0$. Then, letting $\varepsilon \to +0$ we get

$$0 = (2\pi)^{-n} \iint_{\mathbb{R}^{n-1}\Gamma} e^{i\zeta_1 x_1^n} p_{m-1-k}(\zeta_1, \xi') \hat{\varphi}(-\xi') / P(\zeta_1, \xi') d\zeta_1 d\xi'$$

= $i(H_k(x_1^0), \varphi)$ for $x_1^0 > 0.$

Hence, $(x_1^0, \text{ supp } H_k(x_1^0)) \subset \text{ supp } E \cap \{x; x_1 = x_1^0\}$ when $x_1^0 > 0$. Since this is trivial for $x_1^0 = 0$, the proof of the existence is complete. The uniqueness is proved in the following theorem.

We can now turn to our general Cauchy problem.

Theorem 26. Let P be of order m and d-hyperbolic with respect to N = (1, 0, ..., 0). Then the Cauchy problem

$$\begin{cases} P(D_1, D') \varphi(x_1, x') = f(x_1, x') \\ D_1^j \varphi(0, x') = g_j(x'), & 0 \le j < m \end{cases}$$

has a unique solution $\varphi \in G(d, \mathbb{R}^n)$ when $f \in G(d, \mathbb{R}^n)$ and $\{g_j\}_{j=0}^{m-1} \in G(d, \mathbb{R}^{n-1})$.

Proof. Because of Theorem 24, $P(D) = P(D_1, D')$ has a unique fundamental solution E_1 with the support in $\{x; x_1 \ge 0\}$. Let E_2 be the corresponding fundamental solution supported by $\{x; x_1 \le 0\}$ and write $f = f_1 + f_2$ where supp $f_1 \subset \{x; x_1 \ge -1\}$, supp $f_2 \subset \{x; x_1 \le 1\}$ and $f_1, f_2 \in G(d, \mathbb{R}^n)$. Set $(E_1 \times f_1)(x_1, x') + (E_2 \times f_2)(x_1, x') = v(x_1, x')$. We apply Theorem 25 and the notations there. Writing

$$(H_k(x_1), \psi) = \int_{R^{n-1}} H_k(x_1, x') \, \psi(x') \, dx'$$

we then have that

$$\varphi(x_1, x') = \sum_{k=0}^{m-1} \int H_k(x_1, y') \left(g_k(x' - y') - D_1^k v(0, x' - y') \right) dy' + v(x_1, x')$$

belongs to $G(d, \mathbb{R}^n)$ and solves the given problem.

In order to prove the uniqueness let

$$\begin{cases} P(D_1, D') L(x_1) = 0 \\ D_1^j L(0) = 0, \quad 0 \leq j < m, \end{cases}$$

where $D_1^j L(x_1) \in G_0'(d, \mathbb{R}^{n-1})$ and $(L(x_1), \varphi) \in G(d, \mathbb{R})$ for $\varphi \in G_0(d, \mathbb{R}^{n-1})$.

Then,

$$\begin{cases}
P(D_1, D') L(x_1) \neq \varphi = 0 \\
D_1^j L(0) \neq \varphi = 0, \quad 0 \leq j < m,
\end{cases}$$

when $\varphi \in G_0(d, \mathbb{R}^{n-1})$. Since $P_m(N) \neq 0$, this implies that $D_1^i L(0) \neq \varphi = 0$ for every integer $j \geq 0$. Hence, $L(x_1) \neq \varphi = g_1 + g_2$ where $\operatorname{supp} g_1 \subset \{x; x_1 \geq 0\}$, $\operatorname{supp} g_2 \subset \{x; x_1 \leq 0\}$ and $g_1, g_2 \in G(d, \mathbb{R}^n)$. Then, $g_i = g_i \neq \delta = g_i \neq P(D) E_i = P(D) g_i \neq E_i = 0, i = 1, 2$. Consequently, $L(x_1) = 0$. The proof is complete.

According to Theorem 26 and the remark on p. 9, we know that a solution of the above Cauchy problem is unique if and only if the plane (x, N) = 0 carrying the data is non-characteristic, i.e. $P_m(N) \neq 0$. The following theorem shows that it is in this case rather natural to restrict oneself to the function spaces G(d) where $d \ge 1$ is rational. However, some of the theorems can be refined when we have more precise estimates of the zeros τ of $P(\xi + i\tau N)$.

Theorem 27. Let $P_m(N) \neq 0$ and let $\{\tau_j(\xi)\}_{j=1}^m$ be the zeros of $P(\xi + i\tau N)$ when $\xi \in \mathbb{R}^n$. Define

$$\pi(r) = \sup_{|\xi|=r} \max_{1 \leqslant j \leqslant m} \operatorname{Re} \tau_j(\xi).$$

Then the function π is piece-wise algebraic and there are rational and real constants, $h \leq 1$ and C respectively, such that

$$\pi(r) = Cr^{h}(1+o(1))$$
 when $r \to \infty$.

Proof. We refer to the proof of Theorem 4.3, p. 114 in Gorin [1].

Institute of Mathematics, Lund, Sweden

REFERENCES

BEURLING, A. [1], On quasi-analyticity and general distributions. Lectures 4 and 5. A.M.S. Summer Institute, Stanford, 1961 (mimeographed).

GELFAND, I. M. and SHILOV, G. E. [1], Verallgemeinerte Funktionen II. VEB Deutscher Verlag der Wissenschaften. Berlin 1962.

GEVREY, M. [1], Sur la nature analytique des solutions des équations aux dérivées partielles. Ann. Éc. Norm. Sup. (3) 35 (1918), pp. 127–190.

GÅRDING, L. [1], Linear hyperbolic partial differential equations with constant coefficients. Acta Math. 85 (1950), pp. 1–62.

GORIN, E. A. [1], Asymptotic properties of polynomials and algebraic functions of several varia-bles. Uspehi Mat. Nauk (N. S.) 16, No. 1 (1961), pp. 93–119. (Russian; English translation in Russian Mathematical Surveys.)

HÖBMANDER, L. [1], Linear partial differential operators. Springer-Verlag 1963.
ROUMIEU, M. C. [1], Sur quelques extensions de la notion de distribution. Ann. Éc. Norm. Sup.
(3) 77 (1960), pp. 41-121.

SCHWARTZ, L. [1], Théorie des distributions I-II. Paris 1950-51.

Tryckt den 16 mars 1967

Uppsala 1967. Almqvist & Wiksells Boktryckeri AB