On the central limit theorem in \boldsymbol{R}_{k}

By Bengt von Bahr

1. Introduction

Let $X^{(v)}=\left(X_{1}^{(v)}, \ldots X_{k}^{(v)}\right), \nu=1,2, \ldots n$, be a sequence of independent and identically distributed random vectors (r.v.'s) in $R_{k}, k>1$, with zero mean and nonsingular covariance matrix M. Then, according to the Central Limit Theorem, the normed sum $Y_{n}=n^{-\frac{1}{2}} \sum_{v=1}^{n} X^{(v)}$ is approximately normally distributed, with the same moments of the first and second orders as $X^{(1)}$. In the present paper, we shall consider the distribution of the norm $\left|Y_{n}\right|=\left(Y_{n 1}^{2}+\ldots+Y_{n k}^{2}\right)^{\frac{1}{2}}$, and estimate the difference

$$
\begin{equation*}
P\left(\left|Y_{n}\right| \leqslant a\right)-\int_{|x| \leqslant a} d \Phi(x) \tag{1}
\end{equation*}
$$

where $\Phi(x), x=\left(x_{1}, \ldots x_{k}\right)$ is the corresponding normal distribution function (d.f.) and $|x|=\left(x_{1}^{2}+\ldots+x_{k}^{2}\right)^{\frac{1}{2}}$. If the moments of the fourth order exist and if $M=E$ (unit matrix of order $k \times k$), then (Esseen [3])

$$
\begin{equation*}
\left|P\left(\left|Y_{n}\right| \leqslant a\right)-K_{k}\left(a^{2}\right)\right| \leqslant C n^{-k /(k+1)} \tag{2}
\end{equation*}
$$

where $K_{k}(x)$ is the d.f. of the χ^{2}-distribution with k degrees of freedom, and C is a finite constant, only depending on the moments of $X^{(1)}$. Here we shall study the difference (1) as a function of both n and a.

2. Convergence of characteristic functions

We introduce the d.f.'s $\boldsymbol{F}(x)$ and $F_{n}(x)$ and the characteristic functions (ch.f.'s) $f(t)$ and $f_{n}(t)$ of $X^{(1)}$ and Y_{n} respectively. We have

$$
f(t)=\int_{R_{k}} e^{i(t, x)} d F(x), \quad t=\left(t_{1}, \ldots t_{k}\right), \quad(t, x)=\sum_{j=1}^{k} t_{i} x_{j}
$$

and $f_{n}(t)=f^{n}(t / \sqrt{n})$. If the moment $\beta_{r}=E\left|X^{(1)}\right|^{r}<\infty, r$ integer $\geqslant 3$, then $\log f(t)$ has the Taylor expansion

$$
\begin{equation*}
\log f(t)=-\frac{1}{2}(t, M t)+\sum_{v=3}^{r} \frac{(\varkappa, i t)^{v}}{v!}+o\left(|t|^{r}\right) \tag{3}
\end{equation*}
$$

where $(\varkappa, i t)^{\nu}=\left(\chi_{1} i t_{1}+\ldots+x_{k} i t_{k}\right)^{\nu}$, and $\chi_{1}^{i_{1}} \ldots x_{k}^{i_{k}}$ is the semi-invariant of order $\left(i_{1}, \ldots i_{k}\right)$. According to (3), the relation

$$
\begin{equation*}
e^{(t, M t) / 2} f_{n}(t)=1+\sum_{\nu=1}^{r=2} n^{-v / 2} P_{\nu}(i t)+o\left(n^{-\frac{r-2}{2}}\right) \tag{4}
\end{equation*}
$$

defines a sequence of polynomials P_{v} of degree $3 v$, the coefficients of which are functions of the moments of $X^{(1)}$. By estimating the remainder term in (4), we obtain the following lemma.

Lemma 1. If $\beta_{r}<\infty, r$ integer $\geqslant 3$, then for all t with $|t| \leqslant K \sqrt{n}$

$$
\left|f_{n}(t)-\left(1+\sum_{\nu=1}^{r-2} n^{-\nu / 2} P_{\nu}(i t)\right) e^{-(t, M t) / 2}\right| \leqslant C \frac{d(n)}{n^{(r-2) / 2}}|t|^{r} e^{-\alpha|t|^{2}}
$$

K and \propto are positive constants, only depending on k, r and the moments of $X^{(1)}$; $d(n)$ is bounded by one and $\lim _{n \rightarrow \infty} d(n)=0$. Here and in what follows, we denote by C unspecified constants, with the same properties as K and α.

A proof of the lemma in the one-dimensional case is given by Gnedenko and Kolmogorov ([5] pp. 204-208). The present case is treated in the same way.

If $g(t)$ is the Fourier-Stieltjes Transform (F.S.T.) of $G(x)$, that is

$$
g(t)=\int_{R k} e^{i(t, x)} d G(x),
$$

then $-i t_{j} g(t)$ is the F.S.T. of $\partial G(x) / \partial x_{j}$ and thus $P_{\nu}(i t) e^{-(t, M t) / 2}$ is the F.S.T. of $P_{\nu}(-D) \Phi(x)$, where $P_{\nu}(-D)$ is a derivation operator obtained from $P(i t)$ by replacing $i t_{j}$ by $-\partial / \partial x_{j}$. We put

$$
\begin{equation*}
G_{n}(x)=\left(1+\sum_{v=1}^{r-2} n^{-v / 2} P_{v}(-D)\right) \Phi(x) \tag{5}
\end{equation*}
$$

and $H_{n}(x)=F_{n}(x)-G_{n}(x)$, and thus, the corresponding F.S.T.'s are

$$
g_{n}(t)=\left(1+\sum_{\nu=1}^{r-2} n^{-v / 2} P_{\nu}(i t)\right) e^{-(t . M t) / 2}
$$

and

$$
\begin{equation*}
h_{n}(t)=f_{n}(t)-g_{n}(t) . \tag{6}
\end{equation*}
$$

3. Main formula

In order to estimate $P\left(\left|Y_{n}\right| \leqslant a\right)$, we shall use the formula (Bochner [2], p. 318)

$$
\begin{equation*}
\int_{R_{k}} U(|x|) d H_{n}(x)=(2 \pi)^{-k} \int_{R_{k}} u(|t|) h_{n}(t) d t \quad\left(d t=d t_{l} \ldots d t_{k}\right), \tag{7}
\end{equation*}
$$

where $U(|x|)$ and $u(|t|)$ are integrable functions in R_{k}, only depending on $|x|$ and $|t|$ respectively and being F.T.'s in R_{k}, that is (Bochner [2], p. 235)

$$
u(|t|)=\int_{R_{k}} e^{i(t, x)} U(|x|) d x=(2 \pi)^{k / 2} t^{-k / 2+1} \int_{0}^{\infty} x^{k / 2} J_{k / 2-1}(x|t|) U(x) d x
$$

$U(|x|)$ is to be approximately 1 when $|x| \leqslant a$ and 0 when $|x|>a$, and for this purpose we let $U(|x|)$ be the convolution in R_{k} of two functions $V(|x|)$ and $\lambda^{k} Q(\lambda|x|), \lambda>0:$

$$
\begin{align*}
U(|x|) & =\int_{R_{k}} V(|y|) \lambda^{k} Q(\lambda|x-y|) d y \\
& =2 \lambda^{k} \pi^{(k-1) / 2}(\Gamma((k-1) / 2))^{-1} \int_{v \geqslant 0} V\left(\sqrt{u^{2}+v^{2}}\right) Q\left(\lambda \sqrt{(|x|-u)^{2}+v^{2}}\right) v^{k-2} d u d v \tag{8}
\end{align*}
$$

We take

$$
V(x)= \begin{cases}1, & x \leqslant b \\ 0, & x>b\end{cases}
$$

and choose the function $Q(|x|)$ with compact support and rapidly decreasing F.T., the existence of which is guaranteed by the following lemma.

Lemma 2. If $\varepsilon(t)$ is a positive function monotonically decreasing to zero when $t \rightarrow \infty$ and if $\int_{1}^{\infty} \varepsilon(t) / t d t<\infty$, then there exist two functions $Q(x)$ and $q(t)$, defined for $x \geqslant 0$ and $t \geqslant 0$ respectively, being F.T.'s in R_{k}, that is

$$
\begin{equation*}
q(|t|)=\int_{R_{k}} e^{i(t, x)} Q(|x|) d x, \quad t \in R_{k} \tag{9}
\end{equation*}
$$

and satisfying

$$
\begin{aligned}
& Q(x) \geqslant 0, \quad 0 \leqslant q(t) \leqslant q(0)=1 \\
& Q(x)=0 \quad \text { when } \quad x \geqslant 1 \\
& q(t) \text { and } q^{\prime}(t) \text { are } O\left(e^{-t \epsilon(t)}\right) \text { when } t \rightarrow \infty .
\end{aligned}
$$

In the one-dimensional case, the lemma follows from theorems proved by Paley and Wiener [7] and Ingham [6]. In the present case it can be proved by putting

$$
q(t)=\prod_{n=1}^{\infty} \Gamma(k / 2+1) 2^{k / 2}\left(\varrho_{n} t\right)^{-k / 2} J_{k / 2}\left(\varrho_{n} t\right)
$$

the quantities ϱ_{n} being suitably chosen and satisfying $\varrho_{n}>0$ and $\sum_{n=1}^{\infty} \varrho_{n} \leqslant 1$. We put $P\left(\left|Y_{n}\right| \leqslant a\right)=\mu(a)$ and

$$
\eta(a)=\int_{|x| \leqslant a} d H_{n}(x)=\int_{|x| \leqslant a} d F_{n}(x)-\int_{|x| \leqslant a} d G_{n}(x)=\mu(a)-\psi(a)
$$

b. von bahr, On the central limit theorem in $\boldsymbol{R}_{\boldsymbol{k}}$

and thus the formula (7) becomes

$$
\begin{equation*}
\int_{0}^{\infty} U(x) d \eta(x)=\int_{R_{k}}(b / 2 \pi|t|)^{k / 2} J_{k / 2}(b|t|) q(|t| / \lambda) h_{n}(t) d t \tag{10}
\end{equation*}
$$

which is the starting-point for our estimations.

4. Point estimations

We first show two theorems, which are generalizations to the multi-dimensional case of results given by Esseen [3].

Theorem 1. If $\beta_{r}<\infty$, r integer $\geqslant 3$, and if m is the largest eigenvalue of the matrix M, then

$$
\left|P\left(\left|Y_{n}\right| \leqslant a\right)-\int_{|x| \leqslant a} d \Phi(x)\right| \leqslant C \cdot a^{-r} \cdot \frac{d(n)}{n^{(r-2) / 2}}
$$

for

$$
a \geqslant\left(\frac{5}{4} m(r-2) \log n\right)^{\frac{1}{2}} .
$$

Proof. We take $G_{n}(x)$ according to (5) and obtain

$$
\eta(a)=P\left(\left|Y_{n}\right| \leqslant a\right)-\int_{|x| \leqslant a} d \Phi(x)+\sum_{\nu=1}^{r-2} n^{-\nu / 2} \int_{|x| \leqslant a} d P_{\nu}(-D) \Phi(x) .
$$

In order to estimate $\eta(a)$, we choose $Q(|x|)$ and $q(|t|)$ according to Lemma 2, such that $q(|t|) \leqslant C\left(1+|t|^{r+k / 2}\right)^{-1}$ and distinguish between the two cases $\eta(a) \geqslant 0$ and $\eta(a)<0$. If $\eta(a) \geqslant 0$, we put $b=a+\lambda^{-1}$, and thus $U(x)=1$ when $x \leqslant a$, $0 \leqslant U(x) \leqslant 1$ when $a \leqslant x \leqslant a+2 / \lambda$ and $U(x)=0$ when $x>a+2 / \lambda$. Since $d \eta(x)=$ $d \mu(x)-d \psi(x)$ and $d \mu(x) \geqslant 0$, we obtain from (10)

$$
\begin{equation*}
\eta(a) \leqslant|I|+\int_{a}^{a+2 / 2}|d \psi(x)| \tag{11}
\end{equation*}
$$

where I is the integral of the right-hand side of (10). We put $2 / \lambda=a / 2$ and divide I into two parts:

$$
I=\int_{|t| \leqslant K \sqrt{n}}+\int_{|t|>K \sqrt{n}} .
$$

In the first integral, we use Lemma 1 and in the second one the inequality $|h(t)| \leqslant C$ for estimating $h(t)$. Easy calculations now give

$$
|I| \leqslant C a^{-r} \frac{d(n)}{n^{(r-2) / 2}}
$$

The last term of (11) is at most equal to

$$
\int_{a<|x|<a+2 / \lambda}|d G(x)| \leqslant \int_{a<|x|<a+2 / \lambda} p(|x|) e^{-\frac{1}{2}\left(x, 1 M^{-1} x\right)} d x
$$

where $p(y), y>0$, is a positive polynomial. Now $\left(x, M^{-1} x\right) \geqslant m^{-1}|x|^{2}$ for all $x \in R_{k}$ and consequently

$$
\int_{a}^{a+2 / \lambda}|d \psi(x)| \leqslant C \int_{a}^{a+2 / \lambda} p(x) e^{-x^{2} / 2 m} x^{k-1} d x \leqslant C \cdot a^{-r} \frac{d(n)}{n^{(r-2) / 2}}
$$

since $a^{2} / m \geqslant \frac{5}{4}(r-2) \log n$.
It now remains to estimate $\int_{|x| \leqslant a} d P_{\nu}(-D) \Phi(x), v=1,2, \ldots, r-2$, but since $\int_{R_{k}} d P_{\nu}(-D) \Phi(x)=0$, they can be treted in exactly the same way as the last term of (l1), and thus the theorem is proved if $\eta(a) \geqslant 0$. If $\eta(a)<0$, we choose $b=a-\lambda^{-1}$ and proceed in a similar way.

The proof is concluded.
In the remaining interval $a \leqslant \sqrt{5} m(r-2) \log n$ the estimations are more complicated, and the convergence of $P(|Y| \leqslant a)$, towards $\int_{|x| \leqslant a} d \Phi(x)$ is slower. In the following theorem we shall make use of Esseen's result (2), and thus we have to assume that $M=\boldsymbol{E}$.

Theorem 2. If $\beta_{4}<\infty$ and if $M=E$, then for $a \leqslant \sqrt{\frac{5}{2} \log n}$

$$
\left|P(|Y| \leqslant a)-K_{k}\left(a^{2}\right)\right| \leqslant C n^{-k /(k+1)}\left(1+a^{k+2}\right) e^{-\delta a^{2}}+O\left(\frac{(\log n)^{(k-1) / 4}}{n}\right)
$$

where $\delta=\frac{1}{8}$ if $k=2$, and $\delta=(k-1) / 2(k+1)$ if $k \geqslant 3$.
Proof. Because of (2), we can assume $a \geqslant 1$. We put

$$
G_{n}(x)=\Phi(x)+n^{-\frac{1}{2}} P_{1}(-D) \Phi(x)
$$

and then $\eta(a)=P(|Y| \leqslant a)-K_{k}\left(a^{2}\right)$, since $d P_{1}(-D) \Phi(x)$ is odd. According to Lemma 2, we can find two functions $Q(x)$ and $q(t)$ defined for $x \geqslant 0$ and $t \geqslant 0$, satisfying (9), and

$$
\begin{aligned}
Q(x) & \geqslant 0, \quad 0 \leqslant q(t) \leqslant q(0)=1 \\
q(t) & =0 \quad \text { when } \quad t \geqslant 1, \\
Q(x) & \leqslant C e^{-x^{\frac{3}{2}}}, \quad\left|Q^{\prime}(x)\right| \leqslant C e^{-x^{\frac{2}{2}}} .
\end{aligned}
$$

As in the proof of Theorem 1, we must consider separately the two cases $\eta(a) \geqslant 0$ and $\eta(a)<0$. If $\eta(a) \geqslant 0$, we take $\varepsilon>0$ (to be determined later), put $b=a+\varepsilon$ and use (10). After dividing the left-hand integral into three parts, corresponding to the intervals $[0, a),[a, a+2 \varepsilon)$ and $(a+2 \varepsilon, \infty)$, we obtain

$$
\begin{align*}
\eta(a)=(1-U(a)) \eta(a)+U(a+2 \varepsilon) \eta(a+2 \varepsilon) & -\int_{a}^{a+2 \varepsilon} U(x) d \eta(x) \\
& +\left(\int_{0}^{a}+\int_{a+2 \varepsilon}^{\infty}\right) U^{\prime}(x) \eta(x) d x+I, \tag{12}
\end{align*}
$$

b. von bahr, On the central limit theorem in $\boldsymbol{R}_{\boldsymbol{k}}$
where I is the integral on the right-hand side of (10). Using (2), we get, since $d \mu(x) \geqslant 0$,
$\eta(a) \leqslant \int_{a}^{a+2 \varepsilon}|d \psi(x)|+C n^{-k /(k+1)}\left\{1-U(a)+U(a+2 \varepsilon)+\left(\int_{0}^{a}+\int_{a+2 \varepsilon}^{\infty}\right)\left|U^{\prime}(x)\right| d x\right\}+|I|$.
We now put $\lambda=n^{k /(k+1)} e^{-2 \delta a^{2} /(k-1)}, \varepsilon=a^{3} / \lambda$, and easily obtain

$$
\int_{a}^{a+2 \varepsilon}|d \psi(x)| \leqslant C \varepsilon a^{k-1} e^{-a^{2} / 2} \leqslant C n^{-k /(k+1)} a^{k+2} e^{-\delta a^{2}}
$$

$V(y)=0$ when $y>a+\varepsilon$, and thus we obtain from (8)

$$
U(a) \geqslant 2 \lambda^{k} \pi^{(k-1) / 2}(\Gamma((k-1) / 2))^{-1} \iint_{\substack{v \geqslant 0 \\(u-a)^{2}+v^{2} \leqslant \varepsilon^{2}}} Q\left(\lambda \sqrt{(u-a)^{2}+v^{2}}\right) v^{k-2} d u d v
$$

$$
=1-2 \pi^{k / 2}(\Gamma(k / 2))^{-1} \int_{\lambda \varepsilon}^{\infty} Q(\varrho) \varrho^{k-1} d \varrho
$$

and

$$
1-U(a) \leqslant C \int_{a^{s}}^{\infty} e^{-e^{\frac{3}{2}}} \varrho^{k-1} d \varrho \leqslant C \cdot a^{k+2} e^{-\delta a^{2}}
$$

$U(a+2 \varepsilon)$ is estimated in the same way.
By taking the derivative with respect to $|x|$ in (8), we obtain

$$
U^{\prime}(x)=2 \lambda^{k+1} \pi^{(k-1) / 2}(\Gamma((k-1) / 2))^{-1} \iint_{\substack{u^{2}+v^{2} \leqslant b^{2} \\ v \geqslant 0}} Q^{\prime}\left(\lambda V \sqrt{(x-u)^{2}+v^{2}}\right) \frac{x-u}{\sqrt{(x-u)^{2}+v^{2}}} v^{k-2} d u d v
$$

We first take $x \leqslant a$. The integrand is an odd function with respect to $u-x$, and thus there is no contribution to the integral from the region $(u-x)^{2}+v^{2} \leqslant$ $(b-x)^{2}, v \geqslant 0$. After change of variables, we get

$$
\left|U^{\prime}(x)\right| \leqslant C \lambda \int_{\lambda(b-x)}^{\lambda(b+x)}\left|Q^{\prime}(\varrho)\right| \varrho^{k-1} d \varrho, \quad x \leqslant a .
$$

In a similar way, we can estimate $U^{\prime}(x)$ for $x \geqslant a+2 \varepsilon$, and integration gives

$$
\left(\int_{0}^{a}+\int_{a+2 \varepsilon}^{\infty}\right)\left|U^{\prime}(x)\right| d x \leqslant C a^{k+2} e^{-\delta a^{2}} .
$$

It remains to estimate I. Now $q(|t| / \lambda)=0$ when $|t|>\lambda$, and consequently

$$
I=\int_{|t| \leqslant K \sqrt{n}}+\int_{K \sqrt{n} \leqslant|t|<\lambda}=I_{1}+I_{2} .
$$

We use Lemma 1 with $r=4$ for estimating I_{1}. Our choice of δ implies that ε is finite and therefore $b \leqslant C(\log n)^{\frac{1}{2}}$. We obtain

$$
\left|I_{1}\right| \leqslant C n^{-1}(\log n)^{(k-1 / 4}
$$

We divide I_{2} into two parts according to (6): $I_{2}=I_{21}-I_{22}$, where

$$
\begin{equation*}
I_{21}=\int_{K V^{\prime} \leqslant|t|<\lambda}(b / 2 \pi|t|)^{k / 2} J_{k / 2}(b|t|) q(|t| / \lambda) f^{n}(t / \sqrt{n}) d t . \tag{13}
\end{equation*}
$$

After change of variables we get

$$
\left|I_{21}\right|<C(b \sqrt{n})^{(k-1) / 2} \int_{K<|t| \leqslant \lambda \mid / \sqrt{n}}\left|f^{n}(t)\right||t|^{-(k+1) / 2} d t
$$

In order to estimate this integral, we need a more detailed knowledge of the value distribution of ch.f.'s.

Following Esseen ([3], pp. 94-98 and 107-108), we obtain

$$
\left|I_{21}\right| \leqslant C(b \sqrt{n})^{(k-1) / 2} n^{-k / 2}(\lambda / \sqrt{n})^{(k-1) / 2} \leqslant C a^{(k-1) / 2} e^{-\delta a^{2}} n^{-k /(k+1)}
$$

I_{22} is $o\left(n^{-1}\right)$, and thus the theorem is proved in the case $\eta(a) \geqslant 0$. If $\eta(a)<0$, we put $b=a-\varepsilon$, and obtain instead of (12)

$$
\begin{aligned}
\eta(a)=(1-U(a-2 \varepsilon)) \eta(a-2 \varepsilon) & +U(a) \eta(a)+\int_{a-2 \varepsilon}^{\infty}(1-U(x)) d \eta(x) \\
& +\left(\int_{0}^{a-2 \varepsilon}+\int_{a}^{\infty}\right) U^{\prime}(x) \eta(x) d x+I
\end{aligned}
$$

and proceed in the same way as when $\eta(a) \geqslant 0$.
When $M=E$, it is thus possible to express the probability $P(|Y| \leqslant a)$ in terms of the normal d.f. and associated functions, except for quantities of the magnitude $o\left(n^{-(r-2) / 2}\right)$ for large values of a and $O\left(n^{-k t(k+1)}\right)$ for small values of a. It is not possible in the general case to improve the latter result much. In fact, Esseen [3] has shown that, if $F(x)$ is a lattice distribution and if $k>4$, then $\mu(a)$ may have discontinuities of the magnitude $O\left(n^{-1}\right)$. However, if the ch.f. of $X^{(1)}$ satisfies Cramér's condition

$$
\begin{equation*}
\varlimsup_{|t| \rightarrow \infty}|f(t)|<1 \tag{C}
\end{equation*}
$$

the following theorem holds.
Theorem 3. If $\beta_{r}<\infty, r$ integer $\geqslant 3$, and if $f(t)$ satisfies the condition (C), then uniformly in a

$$
P(|Y|<a)=\int_{|x| \leqslant a} d \Phi(x)+\sum_{1 \leqslant \mu \leqslant(r-3) / 2} n^{-\mu} \int_{|x| \leqslant a} d P_{2 \mu}(-D) \Phi(x)+o\left(\frac{(\log n)^{(k-1) / 4}}{n^{(r-2) / 2}}\right) .
$$

b. von bahr, On the central limit theorem in $\boldsymbol{R}_{\boldsymbol{k}}$

Proof. Owing to Theorem 1, we can restrict ourselves to $a \leqslant \sqrt{\frac{5}{4} m(r-2)} \log n$. We define $G_{n}(x), Q(x)$ and $q(t)$ in the same way as in the proof of that theorem, and thus

$$
\eta(a)=P(|Y| \leqslant a)-\int_{|x| \leqslant a} d \Phi(x)-\sum_{1 \leqslant \mu \leqslant(r-3) / 2} n^{-\mu} \int_{|x| \leqslant a} d P_{2 \mu}(-D) \Phi(x)+O\left(n^{-(r-2) / 2}\right)
$$

since $d P_{v}(-D) \Phi(x)$ is odd when v is odd.
It thus suffices to estimate $\eta(a)$, and we get in the case $\eta(a) \geqslant 0$

$$
\eta(a) \leqslant|I|+\int_{a}^{a+2 / \lambda}|d \psi(x)| .
$$

By putting $\lambda=n^{(r-2) / 2}$, we can easily estimate the second term. We divide I into two parts

$$
I=\int_{|t|<K \sqrt{n}}+\int_{|t|>K \sqrt{n}}=I_{1}+I_{2},
$$

where, because of Lemma 1 and since $b \leqslant C(\log n)^{\frac{\downarrow}{2}}$,

$$
I_{1}=o\left(n^{-(r-2) / 2}(\log n)^{(k-1) / 4}\right)
$$

We also put $I_{2}=I_{21}-I_{22}$ according to (6), where

$$
I_{21}=\int_{|t|>K \sqrt{n}}(b / 2 \pi|t|)^{k / 2} J_{k / 2}(b|t|) q(|t| / \lambda) f^{n}(t / \sqrt{n}) d t
$$

Now, since $f(t)$ satisfies (C), there exists a constant $\gamma>0$ such that $|f(t)| \leqslant e^{-\gamma}$ when $|t|>K$, that is $\left|f^{n}(t / \sqrt{n})\right| \leqslant e^{-\gamma n}$ in I_{21}, and thus after some calculation

$$
\left|I_{21}\right| \leqslant C e^{-\gamma n}(\lambda b)^{(k-1) / 2} \int_{0}^{\infty} q(t) t^{(k-3) / 2} d t=o\left(n^{-(r-2) / 2}\right) .
$$

Finally it is easy to show that $I_{22}=o\left(n^{-(r-2) / 2}\right)$ and the theorem is proved when $\eta(a) \geqslant 0$. The case $\eta(a)<0$ is treated in a similar way.

Remark. R. R. Rao [8] has announced without proof a corresponding expansion for $P(Y \in A)$, where A is an arbitrary convex subset of R_{k}, but with the remainder term $O\left(n^{-(\tau-2) / 2}(\log n)^{(k-1) / 2}\right)$.

5. Mean estimations

In the one-dimensional case, it is known (Agnew [1] and Esseen [4]) that $\boldsymbol{F}_{n}(x)$ converges towards $\Phi(x)$ in L_{p}-mean, $p \geqslant 1$.

The two following theorems concerning the mean convergence of $P(|Y| \leqslant x)$
towards $\int_{|y| \leqslant x} d \Phi(y)$ are immediate consequences of the theorems of the previous section. We define the L_{p}-norm

$$
\|u(x)\|_{p}=\left(\int_{0}^{\infty}|u(x)|^{p} d x\right)^{1 / p} \text { for every function } u(x) \in L_{p}(0, \infty)
$$

Theorem 4. If $\beta_{5}<\infty$ and if $f(t)$ satisfies (C), then for $p \geqslant \mathrm{I}$

$$
\left\|P(|Y| \leqslant x)-\int_{|y| \leqslant x} d \Phi(y)\right\|_{p}=\frac{1}{n}\left\|\int_{|y| \leqslant x} d P_{2}(-D) \Phi(y)\right\|_{p}\left(1+O \frac{(\log n)^{\beta}}{\sqrt{n}}\right)
$$

where $\beta=(k-1) / 4+1 /(2 p)$.
Proof. Putting $\quad u_{1}(x)=P(|Y| \leqslant x)-\int_{|y| \leqslant x} d \Phi(y)$
and

$$
u_{2}(x)=\frac{1}{n} \int_{|y| \leqslant x} d P_{2}(-D) \Phi(x)
$$

and using Minkowsky's inequality

$$
\left\|u_{2}(x)\right\|_{p}-\left\|u_{1}(x)-u_{2}(x)\right\|_{p} \leqslant\left\|u_{1}(x)\right\|_{p} \leqslant\left\|u_{2}(x)\right\|_{p}+\left\|u_{1}(x)-u_{2}(x)\right\|_{p}
$$

we thus have to show that

$$
\left\|u_{1}(x)-u_{2}(x)\right\|_{p}=O\left(n^{-\frac{8}{2}}(\log n)^{\beta}\right)
$$

but this easily follows from Theorem 1 with $r=5$ and Theorem 3.
In the same way we obtain from Theorem 1 with $r=4$ and Theorem 2 the following theorem.

Theorem 5. If $\beta_{4}<\infty$ and if $M=E$, then

$$
\left\|P(|Y| \leqslant x)-K_{k}\left(x^{2}\right)\right\|_{p} \leqslant C n^{-k /(k+1)} .
$$

REFERENGES

1. Agnew, R. P., Estimates for global central limit theorems. Ann. Math. Stat. 28, 26-42 (1957).
2. Bochner, S., Lectures of Fourier Integrals with a Supplement. Ann. of Math. Studies, No. 42, Princetown (1959).
3. Esseen, C.-G., Fourier analysis of distribution functions. Acta Math. 77, 1-125 (1945).
4. Esseen, C.-G., On mean central limit theorems. Trans. R., Inst. of Techn. 121, Stockholm (1958).
5. Gnedenko, B. V., and Kolmogorov, A. N., Limit distributions for sums of independent random variables. Cambridge (1954).
6. Ingham, A. E., A note on Fourier transforms. J. Lond. Math. Soc. 9, 29-32 (1934).
7. Paley, R., and Wiener, N., Fourier transforms in the complex domain, N.Y. (1934).
8. Rao, R. R., On the central limit theorem in R_{k} Bull. Am. Math. Soc. 67, 359-361 (1961).
