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Generalized hyperbolicity 

B y  ERIC LARSSOr~ 

Introduction 
n t 

Let x = (xl, x 2 .... xn) be coordinates in R ~ with the scalar product (x, x') = ~j-1 xjx~ 
and the norm I xl .  We define 

~Z 1' i ~X 2' "'' ~ ~X n ' ak::t:O ~xk] a n d  [a[ = k=l ~ ~ k ,  

where g = (~1, ~2 .... ~n) is a multiindex with non-negative integer components. As in 
Schwartz [1], let E(O) be the Frdchet space of all infinitely differentiable functions 
on the open non-empty set O~  R n topologized by  the semi-norms sup~K [ D ~ ( x )  l, 
where K is compact in O. A complex polynomial P is called hyperbolic with respect to 
-NER n if P(D) has a fundamental  solution, locally in the dual space ~'(R~), with 
support  in a cone (x, N)>~elxl, e>0 .  Let  P~ be the principal par t  of P. Then, ac- 
cording to Ghrding [1], P is hyperbolic with respect to N if and only if there is a 
constant C such that  P~(N) ~= 0 and P(~ + i~N) ~ 0 when ~ E R n and T ~< - C. We shall 
here investigate hyperbolicity in other suitable distribution spaces. 

For fixed d > 1 we consider in ~(0) the quasi-norms 

[% K]d.l = sup l -I~l [~[-I~ld [D~v(x)], 
at 

X E K  

w h e r e / > 0  and K is compact in O. Set 

G(d, O) = {~; 1% gld.~ < ~  for every / > 0  and every compact g c o }  

topologized by  the semi-norms I% KId. l (cf. H6rmander  [1], p. 146). We observe 
some simple properties of G(d, O) and related spaces. For instance, G(d, O) is a 
Fr~ehet space and it contains non-vanishing functions with compact support  exactly 
when d > 1. Let H be the half space (x, N) ~> 0 and denote by  Go(d, H) the subspace 
of all functions in G(d, R n) supported by  H. We prove tha t  the mapping 

P(D): G0(d, H) ---> Go(d, H) 

is injective and has a continuous inverse if and only if there is a constant C such tha t  
P m ( N ) 4 0  and P(~+ivN)40 when ~ER ~ and T ~ < - C ( I +  I~ll/a). This is also the 
precise condition for the existence of a fundamental  solution of P(D), locally in the 
dual space G'(d, Rn), with support  in a cone (x, N)~>elx I , e > 0 .  We call such poly- 
nomials d-hyperbolic with respect to 2V. When d = c~, we get formally the hyperbolic 
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case and generally, the theory of d-hyperbolic polynomials parallels that  of hyperbolic 
polynomials. For instance, if P is d-hyperbolic with respect to N, then P is also d- 
hyperbolic with respect to every N' in the open cone F which is the largest connected 
N-component  of {~; Pm(~) =4= 0 ). The above fundamental  solution of P(D) is supported 
by  the dual cone of F. Further,  if ~ E R ~, then Pm(~ +TN) has only real zeros ~ when 
P is d-hyperbolic with respect to N. A special feature of d-hyperbolicity is tha t  
Pm(~+~N) has at  most a s-fold zero T for ~ non-proportional to N if and only if 
Pm+ Q is d-hyperbolic with respect to N for all Q of order ~< 1 where 1/d + (ra - l ) / s  = 1. 

The presentation mainly follows HSrmander [1] which we often refer to. 

The generalized distribution spaces 1 

We use the notations E(O), D ~ and a s  in the introduction. For fixed d >/0 
we consider in E(O) the quasi-norms 

I% Kid., = sup  1 ~' I~<1 -': 'a ID='~(x)I, 
X E K  

where l > 0 and K is compact in O. They are continuous from below, i.e. 

~ s ~  in ~(0)=~l imlq~ s, KI,~,~>~I% Kla,,, 

and they have a countable basis obtained by taking sequences I k ~ 0 and K k S 0. 

Definition 1. Let G(d, O) be the space 

{~; ]% gia .z  < ~ for every l > 0  and every compact g c  O} 

with the topology given by  the quasi-norms ]~, K la" t. Let  further 

Go(d, O) = [.J Go(d, K) 
KcO 

be the inductive limit of all 

G0(d, K) = {~; ~ea(d ,  0), supp ~ c K } ,  

where K is compact in 0 and Go(d, K) is topologized by  our quasi-norms 1% K ia.z- 
If  0 = R n we omit R n and write G(d) and Go(d ) respectively. 

Clearly, G(1, O) is the set of all entire analytic functions on C n and G(dl, O ) c  
G(d2, O) if and only if d 1 ~< d 2. Thus Go(d, O) only contains the null funct ion for 
d ~ 1. When d > 1, we have the following theorem. 

Theorem 1. I ]d  > 1,there exist ]unctions q9 E Go(d, O) with the support in an arbitrarily 
given open set o] 0 such that q~>~ 0 and S cf(x)dx = 1. G(d, O) and G0(d, O) are algebras 
under pointwise multiplication. 

Proo]. The existence par t  of the theorem is a consequence of the Denjoy-Carleman 
theorem. For a direct proof see Lemma 5.7.1, p. 146 in HSrmander [1]. 

In  the following we only consider d > 1. 

1 Cf. for instance the spaces in Beurling [1], Gelfand-Shilov [1] and Roumieu [1]. Se also 
Gevrey [1]. 
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We observe that  G(d, O)is a Frdehet space. In  fact, the quasi-norms 1% K [ ~. z have 
a countable basis and every Cauchy sequence {9~j}~1 in G(d, O) has a limit ~0 in 
E(0) which belongs to G(d, O) since 

Kla., lira l % -  ~k, Kk,. 
k--> OO 

The quasi-norms ~ cj ]q), K~+l N C Kj[a.z, 
; ; = 1  

where {cs}~x is an arbi t rary sequence of positive numbers and K j S O ,  define the 
topology of Go(d, 0). 

G(d, O) and G0(d, O) have properties analogous to the spaces E(O) and O(O) in 
Schwartz [1]. In  this connection it is even natural  to write E ( O ) = G ( ~ ,  O) and 
O(O)=Go(~ ,  0). The dual spaces G'(d, O) and Go(d, O) are considered under the 
weak and strong topology. They are analogous to the Schwartz spaces ~ ' (0)  and 
~ ' ( 0 )  respectively. For instance, G'(d, O) is the set of all elements in Go(d, O) which 
have compact support  in O. Further,  a sequence ( ~ ) ~ 1  converges to 0 in G0(d, O) 
if and only if [.J, supp q% is contained in a fixed compact set K c O  and ~ , -~0  in 
G0(d, K). From the general theory of topological spaces we know tha t  a linear form T 
on Go(d, O) is continuous precisely when T is continuous on Go(d, K) for every compact 
K in O. This implies that  a linear form T on Go(d , O) is contained in Go(d, O) if and 
only if T(~%) ~ 0 for every sequence (~)~=1 which tends to 0 in Go(d, 0). Another 
consequence is 

Theorem 2. A linear/orm T on Go(d, O) belongs to Go(d, O) i /and  only i/ to every 
compact set K c 0 there are constants I and C > 0 that such 

[ T(~)[ ~< C[% K[~.t when qp6Go(d, K). 

Mainly according to this theorem and Hahn-Banach,  T 6 Go(d, O) exactly when 
T = ~ D ~ p ~  where/z~ are measures on 0 satisfying (J'K [d/~ [)1/1~1 = 0(] ~ I-d) for every 
compact K ~ O. 

Convolutions. To be able to work with convolutions we give some definitions and 
theorems, well-known in the Schwartz case. We write 

A (+_~B={x(+_~y; x6A ,  y6B},  where A and B are sets in R ~. 

De/inition 2. Let T 6 Go (d) and ~ 6 G(d) with supp T f] (K-supp ~) compact for 
every compact set K. We then define 

(T~q~) (x) = Ty(q~(x-y)) = T~(g(y)q~(x-y)), 

where z6Go(d) and X ~ I  on a neighborhood of supp T (] (x-supp ~). 
I t  is immediate that  the definition is independent of 2~. I f  we write ~ ( x - y )  = ~ ( y ) ,  

we have 
(T~r (x) = T(X~) = T (~ ) .  

The requirements of the definition are fulfilled, for instance, when T 6 Go(d), q~ 6 G(d) 
and supp T, supp ~ c  {x; (x, N) ~>0} with one of the supports in a cone (x, N)~>~]z[ 
where e > 0. 
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Theorem 3. Let T and q~ have the properties stated in De/init ion 2. Then D:( T +eqJ) = 

(D= T) ++ + = T ++ D ~ ~ and supp T ++ + ~ supp T + supp ~. Further, T ++ q~ belongs to 
G(d) and T-)+ q~ --+ T ++ q~ in G(d) when q~v -+q~ in G(d) and [.J v (supp T N [K - s u p p  ~0~]) 
is bounded/or every bounded K .  

Proo[. We consider first D:(T-)eq~)=(D:T)+ecf=T-)eD:qJ  where D : T ,  defined 
1 

by  D:T(q~) = ( - 1)I:IT(D ~ q~), belongs to G'(d). Set D~ i ~x~" I t  is enough to prove 

tha t  D~( T-)e q~) = T + D~% 

Let  e be the uni t  vector  along the x~-axis. 

(1 ) 
D k ( T  +ecf) (x )=  lim T ~[+x+he--+x] �9 

h-->O 

Now 1/ih [~x+he - ~x] tends to (Dkq)~ in G(d) for the mean  value theorem implies 

[/h[~%+h _ ~  1 ~ ~]_ (Dkq~)~ ,gd  <~lhli(D~qj)~,g'ia,~ 

when 0 #  h ~<1 and K '  = K -  {t e; Itl <1}.  Since supp T N supp [~%+he-~x] is com- 
pact  when h ~< 1, this gives 

Dk(T+q~) = T +  Dkq). 

In  order to prove tha t  T + q~ E G(d), take an arbi t rary  compact  set K and choose X in 
Go(d ) so tha t  Z ~  1 in a neighborhood of supp T N [K - s u p p ~ ] .  We write supp Z = K  0. 
F rom Theorem 2 we then obtain  constants  l o and C o such tha t  

I (T + V) (x)[ = I T(z~x) I < Co I Z~,, Kola, to 

when x EK. This implies 

I D= (T-)e q~) (x) l = I T(Z(D~'q~) x)l 4 C O I)~(D ~ q~)~, K o Id.zo 

4 Coll~l [ali~ld [l-I~l ]al-I=ld Z(D~v)I,  K0ld.l . 

< C6/i:l I~l I:i~ I~x, K01d.z" 

for all x E K where l' = 2 -1 e -d rain (1, 10). Hence T +<- + E G(d). The same estimate gives 
also tha t  T ++ ~ , - ~ T  ++~ in G(d) when +~-+~ in G(d) and U :  [supp T N ( K -  supp ~ ) ]  
is bounded for every compact  K. Final ly it remains to localize the support  of T ~- +. 
( T + + )  ( x ) # 0  only if supp T meets supp ~:, i.e. only if there is y E s u p p T  such 
tha t  x - y  E supp % which means tha t  x E supp T + supp ~. The proof is complete. 

The following three theorems are easy generalizations of theorems for ~ '  (cf. 
HSrmander  [1], pp. 14-17). We omit  the proofs. �9 

Theorem 4. Let T and qJ have the properties in De/inition 2 above and let ~p E Go(d). 
Then 

( T ++ ~ ) ++ ~o = T ++ ( ~ ++ ~o ) = ( T ++ ~o ) ++% 

Theorem 5. Let V be a linear mapp ing / rom Go(d ) to G(d) which commutes with trans: 
lations and is continuous in the sense that Vq~ s --+0 in G(d) i/(q~s)~l tends to 0 in Go(d). 
Then there is one and only one T E Go (d) such that Vcf = T ++ q~ when q) E Go(d ). 
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Let now T 1 and T~ belong to G~(d) with supp T 1 0 ( K - s u p p  Tz) compact for 
every compact K. Then, according to Theorem 3, 

Go(d ) ~ q~ ~ T 1 + ( T 2 + q~) E G(d) 

satisfies the requirements of Theorem 5. Hence, there is a unique distribution T in 
Go(d) such that  

TI+(T~+q~  ) = T+q~. 

We use this for the definition of the convolution T1 + T2. 

De/inition 3. The convolution T of two distributions T 1 and T~ in Go(d) with 
supp T 1 N ( K -  supp T~) compact for every compact K is defined by 

T I +  (T2+~) = T + ~  
and denoted by T 1 + T 2. 

I f  TaEG'(d), we can define ( T I +  T~)+ T a and T1-X- (T2-)(- Ta). We obtain 

( TI  + T2) + T 3 = TI  + ( T2 + Ta). 

Finally we note that our results give 

Theorem 6. Let T 1 and T 2 have the properties in De/init ion 3. Then T l + T 2 = T2 + T1 
and supp T 1 * T u c supp T 1 + supp T~. 

Clearly, D ~ T  = (D~(~)+ T where ~ is the Dirac measure. Together with the associa- 
t ivity and the eommutativity of the convolution this implies 

D ~ (T1 + T2) = (D ~ T1) + T2 = T1 + D ~ T2. 

Fourier-Laplace trans/orms. We are also interested in the Fourier-Laplace trans- 
form of the elements in Go(d ) and G'(d). For ~C C ~ we write ~ = ~ + i ~ ,  where ~ and 
~] E R ~, and 

= d x ,  

where x~=~.~=l xk $k. Further, we use the notation 

= f l++ l  

We have the following characterization (of. HSrmander [1], p. 21 and p. 147). 

Theorem 7. Let ~p be an entire analy t ic /unct ion and K a closed convex set in R ~. 
Define S(~/)=sup:~K (x, ~). Then, r is the Four ier -Lap~ee  trans]orm o] a /unc t ion  
in Go(d ) with support in K i/ and only { / to  every real number ~ there is a constant C~ 
such that 

](YP(~)I ~<C~ exp (S(~)-)~l~[1/a). (7.1) 
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Further, �9 is the Fourier-Lal~lace trans/orm o/an element in G'(d) with support in 
K i /and  only i / /or  some constant ~o there is to every e > 0 a constant C, such that 

Ir <c~ exp (s(~)+~1~1 +~0[~1"% (7.2) 

Proo/. Let  ~ E Go(d, K). I t  is clear that  r is entire analytic. Obviously, 

~r = f e-~ D~cf(x) dx 

implies ]~] I~(~)] ~< CeS(')ll~l ]~11~1~ sup l I~f ]~l-I~ld ]D~qg(x)[ 
x f i  K 

~t 

so that I~1~1r < C1% K l~., (n~y ~e~(~), 

where C is the measure of K. Hence 

[r < c l %  Kl~,,(nZ ka]$l-lY e~(')" 

Let k be the largest integer ~< ]~] i/~(nel) -lId. Then, 

Ir ~<c1% Kl~., e -~ e ~('). 

Because k > ]~]lla(nel)-lm - 1, we obtain 

I~(~)1 <ee l% KI~.~ exp (S(~)-~l~l'~), (7.3) 

where X = (nel) -lm. This proves the necessity of (7.1). In particular we observe that  

I~l~<c'[% KI~.,, (7.4) 

where ~ = (nel) -1/a - 1  and C' only depends on the measure of K. 
We turn to the sufficiency of (7.2). Suppose that  the entire function (I) satisfies 

this inequality. Consider the linear form 

T(q) = r ~) d~ (7.5) 

on Go(d ). Because of (7.2), (7.4) and Theorem 2, T belongs to Go(d). Set K~ = K +  
{x; [xl <~s} and consider xo~.K ~. We can choose a > 0  and v e R  ~ such that  v =1 and 
K~ is contained in (x-x0,  v) ~< - 2 a .  Let  of EGo(d, O) where O= {x; ] x - x  0 <a}.  Ac- 
cording to (7.3), (7.2) and the analyticity, we can shift the integration of (7.5) into 
the complex domain which gives 

= ( 2 ~ ) - " f o ( ~  + i~) r - ~  - i~) d~, T(~) 

where ~ is arbitrarily fixed in R ~. Thus, 

G.~ exp (s(~) + (a + ~)I~1- (~o, @fP'-~)  l~ll/'~ d~" 
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In particular, for 2 > 20 and ~ = vt we Qbtain 

I T(q~)l <~ C e -at ~ 0 when t-+ + cr 

Hence supp T c K ~  for every e >0  which implies supp T c K .  I t  is also easily seen 
that  Tx(e-*Zr so (7.2)is sufficient. 

For the proof of the necessity of (7.2), assume that  TEGo(d) with supp T c K .  
Take yJ in G0(d, 0) so that  ~o~ 1 on K~/2 and supp ~oc J~. According to Theorem 2 we 
have 

] T~ (e-~Zr ] = ] Tx (~p(x) e-~Xr <~ C ie-~Xr g~ [~,z 

for some I and C. This gives (7.2). Since ~ = 0  ( -ix$)k/k! tends to e -*xr in G(d, R~), it is 
also clear that  T,  (e -**r is entire analytic. 

Finally we have to prove that  (7.1) is sufficient. The sufficiency of (7.2) implies 
that  every entire function O, which satisfies (7.1), is the Fourier-Laplace transform 
of a T in G'(d, R =) with support in K. From (7.5) it follows that  T is the infinitely 
differentiable function 

(2~r)-~jO(~) e ~ d~. 

According to the assumption, ] T ]~ < oo for every ~. Further,  

(2:~)-"f I ~11 ~'(~) I d~ < (2st)-n I TI~ sup (1~1 ~ exp ( - z  I~l TM) ID~T(~)I 

when l = dd(2e) -d. This implies 

IT, KI~ ' , <(2~)-~ I Tlx (7.6) 

for an arbitary compact set K. The proof is complete. 

Remark. If we define the singular support of T E Go(d, O) as the set of points in 0 
having no neighborhood where T is in G(d), it is possible to prove a result analogous 
to the last theorem for the singular support. 

We observe that  (7.6) and (7.4) give 

]% K]d.,~<(2~)-=]~[z and ]qix<~C]% g]a.z, 

when q E Go(d, K). Thus, the semi-norms ]% Kin.,  and ]~v h define the same topology 
on Go(d, K) and by that  the same inductive limit on Go(d, 0) (el. Beurling [1]). Write 
finally I~1~.~ = I ~ 1 ,  for fixed ~v in Go(d, O) when ~ E G(d, 0). I t  is immediate that  
the semi-norms 

(1~1~.~; WeOo(d, 0), x>0} 
are equivalent to the semi-norms 

{[~, g ] a . 5 / > 0  and K compact in O}. 

Hence we can define the topology of the Frdchet space G(d, O) by the semi-norms 
I~1~..~. 
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The necessity of d.hyperbolicity 

As in the introduction, l e t / / b e  the half space (x, N)/> 0 and Go(d, H) the set of 
those functions in G(d) which have the support in H. Set inft ] ~ - t N] = Iv/IN when 

ER ~. 

Theorem 8. Assume that the mapping qD-~P(D)q~ in Go(d, H) is in]ective and that its 
inverse is continuous. Then there is a constant C > 0 such that 

P($) =P(~ +i~)  # 0  i / (~,  N) <~ -C(1 + ]~]~+ ]~] a/d). 

Proo/. We use the semi-norms I(vla.~ of G(d). The continuity of P(D)cv-~q~ in 
Go(d, H) means that  to every 2 > 0 and ~v E Go(d ) there are constants C, 20 > 0 and 
v2o E Go(d ) such that  

[VI~,~<~CIP(D)~v[~o, vo when q~EGo(d, H). 

Let ~v E Go(d ) with ~(N) = 1. Then 

I~(N) I : I+(N)v(iv)l <lq~}o.,: 

which together with the continuity implies 

]~(N) [ <~C[P(n)qJl~o.vo 

for some constants C and 20>0 and a fixed ~oEGo(d). Take XE'G(d,R) so that  
x(t)=0 for t<~2-2(N, N) and z ( t )= l  for t>~2-~(N, N). We can then apply the in- 
equality to ~v(x)=F (~-N'r X((x, N)) and get 

1 <~C[P(D) e i(~ N'r N))[~o,V. 

=C]~v0(x) P(D) e ~(x u':)) g((x, N))[ao- (8.1) 

When P(~)=0, we have 

y~o(X) P(D) ei(X-N'~)Z((x, N)) = ~ 1 et(~_N.~) ~.0 ~. P(~)(~) ~o(X) D~ Z((x, N)). 

Here the support of gr(x)=F0(x)Dv Z((x, N)) is contained in a bounded set B of 
{x; 2-2(N, N)~<(x, N ) ~ 2  -x (N, N)} when y:~0. According to (7.1), there is thus to 
every 2 > 0 a constant C > 0 so that  

[ g~(~) I ~< V exp (S(~) -2[~[ TM) 

for y # 0  where S(~/)=supz~s (x, ~). This gives for g ~ R  n 

-~< C exp ((~,/u + S( - ~]) - 2  ] ~ - ~  [ TM ) 

~<Cexp ((r/, N)+S(-~)-~2[~[1/a--210~[ TM) 

Hence (8.1) implies that  there is a polynomial Q such that  

1 ~< Q([~[) exp ((~/, N) + S( - ~) + 220 [~l ~/a). (8.2) 
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In  order to estimate S(-~])  we write x = s N + y  where (y, N)=0.  Then 2-~<s~<2 - t  
and I Y I ~< D for some fixed D if x 6 B. When 0], N) < 0, we obtain 

S(-~)=sup(x,-~)~< sup s ( N , - ~ ) + s u p ( y , - ~ ) < - 2  ~(~,N)+Dinfl~-tN [. 
x e B  2 - - ~ s ~ 2  -~ [y]~D t 

From (8.2) it hence follows that  

I 1TM) 

for some constant C > 0 when P ( $ ) = 0  and (~, N ) <  0. Consequently, P ( ~ ) 4 0  when 
(~, N ) <  - C ( 1  + ]~1 N+ ]~]l~a) and the proof is complete. 

We let m be the order of P and denote the principal par t  by  Pro. 

Theorem 9. Pm(N)+O i/ there exists a constant C such that P ( ~ + i ~ ) + 0  wheu 
N) < - c(1 + I + I 11% 

Proo/. Assume tha t  N = ( 1 ,  0 .... 0) and Pro(N)=0. Since Pm*O, there are can- 
stants (~r so that  Pro(l, ~ .... ~ )  4 0 .  We consider the polynomial 

Q(2, #) = P(2, 2luo~2 ... ~#o~) = ~ 2~R~(#), 
v=O 

where Rm(l~)=Pm(1, t~oc 2 .... / ~ )  ~:0 according to the choice of ( j)j=2. Because of 
the assumption, the zeros 2(#) of Q(2,/~) satisfy 

I m  2(#) ~> - C(1 + I/~ 2(#)l + [Re 2(/~)) ] TM) (9.1) 

for a suitable constant C >0  when ]/, [ ~< 1. As Rm(#) ~: 0, we further know that  the 
zeros can be developed into a Puiseux series around # = 0. We obtain 

m 

Q(L #) = Rm(#) I]  (A-  Aj(#)), 
j = l  

where every 2~(/~) for some positive integer p is an analytic function o f  [.~l/p when 
0 <  [#[ <~, without any  essential singularity at/~l/p =0,  i.e. 

~j(ja) = ~ ak/~ (1/p)'k, 
k = N  1 

where Nj  is a whole number. 
We have assumed Rm(O)=O. Because of (9.1) at  least one R~(0)+0. Hence, if 

4 0  so that  Rm(#)40,  at  least one quotient R~(/~)/Rm(/~) tends to infinity. Conse- 
quently, ]AJo(#)I-+~ for some ?'0 when #-->0, i.e. Nj~ is a negative integer. 
Thus 2j,(#) behaves asymptotical ly as aN(#I/P) N when/~ ->0, which is a contradiction 
to (9.1) since d > 1. The theorem is proved. 

Remark. If Pro(N) = O, we can construct functions 04= ~ E G0(d, H) such that  P(D)q~ = 0 
(cf. HSrmander [1], p. 121). Hence Pro(N) 4 0 is properly a direct consequence of the 
injectiveness of the considered mapping. 
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I f  P(~ + i ~) # 0 when (y, N) ~< - C(1 + [ ~ [ N + ]~ll/a), we obtain, in the special case 
=TN, T E R, that  P(~ + i T N ) #  0 when $ E R ~ and T(N, N) ~< -- C(1 + ]~l l/a). According 

to the last theorem, such polynomials also satisfy Pro(N) 4: O. We make the following 
definition. 

Definition 4. A polynomial P is called d-hyperbolic with respect to N if there is a 
constant C such tha t  Pro(N) # 0 and P(~ + i v N) # 0 when ~ E R n and T ~< - C(1 + ]~] l/a). 
We consider 1 < d ~< cr with the convention tha t  I~] 1/~= 1 so tha t  d = ~ is formally 
the Gs case. According to Lemmas 1 below, d = 1 is the Cauchy-Kovalevsky 
case. The following theorem is now immediate. 

Theorem 10. P is d-hyperbolic with respect to N i/ P( D)q~ -~qJ is a continuous mapping 

in Go(d, H). 

We also have 

Theorem 11. P is d-hyperbolic with respect to N i/the mapping q~ ~ P( D)qJ is bi]ective 

in Go(d , H), i.e. if the equation P(D)cf =y~ has a unique solution cf E G0(d, H)/or  every 

y~ E Go(d, H). 

Proof. Since Go(d, H) is a closed subspace of the Fr6ehet space G(d), Go(d, H) is 

itself a Frdchet space. The mapping ~v--~P(D)q~ is continuous in Go(d, H). According 
to Banach's  theorem the inverse is then continuous too. The application of Theorem 
10 completes the proof. 

Algebraic properties of d-hyperbolic polynomials 

The following theorems, which give some algebraic properties of our polynomials, 
are easy generalizations of the corresponding theorems for ~-hyperbol ic  polynomials 
(ef. H6rmander  [1], p. 132). We need the following lemma. 

Lemma 1. I/P,~(N) 4: O, there is a constant C such that [3 [ ~< C(1 + I~1) when T e 0, ~ e c ~ 
and P(~ +TN) =0.  

Proof. I t  is no restriction to assume Pro(N) = 1. Then P(~ + v N) m m 1 v 

where the order of P,<~m-v.  Hence, there is a constant C such tha t  ]P~($)] ~< 
(C2-1( 1 + ]~I))~-~, which gives 

m 1 T v m - 1 

50P (r  <ITI Y2 -m<IT ? if ITI>C(I+Ir 
v ~ = 0  

This proves the lemma. 
For the sake of completeness we also prove the converse of Lemma 1. 

Lemma 2. P,~(N) # 0 i/ P is of order m and IT] <~C(1+ I~]) for some constant C 
when TEC, ~EC n and P(~ + TN) =0.  

Proof. Assume tha t  Pro(N)=0. Then 

p(~  + TN) = Y P ,  (~) T ~, 
v = 0  
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where / t  < m and the order of P~ = m - v for at  least one v = vo since the order of P is m. 
First  we prove tha t  P~(~) is a constant .  The polynomials  P~ cannot  have a common 
zero since this violates our assumption.  If  P~ depends on ~, it has a zero ~o. Let  ~ tend 
to ~0 so tha t  P~(~) 4= 0. Then at  least one quotient  

P~ (C) 

tends to infinity and by  tha t  also at  least one zero 3(~) of P(~ +3  N). This is again a 
contradict ion to the assumption so tha t  P~ (~) is a constant.  Now we know tha t  P,, 
is the sum of all possible ( /z-v0)-products  of the roots of P(~+3 N)=O. We have 
assumed tha t  the roots satisfy 131 ~< C(1 + Ir for a suitable constant  C. Wi th  another  
constant  C we thus get 

IP,.(r < c(1 + Ir . . . .  

which contradicts  tha t  the order of P,,  is m - % .  The proof is complete. 
Let  P be d-hyperbolic with respect to h r. Then P~(N)g=0, and P ( ~ + i z N ) = O  

implies Re z > ~ - C ( l + ] ~ l l / e + l I m z l ~ / e  ) for a suitable fixed C > 0  when ~ e R  n. 
According to Lemma 1, there is another  C such tha t  ] 31 ~< C(1 + I ~el) when P(~ + i3N) = O. 
Hence, if P is d-hyperbolic with respect to N, we have a constant  C such tha~ 
Pro(N) ~= 0 and Pm(~ + i3N) 4= 0 when ~ E R ~ and Re 3 ~< - C(1 + [~e] I/d). 

Theorem 12. P is d-hyperbolic with respect to - N i~ P is d-hyperbolic with respect to N. 

Proo/. The homogenei ty  of the principal par t  Pm gives tha t  P r o ( - N )  = (-1)mPm(-N) 
4=0. All the roots of P(~+izN)=O satisfy Re v > ~ - C ( I +  [~el TM) for some fixed C 
when ~ E R n. We know tha t  the coefficients of z m and v m- 1 are imPm(N) ~ 0 respectively 

oo T a linear funct ion of ~. Denot ing the zeros of P(~ + ivN) by  3 s, ~j=l  j is thus a linear 
funct ion of ~. This implies tha t  ~ - 1  Re 3 s is a linear funct ion of ~e E R n bounded from 
below by  - C(1 + I~l~/e). But  then ~ - 1  Re ~j mus t  be a constant  l since d > 1. This 
gives 

I~e 3~,=t- Y Re3,<t+C(l+l~ll/d). 
t-T- k 

Consequently, P(~ + ivN) 4= 0 when ~ E R" and z > 1 + C(1 + I~ll/d). The proof is com- 
plete. 

The theorem can also be wri t ten in the following form. 

Corollary. I / P  is d-hyperbolic with respect to N,  there is a constant C > 0 such that 

IRe v I ~<C(1 + ]~] Ira) when ~ER" and P(~+iTN)=0.  

Theorem 13. 1] P is d-hyperbolic with respect to N, then Pm is oo-hyperbolic with 
respect to N. 

Proo/. Let  a > 0 .  According to the corollary of Theorem 12 we have a constant  
C > O  such tha t  h i r e  z] ~<C(l + 10'~] TM) when ~ e R "  and P(a~+ia3N)--0.  Further ,  

Pm (~ + iTN) = lira a-mP(a~ + ia,N).  
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Since Pro(N)4= 0, the zeros 3 of a -m P(a~ +ia3N) depend continuously on a -~ in a 
neighborhood of a -1 = 0. Hence [ Re 3 ] = 0 if Pm(~ + ivN) = 0 and ~ E R ". The proof is 
complete. 

Theorem 13 and the  definition of d-hyperbolici ty give immediately  

Theorem 14. A homogeneous polynomial P is d-hyperbolic with respect to N i / a n d  
only i /P (N)  4- 0 and the zeros 3 of P(~ + 3N) are real when ~ E R ~. 

As in the special case of oo-hyperbolicity, we make the following definition. 

Definition 5. If  P is d-hyperbolic with respect to N, we define F(P,  N) =F(Pm, N) as 
the set of all real vectors vq such tha t  Pm(t~ +vN) has only negative zeros 3. 

Then the following theorem is well known. 

Theorem 15. F(P,  N) is the N-component o/the open set {vq; Pm(vq)4= 0}. 

Proof. We refer to the proof of Lemma 5.5.1, p. 133, in Hhrmander  [1]. 

Nex t  theorem will make it possible to prove tha t  P is d-hyperbolic with respect to 
every vq EF(P, N) if it is d-hyperbolic with respect to N. 

Theorem 16. Let P be d-hyperbolic with respect to N and let ~ EF(P,  N). Then there is 
a constant C such that P(~ + i3N + iav~) 4- 0 when ~ E R n, Re ~ ~< 0 and 3 <~ - C(1 § [ ~ I~/a). 

Proof. We consider first the case Re a =0.  The corollary of Theorem 12 gives a con- 
s tant  C such tha t  131 <C(1 +[~i~/d+lal TM) when~ER,~ER~andP(~+i3N+iaO)=O.  
Further ,  since Pm(vq) 4- 0, we have according to Lemma 1 a fixed D > 0 so tha t  

§ 131) when P( +i N+iaO)=O. 

Hence,  with a suitable C > 0 ,  ]3] < C ( I +  ]~] l ,a+ ]3]x+a) when ~ER,  ~ER" and  
P(~ + i~N + iaO) = O. Because d > 1, this gives the existence of still another  constant  
C o > 0 such tha t  P(~ + i3N + ia~) = 0 implies 131 ~< Co(1 § TM) when ~ E R and ~ E R n. 
This completes the proof in the special case Re ~ = 0. 

For  the general proof we s tudy  P(~+i3N+i(7O) as a polynomial  in a when 
is an arb i t rary  vector  in R ~ and  ~ varies in 3 ~ - C 0 ( l +  l~[l'a). Here C o is the 
constant  obtained above. The zeros ~ of this polynomiM va ry  cont inuously with 
since the coefficient impm(O) of a m is unequal  to zero. As P(~ + i 3 N  + l a y  ~) has no 
zeros when ~ E R ' ,  R e a = 0  and T ~<-CoO + I~[1/a), it follows tha t  the number  of 
zeros a with negative real pa r t  is constant  when v ~< - C0(1 + ] ~ ]l/d). I t  is thus  enough to  
prove tha t  there are no zeros a when Re a < 0  and  3 is large negative. We set ~ =#3.  
Then  the equat ion P($+i3N+iat~)=O can be wri t ten i-m3-mP(~+i*(N+lzt~))=0. 
When  3 - + - o o ,  this equat ion converges to Pm(N+/zvq)=0 which has only negative 
roots. Since Pm(vq)4= 0 is the coefficient of #m in our equation, the roots # depend 
cont inuously on 3 -1. Hence, all zeros a of P(~ +i3N +iat~) must  have a positive 
real pa r t  when $ E R ~ and  3 ~< - C0(1 + I~] l/a). The proof of the theorem is complete. 

Theorem 17. P is d-hyperbolic with respect to every vqEF(P, N) i / P  is d-hyperbolic 
with respect to N. 
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Pros/. Let v~EF(P, N) and consider real a and ~ such that  ~=e  a. According to 
Theorem 16, P is d-hyperbolic with respect to v ~ +e N for every e > 0. Since F(P, N) 
is open, ~ - e N  E F(P, N) for small I e ]. Hence, for small e >0,  P is d-hyperbolic with 
respect to (v a - e  N) +e  N =v ~. 

Theorem 18. The cone F(P, N) is convex. 

Pros/. See the proof of Theorem 5.5.6, p. 134, in HSrmander [1]. 

We now need the following definitions. 

Definitions. Let Pm be a homogeneous polynomial of order m. We set 

V~Pm(~) = Z IP~'(~)l ~ 

and Ve = {~; ~ E R n and VkPm (~) = 0 }. 
Euler's theorem for homogeneous polynomials gives that  

V 0 D V 1 D . . .  ~ V m = ~ .  

Further, V k D {0 } when k < m. We set 

s =inf  (], Vj= {0}) 

and call Pm s-singular or singular of order s. 

Theorem 19. Let Pm be a homogeneous polynomial o/order m which is s-singular and 
hyperbolic with respect to N. Let/urther Q be a polynomial o/Order 1 < m. Then P,, + Q is 
d-hyperbolic with respect to N where 1/d + ( m -  l)/s = 1 with the convention that d = c~ 
when 1/d <~ O. 

Pros~. We define I Pm(~)l = ( Z ,  IP~)($)]~) 1/~ and prove first that  

[ Pm(~ + iN) [ <~ ClPm(~ + iN) ] (19.1) 

for some constant C when ~ER n. Since F(Pm, N) is open, the Theorems 17 and 14 
imply Pm(~ + iN  + i$) =4:0 for all ~ in R ~ when ] ~ ] is smaller than a suitable constant 

> 0. This gives 
]Pm(~ + iN  + i~) [ ~ 2m[P,n(~ + iN) [ 

when ~ e R n and I~] <s, so by the Cauchy integral formula we have a constant C such 
that  

IP~)(~+iN)[ <~VIPm(~+iN) [ 

when ~ER ~ (el. Lemma 4.1.1, p. 99, in HSrmander [1]). This proves the above in- 
equality. 

We write Q=Zi=0 Qs where Q~ is homogeneous of order ]. I Pm(~)] 2 contains 
VSPm(~) which is of order 2(m - s )  and elliptic since P,n is s-singular. Hence, 

[O~(~)[2~<C]p,.(~)12(1 + [~:]2),+~-m, ~ e R  ~, (19.2) 

for a fixed C >0. Applying (19.1), (19.2) and the Taylor formula we obtain the exist- 
ence of two constants C and C' such that  
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IQi(~+iN) I2<C'IPm(~+iN)I 2 (1 + I~ +iN]2}~+~-~ 

when } e R n. The homogeneity implies 

Iv[-J[Qi(~}+ivN)I = IQt(~ +iN) I <CIPm(} +iN}] I } + i N ]  t+~-~ 

=C{vI-'-~iP,~(r} + i~N) I iv} + iTNV +'-m. 

Hence, [Q1(} +i'cN)l <cI.c]-,Ip,~(} +i-~N)l I} +i.rNV +s-'~ 

when } ~ R" and 0 4 ~ e R. This gives 

l 

i = 0  

t 
< c]~]-s]P~(} +i~}l  ~ I} + i ~ l  i+~-m. 

~ 0  

I f  { ~[ >~ D(1 + { ~ {am) where I / d  + (m - l)/s = 1 and D is a sufficiently large constant,  
we have 

1 
c]~l-' I~ + i~2v] '+'-'~ <2q+ ~). 

Hence 

for all such ~ in R. Since Pm(~ +ivN)~ 0 for T E R, the proof is complete. 
To be able to prove the converse of this theorem we need the following result. We 

let Ix] stand for the integral par t  of x. 

Theorem 20. Let P be d-hyperbolic with respect to N and set/or/ixed ~ and z7 in R n 

deg~P@~+v~)=l and deg~ Pm@~ + N) =g. 

Then l~<9+ [%---~g]. 

Proo]. We consider P(v~+O+(rN) and give an estimate of deg~P(v~+~+aN) 
from above for every fixed v ~ in R n. We study the zeros a as functions of ~. I f  we set 
a =wv, the equation P ( ~  +0 +aN) = 0  can be written 

V--mP(V~ +V9 +oo*;N) =P,n(~ +coN) +Q(T -1, o)) =0 ,  

where Q(T -1, ~o) is a polynomial in T -1 and eo which vanishes for T -1 =0.  The polyno- 
mial P~(~ +o~N) =~OmPm(~O -1 ~ + N )  has, according to the assumption, a (m -g) - fo ld  
zero co = 0. Since Pro(N)4~ O, the zeros ~o of Pm(~ + co N)+ Q(T -1, o)) are bounded when 
T -1 -~0, and m - g  of them converge to zero. The 1)uiseux series expansion of these 
( m - g )  zeros around T -1 = 0  can thus be written 

o o  

~(~) = Y c,~ - ~ .  

24 



A R K I V  F O R  MATEMATIK.  Bd 7 n r  2 

Let c r be the first non-vanishing coefficient. The corresponding zeros a = 3 m  of 
P(3~+~+ahr) then behave asymptot ica l ly  as c~z (~ ~)/P when ~-z=+0. In  particular,  
the a rgument  of a tends to arg c~ + ((p -r)/p)~+~ when arg 3 --wz and z -1 -+ 0. Since P is 
d-hyperbolic with respect to hr, we also have I I m  a I ~< V(1 + Iv~ll/d+ 13 I I~dl~l TM) for 
a fixed C when 3 E R. A suitable choice of v then gives the condition 

p - r  1 
. . . .  ~ - o  

p d 

Hence, m - g  zeros of P(v~+z~+ahr) are 0(]3]  TM) when ]31 ~ .  For  the rest of the 
zeros we have 0(131) when 131-+~.  The connection between the coefficients and 
the zeros of our polynomial  then implies tha t  the coefficients satisfy 0(131 g+(m-~)jn) 
when I vl -+oo. Hence, 

deg~P(3~+z~+ ahr) <---g+ [m- d g ] .  

The theorem is proved. 
For  fixed m and 1 we define ds by  

1 m - 1  
- -  - - = 1  

d; + s 

with the convention tha t  ds-- ~ when m >~ 1 + s. 

Corollary. Let Pm be a homogeneous polynomial o] order m. I/1 >~ m - s and Pm+ Q is 
d~-hyperbolic with respect to N/or  all Q o/order <~l, then Pm(~ + T ~V) cannot have more 
than s coinciding zeros v/or any ~ in R n non-proportional to N. 

Proo]. Assume tha t  the corollary is no t  true. Then there is t > s such tha t  Pm(~0 + 3N) 
has a t-fold zero 3 = 0 for some ~0 g= 0 in R n non-proport ional  to h r. This and l >~ m - s 
gives deg~ Pro(3 ~0 + hr) = deg~ 3mPm(~0 + 3 -1 hr) = m - t  < l. Applying Theorem 20 with 
g = m - t  and d=d~, we obtain 

deg,(Pm(3~0 + hr)+ Q(3~o+ N))<~ [1 ( t - s ) ( m - / ! / < t _  1 

l 

/ 8 3 

for every Q of order ~< I. Since deg, Pm(3~0 + hr) < l, this implies t ha t  deg, Q(3~0 + hr) ~< 
1 - 1 for all Q of order ~< l which is a contradiction. The corollary is proved. 

We can now give a theorem in the opposite direction to Theorem 19. 

Theorem 21. Let Pm be a homogeneous polynomial o/order m such that Pm +Q is d~- 
hyperbolic with respect to some hr /or every Q o/order <~l. Assume/urther that there is at 
least one such Q so that Pm +Q is not ds_l-hyperbolic with respect to N. Then Pm must be 
s-singular. 

Proo/. Pm+Q is not  d~_l-hyperbolic for every Q of order <~l. Then, Theorem 19 
implies tha t  Pm is a t  least s-singular. But  because of d~< ~ ,  i.e. l > m - s ,  and  the 
corollary of Theorem 20, Pm can at  most  be s.singular, so the proof is complete. 
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Fundamental solutions and the sufficiency of d-hyperbolicity 

We shall now prove that  d-hyperbolicity with respect to N is necessary and suffi- 
cient for the existence of a fundamental solution in Go(d) if we require the support to 
be contained in a cone (x, N) ~> s I x ], s > 0. As above, let H = {x; (x, N) >~ 0}. 

Theorem 22. Assume that a di]/erential operator P(D) has a ]undamentaI solution 
E in Go(d) with the support in a cone (x, N) >~ e Ix I, ~ > 0. I / then ~ 6 Go(d) and supp ~p c H,  
the eguation P( D)q)=y) has a unique solution q~ with the same properties. When y~ 6 G(d), 
the solution q~ 6 G(d). 

Proo[. Supp E c  {x; (x, N) ~> s Ix I } for some s > 0. Let  V belong to Go(d) or G(d) with 
the support in H. Then, according to the section on convolutions (p. 3), E~-yJ exists 
in Go(d) respectively G(d) with its support in H. Further, E~-V solves the equation 
P(D)qD =% This proves the existence. If P(D)q~ =0 with ~06 Go(d) and supp ~ c  H, 
9~=q~+eP(D)E=P(D)q~-~E=O. The proof is complete. This gives the uniqueness. 

Theorem 23. Let P(D) be a di//erential operator with a/undamental solution E in 
Go(d) such that the support is contained in a cone (x, N) >~slx I, e>0 .  Then P is d- 
hyperbolic with respect to N. 

Proo/. The theorem is an immediate consequence of the Theorems l l  (p. 10) 
and 22. 

Theorem 24. Let P be d-hyperbolic with respect to N. Then the operator P(D) has one 
and only one ]undamental solution E in Go(d) with support in the closed hall space H. 
More precisely, the support o / E  is contained in the convex cone 

F*(P, N) = {x; (x, O)>~0/or every v~ 6F(P, N)} 

but in no smaller convex cone with vertex at O. 

Proo/. The uniqueness follows from Theorem 22 when the existence is proved. 
Let v~ 6F(P, N). Then P is d-hyperbolic with respect to v% If we write 

P(~ + ivY) = imPm (~) ~I (~ -- V~ (~, ~)), 

we thus have a constant C(O)>0 such that  

Re v~(~, ~) ~> - C(zg) (1 + I~[ TM) when ~ e R  n. 

Specializing T to t(1 + I~[ TM) with t ~< - 2  C(zg) we get 

IPm( )l 12-1 tl (1 + 

For such ~ we let a(v~, t) be the surface 

(~1 + i~:V~l, ~2 + i ~ 2  .... ~ + iTv~) in C n. 

Hence, IP(r I ~> IPm(v~) [ 12-1 t] m(1 q- l aI TM) when r Ea(v ~, t). 
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We define E on Go(d ) by 
f ~()~ ~ 7~ $(~) = ( 2 z ) - n ]  

where we use the notations ~(x)=~0(-x) and ~(~)=E(~) .  Theorem 7 (7.3) gives to 
every compact set K in R n a constant C such that  

I I -<< e ly ,  K ia.z exp (t(1 + I~l TM) S'(a) - ~ l ~  I TM) 

when supp q 0 c K  and ~a(v~,t) .  Here 2 = ( n e l )  -x/a and S'(vq)=infzeK (x,v ~) since 
t<O. Our estimates of q~(~) and P(~) imply the convergence of the integral and, for 
fixed t and v q, the inequality 

IE(~)I <Cl% KI,,~, 

where the constant C only depends on K and ~ > t  S'(v~). Hence, E belongs to G'(d). 
Because of the estimates and the analytieity of ~($) and 1/P(~) in the considered 
regions of C ~, we also have that  the integral is independent of v~ and t ~< - 2  C(v ~) 
when z9 EF(P, N). Further, 

Consequently, P( D)E=~. 
Now it only remains to localize the support of E. If supp ~0~ {x; (x, v q) >0}, we 

have S'(vq)>0. The estimates of P($) and q~(~) then give for l >0  

[/~(~0) [ ~ C[% K[d.~ It[ m e ~s (~ t) ex p (-- ~ [~[i/d)Ida[-->0 

when v q EF(P, N) and t -+ - co. Hence, ~(~) = 0 when supp ~ ~ {x; (x, v q) > 0 }, i.e. 
supp E c  (x; (x, vq)>~0} when vqEF(P, N). This proves that  supp EcF*(P,N) .  Let 
finally K be a closed convex cone with vertex at 0 and containing the support of the 
constructed fundamental solution. According to Theorem 23, allproper planes (x, 0) = 0 
of support of K must then be non-characteristic, i.e. Pro(O)�9 O. The open convex set 

K* = {zg; (x, v ~) > 0, for every x :~ 0 in K}, 

containing N, is thus contained in {zg; Pm(v~) =~0}, which gives that  K * c F ( P ,  N). 
Hence KDF*(P ,  N) and the proof is complete. 

(The rest o] this paper ]rom here on has been added to proo/ as a partly rewritten 
MS, presented to the academy on 16 August 1966. Editor.) 

If P is d-hyperbolic with respect to N, we can, according to the Theorems 24 and 
22, solve P(D)qD =/uniquely in Go(d , H) for every ] E Go(d, H). Theorem 10 states the 
reverse implication, so d-hyperbolieity with respect to N is both necessary and 
sufficient for the unique solvability of P(D)q~ = / i n  Go(d, H). 

We can now go a step further and consider the following Cauchy problem where 
P is of order m and DN deflotes derivation along N: 
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P(D)  q0 = / 

DJNcf=g~ for (x ,N)=O and O < j < m ,  

when / and {g~}~_o I E G(d). 
In  order to solve this problem we first prove the following theorem (cf. I-I6rmander 

[1], p. 149). Choosing AT = (1, 0 . . . .  0) we write 

0x 1' i 0 x z ' " ' i  ~ = (DI 'D ' )  

and ~ = (~1, $~ . . . .  ~ )  = (~1 + i~/1, ~2 + i~2 . . . .  ~= + i~,) = (~,  ~') = (~1 +i~1, ~' +i~ ' ) .  

Hence,  P(D) =P(D1,  D') and P($) =P(~I,  ~'). Fur ther ,  we set T(~) = (T, ~o) when 
T E Go (d) and q e Go(d ). 

Theorem 25. Let P be o/ order m and d-hyperbolic with respect to N = ( I ,  0 . . . .  0). 
Then, when 0 <~ k <m and x 1 E R, there is a unique Hk(Xl)E G'(d, R n-x) such that 

D~ Hk(Xl) fiG'(d, R n - l ) / o r  every integer i ) O, 

P(D 1, D')Hk(xx) =0, DJl Hk(O)=0 when k # j  <m, 

and D~Hk(0)=(~ where (5 is the Dirac measure. 

Further, (Hk(Xl) , qg) eG(d, R) when q~eG(d, Rn-~), and (x ~ supp Hk(x~ c supp E 
f~ {x; x x = x  ~ x ~ >~0 where E is the/undamental solution in Theorem 24. 

Proo/. We write P(~) =P(~I, ~')= ~ ~n-jqj(~,) 
j=o 

k 

and define Pk(~:, ~') = ~ ~k j~/~'~ ~i ~] ~ 1" 
j=O 

Let F be a simple, positively oriented curve which for fixed ~' surrounds the zeros 
~i of P(~I, ~'). We consider 

I2tk(Xl, C') = (27ri)-1jeiCmPm-l-k(C1, C')/P(C~, C') d~r 
Jr  

Then 
P 

~ p | t t 

D' Hk(Xl' ~ ) =  (2~ri)-I J r  e'C'x' ($x)r P,,~-l-k ($1, ~ )/P($x, ~ )d~l 

is an entire funct ion of $ ' =  ($2 . . . .  ~n) for every  x 1 E R and every integer j ~> 0. Accord- 
ing to Lemma 1 and the Theorems 8 and 12, respectively, 

ICll ~<C(1 + I~'1) and 

I 11 <c(1 + I '1+ 1 11 TM) 
for a constant C when P(~I, ~')=0. In order to estimate D~Hk(xl, ~') we can then 
choose F as the rectangle defined by 

12,1 =C(I+ IC'l); Iwll =C(I+ I '1 + It'l TM) 
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where C is a suitable constant. Since IPm-l-k(~l, ~')1 is majorized by a constant times 
(1+ [~'[)~-~-~, and both ]~1] and the length of F by a constant times (1+ [~'[), 
we get 

IDaHo( x. r + Ir exp (clx l(1 + l v ' l  + 

and sup i- 'a I D~a~(x~, r < exp V(~ + I x~ l)(1 + I,fl + I~'l TM) 
i 

for some constants C: Hence, because of Theorem 7,/-)~(x~, ~') is the Fourier-Laplace 
transform of an element H~(x~)~G'(d, R n-I) given by 

(H~(.~), ~) = (2x) ~+xf~l~(xl, ~') r  d~:' 

when ~ E G0(d, R=-I). We define (D~ Hk(xl), r = DJl (Ilk (Zl), ~0). Our estimates imply 

n[ (Hk(x~), of) = (2~)-=+i f D~H~(x. ~') r  d~' 

and (H~(x~), q~)eG(d, R). Hence D~H~(x~)eG'(d,R ~-1) and [D~H~(Xl)] ^ (~')= 
D~H~(xl, ~ ). Further, 

P(D~, ~')/t~ (x~, ~') = (27~i) -1 ~ e*r (~1' ~') d~x = 0 
JF 

since the integrand is analytic. This means that  P(D1, D')H~(xl) = O. 
For the proof of D~H~(O)= ~ and D{ Hk(0 ) = 0 when k =#] < m, we use that  

f 
(0, ~') ~ (2~i)-1 1 p~Pm-1- k (~1, ~')//P(~I, ~')d~l. 

The integrand is 

p i - k - 1  + 2 ]  k - l l p k + l ~  12" ~Pm-l-k(~l, ~')/P($1, ~') =~' ~1 t~l l~,~-l-k~l, ~') -P($1, ~'))/P($i, ~')" 

The degree of $1 in the numerator of the second term is majorized by j - k -  1 + k =  
j - l ,  hence by r a - 2  when j < m .  Since the degree of ~1 in the denominator P(~I, ~') 
is m, we get 

~')=(2zti)-ljr~{-k-ld~l for O<j<m,  D~/tk(0, 

where ~, is a positively oriented circle surrounding the origin. Consequently, D~Hk(O ) = 
(~ and D~H,(O)=0 when k:#]<m. 

Finally we localize the support of Hk(x~ Let of EGo(d, R n-l) with (x ~ supp ~) f3 
supp E = r and take v 2 E Go(d, R) satisfying supp y~c [ - 1, 1] and ,f~v(x)dx = 1. We set 

Z~(xl, :~2 .... xn) =Z~(xl, z') =~-i~(~-l(xl-x~ ~(x'). 

Then, ~($)=~($1, $') =e-fr162 ') and supp Z~ N Supp E = r  when e > 0 i s  small 
enough. Hence, for such e 
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0 =E(p~_~  k ( - D 1 , - D ' ) Z ~  ) 

= ( 2 ~ ) - n f  e'r (~, ~')~( - e~l) 95( - r162 $') de 
.2 a(N,$) 

where a(N, t) is the surface 

(~1 + it(1 + 1~11TM + ]~' I~/~), ~2 . . . .  ~ )  with t <<. - C(N) < 0 

(see the definition of E in Theorem 24). F rom Theorem 7 we know tha t  to every  
> 0 there is a constant  Ca such tha t  

[ e'r162 - e~'l) I ~< Cx exp ( - ~x x~ + ~ I~1 [ - ~t I e~ll~/a) �9 

In tegrat ing first with respect to ~1 for f ixed ~', this est imate and the analyt ic i ty  of 
the integrand implies tha t  the integrat ion pa th  

(~1 +it(1 +l~l l l /a  + 1~' I~/a), ~2 . . . .  ~=), t <  - c ( N ) < 0 ,  

can be deformed to a posit ively oriented circle F surrounding the zeros ~x ~ ~') 
when 0 < e < x ~ Then, let t ing s -+ + 0 we get 

R ~ 1F 

=i(Hk(x~ for x~ 

Hence,  (x ~ supp Uk(x~ supp E f3 {x; Xl=X ~ when x~ Since this is trivial for  
xl~ the proof of the existence is complete. The uniqueness is proved in the  
following theorem. 

We can now turn  to our general Cauchy problem. 

Theorem 26. Let P be o/ order m and d-hyperbolic with respect to N = (1, 0 . . . .  0). 
Then the Cauchy problem 

P(DI,  D') ~0(Xl, X') = / ( X l ,  X' ) 

DJlCf(O,x')=gj(x'), 0 ~ < j < m ,  

m-1 has a unique solution cf E G(d, R ~) when / E G(d, R n) and {gj)j=0 E G(d, R ~--1). 

Proo[. Because of Theorem 24, P(D)=P(D x, D') has a unique fundamenta l  solu- 
t ion E 1 with the support  in {x; x I ~>0). Le t  E 2 be the corresponding fundamenta l  
solution supported by  {x; Xl~<0 } and write [ = / 1 + / ~  where supp /1C {x; x l~>-1) , .  
supp/2 c {x; x I ~< 1 } and/1 , /2  E G(d, Rn). Set (E 1 ~ [1) @1, x') + (E 2 ~-/2) (xl, x') = v(x 1,x')~ 
We apply  Theorem 25 and the notat ions there. Writ ing 

(Hk(xl), 9) = lHk(xl, x') W(x') dx' 

we then  have tha t  
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~(Xl, x') = k= ~ H k @ i , y ' ) ( g k ( x ' - y ) - D l V ( O , x ' - y ' ) ) d y ' + v ( x ~ , x ' )  

belongs to G(d, R ~) and solves the given problem. 
In  order to prove the uniqueness let 

{ P(D1, D') L(Xl) = 0 

DIL(0) = 0, O<]<m,  

where D~L(xl)EGo(d, R '~-1) and (L(xl), ~)EG(d , R) for q~EGo(d, R"-I). 

Then, l P(DI' D') L(xl) ~ ~ = 0 
[ D~L(0) ~e ~ = 0, 0~< j < m ,  

when ~v E Go(d , R ' -  1), Since P,n(N) #0, this implies tha t  D~L(O)-x- ~ = 0 for every inte- 
ger /'~>0. Hence, L(xl)%q~=gl+g 2 where supp g l c  {x; xl>~0}, supp g2c {x; Xl~<0 } 
and g~, g~EG(d, Rn). Then, g~=g~%O=g~-)eP(D)E~=P(D)g~ E~=O , i = 1 ,  2. Conse- 
quently, L(xx)=0. The proof is complete. 

According to Theorem 26 and the remark on p. 9, we know that  a solution of the 
above Cauchy problem is unique if and only if the plane (x, N) = 0 carrying the data  
is non-characteristic, i.e. Pro(N)#0. The following theorem shows that  it is in this 
case rather  natural  to restrict oneself to the function spaces G(d) where d ~> 1 is 
rational. However, some of the theorems can be refined when we have more precise 
estimates of the zeros v of P($ + irN). 

Theorem 27. Let P,~(N) #0  and let {zj(~)}7L~ be the zeros o~ P(~ +izN) when ~ E R n. 
De/ine 

at(r) = sup max R e , j  (~). 

Then the/unction at is piece-wise algebraic and there are rational and real constants, 
h <~ 1 and C respectively, such that 

at(r) =Crh(1 +o(1)) when r ~c~. 

Proo/. We refer to the proof of Theorem 4.3, p. 114 in Gorin [1]. 
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