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Holomorphic functions and Hausdorff dimension 

B y  VICTOR L.  SHAPIRO 

1. Introduction 

Let  D(z, r) represent the open disc with center z and radius r, and let C(z, r) 
represent its boundary  oriented in the usual counter-clockwise manner.  We define 
the class A~, 1 ~< a ~<2, as follows: 

/(z) is in the class A~ if 
(i) /(z) is a continuous complex-valued function defined in D(0, 1), and 

(ii) there exist a constant  K and  a ~ > ~  such tha t  for 0 < ~ < 1  and 0 < r < l -  0 

f D(o.~) [ f c(z.T) /( $) d~ 2dx d y ~ Kru+7. 

We define the class B~ in the same manner  as the class A~ except in (ii), we only 
require tha t  ~ ~> ~. I t  is clear t ha t  the class B~ is the natura l  widening of the class A~. 

We shall say tha t  the relatively closed set E c D(0, 1) [i.e. the complement  of 
E in D(0, 1) is open] is a removable  set for the class A~ if the following fact  holds: 

I / / i s  in A~ and / is holomorphic in D(0, 1 )~  E, then / is holomorphic in D(O, 1). 
E is a removable  set for the class B~ is defined in a similar manner.  

I n  this paper, we intend to establish the following result: 

Theorem. A necessary and su//icient condition that a relatively closed set E contained 
in D(0, 1) be a removable set/or the class Aa, 1 <~ o~ ~ 2, is that the Hausdor// dimension 
o / E  be ~ ~. Furthermore, the su/]iciency condition is in a certain sense best possible, 
i.e., it is/alse/or the class B~. 

I f  a < 1 and the Hausdorff  dimension of E ~< ~, Besicovitch has shown tha t  E is 
a removable  set for the class of continuous functions in D(0, 1). He has shown even 
more, namely  tha t  if E is a countable union of sets of finite length, then E is a 
removable  set for this last named class of functions. For  the details of his result  
see either [7, p. 197] or [1]. 

We next  note  tha t  the sufficiency of the above theorem in the special case a = 2  
is essentially known already and is a corollary of [10; Theorem 1, p. 76]. 

2. Proof of  the necessary condition 

We first establish the necessary condition of the above theorem. 
Since every set contained in D(0, 1) is of Hausdorff  dimension ~<2, it follows 

tha t  if E is a removable  set for the class A 2 then E is of Hausdorff  dimension <2 .  
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We can therefore suppose tha t  1 ~< a < 2 and tha t  the Hausdorff  dimension of 
E = f l  where :r We shall establish the necessity of the above theorem by  
exhibiting a funct ion / which is in A~ and which is holomorphic in D(0, 1 )~  E bu t  
which is no t  holomorphic in D(0, 1). 

Since E is a relatively closed set contained in D(0, 1) of Hausdorff  dimension 
equal to fl where ~<f i ,  it follows f rom the definition of Hausdorff  dimension, [6, 
p. 145], t ha t  there exists a closed set E 1 with E 1 c E c D(0, 1) such tha t  the Haus-  
dorff dimension of E 1 is greater than  ~, i.e. the Hausdorff  dimension of E 1 is fll 
where o~<fll< ft. Fros tman  has shown [4, p. 90] tha t  the capaci ty  dimension and 
the Hausdorff  dimension for closed sets are the same. Consequently,  if we take 

= (ill + a)/2, we have tha t  a < ~  <ill ~fl and fur thermore tha t  the 7-capaci ty  of E 1 
is positive, i.e. there exists a finite constant  V and a probabi l i ty  measure # ( that  
is a non-negat ive Borel measure of total  mass one) having its support  contained in 
E 1 such tha t  

We set 

fE ]~-z[ rd~(~)<<-V for every z. (1) 
1 

/(z)=fE($--Z)-ld~($) (2) 

and observe from (1) tha t / ( z )  is well defined for every z. 
We next  show tha t  

/(z) is a continuous funct ion in the complex plane. (3) 

To establish (3), fix z 0 and let e > 0  be given. Wi th  ,~G designating the comple- 
ment  of the set G, we observe tha t  

f~ f (~ -- Z0)-ld]s lim ( $ -  z)-ld#(~) : ~D(z0,~)nE, 
z-'->zo ~ D(zo,  e) f lE1 

Consequently,  it follows from (2) t ha t  

lim sup I/(z) -/(%)1 <~ fD 
z - )  Zo (Zo, ~) 0 E1 

I $ - Zo I-ld/u($) 

+ l im sup fD I ~ - -  Z I-ld~(~). 
Z"-~Zo (Z0, e)O E1 

(4) 

Now if I z - z 01 < e, then by  (1) 

/D(~o,~ l;:--zl ldt'($)<(2s)" l f~(z.,~, 

~< V(2s) r-1. (5) 
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Likewise f rom (1), the first  integral  on the r ight  side of the inequal i ty  in (4) is 
major ized b y  Vev -1. Consequently,  we conclude f rom this last  fact ,  (4), and  (5) t h a t  

l im sup I/(z) - /(zo) ] <<. V[e 7-~ + (2e)v-a]. (6) 
z - ~ z  o 

But  ~ is s tr ict ly greater  t han  1, and  (3) therefore follows immedia te ly  f rom (6). 
I t  is clear f rom (2) and  the fact  t h a t  E 1 is a closed set t ha t  

To show t h a t  

/(z) is a holomorphic  funct ion in ~ E 1. 

/(z) is no t  a holomorphic  funct ion in D(O, 1), 

(7) 

(8) 

we choose r 1 with 0 < r a < l  such t h a t  E l =  D(O, r l )  , which can be done since E 1 

is a closed set. Then E 1 also does not  intersect  the bounda ry  of D(O, rl), and  conse- 
quent ly  it  follows f rom Fubini ' s  theorem and (2) t ha t  

f c(o.r,)J(z)dz= f E dl~($) f c(o.r,)($-z)-ldz 

- 2 ~ i ( d / t ( ~ )  
J E1 

= - 2~i. 

This fact  and  Cauchy ' s  theorem establish (8). 
To complete  the proof of the  necessity, we need only show t h a t  for O <~  < 1 and  

0 < r < l - ~  

f •(o,Q) f c(~,r) /(r 2dxdy < 4 Vz~3r2+'' (9) 

where ~ and  V are defined in (1). 
To establish (9), we first  observe t ha t  it follows immedia te ly  f rom (1) and  Fubini ' s  

theorem tha t  

tt[/)(z, r)~ D(z, r)] = O for every  z and  every  r > O, (10) 

where G represents  the closure of the set G. 
Consequently,  i t  follows f rom Fubini ' s  theorem,  (1), and  (10) t h a t  

f cr /(8) dS= /E~n~ D(z, od'u(~) /c(z,r) (~- s)-l d8 

"+" /E, nDr ~C(z,O (~- s)-l d8 

= -- 27~itt[E 1 ~ D(z, r)]. 
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We conclude that 

fc /($)d$] 2~/u[n(z, r)]. (11) 
(z, r) 

Next, we observe from (1) that  for r > 0 ,  

<<" I zl I z tt[D(z, r)] 

<- VrL (12) 

Designating the left side of the inequality in (9) by IQ. r and letting Z~ represent 
the indicator function of the set G, we consequently obtain from (ll)  and (12) that  

IQ. ~ ~ 4 Vze2rr f D(o. Q) l f D(z.~) d/~( ~) l dx dy 

<~ 4 V~r" /D(O.~) d#($) l /D(O.o)ZD(O.~) (z-- $)dxdy i 

<~ 4 Vzear 2+ ~. 
(9) is therefore established, and the proof of the necessity is complete. 

3. Proof  o f  the best possible condit ion 

The proof of the best possible condition of the above theorem in the case ~ =2  
is particularly simple. We take a function g(x) which is in class C 1 on the real line, 
which vanishes outside the closed interval [ -  1, 1], and which takes the value one 
in [ - �88  �88 We take E to be the intersection of the open unit disc with the strip 

1 K ~ 1  - ~  ~ ~ ~ ~ and define/(z) in the complex plane by/(z)  = -ig(x). Then E is of Haus- 
dofff dimension 2 and is relatively closed with respect to D(0, 1). Furthermore, 
/(z) is continuous in the complex plane, holomorphic in D(O, 1)~ E, but not holo- 
morphic in D(0, 1). To complete the proof of the best possibility in the special 
case ~ = 2, we need only show that  / is in class B~. 

In  order to do this set K = s u p  . . . . . .  ]dg(x)/dx[. Then by Green's theorem, for 
r > 0  and ~=~+i~, 

,fc(~.r)/(C)dC = <K r2" 

Therefore for 0 < ~ < 1 and 0 < r < 1 - Q 

f D(o.o) l f c(z,r) 2dxdy <~ K2ze3r4, 

and we conclude that /(z)  is in B2. 
To handle the situation when 1 <: r  we proceed in a similar manner, though 

the situation now is slightly more complicated. 
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For 1 < ~ < 2 ,  we set q=21/(~ ~), and on the interval [ - �89  �89 we construct a sym- 
metric Cantor set, Q~-I, corresponding to q-t (i.e., at  the first stage, we take out 
the open interval ( _ � 8 9  �89 We proceed in this manner so tha t  a t  the n th  
stage we have taken out 2 n-1 open intervals, leaving 2 ~ closed intervals each of" 
length q-L) As is well-known, [5], the tIausdorff  dimension of Qa-1 is a - 1 .  

For Qo, tha t  is for a = 1, we take any  perfect set of t tausdorff  dimension zero 
constructed on the interval [ -  �89 �89 which contains the points �89 and - �89 

For 1 ~ a < 2, we shall designate by g~(x) the Lebesgue-Cantor function constructed 
on [ - �89 �89 corresponding to Qa which is defined on the rest of the real line by  setting 
g~(x)=O for x <  - � 8 9  and g~(x)=l  for x>�89 Then as is well-known [5, p. 173], ga(x) 
is in L i p ( a - 1 )  on the real line (Lip 0 being interpreted here as continuous), that  
is there is a constant Ka such that  

[g~(xl) - g~(x2) ] 4 K~ ] x I -- x~ ]~-~ (13) 

for every x 1 and x 2. 
:Next, we take the set F~ in the complex plane to be Fa = {x + iy; x in Q~} and 

define Ea as Er = Y ,  fi D(O, 1). Now, as is well-known, the Hausdorff dimension of 
E~ is equal to ~, [5]. We define f~(z)= -iga(x) and observe that /a(z)  is continuous 
in the complex plane, holomorphie in D(0, 1)~ E~, but  not holomorphic in D(0, 1). 
Consequently to establish the best possibility of the theorem for 1 ~< ~ <2,  it only 
remains to show that  ]~(z) is in B~. We shall accomplish this by  showing tha t  for 
0 < Q < l a n d 0 < r < l - ~ ,  

f D(o.~) f c(~,r) /~(~)d~12dxdy <~ 2~+~K~z~2r ~+~, (14) 

where Ka is the constant in (13). 
To establish (14), we first observe from the evenness of g(x + r cos 0) as a function 

of 0 tha t  

f f f~(~) d~ = 2r g~(x + r cos 0) cos 0 dO 
C(z, r) 

~ *z~/2 

=2r [g~(x+r cos O ) - g ~ ( x - r  cos 0)] cos OdO. 
0 

Since g~(x) is a bounded non-decreasing function of x, we conclude tha t  for every 
z and for r > 0 

fc(z.r)/~(~)d~ ~r[g~(x r) g~(x r)]. (15) + 

From the definition of g~(x), it follows tha t  there exists a probabili ty measure #a 
having its support  on Qa such tha t  for every x and every r > 0 

g~(x § r) -- g~(x - r) = ; ~ r  :~E . . . .  l(t -- x) d/u~(t), (16) 

where )r . . . .  j is the indicator function for the interval [ - r ,  r]. 
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Designat ing the  expression on the left side of the inequal i ty  in (14) b y  Iqlr, we 
then  obta in  f rom (13), (15), and  (16) t h a t  

Iq. ,  ~< 2~-1K~ Y~2r2+a-1 dy dx Xr-r,,](t - x) d~u~(t) 

I_ ~ ; ~2~K~2r2§ 1 d~(t) )CE .... 1(t-x) dx 

2a+lK~ g2r2+a. 

(14) is consequent ly  established, and  the proof  of the best  possibil i ty is complete.  

4. Proof of the sufficient condition 

To establish the sufficient condit ion of the theorem, we need only show b y  Morera ' s  
theorem tha t  

foJ(~)d~=O every  ~ c D ( 0 ,  1), for (17) 

where T designates a two simplex, i.e., closed triangle, and  ~T is or iented in the  usual  
counter-clockwise manner .  

For  ~ = 2 ,  (17) follows easily f rom the definition of A s and  [10; Theorem 1, p. 76]. 
We shall therefore suppose in the  sequel t h a t  1 ~< ~ < 2. 

Suppose then  t h a t  T 0 is a fixed two simplex and  tha t  T0 c D(0, rl) where 0 < r  1 < 1. 
To p rove  the  sufficient condit ion of the  theorem,  we need only show t h a t  

fo~~ d~ = 0. (18) 

To this end, we choose r~, r 3 and  r 4 such t ha t  

O<rl<r2<ra<r4<l where ToG D(0, rl), (19) 

and  select a real-valued funct ion 2(z) which is in class C (:r and  takes  the value one 
in D(0, rl) and  the value zero outside of D(0, rs). Using the facts  t h a t / ( z )  and  ~t(z) 
are bounded  i n / ) ( 0 ,  r4) and  there exists a cons tant  K 1 such t h a t  I~t(z+~)-2(z) l  ~< 
KII~]  for every  z and  ~, we obta in  t ha t  for z in D(0, r3) and  0 < r < r 4 -  ra, 

+ I*(o)l[fo,z, 

<'< Ks r s + Ks fc(~.,)/(~) d~ , 
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where K 2 is a constant.  Consequently, it follows from the definition of the class 
A~ and f rom Minkowski 's inequali ty t ha t  there exists a constant  K 3 and  there 
exists a constant  ~ with ~ < ~ < 2 such tha t  

f D(o.r.) l f c(~,r) 2(~)/(~) 2dxdy ~ K3 r~ +~ 

for 0 < r < r 4 - r a. (20) 

(We recall t ha t  we are dealing with 1 ~<~<2 and with no loss in generality, we can 
suppose tha t  ~ < 2.) 

Next,  we introduce the two dimensional torus T2={(x,y); - g < x ~ < z ~  and  
-z~ < y ~<z~} and  define 

/I(Z) = ~(Z)/(Z) for z in D(0, 1), 

= 0  for z in T ~  D(0, 1). (21) 

We then ex tend /1  by  periodicity to the whole complex plane, i.e. 

/l[x § 2m~ § i(y + 2n~)] = / i ( x  + iy) 

for m and n integers, and observe tha t / l ( z )  is a continuous funct ion on the complex 
plane and  fur thermore f rom (19), (20), and (21) t ha t  there is a constant  K 3 such tha t  

f r, l f /l(C)dC 2dxdy<~K3 ru+r 

for 0 < r < min [r 3 - r2, r 4 - r3]. (22) 

We next  set 

/l(z) = ul(x , Y) + ivl(x, y), 
/(z) = u(x, y) +iv(x, Y), /i (23) 

~(z) = ~(x, y) J 

and observe tha t  u!(x , y) and  Vl(X, y) are periodic continuous functions, ul(x , y)= 
vl(x, y)=0 in T2,,~ D(O , r2) , and ul(x , y)=u(x, y) and  vl(x, y) =v(x, y) i n / ) ( 0 ,  rl). 

We first of all infer f rom these facts t ha t  (18) will be established if we show 

foroUl(X' y) - Vl(X' y) dy = 0, dx 

(24) 

fo ul(x,y) dy Vl(X ,y)  = 0 .  + dx 
a 

Next  we set 

g = - [uay~/~y + v~y~/~x] for (x, y) in D(0, 1), 

h = u~y,/~x- v~v/Oy for (x, y) in D(0, 1), (25) 

g = h = 0 for (x, y) in T2 ~ D(0, 1), 

and  define g and  h th roughout  the rest of the plane b y  periodicity of period 2z~ in 
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each variable. We observe tha t  g and h are continuous functions in the plane and  
tha t  

g = h = 0 in/)(O, rl) and in T~ ~ D(O, r~). (26) 

We fur thermore observe f rom the fact  tha t  / is holomorphic in D(0, 1 )~  E tha t  

( ~ r ~ ) - l ;  Ul(~, ~) d~ - vl(~, ~1) d~] -~ g(x, y), 
J C(x, y, r) 

(~r 2) 1~ Ul(~, ~) du + Vl(~, ~) d~-~ h(x, y), (27) 
J C(x, y, r) 

as r ~ 0 for (x, y) in T~ ~ [/)(0, r2) N E], 

where we are now writing C(x + iy, r) as C(x, y, r). 
We continue along these lines and observe tha t  (22) can be interpreted in the 

following manner:  

there exist ~ with a < ~ < 2, a constant  Ka, 
and r 0 with O < r 0 < 1 such tha t  for O < r < r0, 

and 

f T, l fc(x.y.r)Uld~-vld~] 2dxdy <~ Kar2+r 

f T~ l f c(z. y,~) u, drl + Vl d~ 2 dx dy ~ Ka r2 +~ 

(28) 

Using (27), (28), and the theory  of double tr igonometric series, we shall establish 
(24) and consequently the theorem. 

To this end, we introduce the nota t ion X=(x ,  y), M=(m,  n), and (M, X ) =  
mx +ny, and write the Fourier  series of u 1 and v I on T2, designated by  S[ul] and 
S[vl] respectively, as 

S[Ul] = ~ u~ (M) e i(M' x) and S[vi] = ~ v ~  (M) e i(M' x) (29) 
M M 

where M represents an integral lattice point. 
Now, with ]M I = (M, M) �89 

f c(o,r) e'(~"X)dx= -i~ f ~(o.r) ~'(M'X)dxdy 

= - (2~i)ngl(  I i lr ) r ] i  [-1 

e ~(M" X)dy = (2zd)mg~(IM]r)  r [M1-1, and 
j c  (0, r) 

where J1 is the Bessel funct ion of the first kind and order 1. 
Consequently,  it follows f rom the Riesz-Fischer theorem, the fact  tha t  u I and v 1 

are continuous functions and from (28) t ha t  
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there  exist  7 wi th  a < ~ < 2, a cons tant  K4, 
and r 0 wi th  0 < r  o < 1  such t h a t  f o r 0 < r < r  0 

~M [u~(i)n § 2 <~KarV' (30) 

and  

~[u~(i) m-v~(M)n[2[Ji([i[r)[8]M1-8<~K4r ~. 
M 

As is well-known, Jl(t)t -1 is a continuous funct ion on the in terval  (0, oo) and  
limt_)0 Jl(t)  t -1 = 2 -1. Therefore,  there exists a t o > 0 such t h a t  for 0 < t < to, ] Jl( t)  [ t -1 > 1. 
Consequent ly  f rom (30) we obta in  t h a t  for 0 < r < r0, 

ilu~(i)n § 4~K4r~, I 
IMl<~to r -  

a n d  (31) 
Z ]u~(M)m-v~(M)n12r2<42Ka r'.] 

[Ml~t  o r - 1  

Next ,  let fl be such t ha t  ~ < f l < ~  <2 .  Then we conclude f rom (31) t ha t  there exists 
a constant  Kz such t h a t  for 0 < r < r o 

~. lu~(M)n+v~(M)m[21M[ ~-2 <~K~rr-~,[ 
to(2r)-l~< [M]~<tor -1  

and (32) 
i ~ 1 [u~(i)m-v~(i)n[2]M]~-2<~Kzrr-~'] " 

t0(2r)- <~lM[<~tor- 

Next ,  we observe there exists an  integer ]o such t ha t  for ] ~?'o, to 2-J <ro. Therefore  
f rom (32), it follows t h a t  for ?'>~]o, 

21-1~< {MI<~2] 

and 

21-1~< [M]~2 J 

However ,  fl < ~: consequent ly  the  series ~ = 0  2(~-~)J < ~ ,  and we conclude t ha t  for 

M~.O [ U~ (M) n + v~ ( i )  m [21 i [~-2 < ~ } (33) 

and  M~+01 u~ ( i )  m - v~ ( i )  n ]21M I ~ 2 < ~ .  
) 

Next ,  we conclude f rom (27) and  [8; L e m m a  2, p. 606] t h a t  

(--i) ~M[U~(M)n +v~(i)m]ei(M'X) IMIt--~g(X) aS t-~O ] 
and  [ i~ [u~(M)m--v~(M)n]e~(M'X)-IMl~->h(X) as t -~0  (34) 

M 

for X in T2 ~ [/)(0, r~) N E]. 
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We next  introduce the Fourier series of g and h, that  is S[ff] and S[h] respectively, 
and write 

S[g] = Y. g^ (M) e ~(~' x), ] 

M l (35) 
S[h] = ~ h ̂  (M) e ~(M" z). 

M 

Since g(X) and h(X) are continuous periodic functions and therefore in L 2 on T 2 
and since 7 < 2, we obtain from (35) that  

Ig^(M)I~IMI~-~< oo and ~ Ih^(M)I~IMI~-~<~ 
M~O M=FO 

for every fl < ?. (36) 

Also, from [9; p. 56], we obtain tha t  

~g^ (M)e  t(M'x) IMIt~g(X) uniformly on T 2 as t-+0, 
M 

~h (̂M)e~(M'X)-IMIt~h(X) uniformly on T 2 as t-+O. 
M 

(37) 

Next  we observe (since the Hausdorff dimension of E is ~< ~ and since/){0, r~) fl E 
is a closed set and since, furthermore, the Hausdorff dimension of /)(0, r2)fi E is 
the same as the capacity dimension of / ) (0 ,  r2) fl E, [5, p. 90]) tha t  the fl-capacity 
of / ) (0 ,  r2) A E=O for ~<fl ,  i.e. 

Cp[/)(0, r~) n E] = 0 for ~ </~. (38) 

We next  invoke the following lemma which we shall prove in Section 5 of this 
paper: 

Lemma. Let F be a closed set contained in D(0, 1) with C p ( F)=0,  1 <fl <2.  Suppose 
that 

(i) M~,oICMIZlMI ~-2 < oo, 

(ii) lira ~CMet(M'X)-IMIt=o /or X in T 2 ~ F .  
t--M) M 

Then Cm =0  /or every M. 
(The above lemma is the two dimensional analogue of [3; Theorem 5, p. 36]. 

The proof of the above lemma which we shall give in Section 5 of this paper  will 
have many  points in common with this last named reference.) 

By  selecting a fl such tha t  ~ < f l < 7  and recalling tha t  7 < 2 ,  we conclude from 
(33), (34), (36), (37), (38), Minkowski's inequality, and the lemma tha t  

( - i)[u~ (M) n + v~ (M) m] = 9^ (M) for every M]  

and ~ (39) 
(i)[u~ (M) m -  v~ (M) n] = h A (M) for every M.J 
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Next, if w(X) is a function in L 1 on T~ with Fourier series S[w] = ~,~ w ̂  (M) e i(M'x), 
we shall set for t > 0 

w( X, t) = ~ w^ (M) e i(M" x)-IMJt. 
M 

I t  follows that  for t>0 ,  ul(X , t) and vl(X, t) are functions in class C ~~ on the plane 
and that  their derivatives are obtained by differentiating under the summation sign. 
We conclude in particular from (25), (35), and (39) that  for t > 0  

and 
- Ou~(X, t ) / a y -  av~(X, t)/ox = g(X, t) ] 

I au~(x, t)/~x - avdX, t)/~, = h(X, t) 
(40) 

Consequently, for our fixed two simplex To in (24), we have from (40) that  

fo~ Ul(X,t)dX-vl(X,t)dy= f, g(X,t)dX 
and 

fa~oUl(X,t)dy+vl(X,t)dx= f h(X, t )dX.  

(41) 

Now, from the continuity of ul(X), Vl(X), g(X), and h(X), from (29) and (35), 
and from [9, p. 56], we obtain that  

and 
Ul(X , t) --)- Ul(X), Vl(X , t) ~ Vl(X), g(x, t) --)- g(X) I 

h(X,t)-*h(X) uniformly in X as t-~0. ] 

We conclude from (41) and (42) that  

(42) 

and 

fo,~ ul(X) dx - vl(X) dy = f~~ g(X) dX 

fo~~ + vi(X)dx= f~~ 

(43) 

But by  (19), % ~  D(O, rl) and by (26), g(X)=h(X)=0 for X in / ) (0 ,  rl). We con- 
elude from (43) that  

and 

fo~ %(X) dx - vdX) dy = 0 

f o~.u~(X) dy + vdX) dx = O. 

Consequently, (24) is established and the proof of the sufficiency will be complete 
once the lemma is established. We now prove the lemma. 
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5. Proof of the Lemma 

We shall suppose from the start  that  F is a non-empty closed set contained in 
D(0, 1), for the lemma is already known in the case F is empty, see [9, p. 65]. We 
first recall that Cp(F)=0 means that  for every probability measure # on the plane 
with its support contained in F the following fact obtains: 

fF fFIX--P[ ~dtt(X)d#(P)= + ~. (44) 

Next, we introduce the function G$(X), 1 <f i<2 ,  defined as follows on the plane: 

G~(X)=IXI-~+ lim 5 [[X+2~MI-~-12~MI ~] 
R-->~o I<~]MI<~R 

for (27e)- IX # integral lattice point, (45) 

G$(X) = + c~ for (2~)-'X =integral lattice point. 

(For other approaches to the function G~(X), see [2, p. 50] or [11, p. 40] and 
(49) and (53) below.) 

We observe that  for S a compact set contained in D(0, 2~Ro), the following limit 
is finite and furthermore 

lim 5 [I X + 2:~M [-~-  12, MI 83 

exists uniformly for X in S. (46) 

Also, we observe that  for (2 : t ) - lX# integral lattice point, 

lime IMP< n [I X + 2zt(M + M0) ] ~ - I X + 2ztM ]-'] = O. (47) 

We conclude from (45), (46), and (47) that  
G$(X) is a periodic function of period 2ze in each variable, and G$(X) is conti- 
nuous in the neighborhood of every point not of the form 2zeM. (48) 

I t  follows from (45) and (48) that  G$(X) assumes its minimum value. We designate 
this minimum value by ~Z and set 

a p (X) = G$(X) -~z + 1. (49) 

Then it follows from (45), (46), (48), and (49) that  

(i) G~ (X) is continuous in the torus sence on T 2 - 0 ,  ] 

(ii) Gz(X) >/1 for x in T2' l (50) 

(iii) G~ (X) is in L '  on T2. 

Also, it follows from (44), (45), and (49) that  Cp(F)=0 means that  

f F f FG~ (X - P) d#(X) dtt(P) = + ~ (51) 
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for every non-negative Borel measure/x defined on the Borel subsets of T 2 with the 
property that  # ( T z -  F) =0  and/x(F) = 1. 

From (50), it follows that  we can introduce the Fourier series of G D, which we 
designate by S[G] and write as 

S[G~] = ~ G~ (M) e ~(M' x). (52) 
M 

From (45), (46) and (49) we obtain that  for M 0 4 0, 

(2~)20~(M~ = R~lim IM,<R~ fr,+2=M ]X]-~e-~'Mo'X'aX 

= l im [ e-i(M~ ~dx 
R~-~or ,I D(O, R) 

= 2z~fif/Jl(r) r t3dr/I M o 12-~. 

Observing that  limt_.0 ~MG~(M)e I M I t =  ~-0<3,  [9, p. 55], we obtain from the 
above computation that  

G~(M)=K/[M] ~-~ for M * 0  where g > 0 .  (53) 

Next, we note from (45), (46), and (49) that  if (2~)-1X~ = integral lattice point, 
then there exists a neighborhood of X such that  Gp is in class C (:r in this neighbor- 
hood, and that  in this neighborhood all the partial derivatives of Gp can be computed 
under the summation sign in (45). In particular, with A designating the Laplace 
operator, we infer from (45), (46) and (49) that  

AGz(X)=~{IxI-("+~)+ l im ~ Ix+2~MI --(~+2)) 
R -->r 1~< (M)~ R 

for (27r)-lX #integral  lattice point. (54) 

We conclude from (54) that  

Gp(X) is subharmonic and in class C ~176 in a neighborhood of every point in T2 0. 

(55) 
We also conclude from (45), (49), and (50) that  

G B (X) is lower semi-continuous on T~. (56) 

Furthermore, from (45), (46), (49) and (50), we obtain that  

there exists a constant K 1 such that  

(~r2)-l fD G~ (X + P) dP <~ K 1G~ (X) 
(0, r) 

for every X and for 0 < r ~< 1. (57) 

45 



v. L. SHAPIRO, Holomorphic functions and Hausdorff dimension 

Consequently, if we designate by Fk, the closed set defined as 

F k --{X: distance (X, F)~<k-1}, 

where /c is a positive integer, we obtain from properties (45) to (57) and from the 
theory expounded in [5, pp. 24 41] that  for each ]c there exists a non-negative 
Borel measure/~k defined on the Borel subsets of T u with the following properties: 

(i) #k(T2-Fk)=0 and ;uk(Fk)= 1, 

(ii) j )k j~  G~(X-P)d/~k(X)dp~(P)= Fk, 

(iii) Uk(X)= I"  G~(X-P)d#k(P) is such that  
J F  k 

0 ~< Uk (X) ~< Vk for every X 

and 

Uk(X) = Vk for X in Fk. 

(58) 

Also, it follows from (51) and the theory expounded in [5, pp. 22-23] that  

We denote by 

lim Vk = + co. (59) 
k--~ 

S[d~uk] = ~ a ~  e ~(M' x) (60) 
M 

the Fourier-Stieltjes series of ;uk and obtain from (52), (53), (57), (58) and (60) tha t  

and that  

Next, we set 

~M l a~ 12 G~ (M) = (4~2)-2Vk. (61) 

S[U~] = (4~ 2) E a~ G~ (M) e '(M" x). (62) 
M 

/ (X, t):~CMe i(m'X)-IMIt for t>O, (63) 
M 

and observe from (i) of the lemma and Schwarz's inequality that  

M * 0  
(64) 

We consequently obtain from (64), (ii) of the lemma, and [8; Lemma 6, p. 609] 
that  

lim f I I(X, t)l dX = 0 for every k. (65) 
t--~O J T 2 -  Fk 

Let M 0 be a fixed integral lattice point. The proof of the lemma will be complete 
if we show 

CM~ = 0. (66) 
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To  es tab l i sh  (66), we  obse rve  f r o m  (iii) of (58), (62), (63), a n d  (65) t h a t  for  e v e r y / c ,  

4y~2CMo = l im  ( / ( X ,  t) e-~(Mo.X) d X  
t--~O .IT a 

= lim f /(X, t) e -i(M~ X) d X  
t.->o J F~ 

-- Vk 1 l im  ~ f (X ,  t) U k ( X )  e -i(M~ x) d X  
t->O JFk' 

= V ~ l l i m  f / ( X ,  t ) U k ( X ) e  -i(M~ 
t-~0 ,] T2 

V; 1 lim ~ ^ = ~ CMaM~ M G~ ( M  0 - M )  (4ye2) 2 e-IMIt. 
t-->o M 

But then it follows from Schwarz's inequality and (61) that  

I I < {5 [ CM ]2 (M o -  M)?. (67) 
M 

But it follows from (i) of the lemma and (53) that  the sum on the right side of 
the inequality in (67) is finite. Consequently, there is a constant K2 such that  

[CMo[<~K2/Vl for I t = l , 2  . . . . .  

But then it follows immediately from (59) that  CM, =0. (66) is established, and 
the proof of the lemma is complete. 
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