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On the central  limit theorem in Rk 

By BENGT VON BAHR 

l .  Introduction 

Let  X (~) = (X([), ... X(k~)), v = 1, 2 . . . .  n, be a sequence of independent  and identi- 
cally dis t r ibuted random vectors (r.v.'s) in Rk, /c> 1, with zero mean  and non- 
singular covariance matr ix  M.  Then, according to the Central Limit  Theorem, 
the normed sum Y~ = n  -�89 E n _ l  X (v) is approximate ly  normal ly  distributed, with 
the same moments  of the first and second orders as X (1). I n  the present  paper,  
we shall consider the distr ibution of the norm I Y ~ I = ( Y ~ §  �89 and 
estimate the difference 

P(I Y.I <a)- flx,<adO(x), (1) 

where O(x), x =  (x 1 . . . .  xk) is the corresponding normal  distr ibution funct ion (d.f.) 
and Ix] = (x~+ ... +x~) t. I f  the moments  of the four th  order exist and if M - E  
(unit matr ix  of order /c• then (Esseen [3]) 

IP(lY,~] ~<a)--Kk(a2)[ <~Cn k/(k+l), (2) 

where K k (x) is the d.f. of the Z2-distribution with k degrees of freedom, and C 
is a finite constant ,  only depending on the moments  of X (1). Here we shall s tudy  
the difference (1) as a funct ion of bo th  n and a. 

2. Convergence of characteristic functions 

We introduce the d.f. 's F(x) and Fn(x ) and the characteristic functions (ch.f.'s) 
/(t) and /n(t) of X C1) and Yn respectively. We have 

f R  k /(t)~ eta'X)dF(x), t=(tl , . . . tk) , (t,x)= ~tjxj  
k Yf f i l  

and /n(t)=ln(t/V~). I f  the momen t  flr=EIX(1)lr< ~ ,  r integer >~3, then log l(t) 
has the Taylor  expansion 

r I. .  d**~" u 
= - ( 3 )  log/(t)  �89 (t, Mt) + =  . --_~vv ' '  
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. . . . . .  ~ is the semi-invariant of order where (• +xkitk) ~, and ~ zk 
(il, ... ik). According to (3), the relation 

r = 2  r - 2  

e (~" Mt)'2/n (t) = 1 + 2 n-'/2P, (it) + o (n- ~ )  (4) 

defines a sequence of polynomials P,  of degree 3v, the coefficients of which are 
functions of the moments of X (1). By estimating the remainder term in (4), we 
obtain the following lemma. 

Lemma 1. I /  fir< o~, r integer >~ 3, then /or all t with l tl <~ K ~nn 

/~(t) -- ( l + i~in-'/e p,(it)) e-a.Mt)12 <~ C ~ )  [t[r e-~ltt~; 

K and ot are positive constants, onlg depending on k, r and the moments o/ X(1); 
d(n) is bounded by one and lim~_~ d(n)=0. Here and in what /oUows, we denote 
by C unspeci/ied constants, with the same properties as K and ~. 

A proof of the lemma in the one-dimensional ease is given by Gnedenko and 
Kolmogorov ([5] pp. 204-208). The present case is treated in the same way. 

If g(t) is the Fourier-Stieltjes Transform (F.S.T.) of G(x), that  is 

g(t) = fR e "t" x) dG(x), 

then -itjg(t) is the F.S.T. of ~G(x)/~xj and thus P~(it)e -(t'Mt)12 is the F.S.T. of 
P,( - D) @(x), where P , ( - D )  is a derivation operator obtained from P(it) by 
replacing itj by -~/~xj .  We put  

r-2 ) 
On(x) = 1 + ~ n - ' / 2 P , ( - D )  O(x) (5) v=l 

and H,~(x)=Fn(x)-Gn(x),  and thus, the corresponding F.S.T.'s are 

r--2 1 g~(t) = 1 + ~ n-'tep,(it) e -(t'mt)12 

and h~ (t) = [n (t) - g. (t). (6) 

3. Main formula 

In order to estimate P(I Yn I ~< a), we shall use the formula (Bochner [2], p. 318) 
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where u(l l> and u(lt[) are integrable functions in gk, only depending on Ix[ 
and It[ respectively and being F.T.'s in Rk, that  is (Bochner [2], p. 235) 

u(itl) = e ~a'x) U(Ix])dx= (2~)k/2t -k/2+~ xkl2Jkl2_l(xltl) U(x) dx; 
k 

U([x]) is to be approximately 1 when [xi<~a and 0 when [x]>a,  and for this 
purpose we let U(ix[) be the convolution in Rk of two functions V([x[) and 
;t~Q(~ Ix[), ;t>0: 

u(l~]) = f~ v(lyl)~Q(~ I~-y])dy 

We take V ( x ) = { l '  x<~b 
O, x > b  

and choose the function Q([ x[) with compact support and rapidly decreasing F.T., 
the existence of which is guaranteed by the following lemma. 

Lemma 2. I /  e(t) is a positive ]unction monotonically decreasing to zero when 
t ~ c~ and i/ S~ e(t)/tdt < oo, then there exist two ]unctions Q(x) and q(t), de/ined 
]or x>~O and t>~O respectively, being F.T.'s in Rk, that is 

q(]t[)= ~ e~(t'Z)Q([x[)dx, t eRk  (9) 
J Rk 

and satis]ying Q(x) >~ O, 0 <- q(t) ~ q(O) = 1 

Q(x) = O when x >~ l 

q(t) and q'(t) are O(e -t~a)) when t ~  c~. 

In the one-dimensional case, the lemma follows from theorems proved by 1)aley 
and Wiener [7] and Ingham [6]. In the present case it can be proved by putting 

q(t) = ~I F (]c/2 + 1) 2 k~2 (0n t)- kl~ Jk/2 (0n t), 
n f f i l  

the quantities ~n being suitably chosen and satisfying 0n>0 and ~ n ~ l Q n ~ l .  
We put P([ Yn [ <~ a) =/~(a) and 

~(a) = f txi<adHn (x) = f txi<adFn (x) - f txt<adGn (x) = /~(a) - ~f(a) 
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and thus the formula (7) becomes 

fo it l)  Itl) (Itl/ )h.(t)dt 
which is the starting-point for our estimations. 

(10) 

4. Point  est imations 

We first show two theorems, which are generalizations to the multi-dimen- 
sional case of results given by Esseen [3]. 

Theorem 1. 1/ fir < ~ ,  r integer >~ 3, and i/ m is the largest eigenvalue o/ the 
matrix M, then 

Ip(ly~l <~a)_ flzl< d~P(x) l <~C.a_r. d(n) 
Tb(r -2)/2 

or a >~ (~m(r - 2) log n) �89 

Proo/. We take Gn(x) according to (5) and obtain 

v(a)=P(IY'I<<'a)- fl xl<.~ dr d Ixl<~ dP~(-D)Cl)(x). 

In  order to estimate ~(a), we choose Q(x]) and q(ltl) according to Lemma 2, 
such that  q([tl) ~< C(1 + t r+k/~) 1 and distinguish between the two cases ~(a)/> 0 
and ~(a)<0.  If ~ (a )~0 ,  we put  b=a+2 1, and thus U ( x ) = l  when x~a ,  
0~ U(x ) ~ < l  when a<~x<~a+2/~ and U(x)=0  when x > a + 2 / ~ .  Since d~(x)= 
dtu(x ) -dye(x) and d/~(x)>~0, we obtain from (10) 

~(a)-< III + Idv,(x)l, (11) 

where I is the integral of the right-hand side of (10). We put 2 / 2 = a / 2  and 
divide I into two parts: 

Itl<Kl/n Itl >K~Zn 

In the first integral, we use Lemma 1 and in the second one the inequality 
[h(t)l <~ C for estimating h(t). Easy calculations now give 

iI]<~Ca_ r d(n) 
n(r-2)]  2 �9 

The last term of (11) is at most equal to 
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f [da(z)]< f p(Ix])e-~(~'~-'~)dx, 
a<Jx[<a+2/), a<]x]<a+21). 

where p(y), y > 0, is a positive polynomial.  Now (x, M-*x) >1 m -~ ] x 12 for all x 6 R k 
and  consequently 

f~ 
+2/,l ['a+2/t 

l~w(x)l ~<cJo ~(x)e_X,12mxk_ldx~C.a_ r d(n) 
n( r  2)/2 

since a2/m >1 ~ (r - 2) log n. 
I t  now remains to estimate Slxl<adP~(--D)~P(x), v = l ,  2 . . . .  , r - - 2 ,  bu t  since 

~n, d P ~ ( - D ) r  t hey  can be t re ted in exact ly  the same way  as the last 
t e rm of (11), and thus  the theorem is proved if ~/(a)~0. I f  ~/(a)<0, we choose 
b = a - t  -1 and  proceed in a similar way. 

The proof is concluded. 

I n  the remaining interval  a<~ Y~m(r -2 ) logn  the  est imations are more com- 
plicated, and the convergence of P(IY[<a), towards  ~lxl<adCP(x)is slower. I n  
the following theorem we shall make  use of Esseen's  result  (2), and  thus  we 
have to assume tha t  M = E.  

T h e o r e m  2. / /  f14 < ~ 1 7 6  and i/ M = E, then /or a <~ ~ n 

] p(l y l  < a) - Uk (a2) l • cn-zl(k + i) (l § ae + ~) e ~a~ + O ( (l~ n)(k-i)l*). 

where 8 = ~  i/ k=2 ,  and 8 = ( k - 1 ) / 2 ( k + l )  i/ k>~3. 

Proo/. Because of (2), we can assume a~> 1. We pu t  

a .  (x) = O(x) + n -  ~ P ,  ( - D) O(x), 

and then  ~(a)=P(IYl<~a)-K~(a2), since dPa( -D) (~(x  ) is odd. According to 
L e m m a  2, we can find two functions Q(x) and  q(t) defined for x~> 0 and t~> 0, 
satisfying (9); and 

Q(x)>~O, O<q(t)<~q(O)=l, 

q(t)=O when t>~l, 

Q(x)<Ce -x~, IQ'(x)l<Ce -x~. 
in the proof of Theorem 1, we mus t  consider separately the two cases ~(a)1> 0 

and ~(a) < 0. I f  ~(a) ~> 0, we take  e > 0 (to be determined later), put. b = a + 
and use (10). After  dividing the lef t -hand integral  into three parts, corresponding 
to the intervals [0, a), [a, a + 2e) and (a + 2e, oo), we obtain  

+2e 
vi(a) = (1 -- U(a)) ~(a) + U(a + 2e) ~(a + 2e) - U(x) d~(x) 

a..4_ oo 
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where I is the integral  on the r ight -hand side of (10). Using (2), we get, since 
rig(x) >1 O, 

{ (f: fa o ) } ~l(a)<-<Ja [dy~(x)[-t-Cn -kl(k+l) 1 - U ( a ) + U ( a + 2 e ) +  + +2e  [U'(x)[dx + ] I [ .  

We now pu t  ]~=n k/(k+l) e -2~av(k-1), ~=a3/]~, and easily obtain  

f~ +2~[dy~(x) <~ C~:a k-1 e-a'/2 ~ Cn-kl(k+l) a k+2 e-Oa~. I 

V(y) = 0 when y > a + e, and  thus we obtain from (8) 

U(a)>~2)'kTe(g-1)/~(F((k-1)/2))-1 ff O(~V(u-a )2+v2)vg-~dudv  
v>~O 

(u -a )2+  v2~e a 

f; : 1 -- 27~ k/2 (I~(k/2)) -1 Q(0) 0 k-1 do, 
e 

and  1 - U ( a ) < ~ C  ,e q ~k ld~<~C.a k+2e -oa' b 

U ( a + 2 e )  is est imated in the same way. 
B y  taking the derivat ive with respect to Ix] in (8), we obtain 

f f x - u v~_ 2 du dv. U'(x) : 2/tk+l~ (k-1)/2 (l~((]c - 1)/2)) -1 Q' (~ V(x - u) 2 + v 2) U(x - u) 2 + v 2 
u2+ v~<~ b 2 

v>~O 

We first take  x ~<a. The in tegrand is an  odd function with respect to  u - x ,  and 
thus there is no contr ibut ion to the integral f rom the region ( u - x ) ~ + v  2<< . 
( b - x )  2, v>~0. After  change of variables, we get 

f .~(b + x) 

I u'(~)l ~<c~j~(o ~)]Q'(~)I ~-ldQ, x<~a. 

I n  a similar way,  we can est imate U'  (x) for x/> a + 2e, and  integrat ion gives 

a oo  

I t  remains to est imate I .  Now q(Itl//~.)=O when Itl>~, and consequently 

I =  f + f =11+I~. 
]tl<Kl/~ KWn<l t l<) .  
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We use L e m m a  1 with  r = 4 for es t imat ing 11. Our choice of ~ implies t h a t  e 
is finite and  therefore  b<C(logn) ~. W e  obta in  

[I1] < Cn -1 (log n) (k-1/4. 

We divide 12 into two par t s  according to  (6): 12=I21-I~2, where 

I21=  f (b/2:~ltl)"2J~:2(bltl)q(Itl/~t)ln(t/l/gn) dr" 
K/7,<ltl <~ 

(13) 

After  change of variables  we get  

1121l<C(b~) (~-1):2 f II"(t)lltl -(~+l)/2dt. 
i t . ,  

~. < Itl <<.~/V~ 

I n  order to  es t imate  this integral,  we need a more  detai led knowledge of the  
value dis t r ibut ion of ch.f. 's.  

Following Esseen ([3], pp.  94-98 and  107-108), we obta in  

[121[ <~ C(b Vnn) (k-1)/2 n- k/2 (~/Vnn)(k-1)/2 < Ca(k-l>~2 e-~a~ n- k/(k+l) 

122 is o(n-1), and thus  the  theorem is p roved  in the  case ~](a)>~0. I f  ~](a)<0,  
we pu t  b = a - e ,  and obta in  instead of (12) 

+ fa~2~ 
~(a) = (1 -- U(a - 2e)) ~?(a - 2e) + U(a) ~](a) (1 - U(x)) d~](x) 

+ U' (x) ~(x) dx + I, 
\ J O  J a  I 

and  proceed in the same way  as when  ~(a)~> 0. 
When  M = E ,  it is thus  possible to  express the  probabi l i ty  P(IY] <~a)in t e rms  

of the normal  d.f. and  associated functions,  except  for quant i t ies  of the  mag-  
n i tude  o(n (,-~):2) for large values of a and  O(n -k+(~+l)) for small  values  of a. I t  
is not  possible in the general  case to improve  t h e  la t ter  result  much,  I n  fact ,  
Esseen [3] has shown tha t ,  if F(x) is a l a t t i ce  dis tr ibut ion and  if k > 4, then/~(a)  
m a y  have  discontinuities of the  magn i tude  O(n-1). However ;  if t h e  ch.f. of X <1) 
satisfies Cramdr ' s  condit ion 

lira [/(t) l < 1, (C) 
Itl-->~ 

the  following theorem holds. 

Theorem 3. I/  fir < ~ , r integer >1 3, and i/ /(t) satis/ies the condition (C), then 
uni/ormly in a 

/ (log n) (k- 1)/4~ 
P(IYl<a)= flx,< d*(x)+ ~ n -~ f  dP2~(-D)*(x)+o t ~ )" 

l ~ p ~ ( r -  3)/2 J l x l < a  
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Proo/. Owing to Theorem 1, we can restrict ourselves to a<~ Y~m(r-2)logn. 
We define G~(x), Q(x) and q(t) in the same way as in the proof of that  theo- 
rem, and thus 

~(a)=P(]Y[<~a)- fl~l<a dO(x) -1<,<(~-3)12~" n - ' f l  zl<~ dP2"( -D)O(x)§ 

since dP~(-D)Cg(x) is odd when v is odd. 
I t  thus suffices to estimate ~(a), and we get in the case ~2(a)~>0 

f f  +21). n(a)< Izl+ Id (x)l. 

By putting 2 = n (~-2)/2, we can easily estimate the second term. We divide I into 
two parts 

I =  f +  f = I , + I , ,  
]tl <KUn [tl >KVn 

where, because of Lemma 1 and since b ~< C(logn) �89 

11 = o(n -(~- 2)/2 (log n)(k-1)/4). 

We also put  12= 121-122 according to (6), where 

I21= f (b/2~[t[)kl2 Jk/2(b]t[)q([t[/~) /~(t/Vn)dt" 

Now, since /(t) satisfies (C), there exists a constant r > 0  such that  [/(t)[ <e -r 
when [t]>K, that  is [/~(t/Vn)[<e -r~ in I21, and thus after some calculation 

// 11211 • C e-~n(]~b)(e 17/2 q(t) t(k-a)/2 dt = o(n-(r-2)/2). 

Finally it is easy to show that  I22 = o(n -(r 2)/2) and the theorem is proved when 
~/(a) >~0. The case ~/(a)<0 is treated in a similar way. 

Remark. R. R. Rao [8] has announced without proof a corresponding expan- 
sion for P(YE A), where A is an arbitrary convex subset of Rk, but with the 
remainder term O(n -(~-~)/2 (log n)(k-1)/2). 

5. Mean es t imat ions  

In the one-dimensional case, it is known (Agnew [1] and Esseen [4]) that  $'n(x) 
converges towards r in Lv-mean, p ~> 1. 

The two following theorems concerning the mean convergence of P(]YI <~x) 
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towards  Sjyj<x d~)(y) are immedia te  consequences of the  theorems of the  previous  
section. We define the  L f n o r m  

H u(x) [b = ( f o l U(X)lo dx)l,, for every  funct ion u(x) E Lp (O, o~ ) . 

Theorem 4. / /  f15 < oo and i/ /(t) satis/ies (C), then /or p >1 1 

Ip(,y,<~x)-f~y,<xd~P(y)ll=l-llf~,<xdp2(-D)@(y)lL(l+ (l~ n)~ '  n ) ,  

where fl = (k - 1) /4  + 1/(2p).  

Proo/. Put t ing  ~1 (x) = P([ Y] <~ x) - ~ de(y) 
JI y]<~x 

a n d  u2(x) = 1  f d P ~ ( - n ) d P ( x )  
n J lyl<x 

a n d  us ing  M i n k o w s k y ' s  i n e q u a l i t y  

we thus  have  to show t h a t  

II Ui (X) -- U 2 (X)lip = O(n- ~(log n) ~) 

bu t  this easily follows f rom Theorem 1 with r =  5 and  Theorem 3. 
In  the  same way  we obtain  f rom Theorem 1 with r = 4 and  Theorem 2 the  fol- 

lowing theorem.  

Theorem 5. / /  f14 < ~  and i/ M = E ,  then 

II P(I Y I < x) - K,~ (x ~) lie < Cn-k/(k+l)" 
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