Generalized hyperbolicity

By Eric Larsson

Introduction

Let $x=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ be coordinates in R^{n} with the scalar product $\left(x, x^{\prime}\right)=\sum_{j=1}^{n} x_{j} x_{j}^{\prime}$ and the norm $|x|$. We define

$$
D=\left(\frac{1}{i} \frac{\partial}{\partial x_{1}}, \frac{1}{i} \frac{\partial}{\partial x_{2}}, \ldots \frac{1}{i} \frac{\partial}{\partial x_{n}}\right), \quad D^{\alpha}=\prod_{\alpha_{k} \neq 0}\left(\frac{1}{i} \frac{\partial}{\partial x_{k}}\right)^{\alpha_{k}} \quad \text { and } \quad|\alpha|=\sum_{k=1}^{n} \alpha_{k}
$$

where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right)$ is a multiindex with non-negative integer components. As in Schwartz [1], let $\mathcal{E}(O)$ be the Fréchet space of all infinitely differentiable functions on the open non-empty set $O \subset R^{n}$ topologized by the semi-norms $\sup _{x \in K}\left|D^{\alpha} \varphi(x)\right|$, where K is compact in O. A complex polynomial P is called hyperbolic with respect to $N \in R^{n}$ if $P(D)$ has a fundamental solution, locally in the dual space $\mathcal{E}^{\prime}\left(R^{n}\right)$, with support in a cone $(x, N) \geqslant \varepsilon|x|, \varepsilon>0$. Let P_{m} be the principal part of P. Then, according to Garrding [1], P is hyperbolic with respect to N if and only if there is a constant C such that $P_{m}(N) \neq 0$ and $P(\xi+i \tau N) \neq 0$ when $\xi \in R^{n}$ and $\tau \leqslant-C$. We shall here investigate hyperbolicity in other suitable distribution spaces.
For fixed $d>1$ we consider in $\mathcal{E}(O)$ the quasi-norms

$$
|\varphi, K|_{d, l}=\sup _{\substack{\alpha \\ x \in K}} l^{-|\alpha|}|\alpha|^{-|\alpha| d}\left|D^{\alpha} \varphi(x)\right|,
$$

where $l>0$ and K is compact in O. Set

$$
G(d, O)=\left\{\varphi ;|\varphi, K|_{d, l}<\infty \text { for every } l>0 \text { and every compact } K \subset O\right\}
$$

topologized by the semi-norms $|\varphi, K|_{d, l}$ (cf. Hörmander [1], p. 146). We observe some simple properties of $G(d, O)$ and related spaces. For instance, $G(d, O)$ is a Fréchet space and it contains non-vanishing functions with compact support exactly when $d>1$. Let H be the half space $(x, N) \geqslant 0$ and denote by $\overline{G_{0}(d, H)}$ the subspace of all functions in $G\left(d, R^{n}\right)$ supported by H. We prove that the mapping

$$
P(D): \overline{G_{0}(d, H)} \rightarrow \overline{G_{0}(d, H)}
$$

is injective and has a continuous inverse if and only if there is a constant C such that $P_{m}(N) \neq 0$ and $P(\xi+i \tau N) \neq 0$ when $\xi \in R^{n}$ and $\tau \leqslant-C\left(1+|\xi|^{1 / d}\right)$. This is also the precise condition for the existence of a fundamental solution of $P(D)$, locally in the dual space $G^{\prime}\left(d, R^{n}\right)$, with support in a cone $(x, N) \geqslant \varepsilon|x|, \varepsilon>0$. We call such polynomials d-hyperbolic with respect to N. When $d=\infty$, we get formally the hyperbolic

e. Larsson, Generalized hyperbolicity

case and generally, the theory of d-hyperbolic polynomials parallels that of hyperbolic polynomials. For instance, if P is d-hyperbolic with respect to N, then P is also d hyperbolic with respect to every N^{\prime} in the open cone Γ which is the largest connected N-component of $\left\{\xi ; P_{m}(\xi) \neq 0\right\}$. The above fundamental solution of $P(D)$ is supported by the dual cone of Γ. Further, if $\xi \in R^{n}$, then $P_{m}(\xi+\tau N)$ has only real zeros τ when P is d-hyperbolic with respect to N. A special feature of d-hyperbolicity is that $P_{m}(\xi+\tau N)$ has at most a s-fold zero τ for ξ non-proportional to N if and only if $P_{m}+Q$ is d-hyperbolic with respect to N for all Q of order $\leqslant l$ where $1 / d+(m-l) / s=1$.

The presentation mainly follows Hörmander [1] which we often refer to.

The generalized distribution spaces ${ }^{1}$

We use the notations $\mathcal{E}(O), D^{\alpha}$ and $|\alpha|$ as in the introduction. For fixed $d \geqslant 0$ we consider in $\mathcal{E}(O)$ the quasi-norms

$$
|\varphi, K|_{\alpha, l}=\sup _{\alpha \in K}^{\alpha} l^{-|\alpha|}|\alpha|^{-|\alpha| d \mid}\left|D^{\alpha} \varphi(x)\right|,
$$

where $l>0$ and K is compact in O. They are continuous from below, i.e.

$$
\varphi_{j} \rightarrow \varphi \text { in } \mathcal{E}(O) \Rightarrow \underline{\lim }\left|\varphi_{j}, K\right|_{d, l} \geqslant|\varphi, K|_{d, l}
$$

and they have a countable basis obtained by taking sequences $l_{k} \searrow 0$ and $K_{k} \nexists O$.
Definition 1. Let $G(d, O)$ be the space

$$
\left\{\varphi ;|\varphi, K|_{d, l}<\infty \text { for every } l>0 \text { and every compact } K \subset O\right\}
$$

with the topology given by the quasi-norms $|\varphi, K|_{d, l}$. Let further

$$
G_{0}(d, O)=\bigcup_{K \subset O} G_{0}(d, K)
$$

be the inductive limit of all

$$
G_{0}(d, K)=\{\varphi ; \varphi \in G(d, O), \operatorname{supp} \varphi \subset K\}
$$

where K is compact in O and $G_{0}(d, K)$ is topologized by our quasi-norms $|\varphi, K|_{d, l}$. If $O=R^{n}$ we omit R^{n} and write $G(d)$ and $G_{0}(d)$ respectively.

Clearly, $G(1, O)$ is the set of all entire analytic functions on C^{n} and $G\left(d_{1}, O\right) \subset$ $G\left(d_{2}, O\right)$ if and only if $d_{1} \leqslant d_{2}$. Thus $G_{0}(d, O)$ only contains the null function for $d \leqslant 1$. When $d>1$, we have the following theorem.

Theorem 1. If $d>1$, there exist functions $\varphi \in G_{0}(d, O)$ with the support in an arbitrarily given open set of O such that $\varphi \geqslant 0$ and $\int \varphi(x) d x=1 . G(d, O)$ and $G_{0}(d, O)$ are algebras under pointwise multiplication.

Proof. The existence part of the theorem is a consequence of the Denjoy-Carleman theorem. For a direct proof see Lemma 5.7.1, p. 146 in Hörmander [1].
In the following we only consider $d>1$.

[^0]We observe that $G(d, O)$ is a Fréchet space. In fact, the quasi-norms $|\varphi, K|_{c, l}$ have a countable basis and every Cauchy sequence $\left\{\varphi_{j}\right\}_{j-1}^{\infty}$ in $G(d, O)$ has a limit φ in $\mathcal{E}(O)$ which belongs to $G(d, O)$ since

$$
\left|\varphi_{j}-\varphi, K\right|_{d, l} \leqslant \lim _{k \rightarrow \infty}\left|\varphi_{j}-\varphi_{k}, K\right|_{d, l} .
$$

The quasi-norms

$$
\sum_{j=1}^{\infty} c_{j}\left|\varphi, K_{j+1} \cap \mathbf{C} K_{j}\right|_{a, l}
$$

where $\left\{c_{j}\right\}_{j=1}^{\infty}$ is an arbitrary sequence of positive numbers and $K_{j} \nearrow O$, define the topology of $G_{0}(d, O)$.
$G(d, O)$ and $G_{0}(d, O)$ have properties analogous to the spaces $\mathcal{E}(O)$ and $\mathcal{D}(O)$ in Schwartz [1]. In this connection it is even natural to write $\mathcal{E}(O)=G(\infty, O)$ and $\mathcal{D}(O)=G_{0}(\infty, O)$. The dual spaces $G^{\prime}(d, O)$ and $G_{0}^{\prime}(d, O)$ are considered under the weak and strong topology. They are analogous to the Schwartz spaces $\mathcal{E}^{\prime}(O)$ and $D^{\prime}(O)$ respectively. For instance, $G^{\prime}(d, O)$ is the set of all elements in $G_{0}^{\prime}(d, O)$ which have compact support in O. Further, a sequence $\left(\varphi_{\nu}\right)_{\nu=1}^{\infty}$ converges to 0 in $G_{0}(d, O)$ if and only if $U_{\nu} \operatorname{supp} \varphi_{\nu}$ is contained in a fixed compact set $K \subset O$ and $\varphi_{\nu} \rightarrow 0$ in $G_{0}(d, K)$. From the general theory of topological spaces we know that a linear form T on $G_{0}(d, O)$ is continuous precisely when T is continuous on $G_{0}(d, K)$ for every compact K in O. This implies that a linear form T on $G_{0}(d, O)$ is contained in $G_{0}^{\prime}(d, O)$ if and only if $T\left(\varphi_{\nu}\right) \rightarrow 0$ for every sequence $\left(\varphi_{\nu}\right)_{v=1}^{\infty}$ which tends to 0 in $G_{0}(d, O)$. Another consequence is

Theorem 2. A linear form T on $G_{0}(d, O)$ belongs to $G_{0}^{\prime}(d, O)$ if and only if to every compact set $K \subset O$ there are constants land $C>0$ that such

$$
|T(\varphi)| \leqslant C|\varphi, K|_{d, t} \quad \text { when } \varphi \in G_{0}(d, K)
$$

Mainly according to this theorem and Hahn-Banach, $T \in G_{0}^{\prime}(d, O)$ exactly when $T=\sum_{\alpha} D^{\alpha} \mu_{\alpha}$ where μ_{α} are measures on O satisfying $\left(\int_{K}\left|d \mu_{\alpha}\right|\right)^{1 /|\alpha|}=O\left(|\alpha|^{-d}\right)$ for every compact $K \subset O$.

Convolutions. To be able to work with convolutions we give some definitions and theorems, well-known in the Schwartz case. We write

$$
A_{(-)}^{+} B=\left\{x_{\imath_{-}}^{+}, y ; x \in A, y \in B\right\}, \quad \text { where } A \text { and } B \text { are sets in } R^{n} .
$$

Definition 2. Let $T \in G_{0}^{\prime}(d)$ and $\varphi \in G(d)$ with $\operatorname{supp} T \cap(K-\operatorname{supp} \varphi)$ compact for every compact set K. We then define

$$
(T * \varphi)(x)=T_{y}(\varphi(x-y))=T_{y}(\chi(y) \varphi(x-y)),
$$

where $\chi \in G_{0}(d)$ and $\chi \equiv \mathbf{I}$ on a neighborhood of $\operatorname{supp} T \cap(x-\operatorname{supp} \varphi)$.
It is immediate that the definition is independent of χ. If we write $\varphi(x-y)=\check{\varphi}_{x}(y)$, we have

$$
(T * \varphi)(x)=T\left(\chi \check{\varphi}_{x}\right)=T\left(\check{\varphi}_{x}\right) .
$$

The requirements of the definition are fulfilled, for instance, when $T \in G_{0}^{\prime}(d), \varphi \in G(d)$ and $\operatorname{supp} T, \operatorname{supp} \varphi \subset\{x ;(x, N) \geqslant 0\}$ with one of the supports in a cone $(x, N) \geqslant \varepsilon|x|$ where $\varepsilon>0$.

E. LaRsson, Generalized hyperbolicity

Theorem 3. Let T and φ have the properties stated in Definition 2. Then $D^{\alpha}(T * \varphi)=$ $\left(D^{\alpha} T\right) * \varphi=T * D^{\alpha} \varphi$ and $\operatorname{supp} T * \varphi \subset \operatorname{supp} T+\operatorname{supp} \varphi$. Further, $T * \varphi$ belongs to $G(d)$ and $T * \varphi_{\nu} \rightarrow T * \varphi$ in $G(d)$ when $\varphi_{\nu} \rightarrow \varphi$ in $G(d)$ and $U_{\nu}\left(\operatorname{supp} T \cap\left[K-\operatorname{supp} \varphi_{\nu}\right]\right)$ is bounded for every bounded K.

Proof. We consider first $D^{\alpha}(T * \varphi)=\left(D^{\alpha} T\right) * \varphi=T * D^{\alpha} \varphi$ where $D^{\alpha} T$, defined by $D^{\alpha} T(\varphi)=(-1)^{|\alpha|} T\left(D^{\alpha} \varphi\right)$, belongs to $G^{\prime}(d)$. Set $D_{k}=\frac{1}{i} \frac{\partial}{\partial x_{k}}$. It is enough to prove that $D_{k}(T * \varphi)=T * D_{k} \varphi$.

Let e be the unit vector along the x_{k}-axis.

$$
D_{k}(T * \varphi)(x)=\lim _{h \rightarrow 0} T\left(\frac{1}{i h}\left[\check{\varphi}_{x+h e}-\check{\varphi}_{x}\right]\right) .
$$

Now $1 / i h\left[\check{\varphi}_{x+h e}-\check{\varphi}_{x}\right]$ tends to $\left(D_{k} \varphi\right)_{x}^{\check{v}}$ in $G(d)$ for the mean value theorem implies

$$
\left|\frac{1}{i h}\left[\check{\varphi}_{x+h e}-\check{\varphi}_{x}\right]-\left(D_{k} \varphi\right)_{x}^{\vee}, K\right|_{d, l} \leqslant|h|\left|\left(D_{k}^{2} \varphi\right)_{x}^{\vee}, K^{\prime}\right|_{d, l}
$$

when $0 \neq|h| \leqslant 1$ and $K^{\prime}=K-\{t e ;|t| \leqslant 1\}$. Since supp $T \cap \operatorname{supp}\left[\check{\varphi}_{x+h e}-\check{\varphi}_{x}\right]$ is compact when $|h| \leqslant 1$, this gives

$$
D_{k}(T * \varphi)=T * D_{k} \varphi .
$$

In order to prove that $T * \varphi \in G(d)$, take an arbitrary compact set K and choose χ in $G_{0}(d)$ so that $\chi \equiv 1$ in a neighborhood of $\operatorname{supp} T \cap[K-\operatorname{supp} \varphi]$. We write $\operatorname{supp} \chi=K_{0}$. From Theorem 2 we then obtain constants l_{0} and C_{0} such that

$$
|(T * \varphi)(x)|=\left|T\left(\chi \check{\varphi}_{x}\right)\right| \leqslant C_{0}\left|\chi \check{\varphi}_{x}, K_{0}\right|_{d, l_{0}}
$$

when $x \in K$. This implies

$$
\begin{aligned}
\left|D^{\alpha}\left(T^{*} * \varphi\right)(x)\right| & =\left|T\left(\chi\left(D^{\alpha} \varphi\right)_{x}^{\check{ }}\right)\right| \leqslant C_{0} \mid \chi\left(D^{\alpha} \varphi\right)_{x}^{\check{ },\left.K_{0}\right|_{\alpha, l_{0}}} \\
& \leqslant\left. C_{0} l^{|\alpha|}|\alpha|^{|\alpha| \alpha \mid d}\left|l^{-|\alpha|}\right| \alpha\right|^{-|\alpha| d} \chi\left(D^{\alpha} \varphi\right)_{x}^{r},\left.K_{0}\right|_{\alpha . l_{0}} \\
& \leqslant C_{0}^{\prime} l^{|\alpha|}|\alpha|^{|\alpha| d \mid}\left|\check{\varphi}_{x}, K_{0}\right|_{d, l^{\prime}}
\end{aligned}
$$

for all $x \in K$ where $l^{\prime}=2^{-1} e^{-d} \min \left(l, l_{0}\right)$. Hence $T * \varphi \in G(d)$. The same estimate gives also that $T * \varphi_{\nu} \rightarrow T * \varphi$ in $G(d)$ when $\varphi_{\nu} \rightarrow \varphi$ in $G(d)$ and $U_{\nu}\left[\operatorname{supp} T \cap\left(K-\operatorname{supp} \varphi_{\nu}\right)\right]$ is bounded for every compact K. Finally it remains to localize the support of $T * \varphi$. $(T * \varphi)(x) \neq 0$ only if $\operatorname{supp} T$ meets supp $\check{\varphi}_{x}$, i.e. only if there is $y \in \operatorname{supp} T$ such that $x-y € \operatorname{supp} \varphi$, which means that $x \in \operatorname{supp} T+\operatorname{supp} \varphi$. The proof is complete.

The following three theorems are easy generalizations of theorems for \mathcal{D}^{\prime} (cf. Hörmander [1], pp. 14-17). We omit the proofs.

Theorem 4. Let T and φ have the properties in Definition 2 above and let $\psi \in G_{0}(d)$. Then

$$
(T * \varphi) * \psi=T *(\varphi * \psi)=(T * \psi) * \varphi .
$$

Theorem 5. Let V be a linear mapping from $G_{0}(d)$ to $G(d)$ which commutes with translations and is continuous in the sense that $V \varphi_{j} \rightarrow 0$ in $G(d)$ if $\left(\varphi_{j}\right)_{j=1}^{\infty}$ tends to 0 in $G_{0}(d)$. Then there is one and only one $T \in G_{0}^{\prime}(d)$ such that $V \varphi=T * \varphi$ when $\varphi \in G_{0}(d)$.

Let now T_{1} and T_{2} belong to $G_{0}^{\prime}(d)$ with $\operatorname{supp} T_{1} \cap\left(K-\operatorname{supp} T_{2}\right)$ compact for every compact K. Then, according to Theorem 3,

$$
G_{0}(d) \ni \varphi \rightarrow T_{1} *\left(T_{2} * \varphi\right) \in G(d)
$$

satisfies the requirements of Theorem 5. Hence, there is a unique distribution T in $G_{0}^{\prime}(d)$ such that

$$
T_{1} *\left(T_{2} * \varphi\right)=T * \varphi .
$$

We use this for the definition of the convolution $T_{1} * T_{2}$.
Definition 3. The convolution T of two distributions T_{1} and T_{2} in $G_{0}^{\prime}(d)$ with $\operatorname{supp} T_{1} \cap\left(K-\operatorname{supp} T_{2}\right)$ compact for every compact K is defined by

$$
T_{1} *\left(T_{2} * \varphi\right)=T * \varphi
$$

and denoted by $T_{1} * T_{2}$.
If $T_{3} \in G^{\prime}(d)$, we can define $\left(T_{1} * T_{2}\right) * T_{3}$ and $T_{1} *\left(T_{2} * T_{3}\right)$. We obtain

$$
\left(T_{1} * T_{2}\right) * T_{3}=T_{1} *\left(T_{2} * T_{3}\right) .
$$

Finally we note that our results give
Theorem 6. Let T_{1} and T_{2} have the properties in Definition 3. Then $T_{1} * T_{2}=T_{2} * T_{1}$ and $\operatorname{supp} T_{1} * T_{2} \subset \operatorname{supp} T_{1}+\operatorname{supp} T_{2}$.

Clearly, $D^{\alpha} T=\left(D^{\alpha} \delta\right) * T$ where δ is the Dirac measure. Together with the associativity and the commutativity of the convolution this implies

$$
D^{\alpha}\left(T_{1} * T_{2}\right)=\left(D^{\alpha} T_{1}\right) * T_{2}=T_{1} * D^{\alpha} T_{2}
$$

Fourier-Laplace transforms. We are also interested in the Fourier-Laplace transform of the elements in $G_{0}(d)$ and $G^{\prime}(d)$. For $\zeta \in C^{n}$ we write $\zeta=\xi+i \eta$, where ξ and $\eta \in R^{n}$, and

$$
\hat{\varphi}(\zeta)=\int e^{-i x \zeta} \varphi(x) d x
$$

where $x \zeta=\sum_{k=1}^{n} x_{k} \zeta_{k}$. Further, we use the notation

$$
|\varphi|_{\lambda}=\int|\hat{\varphi}(\xi)| e^{\lambda|\xi|^{1 / d}} d \xi
$$

We have the following characterization (cf. Hörmander [1], p. 21 and p. 147).
Theorem 7. Let Φ be an entire analytic function and K a closed convex set in R^{n}. Define $S(\eta)=\sup _{x \in K}(x, \eta)$. Then, Φ is the Fourier-Laplace transform of a function in $G_{0}(d)$ with support in K if and only if to every real number λ there is a constant C_{λ} such that

$$
\begin{equation*}
|\Phi(\zeta)| \leqslant C_{\lambda} \exp \left(S(\eta)-\lambda|\xi|^{1 / d}\right) . \tag{7.1}
\end{equation*}
$$

E. LARSSON, Generalized hyperbolicity

Further, Φ is the Fourier-Laplace transform of an element in $G^{\prime}(d)$ with support in K if and only if for some constant λ_{0} there is to every $\varepsilon>0$ a constant C_{ε} such that

$$
\begin{equation*}
|\Phi(\zeta)| \leqslant C_{\varepsilon} \exp \left(S(\eta)+\varepsilon|\eta|+\lambda_{0}|\xi|^{1 / d}\right) \tag{7.2}
\end{equation*}
$$

Proof. Let $\varphi \in G_{0}(d, K)$. It is clear that $\hat{\varphi}$ is entire analytic. Obviously,
plies

$$
\begin{aligned}
\left|\zeta^{\alpha}\right||\hat{\varphi}(\zeta)| & \leqslant C e^{S(\eta)} l^{|\alpha|}|\alpha|^{|\alpha| d} \sup _{x \in K} l^{-|\alpha|}|\alpha|^{-|\alpha| d}\left|D^{\alpha} \varphi(x)\right| \\
& =C e^{S(\eta)} l^{|\alpha|}|\alpha|^{|\alpha| d}|\varphi, K|_{d . l}
\end{aligned}
$$

so that

$$
|\zeta|^{k}|\hat{\varphi}(\zeta)| \leqslant C|\varphi, K|_{d, l}(n l)^{k} k^{k d} e^{S(\eta)},
$$

where C is the measure of K. Hence

$$
|\hat{\varphi}(\zeta)| \leqslant C|\varphi, K|_{d, l}\left(n l k^{d}|\zeta|^{-1}\right)^{k} e^{S(\eta)}
$$

Let k be the largest integer $\leqslant|\zeta|^{1 / d}(\text { nel })^{-1 / d}$. Then,

$$
|\hat{\varphi}(\zeta)| \leqslant C|\varphi, K|_{d . l} e^{-k} e^{S(\eta)}
$$

Because $k>|\zeta|^{1 / d}(n e l)^{-1 / d}-1$, we obtain

$$
\begin{equation*}
|\check{\varphi}(\zeta)| \leqslant C e|\varphi, K|_{d, l} \exp \left(S(\eta)-\lambda|\zeta|^{1 / d}\right), \tag{7.3}
\end{equation*}
$$

where $\lambda=(n e l)^{-1 / d}$. This proves the necessity of (7.1). In particular we observe that

$$
\begin{equation*}
|\varphi|_{\lambda} \leqslant C^{\prime}|\varphi, K|_{d, l} \tag{7.4}
\end{equation*}
$$

where $\lambda=(n e l)^{-1 / d}-1$ and C^{\prime} only depends on the measure of K.
We turn to the sufficiency of (7.2). Suppose that the entire function Φ satisfies this inequality. Consider the linear form

$$
\begin{equation*}
T(\varphi)=(2 \pi)^{-n} \int \Phi(\xi) \hat{\varphi}(-\xi) d \xi \tag{7.5}
\end{equation*}
$$

on $G_{0}(d)$. Because of (7.2), (7.4) and Theorem 2, T belongs to $G_{0}^{\prime}(d)$. Set $K_{\varepsilon}=K+$ $\{x ;|x| \leqslant \varepsilon\}$ and consider $x_{0} \notin K_{\varepsilon}$. We can choose $a>0$ and $v \in R^{n}$ such that $|v|=1$ and K_{ε} is contained in $\left(x-x_{0}, v\right) \leqslant-2 a$. Let $\varphi \in G_{0}(d, O)$ where $O=\left\{x ;\left|x-x_{0}\right|<a\right\}$. According to (7.3), (7.2) and the analyticity, we can shift the integration of (7.5) into the complex domain which gives

$$
T(\varphi)=(2 \pi)^{-n} \int \Phi(\xi+i \eta) \hat{\varphi}(-\xi-i \eta) d \xi
$$

where η is arbitrarily fixed in R^{n}. Thus,

$$
|T(\varphi)| \leqslant C_{\lambda, \varepsilon} \exp \left(S(\eta)+(a+\varepsilon)|\eta|-\left(x_{0}, \eta\right)\right) \int e^{\left(\lambda_{0}-\lambda_{0}\right) \xi \xi^{1 / d}} d \xi
$$

In particular, for $\lambda>\lambda_{0}$ and $\eta=v t$ we obtain

$$
|T(\varphi)| \leqslant C e^{-a t} \rightarrow 0 \quad \text { when } \quad t \rightarrow+\infty .
$$

Hence supp $T \subset K_{\varepsilon}$ for every $\varepsilon>0$ which implies supp $T \subset K$. It is also easily seen that $T_{x}\left(e^{-i x \zeta}\right)=\Phi(\zeta)$ so (7.2) is sufficient.

For the proof of the necessity of (7.2), assume that $T \in G_{0}^{\prime}(d)$ with $\operatorname{supp} T \subset K$. Take ψ in $G_{0}(d, 0)$ so that $\psi \equiv 1$ on $K_{\varepsilon / 2}$ and $\operatorname{supp} \psi \subset K_{\varepsilon}$. According to Theorem 2 we have

$$
\left|T_{x}\left(e^{-i x 5}\right)\right|=\left|T_{x}\left(\psi(x) e^{-i x 5}\right)\right| \leqslant C\left|e^{-i x 5} \psi(x), K_{\varepsilon}\right|_{d, l}
$$

for some l and C. This gives (7.2). Since $\sum_{k=0}^{N}(-i x \zeta)^{k} / k!$ tends to $e^{-i x \zeta}$ in $G\left(d, R^{n}\right)$, it is also clear that $T_{x}\left(e^{-i x ¢}\right)$ is entire analytic.

Finally we have to prove that (7.1) is sufficient. The sufficiency of (7.2) implies that every entire function Φ, which satisfies (7.1), is the Fourier-Laplace transform of a T in $G^{\prime}\left(d, R^{n}\right)$ with support in K. From (7.5) it follows that T is the infinitely differentiable function

$$
(2 \pi)^{-n} \int \Phi(\xi) e^{i x \xi} d \xi
$$

According to the assumption, $|T|_{\lambda}<\infty$ for every λ. Further,

$$
\begin{aligned}
\left|D^{\alpha} T(x)\right| \leqslant(2 \pi)^{-n} \int\left|\xi^{\alpha}\right||\hat{T}(\xi)| d \xi & \leqslant(2 \pi)^{-n}|T|_{\lambda} \sup \left(|\xi|^{|\alpha|} \exp \left(-\lambda|\xi|^{1 / d}\right)\right. \\
& \leqslant(2 \pi)^{-n}\left(\frac{d}{\lambda e}\right)^{d|\alpha|}|\alpha|^{|\alpha| d}|T|_{\lambda}=(2 \pi)^{-n} l^{|\alpha|}|\alpha|^{|\alpha| d}|T|_{\lambda}
\end{aligned}
$$

when $l=d^{d}(\lambda e)^{-d}$. This implies

$$
\begin{equation*}
|T, K|_{a, l} \leqslant(2 \pi)^{-n}|T|_{\lambda} \tag{7.6}
\end{equation*}
$$

for an arbitary compact set K. The proof is complete.
Remark. If we define the singular support of $T \in G_{0}^{\prime}(d, O)$ as the set of points in O having no neighborhood where T is in $G(d)$, it is possible to prove a result analogous to the last theorem for the singular support.

We observe that (7.6) and (7.4) give

$$
|\varphi, K|_{d, l} \leqslant(2 \pi)^{-n}|\varphi|_{\lambda} \text { and }|\varphi|_{\lambda} \leqslant C|\varphi, K|_{d, l^{\prime}}
$$

when $\varphi \in G_{0}(d, K)$. Thus, the semi-norms $|\varphi, K|_{d, l}$ and $|\varphi|_{\lambda}$ define the same topology on $G_{0}(d, K)$ and by that the same inductive limit on $G_{0}(d, O)$ (cf. Beurling [1]). Write finally $|\varphi|_{\lambda, \psi}=|\psi \varphi|_{\lambda}$ for fixed ψ in $G_{0}(d, O)$ when $\varphi \in G(d, O)$. It is immediate that the semi-norms

$$
\left\{|\varphi|_{\lambda, \psi} ; \psi \in G_{\mathbf{0}}(d, O), \lambda>0\right\}
$$

are equivalent to the semi-norms

$$
\left\{|\varphi, K|_{d, i} ; l>0 \text { and } K \text { compact in } O\right\} .
$$

Hence we can define the topology of the Fréchet space $G(d, O)$ by the semi-norms $|\varphi|_{\lambda, \psi}$.

E. LARSSON, Generalized hyperbolicity

The necessity of \boldsymbol{d}-hyperbolicity

As in the introduction, let H be the half space $(x, N) \geqslant 0$ and $\overline{G_{0}(d, H)}$ the set of those functions in $G(d)$ which have the support in H. Set $\inf _{t}|\eta-t N|=|\eta|_{N}$ when $\eta \in R^{n}$.

Theorem 8. Assume that the mapping $\varphi \rightarrow P(D) \varphi$ in $\overline{G_{0}(d, \bar{H})}$ is injective and that its inverse is continuous. Then there is a constant $C>0$ such that

$$
P(\zeta)=P(\xi+i \eta) \neq 0 \text { if }(\eta, N) \leqslant-C\left(1+|\eta|_{N}+|\xi|^{1 / d}\right)
$$

Proof. We use the semi-norms $|\varphi|_{\lambda, \varphi}$ of $G(d)$. The continuity of $P(D) \varphi \rightarrow \varphi$ in $\overline{G_{0}(d, \bar{H})}$ means that to every $\lambda>0$ and $\psi \in G_{0}(d)$ there are constants $C, \lambda_{0}>0$ and $\psi_{0} \in G_{0}(d)$ such that

$$
|\varphi|_{\lambda, \psi} \leqslant C|P(D) \varphi|_{\lambda_{0}, \psi_{0}} \text { when } \varphi \in \overline{G_{0}(d, \bar{H})}
$$

Let $\psi \in G_{0}(d)$ with $\psi(N)=1$. Then

$$
|\varphi(N)|=|\varphi(N) \varphi(N)| \leqslant|\varphi|_{0, \varphi}
$$

which together with the continuity implies

$$
|\varphi(N)| \leqslant C|P(D) \varphi|_{\lambda_{0}, \psi_{0}}
$$

for some constants C and $\lambda_{0}>0$ and a fixed $\psi_{0} \in G_{0}(d)$. Take $\chi \in \overline{G(d, R)}$ so that $\chi(t)=0$ for $t \leqslant 2^{-2}(N, N)$ and $\chi(t)=1$ for $t \geqslant 2^{-1}(N, N)$. We can then apply the inequality to $\left.\varphi(x)=e^{i(x-N, \delta)}\right) \chi((x, N))$ and get

$$
\begin{align*}
\mathrm{I} & \leqslant C\left|P(D) e^{i(x-N .5)} \chi((x, N))\right|_{\lambda_{0}, \psi_{0}} \\
& \left.=C \mid \psi_{0}(x) P(D) e^{i(x-N, 5)}\right)\left.\chi((x, N))\right|_{\lambda_{0}} . \tag{8.1}
\end{align*}
$$

When $P(\zeta)=0$, we have

$$
\psi_{0}(x) P(D) e^{i(x-N, \zeta)} \chi((x, N))=\sum_{\gamma \neq 0} \frac{1}{\gamma!} P^{(\gamma)}(\zeta) e^{i(x-N, \zeta)} \psi_{0}(x) D^{\gamma} \chi((x, N)) .
$$

Here the support of $g_{\gamma}(x)=\psi_{0}(x) D^{\gamma} \chi((x, N))$ is contained in a bounded set B of $\left\{x ; 2^{-2}(N, N) \leqslant(x, N) \leqslant 2^{-1}(N, N)\right\}$ when $\gamma \neq 0$. According to (7.1), there is thus to every $\lambda>0$ a constant $C>0$ so that

$$
\left|\hat{g}_{\gamma}(\zeta)\right| \leqslant C \exp \left(S(\eta)-\lambda|\xi|^{1 / d}\right)
$$

for $\gamma \neq 0$ where $S(\eta)=\sup _{x \in B}(x, \eta)$. This gives for $\alpha \in R^{n}$

$$
\begin{aligned}
\left|\int e^{-i \alpha x} g_{\gamma}(x) e^{i(x-N . \zeta)} d x\right|=e^{(\eta, N)}\left|\hat{g}_{\gamma}(\alpha-\zeta)\right| & \leqslant C \exp \left((\eta, N)+S(-\eta)-\lambda|\alpha-\xi|^{1 / d}\right) \\
& \leqslant C \exp \left((\eta, N)+S(-\eta)+\lambda|\xi|^{1 / \alpha}-\lambda|\alpha|^{1 / d}\right)
\end{aligned}
$$

Hence (8.1) implies that there is a polynomial Q such that

$$
\begin{equation*}
1 \leqslant Q(|\zeta|) \exp \left((\eta, N)+S(-\eta)+2 \lambda_{0}|\xi|^{1 / d}\right) \tag{8.2}
\end{equation*}
$$

In order to estimate $S(-\eta)$ we write $x=s N+y$ where $(y, N)=0$. Then $2^{-2} \leqslant s \leqslant 2^{-1}$ and $|y| \leqslant D$ for some fixed D if $x \in B$. When $(\eta, N)<0$, we obtain
$S(-\eta)=\sup _{x \in B}(x,-\eta) \leqslant \sup _{2^{-2} \leqslant s \leqslant 2^{-1}} s(N,-\eta)+\sup _{|y| \leqslant D}(y,-\eta) \leqslant-2^{-1}(\eta, N)+D \inf _{t}|\eta-t N|$.
From (8.2) it hence follows that

$$
0 \leqslant(\eta, N)+C\left(1+|\eta|_{N}+|\xi|^{1 / d}\right)
$$

for some constant $C>0$ when $P(\zeta)=0$ and $(\eta, N)<0$. Consequently, $P(\zeta) \neq 0$ when $(\eta, N) \leqslant-C\left(1+|\eta|_{N}+|\xi|^{1 / d}\right)$ and the proof is complete.

We let m be the order of P and denote the principal part by P_{m}.
Theorem 9. $P_{m}(N) \neq 0$ if there exists a constant C such that $P(\xi+i \eta) \neq 0$ when $(\eta, N) \leqslant-C\left(\mathbf{1}+|\eta|_{N}+|\xi|^{1 / d}\right)$.

Proof. Assume that $N=(1,0, \ldots 0)$ and $P_{m}(N)=0$. Since $P_{m} \neq 0$, there are constants $\left(\alpha_{j}\right)_{j}=2$ no that $P_{m}\left(1, \alpha_{2}, \ldots \alpha_{n}\right) \neq 0$. We consider the polynomial

$$
Q(\lambda, \mu)=P\left(\lambda, \lambda \mu \alpha_{2} \ldots \lambda \mu \alpha_{n}\right)=\sum_{\nu=0}^{m} \lambda^{\nu} R_{v}(\mu)
$$

where $R_{m}(\mu)=P_{m}\left(1, \mu \alpha_{2}, \ldots \mu \alpha_{n}\right) \neq 0$ according to the choice of $\left(\alpha_{j}\right)_{j=2}^{n}$. Because of the assumption, the zeros $\lambda(\mu)$ of $Q(\lambda, \mu)$ satisfy

$$
\begin{equation*}
\left.\operatorname{Im} \lambda(\mu) \geqslant-\left.C(1+|\mu \lambda(\mu)|+\mid \operatorname{Re} \lambda(\mu))\right|^{1 / d}\right) \tag{9.1}
\end{equation*}
$$

for a suitable constant $C>0$ when $|\mu| \leqslant 1$. As $R_{m}(\mu) \neq 0$, we further know that the zeros can be developed into a Puiseux series around $\mu=0$. We obtain

$$
Q(\lambda, \mu)=R_{m}(\mu) \prod_{j=1}^{m}\left(\lambda-\lambda_{j}(\mu)\right),
$$

where every $\lambda_{j}(\mu)$ for some positive integer p is an analytic function of $\mu^{1 / p}$ when $0<|\mu|<\delta$, without any essential singularity at $\mu^{1 / p}=0$, i.e.

$$
\lambda_{j}(\mu)=\sum_{k=N_{j}}^{\infty} a_{k} \mu^{(1 / p) \cdot k}
$$

where N_{j} is a whole number.
We have assumed $R_{m}(0)=0$. Because of (9.1) at least one $R_{\nu}(0) \neq 0$. Hence, if $\mu \rightarrow 0$ so that $R_{m}(\mu) \neq 0$, at least one quotient $R_{\nu}(\mu) / R_{m}(\mu)$ tends to infinity. Consequently, $\left|\lambda_{j_{0}}(\mu)\right| \rightarrow \infty$ for some j_{0} when $\mu \rightarrow 0$, i.e. $N_{j_{0}}=N$ is a negative integer. Thus $\lambda_{j_{0}}(\mu)$ behaves asymptotically as $a_{N}\left(\mu^{1 / p}\right)^{N}$ when $\mu \rightarrow 0$, which is a contradiction to (9.1) since $d>1$. The theorem is proved.

Remark. If $P_{m}(N)=0$, we can construct functions $0 \neq \varphi \in \overline{G_{0}(d, H)}$ such that $P(D) \varphi=0$ (cf. Hörmander [1], p. 121). Hence $P_{m}(N) \neq 0$ is properly a direct consequence of the injectiveness of the considered mapping.

E. Larsson, Generalized hyperbolicity

If $P(\xi+i \eta) \neq 0$ when $(\eta, N) \leqslant-C\left(1+|\eta|_{N}+|\xi|^{1 / d}\right)$, we obtain, in the special case $\eta=\tau N, \tau \in R$, that $P(\xi+i \tau N) \neq 0$ when $\xi \in R^{n}$ and $\tau(N, N) \leqslant-C\left(1+|\xi|^{1 / d}\right)$. According to the last theorem, such polynomials also satisfy $P_{m}(N) \neq 0$. We make the following definition.

Definition 4. A polynomial P is called d-hyperbolic with respect to N if there is a constant C such that $P_{m}(N) \neq 0$ and $P(\xi+i \tau N) \neq 0$ when $\xi \in R^{n}$ and $\tau \leqslant-C\left(1+|\xi|^{1 / d}\right)$. We consider $1<d \leqslant \infty$ with the convention that $|\xi|^{1 / \infty}=1$ so that $d=\infty$ is formally the Gårding case. According to Lemmas 1 below, $d=1$ is the Cauchy-Kovalevsky case. The following theorem is now immediate.

Theorem 10. P is d-hyperbolic with respect to N if $P(D) \varphi \rightarrow \varphi$ is a continuous mapping in $\overline{G_{0}(d, H)}$.

We also have

Theorem 11. P is d-hyperbolic with respect to N if the mapping $\varphi \rightarrow P(D) \varphi$ is bijective in $\overline{G_{0}(d, H)}$, i.e. if the equation $P(D) \varphi=\psi$ has a unique solution $\varphi \in \overline{G_{0}(d, H)}$ for every $\psi \in \overline{G_{0}(d, H)}$.

Proof. Since $\overline{G_{0}(d, H)}$ is a closed subspace of the Fréchet space $G(d), \overline{G_{0}(d, H)}$ is itself a Fréchet space. The mapping $\varphi \rightarrow P(D) \varphi$ is continuous in $\overline{G_{0}(d, H)}$. According to Banach's theorem the inverse is then continuous too. The application of Theorem 10 completes the proof.

Algebraic properties of \boldsymbol{d}-hyperbolic polynomials

The following theorems, which give some algebraic properties of our polynomials, are easy generalizations of the corresponding theorems for ∞-hyperbolic polynomials (cf. Hörmander [1], p. 132). We need the following lemma.

Lemma 1. If $P_{m}(N) \neq 0$, there is a constant C such that $|\tau| \leqslant C(1+|\zeta|)$ when $\tau \in C, \zeta \in C^{n}$ and $P(\zeta+\tau N)=0$.

Proof. It is no restriction to assume $P_{m}(N)=1$. Then $P(\zeta+\tau N)=\tau^{m}+\sum_{\nu=0}^{m-1} P_{\nu}(\zeta) \tau^{v}$ where the order of $P_{\nu} \leqslant m-\nu$. Hence, there is a constant C such that $\left|P_{\nu}(\zeta)\right| \leqslant$ $\left(C 2^{-1}(1+|\zeta|)\right)^{m-\nu}$, which gives

$$
\left|\sum_{\nu=0}^{m-1} P_{v}(\zeta) \tau^{v}\right| \leqslant|\tau|^{m} \sum_{\nu=0}^{m-1} 2^{\nu-m}<|\tau|^{m} \text { if }|\tau|>C(1+|\zeta|)
$$

This proves the lemma.
For the sake of completeness we also prove the converse of Lemma 1.
Lemma 2. $P_{m}(N) \neq 0$ if P is of order m and $|\tau| \leqslant C(1+|\zeta|)$ for some constant C when $\tau \in C, \zeta \in C^{n}$ and $P(\zeta+\tau N)=0$.

Proof. Assume that $P_{m}(N)=0$. Then

$$
P(\zeta+\tau N)=\sum_{\nu=0}^{\mu} P_{\nu}(\zeta) \tau^{\nu}
$$

where $\mu<m$ and the order of $P_{\nu}=m-\nu$ for at least one $\nu=v_{0}$ since the order of P is m. First we prove that $P_{\mu}(\zeta)$ is a constant. The polynomials P_{ν} cannot have a common zero since this violates our assumption. If P_{μ} depends on ζ, it has a zero ζ_{0}. Let ζ tend to ζ_{0} so that $P_{\mu}(\zeta) \neq 0$. Then at least one quotient

$$
\frac{P_{v}(\zeta)}{P_{\mu}(\zeta)}, \quad \nu<\mu
$$

tends to infinity and by that also at least one zero $\tau(\zeta)$ of $P(\zeta+\tau N)$. This is again a contradiction to the assumption so that $P_{\mu}(\zeta)$ is a constant. Now we know that $P_{r_{0}}$ is the sum of all possible $\left(\mu-v_{0}\right)$-products of the roots of $P(\zeta+\tau N)=0$. We have assumed that the roots satisfy $|\tau| \leqslant C(1+|\zeta|)$ for a suitable constant C. With another constant C we thus get

$$
\left|P_{v_{0}}(\zeta)\right| \leqslant C(1+|\zeta|)^{\mu-r_{0}}
$$

which contradicts that the order of $P_{y_{0}}$ is $m-v_{0}$. The proof is complete.
Let P be d-hyperbolic with respect to N. Then $P_{m}(N) \neq 0$, and $P(\xi+i \tau N)=0$ implies $\operatorname{Re} \tau \geqslant-C\left(1+|\xi|^{1 / d}+|\operatorname{Im} \tau|^{1 / d}\right)$ for a suitable fixed $C>0$ when $\xi \in R^{n}$. According to Lemma 1 , there is another C such that $|\tau| \leqslant C(1+|\xi|)$ when $P(\xi+i \tau N)=0$. Hence, if P is d-hyperbolic with respect to N, we have a constant C such that $P_{m}(N) \neq 0$ and $P_{m}(\xi+i \tau N) \neq 0$ when $\xi \in R^{n}$ and $\operatorname{Re} \tau \leqslant-C\left(1+|\xi|^{1 / d}\right)$.

Theorem 12. P is d-hyperbolic with respect to $-N$ if P is d-hyperbolic with respect to N.
Proof. The homogeneity of the principal part P_{m} gives that $P_{m}(-N)=(-1)^{m} P_{m}(N)$ $\neq 0$. All the roots of $P(\xi+i \tau N)=0$ satisfy $\operatorname{Re} \tau \geqslant-C\left(1+|\xi|^{1 / d}\right)$ for some fixed C when $\xi \in R^{n}$. We know that the coefficients of τ^{m} and τ^{m-1} are $i^{m} P_{m}(N) \neq 0$ respectively a linear function of ξ. Denoting the zeros of $P(\xi+i \tau N)$ by $\tau_{j}, \sum_{j=1}^{\infty} \tau_{j}$ is thus a linear function of ξ. This implies that $\sum_{j=1}^{m} \operatorname{Re} \tau_{j}$ is a linear function of $\xi \in R^{n}$ bounded from below by $-C\left(1+|\xi|^{1 / d}\right)$. But then $\sum_{j-1}^{m} \operatorname{Re} \tau_{j}$ must be a constant l since $d>1$. This gives

$$
\operatorname{Re} \boldsymbol{\tau}_{k}=l-\sum_{j \neq k} \operatorname{Re} \tau_{j} \leqslant l+C\left(\mathrm{I}+|\xi|^{1 / d}\right) .
$$

Consequently, $P(\xi+i \tau N) \neq 0$ when $\xi \in R^{n}$ and $\tau>l+C\left(1+|\xi|^{1 / d}\right)$. The proof is complete.

The theorem can also be written in the following form.
Corollary. If P is d-hyperbolic with respect to N, there is a constant $C>0$ such that

$$
|\operatorname{Re} \tau| \leqslant C\left(1+|\xi|^{1 / d}\right) \text { when } \xi \in R^{n} \text { and } P(\xi+i \tau N)=0 .
$$

Theorem 13. If P is d-hyperbolic with respect to N, then P_{m} is ∞-hyperbolic with respect to N.

Proof. Let $\sigma>0$. According to the corollary of Theorem 12 we have a constant $C>0$ such that $\sigma|\operatorname{Re} \tau| \leqslant C\left(1+|\sigma \xi|^{1 / d}\right)$ when $\xi \in R^{n}$ and $P(\sigma \xi+i \sigma \tau N)=0$. Further,

$$
P_{m}(\xi+i \tau N)=\lim _{\sigma \rightarrow+\infty} \sigma^{-m} P(\sigma \xi+i \sigma \tau N)
$$

Since $P_{m}(N) \neq 0$, the zeros τ of $\sigma^{-m} P(\sigma \xi+i \sigma \tau N)$ depend continuously on σ^{-1} in a neighborhood of $\sigma^{-1}=0$. Hence $|\operatorname{Re} \tau|=0$ if $P_{m}(\xi+i \tau N)=0$ and $\xi \in R^{n}$. The proof is complete.

Theorem 13 and the definition of d-hyperbolicity give immediately
Theorem 14. A homogeneous polynomial P is d-hyperbolic with respect to N if and only if $P(N) \neq 0$ and the zeros τ of $P(\xi+\tau N)$ are real when $\xi \in R^{n}$.

As in the special case of ∞-hyperbolicity, we make the following definition.
Definition 5. If P is d-hyperbolic with respect to N, we define $\Gamma(P, N)=\Gamma\left(P_{m}, N\right)$ as the set of all real vectors ϑ such that $P_{m}(\vartheta+\tau N)$ has only negative zeros τ.
Then the following theorem is well known.
Theorem 15. $\Gamma(P, N)$ is the N-component of the open set $\left\{\boldsymbol{\vartheta} ; P_{m}(\boldsymbol{\vartheta}) \neq 0\right\}$.
Proof. We refer to the proof of Lemma 5.5.1, p. 133, in Hörmander [1].
Next theorem will make it possible to prove that P is d-hyperbolic with respect to every $\vartheta \in \Gamma(P, N)$ if it is d-hyperbolic with respect to N.

Theorem 16. Let P be d-hyperbolic with respect to N and let $\vartheta \in \Gamma(P, N)$. Then there is a constant C such that $P(\xi+i \tau N+i \sigma \vartheta) \neq 0$ when $\xi \in R^{n}, \operatorname{Re} \sigma \leqslant 0$ and $\tau \leqslant-C\left(1+|\xi|^{1 / d}\right)$.

Proof. We consider first the case $\operatorname{Re} \sigma=0$. The corollary of Theorem 12 gives a constant C such that $|\tau| \leqslant C\left(1+|\xi|^{1 / d}+|\sigma|^{1 / d}\right)$ when $\tau \in R, \xi \in R^{n}$ and $P(\xi+i \tau N+i \sigma \vartheta)=0$. Further, since $P_{m}(\vartheta) \neq 0$, we have according to Lemma 1 a fixed $D>0$ so that

$$
|\sigma| \leqslant D(1+|\xi|+|\tau|) \text { when } P(\xi+i \tau N+i \sigma \vartheta)=0 \text {. }
$$

Hence, with a suitable $C>0,|\tau| \leqslant C\left(1+|\xi|^{1 / d}+|\tau|^{1 / d}\right)$ when $\tau \in R, \xi \in R^{n}$ and $P(\xi+i \tau N+i \sigma \vartheta)=0$. Because $d>1$, this gives the existence of still another constant $C_{0}>0$ such that $P(\xi+i \tau N+i \sigma \vartheta)=0$ implies $|\tau| \leqslant C_{0}\left(1+|\xi|^{1 / d}\right)$ when $\tau \in R$ and $\xi \in R^{n}$. This completes the proof in the special case $\operatorname{Re} \sigma=0$.

For the general proof we study $P(\xi+i \tau N+i \sigma \vartheta)$ as a polynomial in σ when ξ is an arbitrary vector in R^{n} and τ varies in $\tau \leqslant-C_{0}\left(1+|\xi|^{1 / d}\right)$. Here C_{0} is the constant obtained above. The zeros σ of this polynomial vary continuously with τ since the coefficient $i^{m} P_{m}(\vartheta)$ of σ^{m} is unequal to zero. As $P(\xi+i \tau N+i \sigma \vartheta)$ has no zeros when $\xi \in R^{n}, \operatorname{Re} \sigma=0$ and $\tau \leqslant-C_{0}\left(1+|\xi|^{1 / d}\right)$, it follows that the number of zeros σ with negative real part is constant when $\tau \leqslant-C_{0}\left(1+|\xi|^{1 / d}\right)$. It is thus enough to prove that there are no zeros σ when $\operatorname{Re} \sigma<0$ and τ is large negative. We set $\sigma=\mu \tau$. Then the equation $P(\xi+i \tau N+i \sigma \vartheta)=0$ can be written $i^{-m} \tau^{-m} P(\xi+i \tau(N+\mu \vartheta))=0$. When $\tau \rightarrow-\infty$, this equation converges to $P_{m}(N+\mu \vartheta)=0$ which has only negative roots. Since $P_{m}(\vartheta) \neq 0$ is the coefficient of μ^{m} in our equation, the roots μ depend continuously on τ^{-1}. Hence, all zeros σ of $P(\xi+i \tau N+i \sigma \vartheta)$ must have a positive real part when $\xi \in R^{n}$ and $\tau \leqslant-C_{0}\left(1+|\xi|^{1 / d}\right)$. The proof of the theorem is complete.
Theorem 17. P is d-hyperbolic with respect to every $\vartheta \in \Gamma(P, N)$ if P is d-hyperbolic with respect to N.

Proof. Let $\vartheta \in \Gamma(P, N)$ and consider real σ and τ such that $\tau=\varepsilon \sigma$. According to Theorem 16, P is d-hyperbolic with respect to $\vartheta+\varepsilon N$ for every $\varepsilon>0$. Since $\Gamma(P, N)$ is open, $\vartheta-\varepsilon N \in \Gamma(P, N)$ for small $|\varepsilon|$. Hence, for small $\varepsilon>0, P$ is d-hyperbolic with respect to $(\vartheta-\varepsilon N)+\varepsilon N=\vartheta$.

Theorem 18. The cone $\Gamma(P, N)$ is convex.
Proof. See the proof of Theorem 5.5.6, p. 134, in Hörmander [1].
We now need the following definitions.
Definitions. Let P_{m} be a homogeneous polynomial of order m. We set

$$
\nabla^{k} P_{m}(\xi)=\sum_{|\alpha|=k}\left|P_{m}^{(\alpha)}(\xi)\right|^{2}
$$

and $V_{l}=\left\{\xi ; \xi \in R^{n}\right.$ and $\left.\nabla^{k} P_{m}(\xi)=0\right\}$.
Euler's theorem for homogeneous polynomials gives that

$$
V_{0} \supset V_{1} \supset \ldots \supset V_{m}=\phi
$$

Further, $V_{k} \supset\{0\}$ when $k<m$. We set

$$
s=\inf \left(j, V_{j}=\{0\}\right)
$$

and call $P_{m} s$-singular or singular of order s.
Theorem 19. Let P_{m} be a homogeneous polynomial of order m which is s-singular and hyperbolic with respect to N. Let further Q be a polynomial of order $l<m$. Then $P_{m}+Q$ is d-hyperbolic with respect to N where $1 / d+(m-l) / s=1$ with the convention that $d=\infty$ when $1 / d \leqslant 0$.

Proof. We define $\left|\tilde{P}_{m}(\zeta)\right|=\left(\sum_{\alpha}\left|P_{m}^{(\alpha)}(\zeta)\right|^{2}\right)^{1 / 2}$ and prove first that

$$
\begin{equation*}
\left|\tilde{P}_{m}(\xi+i N)\right| \leqslant C\left|P_{m}(\xi+i N)\right| \tag{19.1}
\end{equation*}
$$

for some constant C when $\xi \in R^{n}$. Since $\Gamma\left(P_{m}, N\right)$ is open, the Theorems 17 and 14 imply $P_{m}(\xi+i N+i \zeta) \neq 0$ for all ξ in R^{n} when $|\zeta|$ is smaller than a suitable constant $\varepsilon>0$. This gives

$$
\left|P_{m}(\xi+i N+i \zeta)\right| \leqslant 2^{m}\left|P_{m}(\xi+i N)\right|
$$

when $\xi \in R^{n}$ and $|\zeta|<\varepsilon$, so by the Cauchy integral formula we have a constant C such that

$$
\left|P_{m}^{(\alpha)}(\xi+i N)\right| \leqslant C\left|P_{m}(\xi+i N)\right|
$$

when $\xi \in R^{n}$ (cf. Lemma 4.1.1, p. 99, in Hörmander [1]). This proves the above inequality.

We write $Q=\sum_{j=0}^{l} Q_{j}$ where Q_{j} is homogeneous of order $j .\left|\tilde{P}_{m}(\xi)\right|^{2}$ contains $\nabla^{s} P_{m}(\xi)$ which is of order $2(m-s)$ and elliptic since P_{m} is s-singular. Hence,

$$
\begin{equation*}
\left|\tilde{Q}_{j}(\xi)\right|^{2} \leqslant C\left|\tilde{P}_{m}(\xi)\right|^{2}\left(\mathbf{1}+|\xi|^{2}\right)^{j+s-m}, \quad \xi \in R^{n}, \tag{19.2}
\end{equation*}
$$

for a fixed $C>0$. Applying (19.1), (19.2) and the Taylor formula we obtain the existence of two constants C and C^{\prime} such that

E. LARSSOn, Generalized hyperbolicity

$$
\begin{aligned}
\left|Q_{j}(\xi+i N)\right|^{2} & \leqslant C^{\prime}\left|\tilde{P}_{m}(\xi+i N)\right|^{2}\left(1+|\xi+i N|^{2}\right)^{j+s-m} \\
& \leqslant C\left|P_{m}(\xi+i N)\right|^{2}|\xi+i N|^{2(j+s-m)}
\end{aligned}
$$

when $\xi \in R^{n}$. The homogeneity implies

$$
\begin{aligned}
|\tau|^{-j}\left|Q_{j}(\tau \xi+i \tau N)\right| & =\left|Q_{j}(\xi+i N)\right| \leqslant C\left|P_{m}(\xi+i N)\right||\xi+i N|^{j+s-m} \\
& =C|\tau|^{-j-s}\left|P_{m}(\tau \xi+i \xi N)\right||\tau \xi+i \tau N|^{j+s-m} .
\end{aligned}
$$

Hence,

$$
\left|Q_{j}(\xi+i \tau N)\right| \leqslant C|\tau|^{-s}\left|P_{m}(\xi+i \tau N)\right||\xi+i \tau N|^{j+s-m}
$$

when $\xi \in R^{n}$ and $0 \neq \tau \in R$. This gives

$$
\begin{aligned}
\left|P(\xi+i \tau N)-P_{m}(\xi+i \tau N)\right| & \leqslant \sum_{j=0}^{l}\left|Q_{j}(\xi+i \tau N)\right| \\
& \leqslant C|\tau|^{-s}\left|P_{m}(\xi+i \tau N)\right| \sum_{j=0}^{l}|\xi+i \tau N|^{j+s-m}
\end{aligned}
$$

If $|\tau| \geqslant D\left(1+|\xi|^{1 / d}\right)$ where $1 / d+(m-l) / s=1$ and D is a sufficiently large constant, we have

$$
C|\tau|^{-s}|\xi+i \tau N|^{j+s-m} \leqslant \frac{1}{2(l+1)}
$$

Hence

$$
\frac{1}{2}\left|P_{m}(\xi+i \tau N)\right| \leqslant|P(\xi+i \tau N)| \leqslant 2\left|P_{m}(\xi+i \tau N)\right|
$$

for all such τ in R. Since $P_{m}(\xi+i \tau N) \neq 0$ for $\tau \in R$, the proof is complete.
To be able to prove the converse of this theorem we need the following result. We let $[x]$ stand for the integral part of x.

Theorem 20. Let P be d-hyperbolic with respect to N and set for fixed ξ and ϑ in R^{n}

$$
\operatorname{deg}_{\tau} P(\tau \xi+\vartheta)=l \quad \text { and } \quad \operatorname{deg}_{\tau} P_{m}(\tau \xi+N)=\boldsymbol{g}
$$

Then

$$
l \leqslant g+\left[\frac{m-g}{d}\right] .
$$

Proof. We consider $P(\tau \xi+\vartheta+\sigma N)$ and give an estimate of $\operatorname{deg}_{\tau} P(\tau \xi+\vartheta+\sigma N)$ from above for every fixed ϑ in R^{n}. We study the zeros σ as functions of τ. If we set $\sigma=\omega \tau$, the equation $P(\tau \xi+\vartheta+\sigma N)=0$ can be written

$$
\tau^{-m} P(\tau \xi+\vartheta+\omega \tau N)=P_{m}(\xi+\omega N)+Q\left(\tau^{-1}, \omega\right)=0
$$

where $Q\left(\tau^{-1}, \omega\right)$ is a polynomial in τ^{-1} and ω which vanishes for $\tau^{-1}=0$. The polynomial $P_{m}(\xi+\omega N)=\omega^{m} P_{m}\left(\omega^{-1} \xi+N\right)$ has, according to the assumption, a $(m-g)$-fold zero $\omega=0$. Since $P_{m}(N) \neq 0$, the zeros ω of $P_{m}(\xi+\omega N)+Q\left(\tau^{-1}, \omega\right)$ are bounded when $\tau^{-1} \rightarrow 0$, and $m-g$ of them converge to zero. The Puiseux series expansion of these ($m-g$) zeros around $\tau^{-1}=0$ can thus be written

$$
\omega(\tau)=\sum_{j=1}^{\infty} c_{j} \tau^{-j / p} .
$$

Let c_{r} be the first non-vanishing coefficient. The corresponding zeros $\sigma=\tau \omega$ of $P(\tau \xi+\vartheta+\sigma N)$ then behave asymptotically as $c_{r} \tau^{(p r / p}$ when $\tau^{-1} \rightarrow 0$. In particular, the argument of σ tends to $\arg c_{r}+((p-r) / p) \nu \pi$ when $\arg \tau=\nu \pi$ and $\tau^{-1} \rightarrow 0$. Since P is d-hyperbolic with respect to N, we also have $|\operatorname{Im} \sigma| \leqslant C\left(1+|\vartheta|^{1 / d}+|\tau|^{1 / d}|\xi|^{1 / d}\right)$ for a fixed C when $\tau \in R$. A suitable choice of v then gives the condition

$$
\underset{p}{p-r} \underset{d}{d}
$$

Hence, $m-g$ zeros of $P(\tau \xi+\vartheta+\sigma N)$ are $O\left(|\tau|^{1 / d}\right)$ when $|\tau| \rightarrow \infty$. For the rest of the zeros we have $O(|\tau|)$ when $|\tau| \rightarrow \infty$. The connection between the coefficients and the zeros of our polynomial then implies that the coefficients satisfy $O\left(|\tau|^{\sigma+(m-\sigma) / d}\right)$ when $|\tau| \rightarrow \infty$. Hence,

$$
\operatorname{deg}_{\tau} P(\tau \xi+\vartheta+\sigma N) \leqslant g+\left[\frac{m}{-} d\right]
$$

The theorem is proved.
For fixed m and l we define d_{s} by

$$
\underset{d_{s}}{1}+\frac{m-l}{s}=1
$$

with the convention that $d_{s}=\infty$ when $m \geqslant l+s$.
Corollary. Let P_{m} be a homogeneous polynomial of order m. If $l \geqslant m-s$ and $P_{m}+Q$ is d_{s}-hyperbolic with respect to N for all Q of order $\leqslant l$, then $P_{m}(\xi+\tau N)$ cannot have more than s coinciding zeros τ for any ξ in R^{n} non-proportional to N.

Proof. Assume that the corollary is not true. Then there is $t>s$ such that $P_{m}\left(\xi_{0}+\tau N\right)$ has a t-fold zero $\tau=0$ for some $\xi_{0} \neq 0$ in R^{n} non-proportional to N. This and $l \geqslant m-s$ gives $\operatorname{deg}_{\tau} P_{m}\left(\tau \xi_{0}+N\right)=\operatorname{deg}_{\tau} \tau^{m} P_{m}\left(\xi_{0}+\tau^{-1} N\right)=m-\boldsymbol{t}<l$. Applying Theorem 20 with $g=m-t$ and $d=d_{s}$, we obtain

$$
\operatorname{deg}_{\tau}\left(P_{m}\left(\tau \xi_{0}+N\right)+Q\left(\tau \xi_{0}+N\right)\right) \leqslant\left[l-\frac{(t-s)(m-l)}{s}\right] \leqslant l-1
$$

for every Q of order $\leqslant l$. Since $\operatorname{deg}_{\tau} P_{m}\left(\tau \xi_{0}+N\right)<l$, this implies that $\operatorname{deg}_{\tau} Q\left(\tau \xi_{0}+N\right) \leqslant$ $l-1$ for all Q of order $\leqslant l$ which is a contradiction. The corollary is proved.

We can now give a theorem in the opposite direction to Theorem 19.
Theorem 21. Let P_{m} be a homogeneous polynomial of order m such that $P_{m}+Q$ is $d_{s^{-}}$ hyperbolic with respect to some N for every Q of order $\leqslant l$. Assume further that there is at least one such Q so that $P_{m}+Q$ is not $d_{s-1}-$ hyperbolic with respect to N. Then P_{m} must be s-singular.

Proof. $P_{m}+Q$ is not d_{s-1}-hyperbolic for every Q of order $\leqslant l$. Then, Theorem 19 implies that P_{m} is at least s-singular. But because of $d_{s}<\infty$, i.e. $l>m-s$, and the corollary of Theorem 20, P_{m} can at most be s-singular, so the proof is complete.

Fundamental solutions and the sufficiency of \boldsymbol{d}-hyperbolicity

We shall now prove that d-hyperbolicity with respect to N is necessary and sufficient for the existence of a fundamental solution in $G_{0}^{\prime}(d)$ if we require the support to be contained in a cone $(x, N) \geqslant \varepsilon|x|, \varepsilon>0$. As above, let $H=\{x ;(x, N) \geqslant 0\}$.

Theorem 22. Assume that a differential operator $P(D)$ has a fundamental solution E in $G_{0}^{\prime}(d)$ with the support in a cone $(x, N) \geqslant \varepsilon|x|, \varepsilon>0$. If then $\psi \in G_{0}^{\prime}(d)$ and $\operatorname{supp} \psi \subset H$, the equation $P(D) \varphi=\psi$ has a unique solution φ with the same properties. When $\psi \in G(d)$, the solution $\varphi \in G(d)$.

Proof. Supp $E \subset\{x ;(x, N) \geqslant \varepsilon|x|\}$ for some $\varepsilon>0$. Let ψ belong to $G_{0}^{\prime}(d)$ or $G(d)$ with the support in H. Then, according to the section on convolutions (p. 3), $E * \psi$ exists in $G_{0}^{\prime}(d)$ respectively $G(d)$ with its support in H. Further, $E * \psi$, solves the equation $P(D) \varphi=\psi$. This proves the existence. If $P(D) \varphi=0$ with $\varphi \in G_{0}^{\prime}(d)$ and $\operatorname{supp} \varphi \subset H$, $\varphi=\varphi * P(D) E=P(D) \varphi * E=0$. The proof is complete. This gives the uniqueness.

Theorem 23. Let $P(D)$ be a differential operator with a fundamental solution E in $G_{0}^{\prime}(d)$ such that the support is contained in a cone $(x, N) \geqslant \varepsilon|x|, \varepsilon>0$. Then P is d hyperbolic with respect to N.

Proof. The theorem is an immediate consequence of the Theorems 11 (p.10) and 22.

Theorem 24. Let P be d-hyperbolic with respect to N. Then the operator $P(D)$ has one and only one fundamental solution E in $G_{0}^{\prime}(d)$ with support in the closed half space H. More precisely, the support of E is contained in the convex cone

$$
\Gamma^{*}(P, N)=\{x ;(x, \vartheta) \geqslant 0 \text { for every } \vartheta \in \Gamma(P, N)\}
$$

but in no smaller convex cone with vertex at 0.
Proof. The uniqueness follows from Theorem 22 when the existence is proved.
Let $\vartheta \in \Gamma(P, N)$. Then P is d-hyperbolic with respect to ϑ. If we write

$$
P(\xi+i \tau \vartheta)=i^{m} P_{m}(\vartheta) \prod_{k=1}^{m}\left(\tau-\tau_{k}(\xi, \vartheta)\right)
$$

we thus have a constant $C(\vartheta)>0$ such that

$$
\operatorname{Re} \tau_{k}(\xi, \vartheta) \geqslant-C(\vartheta)\left(1+|\xi|^{1 / d}\right) \text { when } \xi \in R^{n} .
$$

Specializing τ to $t\left(1+|\xi|^{1 / d}\right)$ with $t \leqslant-2 C(\vartheta)$ we get

$$
|P(\xi+i \tau \vartheta)| \geqslant\left|P_{m}(\vartheta)\right|\left|2^{-1} t\right|^{m}\left(1+|\xi|^{1 / d}\right)
$$

For such τ we let $\sigma(\vartheta, t)$ be the surface

$$
\left(\xi_{1}+i \tau \vartheta_{1}, \xi_{2}+i \tau \vartheta_{2}, \ldots \xi_{n}+i \tau \vartheta_{n}\right) \text { in } C^{n}
$$

Hence,

$$
|P(\zeta)| \geqslant\left|P_{m}(\vartheta)\right|\left|2^{-1} t\right|^{m}\left(1+|\xi|^{1 / d}\right) \text { when } \zeta \in \sigma(\vartheta, t) .
$$

We define E on $G_{0}(d)$ by

$$
\check{E}(\varphi)=(2 \pi)^{-n} \int_{\sigma(\theta, t)} \frac{\hat{\varphi}(\zeta)}{P(\zeta)} d \zeta,
$$

where we use the notations $\check{\varphi}(x)=\varphi(-x)$ and $\check{H}(\varphi)=E(\check{\varphi})$. Theorem 7 (7.3) gives to every compact set K in R^{n} a constant C such that

$$
|\hat{\varphi}(\zeta)| \leqslant C|\varphi, K|_{d, l} \exp \left(t\left(1+|\xi|^{1 / d}\right) S^{\prime}(\vartheta)-\lambda|\xi|^{1 / d}\right)
$$

when $\operatorname{supp} \varphi \subset K$ and $\zeta \in \sigma(\vartheta, t)$. Here $\lambda=(\text { ne } l)^{-1 / d}$ and $S^{\prime}(\vartheta)=\inf _{x \in K}(x, \vartheta)$ since $t<0$. Our estimates of $\hat{\varphi}(\zeta)$ and $P(\zeta)$ imply the convergence of the integral and, for fixed t and $\boldsymbol{\vartheta}$, the inequality

$$
|\check{E}(\varphi)| \leqslant C|\varphi, K|_{d, l},
$$

where the constant C only depends on K and $\lambda>t S^{\prime}(\vartheta)$. Hence, E belongs to $G^{\prime}(d)$. Because of the estimates and the analyticity of $\hat{\varphi}(\zeta)$ and $1 / P(\zeta)$ in the considered regions of C^{n}, we also have that the integral is independent of ϑ and $t \leqslant-2 C(\vartheta)$ when $\vartheta \in \Gamma(P, N)$. Further,

$$
\check{E}(P(D) \varphi)=(2 \pi)^{-n} \int_{\sigma(\vartheta, t)} \frac{P(\zeta) \hat{\varphi}(\zeta)}{P(\zeta)} d \zeta=(2 \pi)^{-n} \int_{R n} \hat{\varphi}(\xi) d \xi=\varphi(0) .
$$

Consequently, $P(D) E=\delta$.
Now it only remains to localize the support of E. If $\operatorname{supp} \varphi \subset\{x ;(x, \vartheta)>0\}$, we have $S^{\prime}(\boldsymbol{\vartheta})>\mathbf{0}$. The estimates of $P(\zeta)$ and $\hat{\varphi}(\zeta)$ then give for $l>0$

$$
|\check{E}(\varphi)| \leqslant C|\varphi, K|_{d, l}|t|^{-m} e^{t S^{\prime}(\theta)} \int_{\sigma(\theta, t)} \exp \left(-\lambda|\xi|^{1 / d}\right)|d \zeta| \rightarrow 0
$$

when $\vartheta \in \Gamma(P, N)$ and $t \rightarrow-\infty$. Hence, $\breve{E}(\varphi)=0$ when $\operatorname{supp} \varphi \subset\{x ;(x, \vartheta)>0\}$, i.e. $\operatorname{supp} E \subset\{x ;(x, \vartheta) \geqslant 0\}$ when $\vartheta \in \Gamma(P, N)$. This proves that $\operatorname{supp} E \subset \Gamma^{*}(P, N)$. Let finally K be a closed convex cone with vertex at 0 and containing the support of the constructed fundamental solution. According to Theorem 23, all proper planes $(x, \theta)=0$ of support of K must then be non-characteristic, i.e. $P_{m}(\theta) \neq 0$. The open convex set

$$
K^{*}=\{\vartheta ;(x, \vartheta)>0, \text { for every } x \neq 0 \text { in } K\}
$$

containing N, is thus contained in $\left\{\vartheta ; P_{m}(\vartheta) \neq 0\right\}$, which gives that $K^{*} \subset \Gamma(P, N)$. Hence $K \supset \Gamma^{*}(P, N)$ and the proof is complete.
(The rest of this paper from here on has been added to proof as a partly rewritten MS, presented to the academy on 16 August 1966. Editor.)
If P is d-hyperbolic with respect to N, we can, according to the Theorems 24 and 22 , solve $P(D) \varphi=f$ uniquely in $\overline{G_{0}(d, H)}$ for every $f \in \overline{G_{0}(d, H)}$. Theorem 10 states the reverse implication, so d-hyperbolicity with respect to N is both necessary and sufficient for the unique solvability of $P(D) \varphi=f$ in $\overline{G_{0}(d, H)}$.

We can now go a step further and consider the following Cauchy problem where P is of order m and D_{N} denotes derivation along N :

E. LARSSON, Generalized hyperbolicity

$$
\left\{\begin{array}{l}
P(D) \varphi=f \\
D_{N}^{\prime} \varphi=g_{j} \text { for }(x, N)=0 \text { and } 0 \leqslant j<m
\end{array}\right.
$$

when f and $\left\{g_{j}\right\}_{j=0}^{m-1} \in G(d)$.
In order to solve this problem we first prove the following theorem (cf. Hörmander [1], p. 149). Choosing $N=(1,0, \ldots 0)$ we write

$$
D=\left(\frac{1}{i} \frac{\partial}{\partial x_{1}}, \frac{1}{i} \frac{\partial}{\partial x_{2}}, \ldots \frac{1}{i} \frac{\partial}{\partial x_{n}}\right)=\left(D_{1}, D^{\prime}\right)
$$

and $\zeta=\left(\zeta_{1}, \zeta_{2}, \ldots \zeta_{n}\right)=\left(\xi_{1}+i \eta_{1}, \xi_{2}+i \eta_{2}, \ldots \xi_{n}+i \eta_{n}\right)=\left(\zeta_{1}, \zeta^{\prime}\right)=\left(\xi_{1}+i \eta_{1}, \xi^{\prime}+i \eta^{\prime}\right)$.
Hence, $P(D)=P\left(D_{1}, D^{\prime}\right)$ and $P(\zeta)=P\left(\zeta_{1}, \zeta^{\prime}\right)$. Further, we set $T(\varphi)=(T, \varphi)$ when $T \in G_{0}^{\prime}(d)$ and $\varphi \in G_{0}(d)$.

Theorem 25. Let P be of order m and d-hyperbolic with respect to $N=(1,0, \ldots 0)$. Then, when $0 \leqslant k<m$ and $x_{1} \in R$, there is a unique $H_{k}\left(x_{1}\right) \in G^{\prime}\left(d, R^{n-1}\right)$ such that

$$
\begin{aligned}
& D_{1}^{j} H_{k}\left(x_{1}\right) \in G^{\prime}\left(d, R^{n-1}\right) \text { for every integer } j \geqslant 0 \text {, } \\
& P\left(D_{1}, D^{\prime}\right) H_{k}\left(x_{1}\right)=0, D_{1}^{j} H_{k}(0)=0 \text { when } k \neq j<m \text {, } \\
& \text { and } D_{1}^{k} H_{k}(0)=\delta \text { where } \delta \text { is the Dirac measure. }
\end{aligned}
$$

Further, $\left(H_{k}\left(x_{1}\right), \varphi\right) \in G(d, R)$ when $\varphi \in G\left(d, R^{n-1}\right)$, and $\left(x_{1}^{0}, \operatorname{supp} H_{k}\left(x_{1}^{0}\right)\right) \subset \operatorname{supp} E$ $\cap\left\{x ; x_{1}=x_{1}^{0}\right\}$ for $x_{1}^{0} \geqslant 0$ where E is the fundamental solution in Theorem 24.
Proof. We write $\quad P(\zeta)=P\left(\zeta_{1}, \zeta^{\prime}\right)=\sum_{j=0}^{m} \zeta_{1}^{m-j} q_{j}\left(\zeta^{\prime}\right)$
and define

$$
p_{k}\left(\zeta_{1}, \zeta^{\prime}\right)=\sum_{j=0}^{k} \zeta_{1}^{k-j} q_{j}\left(\zeta^{\prime}\right)
$$

Let Γ be a simple, positively oriented curve which for fixed ζ^{\prime} surrounds the zeros ζ_{1} of $P\left(\zeta_{1}, \zeta^{\prime}\right)$. We consider

$$
\hat{H}_{k}\left(x_{1}, \zeta^{\prime}\right)=(2 \pi i)^{-1} \int_{\Gamma} e^{i \zeta_{1} x_{1}} p_{m-1-k}\left(\zeta_{1}, \zeta^{\prime}\right) / P\left(\zeta_{1}, \zeta^{\prime}\right) d \zeta_{1}
$$

Then

$$
D_{1}^{j} \hat{H}_{k}\left(x_{1}, \zeta^{\prime}\right)=(2 \pi i)^{-1} \int_{\Gamma} e^{i \zeta_{1} x_{1}}\left(\zeta_{1}\right)^{j} p_{m-1-k}\left(\zeta_{1}, \zeta^{\prime}\right) / P\left(\zeta_{1}, \zeta^{\prime}\right) d \zeta_{1}
$$

is an entire function of $\zeta^{\prime}=\left(\zeta_{2}, \ldots \zeta_{n}\right)$ for every $x_{1} \in R$ and every integer $j \geqslant 0$. According to Lemma 1 and the Theorems 8 and 12, respectively,

$$
\begin{gathered}
\left|\zeta_{1}\right| \leqslant C\left(1+\left|\zeta^{\prime}\right|\right) \text { and } \\
\left|\eta_{1}\right| \leqslant C\left(1+\left|\eta^{\prime}\right|+\left|\xi^{\prime}\right|^{1 / d}+\left|\xi_{1}\right|^{1 / d}\right)
\end{gathered}
$$

for a constant C when $P\left(\zeta_{1}, \zeta^{\prime}\right)=0$. In order to estimate $D_{1}^{j} H_{k}\left(x_{1}, \zeta^{\prime}\right)$ we can then choose Γ as the rectangle defined by

$$
\left|\xi_{1}\right|=C\left(1+\left|\zeta^{\prime}\right|\right) ;\left|\eta_{1}\right|=C\left(1+\left|\eta^{\prime}\right|+\left|\xi^{\prime}\right|^{1 / d}\right)
$$

where C is a suitable constant. Since $\left|p_{m-1-k}\left(\zeta_{1}, \zeta^{\prime}\right)\right|$ is majorized by a constant times $\left(1+\left|\zeta^{\prime}\right|\right)^{m-1-k}$, and both $\left|\zeta_{1}\right|$ and the length of Γ by a constant times $\left(1+\left|\zeta^{\prime}\right|\right)$, we get

$$
\left|D_{1}^{j} \hat{H}_{k}\left(x_{1}, \zeta^{\prime}\right)\right| \leqslant C^{j+1}\left(1+\left|\zeta^{\prime}\right|\right)^{m-k+j} \exp \left(C\left|x_{1}\right|\left(1+\left|\eta^{\prime}\right|+\left|\xi^{\prime}\right|^{1 / d}\right)\right)
$$

and

$$
\sup _{j} j^{-j d}\left|D_{1}^{j} \hat{H}_{k}\left(x_{1}, \zeta^{\prime}\right)\right| \leqslant \exp C\left(1+\left|x_{1}\right|\right)\left(1+\left|\eta^{\prime}\right|+\left|\xi^{\prime}\right|^{1 / d}\right)
$$

for some constants C. Hence, because of Theorem 7, $\hat{H}_{l_{t}}\left(x_{1}, \zeta^{\prime}\right)$ is the Fourier-Laplace transform of an element $H_{k}\left(x_{1}\right) \in G^{\prime}\left(d, R^{n-1}\right)$ given by

$$
\left(H_{k}\left(x_{1}\right), \varphi\right)=(2 \pi)^{-n+1} \int \hat{H}_{k}\left(x_{1}, \xi^{\prime}\right) \hat{\varphi}\left(-\xi^{\prime}\right) d \xi^{\prime}
$$

when $\varphi \in G_{0}\left(d, R^{n-1}\right)$. We define $\left(D_{1}^{j} H_{k}\left(x_{1}\right), \varphi\right)=D_{1}^{j}\left(H_{k}\left(x_{1}\right), \varphi\right)$. Our estimates imply

$$
D_{1}^{j}\left(H_{k}\left(x_{1}\right), \varphi\right)=(2 \pi)^{-n+1} \int D_{1}^{j} \hat{H}_{k}\left(x_{1}, \xi^{\prime}\right) \hat{\varphi}\left(-\xi^{\prime}\right) d \xi^{\prime}
$$

and $\left(H_{k}\left(x_{1}\right), \varphi\right) \in G(d, R)$. Hence $D_{1}^{j} H_{k}\left(x_{1}\right) \in G^{\prime}\left(d, R^{n-1}\right)$ and $\left[D_{1}^{j} H_{k}\left(x_{1}\right)\right]^{\wedge}\left(\zeta^{\prime}\right)=$ $D_{1}^{j} \hat{H}_{k}\left(x_{1}, \xi^{\prime}\right)$. Further,

$$
P\left(D_{1}, \xi^{\prime}\right) \hat{H}_{k}\left(x_{1}, \xi^{\prime}\right)=(2 \pi i)^{-1} \int_{\Gamma} e^{i \xi_{1} x_{1}} p_{m-1-k}\left(\zeta_{1}, \xi^{\prime}\right) d \zeta_{1}=0
$$

since the integrand is analytic. This means that $P\left(D_{1}, D^{\prime}\right) H_{k}\left(x_{1}\right)=0$.
For the proof of $D_{1}^{k} H_{k}(0)=\delta$ and $D_{1}^{j} H_{k}(0)=0$ when $k \neq j<m$, we use that

$$
D_{1}^{j} \hat{H}_{k}\left(0, \zeta^{\prime}\right)=(2 \pi i)^{-1} \int_{\Gamma} \zeta_{1}^{j} p_{m-1-k}\left(\zeta_{1}, \zeta^{\prime}\right) / P\left(\zeta_{1}, \zeta^{\prime}\right) d \zeta_{1}
$$

The integrand is

$$
\zeta_{1}^{j} p_{m-1-k}\left(\zeta_{1}, \zeta^{\prime}\right) / P\left(\zeta_{1}, \zeta^{\prime}\right)=\zeta_{1}^{j-k-1}+\zeta_{1}^{j-k-1}\left(\zeta_{1}^{k+1} p_{m-1-k}\left(\zeta_{1}, \zeta^{\prime}\right)-P\left(\zeta_{1}, \zeta^{\prime}\right)\right) / P\left(\zeta_{1}, \zeta^{\prime}\right)
$$

The degree of ζ_{1} in the numerator of the second term is majorized by $j-k-\mathbf{1}+k=$ $j-1$, hence by $m-2$ when $j<m$. Since the degree of ζ_{1} in the denominator $P\left(\zeta_{1}, \zeta^{\prime}\right)$ is m, we get

$$
D_{1}^{j} \hat{H}_{k}\left(0, \zeta^{\prime}\right)=(2 \pi i)^{-1} \int_{\gamma} \zeta_{1}^{j-k-1} d \zeta_{1} \text { for } 0 \leqslant j<m
$$

where γ is a positively oriented circle surrounding the origin. Consequently, $D_{1}^{k} H_{k}(0)=$ δ and $D_{1}^{j} H_{k}(0)=0$ when $k \neq j<m$.

Finally we localize the support of $H_{k}\left(x_{1}^{0}\right)$. Let $\varphi \in G_{0}\left(d, R^{n-1}\right)$ with $\left(x_{1}^{0}, \operatorname{supp} \varphi\right) \cap$ $\operatorname{supp} E=\phi$ and take $\psi \in G_{0}(d, R)$ satisfying $\operatorname{supp} \psi \subset[-1,1]$ and $\int \psi(x) d x=1$. We set

$$
\chi_{\varepsilon}\left(x_{1}, x_{2}, \ldots x_{n}\right)=\chi_{\varepsilon}\left(x_{1}, x^{\prime}\right)=\varepsilon^{-1} \psi\left(\varepsilon^{-1}\left(x_{1}-x_{1}^{0}\right)\right) \varphi\left(x^{\prime}\right)
$$

Then, $\hat{\chi}_{e}(\zeta)=\hat{\chi}_{\varepsilon}\left(\zeta_{1}, \zeta^{\prime}\right)=e^{-t \zeta_{1} x_{1}^{0}} \hat{\psi}\left(\varepsilon \zeta_{1}\right) \hat{\varphi}\left(\zeta^{\prime}\right)$ and $\operatorname{supp} \chi_{\varepsilon} \cap \operatorname{supp} E=\phi$ when $\varepsilon>0$ is small enough. Hence, for such ε

e. Larsson, Generalized hyperbolicity

$$
\begin{aligned}
0 & =E\left(p_{m-1-k}\left(-D_{1},-D^{\prime}\right) \chi_{\varepsilon}\right) \\
& =(2 \pi)^{-n} \int_{\sigma(N, t)} e^{i \zeta_{1} x_{i}^{i}} p_{m-1-k}\left(\zeta_{1}, \zeta^{\prime}\right) \hat{\psi}\left(-\varepsilon \zeta_{1}\right) \hat{\varphi}\left(-\zeta^{\prime}\right) / P\left(\zeta_{1}, \zeta^{\prime}\right) d \zeta
\end{aligned}
$$

where $\sigma(N, t)$ is the surface

$$
\left(\xi_{1}+i t\left(1+\left|\xi_{1}\right|^{1 / d}+\left|\xi^{\prime}\right|^{1 / d}\right), \xi_{2}, \ldots \xi_{n}\right) \text { with } t \leqslant-C(N)<0
$$

(see the definition of E in Theorem 24). From Theorem 7 we know that to every $\lambda>0$ there is a constant C_{λ} such that

$$
\left|e^{i \zeta_{1} x_{5}^{0}} \hat{\psi}\left(-\varepsilon \zeta_{1}\right)\right| \leqslant C_{\lambda} \exp \left(-\eta_{1} x_{1}^{0}+\varepsilon\left|\eta_{1}\right|-\lambda\left|\varepsilon \xi_{1}\right|^{1 / d}\right) .
$$

Integrating first with respect to ξ_{1} for fixed ξ^{\prime}, this estimate and the analyticity of the integrand implies that the integration path

$$
\left(\xi_{1}+i t\left(1+\left|\xi_{1}\right|^{1 / d}+\left|\xi^{\prime}\right|^{1 / d}\right), \xi_{2}, \ldots \xi_{n}\right), t \leqslant-C(N)<0
$$

can be deformed to a positively oriented circle Γ surrounding the zeros ζ_{1} of $P\left(\zeta_{1}, \xi^{\prime}\right)$ when $0<\varepsilon<x_{1}^{0}$. Then, letting $\varepsilon \rightarrow+0$ we get

$$
\begin{aligned}
0 & =(2 \pi)^{-n} \iint_{R^{n-1}} e^{i \zeta_{1} x_{1}^{0}} p_{m-1-k}\left(\zeta_{1}, \xi^{\prime}\right) \hat{\varphi}\left(-\xi^{\prime}\right) / P\left(\zeta_{1}, \xi^{\prime}\right) d \zeta_{1} d \xi^{\prime} \\
& =i\left(H_{k}\left(x_{1}^{0}\right), \varphi\right) \text { for } \quad x_{1}^{0}>0 .
\end{aligned}
$$

Hence, $\left(x_{1}^{0}, \operatorname{supp} H_{k}\left(x_{1}^{0}\right)\right) \subset \operatorname{supp} E \cap\left\{x ; x_{1}=x_{1}^{0}\right\}$ when $x_{1}^{0}>0$. Since this is trivial for $x_{1}^{0}=0$, the proof of the existence is complete. The uniqueness is proved in the following theorem.

We can now turn to our general Cauchy problem.
Theorem 26. Let P be of order m and d-hyperbolic with respect to $N=(1,0, \ldots 0)$. Then the Cauchy problem

$$
\left\{\begin{aligned}
P\left(D_{1}, D^{\prime}\right) \varphi\left(x_{1}, x^{\prime}\right) & =f\left(x_{1}, x^{\prime}\right) \\
D_{1}^{j} \varphi\left(0, x^{\prime}\right) & =g_{j}\left(x^{\prime}\right), \quad 0 \leqslant j<m
\end{aligned}\right.
$$

has a unique solution $\varphi \in G\left(d, R^{n}\right)$ when $f \in G\left(d, R^{n}\right)$ and $\left\{g_{j}\right\}_{j=0}^{m-1} \in G\left(d, R^{n-1}\right)$.
Proof. Because of Theorem $24, P(D)=P\left(D_{1}, D^{\prime}\right)$ has a unique fundamental solution E_{1} with the support in $\left\{x ; x_{1} \geqslant 0\right\}$. Let E_{2} be the corresponding fundamental solution supported by $\left\{x ; x_{1} \leqslant 0\right\}$ and write $f=f_{1}+f_{2}$ where $\operatorname{supp} f_{1} \subset\left\{x ; x_{1} \geqslant-1\right\}$, $\operatorname{supp} f_{2} \subset\left\{x ; x_{1} \leqslant l\right\}$ and $f_{1}, f_{2} \in G\left(d, R^{n}\right)$. Set $\left(E_{1} * f_{1}\right)\left(x_{1}, x^{\prime}\right)+\left(E_{2} * f_{2}\right)\left(x_{1}, x^{\prime}\right)=v\left(x_{1}, x^{\prime}\right)$. We apply Theorem 25 and the notations there. Writing

$$
\left(H_{k}\left(x_{1}\right), \psi\right)=\int_{R^{n-1}} H_{k}\left(x_{1}, x^{\prime}\right) \psi\left(x^{\prime}\right) d x^{\prime}
$$

we then have that

$$
\varphi\left(x_{1}, x^{\prime}\right)=\sum_{k=0}^{m-1} \int H_{k}\left(x_{1}, y^{\prime}\right)\left(g_{k}\left(x^{\prime}-y^{\prime}\right)-D_{\mathbf{1}}^{k} v\left(0, x^{\prime}-y^{\prime}\right)\right) d y^{\prime}+v\left(x_{1}, x^{\prime}\right)
$$

belongs to $G\left(d, R^{n}\right)$ and solves the given problem.
In order to prove the uniqueness let

$$
\left\{\begin{aligned}
P\left(D_{1}, D^{\prime}\right) L\left(x_{1}\right) & =0 \\
D_{1}^{j} L(0) & =0, \quad 0 \leqslant j<m
\end{aligned}\right.
$$

where

$$
D_{1}^{j} L\left(x_{1}\right) \in G_{0}^{\prime}\left(d, R^{n-1}\right) \text { and }\left(L\left(x_{1}\right), \varphi\right) \in G(d, R) \text { for } \varphi \in G_{0}\left(d, R^{n-1}\right)
$$

Then,

$$
\left\{\begin{aligned}
P\left(D_{1}, D^{\prime}\right) L\left(x_{1}\right) * \varphi & =0 \\
D_{1}^{j} L(0) * \varphi & =0, \quad 0 \leqslant j<m,
\end{aligned}\right.
$$

when $\varphi \in G_{0}\left(d, R^{n-1}\right)$. Since $P_{m}(N) \neq 0$, this implies that $D_{1}^{j} L(0) * \varphi=0$ for every integer $j \geqslant 0$. Hence, $L\left(x_{1}\right) * \varphi=g_{1}+g_{2}$ where supp $g_{1} \subset\left\{x ; x_{1} \geqslant 0\right\}$, supp $g_{2} \subset\left\{x ; x_{1} \leqslant 0\right\}$ and $g_{1}, g_{2} \in G\left(d, R^{n}\right)$. Then, $g_{i}=g_{i} * \delta=g_{i} * P(D) E_{i}=P(D) g_{i} * E_{i}=0, i=1,2$. Consequently, $L\left(x_{1}\right)=0$. The proof is complete.
According to Theorem 26 and the remark on p. 9, we know that a solution of the above Cauchy problem is unique if and only if the plane (x, N) =0 carrying the data is non-characteristic, i.e. $P_{m}(N) \neq 0$. The following theorem shows that it is in this case rather natural to restrict oneself to the function spaces $G(d)$ where $d \geqslant 1$ is rational. However, some of the theorems can be refined when we have more precise estimates of the zeros τ of $P(\xi+i \tau N)$.

Theorem 27. Let $P_{m}(N) \neq 0$ and let $\left\{\tau_{j}(\xi)\right\}_{j=1}^{m}$ be the zeros of $P(\xi+i \tau N)$ when $\xi \in R^{n}$. Define

$$
\pi(r)=\sup _{|\xi|=r} \max _{1 \leqslant j \leqslant m} \operatorname{Re} \tau_{j}(\xi) .
$$

Then the function π is piece-wise algebraic and there are rational and real constants, $h \leqslant 1$ and C respectively, such that

$$
\pi(r)=C r^{h}(\mathbf{1}+o(1)) \text { when } r \rightarrow \infty \text {. }
$$

Proof. We refer to the proof of Theorem 4.3, p. 114 in Gorin [1].
Institute of Mathematics, Lund, Sweden

REFERENCES

Bevrling, A. [1], On quasi-analyticity and general distributions. Lectures 4 and 5. A.M.S. Summer Institute, Stanford, 1961 (mimeographed).
Gelfand, I. M. and Shilov, G. E. [1], Verallgemeinerte Funktionen II. VEB Deutscher Verlag der Wissenschaften. Berlin 1962.
Gevrey, M. [1], Sur la nature analytique des solutions des équations aux dérivées partielles. Ann. Éc. Norm. Sup. (3) 35 (1918), pp. 127-190.
Garding, L. [1], Linear hyperbolic partial differential equations with constant coefficients. Acta Math. 85 (1950), pp. 1-62.

E. LARSSON, Generalized hyperbolicity

Gorin, E. A. [1], Asymptotic properties of polynomials and algebraic functions of several variables. Uspehi Mat. Nauk (N. S.) 16, No. 1 (1961), pp. 93-119. (Russian; English translation in Russian Mathematical Surveys.)
Hörmander, L. [1], Linear partial differential operators. Springer-Verlag 1963.
Roumieu, M. C. [1], Sur quelques extensions de la notion de distribution. Ann. Éc. Norm. Sup. (3) 77 (1960), pp. 41-121.

Schwartz, L. [1], Théorie des distributions I-II. Paris 1950-51.

[^0]: ${ }^{1}$ Cf. for instance the spaces in Beurling [1], Gelfand-Shilov [1] and Roumieu [1]. Se also Gevrey [1].

