Multi-dimensional integral limit theorems for large deviations

By Bengt von Bahr

1. Introduction

The problem of large deviations in the central limit theorem was first treated by Khintchine [3] in a special case and later by Cramér [2] in a more general one-dimensional case. His results were slightly improved by Petrov [4], who studied the distribution of sums of independent but not necessarily identically distributed random variables. Richter has proved local central limit theorems in the one-dimensional case [5] and in the multi-dimensional case [6], when the distribution of the sum is either absolutely continuous or of lattice type. He has also stated theorems of integral type [7], but, as he pointed out, he was obliged to restrict himself to the above-mentioned special cases, mainly because the ordinary integral limit theorems were lacking.

Here I want to use the results obtained in [1] to generalize Richter's results in [7] and one of Cramér's results [2] to the multi-dimensional case. I shall only treat the case of a sum of independent and identically distributed random vectors (r.v.'s), the generalization to non-identically distributed r.v.'s being straightforward but somewhat cumbersome.

2. Statement of the problem

Let $X=\left(X_{1}, \ldots, X_{k}\right)$ be a r.v. in $R_{k}, k>1$, with the distribution function (d.f.) $F(x), x=\left(x_{1}, \ldots, x_{k}\right)$, with zero mean and non-singular covariance matrix M. Furthermore let, for some $h_{0}>0$, the moment generating function (m.g.f.) of X,

$$
R(t)=\int_{r_{k}} e^{(t, x)} d F(x), \quad(t, x)=\sum_{j=1}^{k} t_{j} x_{j}
$$

exist for all $t=\left(t_{1}, \ldots, t_{k}\right)$ with $|t|=\left(\sum_{j=1}^{k} t_{j}^{2}\right)^{\frac{1}{2}}<h_{0}$
If $X^{(1)}, \ldots, X^{(n)}$ is a sequence of independent r.v.'s with the same d.f.'s as X, and $Y_{n}=(1 / \sqrt{n}) \sum_{v=1}^{n} X^{(\nu)}$, the problem is to estimate the probability $P\left(Y_{n} \in B\right)$, where B is a Borel set of a type specified in section 4. In Theorem $1, B$ is contained in a sphere with its center in the origin and of radius $R \leqslant \varepsilon_{0} \sqrt{n}$, and in Theorem $2, B$ is contained in the complement of such a sphere. In Theorems 3 and 4, I give applications to the d.f.'s of $\left|Y_{n}\right|$ and Y_{n} respectively.

3. Transformation of the distribution function

Following Cramér, we introduce for a fixed $h \in R_{k},|h|<h_{0}$, the d.f. $F(x, h)$ defined by

$$
d F(x, h)=\frac{e^{(h \cdot x)} d F(x)}{R(h)}
$$

Let $X(h)=\left(X_{1}(h), \ldots, X_{k}(h)\right)$ be a r.v. with the d.f. $F(x, h)$, with the mean $m=m(h)$ and the non-singular covariance matrix $M(h), X(h)^{(1)}, \ldots, X(h)^{(n)}$ is a sequence of independent r.v.'s with the same d.f. as $X(h)$ and $\left.Y_{n}(h)=(1 / V) /{ }_{n}^{-}\right)\left(\sum_{v=1}^{n} X(h)^{(\nu)}-n m\right)$ is its normed sum. The m.g.f. of $X(h)$ is

$$
R(t, h)=\frac{R(t+h)}{R(h)}
$$

and that of $\sum_{v=1}^{n} X(h)^{(v)}$ is

$$
\begin{equation*}
R_{n}(t, h)=(R(t, h))^{n}=\frac{R_{n}(t+h)}{R_{n}(h)} \tag{1}
\end{equation*}
$$

where $R_{n}(t)=(R(t))^{n}$ is the m.g.f. of $\sum_{r=1}^{n} X^{(v)}$. If $G_{n}(x)$ and $G_{n}(x, h)$ are the d.f.'s of $\sum_{v=1}^{n} X^{(\nu)}$ and $\sum_{v=1}^{n} X(h)^{(v)}$ respectively, then according to (1)

$$
d G_{n}(x, h)=\frac{e^{(h . x)} d G_{n}(x)}{R_{n}(h)}
$$

This relation can be written

$$
\begin{equation*}
d F_{n}(x)=R^{n}(h) e^{-\sqrt{n}(h, x)} d F_{n}(x-m \sqrt{n}, h) \tag{2}
\end{equation*}
$$

where $F_{n}(x)$ and $F_{n}(x, h)$ are the d.f.'s of Y_{n} and $Y_{n}(h)$ respectively. We shall use (2) to estimate the probability that Y_{n} will fall into a set in the neighbourhood of the point $m \sqrt{n}$. Now, $m=m(h)$ is, for $|h|<h_{0}$, given by

$$
m=\frac{\int x e^{(h \cdot x)} d F(x)}{R(h)}=M h+O\left(|h|^{2}\right)
$$

where $M h$ is a vector, the i th component of which is $\sum_{j=1}^{k} M_{i j} h_{j}$. The Jacobian of the transformation $h \rightarrow m(h)$ is $|M(h)|=\operatorname{det}(M(h))>0$ and thus the transformation is invertible, and we obtain

$$
\begin{equation*}
h=h(m)=\Lambda m+O\left(|m|^{2}\right) \tag{3}
\end{equation*}
$$

where $\Lambda=M^{-1}$ (the inverse matrix of M). Consequently, there exists an $\varepsilon_{0}>0$ such that, for every $x \in R_{k}$ with $|x| / \sqrt{n}<\varepsilon_{0}, h$ can be chosen so that $m=x / \sqrt{n}$.

According to the central limit theorem [1], $F_{n}(x, h)$ is approximatively a normal d.f., and therefore we shall approximate $d F_{n}(x)$ by $d W_{n}(x)=w_{n}(x) d x$, where $d x$ is the volume element of R_{k}, and

$$
w_{n}(x)=(2 \pi)^{-k / 2}|M|^{-\frac{1}{2}} R^{n}(h(x / \sqrt{n})) e^{-\sqrt{n}(h(x) / \sqrt{n}), x)}
$$

We put $d(v)=(h(v), v)-\log R(h(v))$ for $|v| \leqslant \varepsilon_{0}$, and thus obtain

$$
w_{n}(x)=(2 \pi)^{k / 2}|M|^{-\frac{1}{2}} e^{-n d(x / \sqrt{n})} .
$$

The function $d(v)$ is analytic for $|v|<\varepsilon_{0}$, and a simple calculation of the MacLaurin expansion gives

$$
\begin{equation*}
d(v)=\frac{1}{2}(v, \Lambda v)-\sum_{v=3}^{\infty} Q_{v}(v) \tag{4}
\end{equation*}
$$

where $Q_{\nu}(v)$ are homogeneous polynomials of degree ν, the coefficients of which are functions of the semi-invariants of $F(x)$ of order not greater than ν.

4. A class of Borel sets

The central limit theorem in R_{k} is proved for a class \mathcal{B}_{1} of Borel sets [1], and it is probable that the following estimations may be carried out with the appropriate modifications in this class. However, I shall confine myself to the class \mathcal{D} of logical differences between convex Borel sets, that is, $D \in \mathcal{D}$ if $D=A_{1} \cap A_{2}^{\prime}$, where A_{1} and A_{2} are convex Borel sets. Without loss of generality, we can assume that A_{1} is the convex hull of D and $A_{2} \subset A_{1}$, and thus we write $D=A_{1}-A_{2}$. We define for every $\delta>0$ the exterior parallel set B_{δ} of a Borel set B by $B_{\delta}=\mathrm{U}_{|u|<1}(B+\delta u)$, where $B+\delta u$ is the translate of B by δu, and the union is taken over all $u \in R_{k}$ with $|u|<1$. We denote by $V(B)$ the k-dimensional volume of the set B, and by $S(B)$ the $(k-1)$ dimensional area of the boundary points of the set B, both being defined for $B \in \mathcal{C}=$ the class of all convex Borel sets.

5. Two lemmas

We first prove the following lemma, which gives an estimate of $F_{n}(D)$ for a small set $D \in \mathcal{D}$ belonging to the sphere $\left\{x:|x| \leqslant \varepsilon_{0} \sqrt{n}\right\}$, where $\varepsilon_{0}>0$ is independent of n and sufficiently small.

Notations. C and c are unspecified positive finite constants, θ satisfies $|\theta| \leqslant C$, and $O(z)$ stands for a function satisfying $|O(z)| \leqslant C z$ for $z>0$.

Lemma 1. If $D=A_{1}-A_{2} \in \mathcal{D}$ and D is a subset of both the spheres $\{x:|x| \leqslant R\}$ and $\{x:|x-a| \leqslant 1 / R\}$ for some $a \in R_{k}$ and $1 \leqslant R \leqslant \varepsilon_{0} \sqrt{n}$, then

$$
F_{n}(D)=W_{n}(D)(1+O(R / \sqrt{n}))+(\theta / \sqrt{n}) e^{-n a(a / \sqrt{n})} S\left(\left(A_{1}\right)_{c / \sqrt{n}}\right) .
$$

Proof. Putting $h=h(a / \sqrt{n})$ we get $m \sqrt{n}=a$, and thus form (2)

$$
F_{n}(D)=R^{n}(h(a / \sqrt{n})) \int_{D} e^{-\sqrt{n}(x, h(a / \sqrt{n})} d F_{n}(x-a, h(a \sqrt{n}))=e^{-n d(a / \sqrt{n})} I,
$$

where

$$
I=\int_{D-a} e^{-\sqrt{n}(x, h)} d F_{n}(x, h)
$$

b. von bahr, Integral limit theorems for large deviations

According to the central limit theorem [1],

$$
\begin{equation*}
F_{n}(x, h)=\Phi(x, h)+H_{n}(x, h) \tag{5}
\end{equation*}
$$

where $\Phi(x, h)$ is the normal d.f. with zero mean and convariance matrix $M(h)$, and

$$
\begin{equation*}
\left|H_{n}(A, h)\right| \leqslant \frac{C}{\sqrt{n}}\left\{V\left(A_{c / \sqrt{n}}\right)+S\left(A_{c / \sqrt{n}}\right)\right\} \tag{6}
\end{equation*}
$$

for every $A \in C$.
From (5) we get $I=I_{1}+I_{2}$, where

$$
\begin{aligned}
I_{1} & =(2 \pi)^{-k / 2}|M(h)|^{-\frac{1}{2}} \int_{D-a} e^{-\sqrt{n}(x, h)-\frac{1}{2}(x, \Lambda(h) x)} d x \\
& =(2 \pi)^{-k / 2}|M|^{-\frac{1}{2}} \int_{D-a} e^{-\sqrt{n}(x, h)-\frac{1}{2}(x, \Lambda x)} d x(\mathbf{1}+O(|h|))
\end{aligned}
$$

for the components of $\Lambda(h)$ are $\Lambda_{i j}(h)=\Lambda_{i j}+O(|h|)$, and $|x| \leqslant 1$ when $x \in D-a$.
We shall compare this expression for I_{1} with

$$
W_{n}(D)=(2 \pi)^{-k / 2}|M|^{-\frac{1}{2}} e^{-n d(a / \sqrt{n})} \int_{D-a} e^{-n[d((a+x) / \sqrt{n})-d(a / \sqrt{n})]} d x
$$

From (4) we obtain if, $|u|+|v| \leqslant \varepsilon_{0}$ and ε_{0} is sufficiently small

$$
d(v+u)-d(v)=\frac{1}{2}(u, \Lambda u)+(u, \Lambda v)+O\left(|u| \cdot|v|^{2}\right)
$$

and thus, because of (3),

$$
n\left[d((a+x) / \sqrt{n})-d(a / \sqrt{n}]=\frac{1}{2}(x, \Lambda x)+\sqrt{n}(x, h)+O\left(|x||a|^{2} / \sqrt{n}\right)\right.
$$

Since $|x||a|^{2} / \sqrt{n}=O(R / \sqrt{n})$ and $|h|=O(R / \sqrt{n})$, we get

$$
W_{n}(D)=e^{-n d(a / \sqrt{n})} I_{1}(1+O(R / V \bar{n}))
$$

It now remains to estimate I_{2}. We put

$$
I_{2}=\int_{D-a}=\int_{A_{1}-a}-\int_{A_{\mathrm{8}}-a}=I_{21}-I_{22}
$$

For $v=1$ and 2 respectively, we put

$$
A_{\nu}(z)=\left(A_{\nu}-a\right) \cap\{x: n(h, x) \leqslant z\} \quad \text { and } \quad Q_{\nu}(z)=H_{n}\left(A_{v}(z), h\right) .
$$

Now, $A_{\nu}(z)$ is convex, and thus the inequality (6) holds for $Q_{\nu}(z)$ with $A=A_{\nu}(z)$ but since $V(A) \leqslant c_{k} R_{A} S(A), A \in \mathcal{C}$, where R_{A} is the radius of the sphere circumscribed A, we get, with a new value of C,

$$
Q_{\nu}(z) \leqslant \frac{C}{\sqrt{n}} S\left(\left(A_{\nu}\right)_{c / \sqrt{n}}\right) \leqslant \frac{C}{\sqrt{n}} S\left(\left(A_{1}\right)_{c / \sqrt{n}}\right) .
$$

If

$$
\alpha_{\nu}=\inf _{x \in A_{\nu}-a} \sqrt{n}(h, x)
$$

and

$$
\beta_{v}=\sup _{x \in y^{-}-a} \sqrt{n}(h, x)
$$

then

$$
\left|I_{2 \nu}\right|=\left|\int_{\alpha_{v}}^{\beta_{v}} e^{-z} d Q_{v}(z)\right| \leqslant 2 e^{-\alpha_{\nu}} \sup _{\alpha_{v} \leqslant z \leqslant \beta_{v}}\left|Q_{v}(z)\right|
$$

and since $\alpha_{\nu}=O(\sqrt{n}|h| \cdot|x|)=O(1)$, we get

$$
\left|I_{2}\right| \leqslant\left|I_{21}\right|+\left|I_{22}\right| \leqslant \frac{C}{\sqrt{n}} S\left(\left(A_{1}\right)_{c / \sqrt{n}}\right)
$$

The lemma is proved.
Lemma 2. There exists a positive consant ζ such that

$$
P\left(\left|Y_{n}\right|>\varepsilon_{0} \sqrt{n}\right) \leqslant C e^{-\zeta n}
$$

Proof. It suffices to prove that for every $j, 1 \leqslant j \leqslant k$ the component $Y_{n j}$ of Y_{n} satisfies

$$
P\left(\left|Y_{n j}\right|>\varepsilon_{0} \sqrt{n / k}\right) \leqslant e^{-5 n}
$$

Since

$$
R(h)=1+\frac{1}{2}(h, M h)+O\left(|h|^{3}\right) \leqslant e^{c|h|^{2}}
$$

for $|h|$ sufficiently small, we have

$$
E\left(e^{\sqrt{n} h_{j} Y_{n j}}\right)=\left(R\left(0, \ldots, h_{j} \ldots, 0\right)\right)^{n} \leqslant e^{c n h_{j}^{2}}
$$

and thus from Chebyshev's inequality

$$
P\left(\left|Y_{n j}\right|>\varepsilon_{0} \sqrt{n / k}\right) \leqslant \frac{e^{c n h_{j}^{2}}}{e^{\varepsilon_{0} h_{j} n / \sqrt{V / k}}}=e^{-\zeta n}
$$

if h_{j} is sufficiently small.

6. Main theorems

The following two theorems are the fundamental limit theorems for large deviations in R_{k}, and can now easily be proved by summing estimates of the probabilities of small sets obtained in Lemma 1 .

Theorem 1. If $D \in \mathcal{D}$ is a subset of the sphere $\{x:|x| \leqslant R\}$, where $1 \leqslant R \leqslant \varepsilon_{0} \sqrt{n}$, then

$$
F_{n}(D)=W_{n}(D)+\theta \frac{R}{\sqrt{n}} W_{n}\left(D_{2 / R}\right)
$$

b. von bahr, Integral limit theorems for large deviations

Proof. We divide D into a disjoint union of sets $D \cap K_{\nu}$, where K_{ν} are congruent half-open cubes with the edges parallel to the coordinate axes and with the edge length $d=2 /(R \sqrt{k})$.

Now $D \cap K_{\nu} \in D$ and $D \cap K_{\nu} \subset\left\{x:\left|x-a_{\nu}\right| \leqslant 1 / R\right\}$, if a_{ν} is the centre of K_{ν}, and we thus obtain from Lemma 1:

$$
F_{n}(D)=W_{n}(D)(1+O(R / \sqrt{n}))+\frac{\theta}{\sqrt{n}} \sum_{v} e^{-n d(a \nu / \sqrt{n})} S\left(\left(K_{\nu}\right)_{c / \sqrt{n}}\right)
$$

We shall compare the terms in the sum with $W_{n}\left(K_{v}\right)$. We have

$$
W_{n}\left(K_{\nu}\right)=(2 \pi)^{-k / 2}|M|^{-\frac{1}{2}} e^{-n d\left(a_{\nu} / \sqrt{n}\right)} \int_{K_{\nu}-a_{v}} e^{-\sqrt{n}\left(x, h_{\nu}\right)-\frac{1}{2}(x, \Lambda x)} d x(\mathrm{I}+O(R / \sqrt{n}))
$$

in the same way as in the proof of Lemma $1\left(h_{v}=h\left(a_{\nu} / \sqrt{n}\right)\right)$. Because the exponent in the above integrand is bounded, we get

$$
W_{n}\left(K_{\nu}\right) \geqslant C R^{-k} e^{-n d\left(a_{v} / \sqrt{n}\right)}
$$

and thus because

$$
S\left(\left(K_{v}\right)_{c / \sqrt{n}}\right) \leqslant C R^{-k+1}
$$

the sum is

$$
\theta \frac{R}{\sqrt{n}} \sum_{v=1}^{N} W_{n}\left(K_{v}\right) \leqslant \theta \frac{R}{\sqrt{n}} W_{n}\left(D_{2 / R}\right) .
$$

The theorem is proved.
Remark. As mentioned in Section 1, Richter [7] has studied the same problem when $F(x)$ is a lattice d.f. and when $F_{m}(x)$ is absolutely continuous, some $m \geqslant 1$. He considers sets B of the type

$$
B=\left\{x: t_{1}<|x| \leqslant t_{2}, x \| x \mid \epsilon \Omega\right\}
$$

where $0 \leqslant t_{1}<t_{2}=o(\sqrt{n})$ and Ω is a subset of the surface $\Omega_{0}=\{x:|x|=1\}$ with positive Lebesque measure. His proposition is

$$
F_{n}(B)=W_{n}(B)\left(1+O\left(t_{2} / \sqrt{n}\right)\right)
$$

This is obviously not correct if $F(x)$ is a lattice d.f.
For, let $\Omega=\Omega_{1} \cup \Omega_{2}$, where Ω_{1} has positive Lebesque measure, and Ω_{2} is the denumerable set of points $x /|x|(x \neq 0)$ corresponding to all points $x \in R_{k}$, with $F_{m}(\{x\})>0$ for some $m \geqslant 1$. Then

$$
W_{n}(B)=\int_{\substack{x| | x| | \in \Omega_{2} \\ t_{1}<|x| \leqslant t_{2}}} w_{n}(x) d x
$$

but $F_{n}(B)=P\left(t_{1}<\left|Y_{n}\right| \leqslant t_{2}\right)$, independently of Ω_{1}.

Theorem 2. If $D \in \mathcal{D}$ and $D \subset\left\{x: R \leqslant|x| \leqslant \varepsilon_{0} \sqrt{n}\right\}$, then

$$
F_{n}(D)=W_{n}(D)+\frac{\theta}{\sqrt{n}} \int_{D_{1 / R}}|x| w_{n}(x) d x
$$

Proof. As in the proof of the preceding theorem, we divide D into a union of sets $D \cap K_{\nu}$ where K_{ν} are cubes with the edges parallel to the coordinate axes, but here the edge length of K_{ν} must depend on the distance to the origin. Consider a rectangular grid in R_{k} with the edge length $d=1 /(R V / \bar{k})$, and take out those cubes which lie in the sphere $\{x:|x| \leqslant 2 R\}$. Divide each of the remaining cubes into 2^{k} congruent cubes with the edge length $d / 2$ and take out those which lie in the sphere $\{x:|x| \leqslant 4 R\}$, and so on. In this way, we obtain a finite number of cubes K_{ν} intersecting D, and we can apply Lemma 1 for each $D \cap K_{\nu}$. If a_{ν} is the centre and d_{ν} the edge-length of K_{ν}, then $1<\left|a_{\nu}\right| d_{\nu} \sqrt{k}<2$, and thus

$$
F_{n}(D)=W_{n}(D)+\frac{\theta}{\sqrt{n}} \sum_{\nu}\left|a_{\nu}\right| W_{n}\left(D \cap K_{\nu}\right)+\frac{\theta}{\sqrt{n}} \sum_{\nu} e^{-n d(a v / / \sqrt{n})} d_{\nu}^{-k+1} .
$$

The theorem follows after simple calculations.
The magnitude of the remainder terms, in proportion to the main terms in Theorem 1 and Theorem 2 depends on the relative difference in size (volume) between D and $D_{1 / R}$. If this is negligible, as is the case if the dimensions of D are very large compared with $1 / R$, we obtain the relation

$$
F_{n}(D)=W_{n}(D)(1+O(R / \sqrt{n}))
$$

in both theorems.
We shall obtain results of this type in the following sections.

7. Applications to the distribution of $\left|Y_{n}\right|$

The following theorem was stated in a slightly different form by Richter [7] in the two special cases mentioned earlier. His proof is, however, not satisfactory.

Theorem 3. There exists a constant $\delta_{0}>0$ such that, if $1 \leqslant t \leqslant \delta_{0} \sqrt{n}$, then

$$
\begin{aligned}
P\left(\left|Y_{n}\right|>t\right)=(2 \pi)^{-k / 2}|M|^{-\frac{1}{2}} & \int_{u \in \Omega_{0}}
\end{aligned} \exp \left(n \sum_{v=3}^{\infty}(t / \sqrt{n})^{v} Q_{v}(u)\right) d S
$$

where $d S$ is the surface element of $\Omega_{0}=\{u:|u|=1\}$.
Proof. Putting $D=\left\{x: t<|x| \leqslant \varepsilon_{0} \sqrt{n}\right\}$, we immediately obtain from Theorem 2

$$
\begin{equation*}
F_{n}(D)=W_{n}(D)+\frac{\theta}{\sqrt{n}} \int_{D_{1 / t}}|x| w_{n}(x) d x \tag{7}
\end{equation*}
$$

We have

$$
\begin{align*}
W_{n}(D) & =(2 \pi)^{-k / 2}|M|^{-\frac{1}{2}} \int_{u \in \Omega_{0}} d S \\
& \times \int_{t}^{\varepsilon_{0} \sqrt{n}} \exp \left(-(u, \Lambda u) y^{2} / 2+n \sum_{\nu=3}^{\infty}(y / \sqrt{n})^{\nu} Q_{\nu}(u)\right) y^{k-1} d y \tag{8}
\end{align*}
$$

and we shall show that

$$
\begin{align*}
W_{n}(D)=(2 \pi)^{-k / 2}|M|^{-\frac{1}{2}} \int_{u \in \Omega_{0}} & \exp \left(n \sum_{v=3}^{\infty}(t / \sqrt{n})^{\nu} Q_{v}(u)\right) \\
& \times \int_{t}^{\varepsilon_{0} / \sqrt{n}} e^{-(u, \Lambda u) y^{2} / 2} y^{k-1} d y(1+O(t / \sqrt{n})) \tag{9}
\end{align*}
$$

For that purpose, we form the absolute value of the difference between (8) and the main part of (9). It is at most equal to

$$
\begin{align*}
I_{1}=(2 \pi)^{-k / 2}|M|^{-\frac{z}{2}} & \int_{u \in \Omega_{0}} \exp \left(n \sum_{\nu=3}^{\infty}(t / \sqrt{n})^{\nu} Q_{\nu}(u)\right) d S \\
& \times \int_{t}^{\varepsilon_{0} \sqrt{n}} e^{-(u, \Delta u) y^{2} / 2}\left|\exp \left(n \sum_{\nu=3}^{\infty}\left(y^{\nu}-t^{\nu}\right) n^{-\nu / 2} Q_{\nu}(u)\right)-1\right| y^{k-1} d y \tag{10}
\end{align*}
$$

We denote the inner integral by I_{2}, and obtain after simple estimations of the exponent, if ε_{0} is sufficiently small,

$$
\begin{aligned}
I_{2} & \leqslant \int_{t}^{\varepsilon_{0} \sqrt{n}} e^{-(u, \Lambda u) y^{2} / 2}\left(e^{c y^{2}(y-t) / \sqrt{n}}-1\right) y^{k-1} d y \\
& =e^{-(u, \Lambda u) t^{2} / 2} t^{k-2} \int_{0}^{n v\left(\varepsilon_{0}-v\right)} e^{-(u, \Lambda u)\left(z+z^{2} / 2 n v^{2}\right)}\left(1+z / n v^{2}\right)^{k-1}\left(e^{c v z\left(1+z / n v^{2}\right)^{2}}-1\right) d z
\end{aligned}
$$

where we have put $y=t+z / t$ and $t=v \sqrt{n}$.
It is elementary to show that this integral is $O(v)$ for $1 / \sqrt{n} \leqslant v \leqslant \varepsilon_{0}$, that is

$$
I_{2} \leqslant C t^{k-1} e^{-(u, \Lambda u)^{z} / 2} / \sqrt{n} \leqslant C \frac{t}{\sqrt{n}} \int_{t}^{\varepsilon_{0} \sqrt{n}} e^{-(u, \Lambda u) y^{z} / 2} y^{k-1} d y
$$

This result, introduced into (10), proves (9).
The second term of (7) is treated in a similar way and the result is that $F_{n}(D)$ is given by exactly the same formula (9) as $W_{n}(D)$. Clearly, we can also change the upper limit $\varepsilon_{0} \sqrt{n}$ to $+\infty$ in the second integral of (11), without breaking down the equality.

It remains to show that $F_{n}\left(\left\{x:|x|>\varepsilon_{0} \sqrt{n}\right\}\right)$ is negligible compared with $F_{n}(D)$, but since $F_{n}(D) \sim e^{-c t^{2}}$, this follows from Lemma 2, if $t<\delta_{0} \sqrt{n}$ and δ_{0} is sufficiently small. The proof is concluded.

By simple calculations, we obtain from Theorem 3 the following results, also stated by Richter [7] in slightly different forms:

$$
\begin{aligned}
P\left(\left|Y_{n}\right|>t+g / t\right)=t^{k-2} & \int_{u \in \Omega_{0}} e^{-g(u, \Lambda u)} w_{n}(t u)(u, \Lambda u)^{-1} d S \\
& \times\left(1+O\left(\left(1+g^{2}\right) / t^{2}\right)+O((1+g) t / \sqrt{n})\right)
\end{aligned}
$$

and if $M=E_{k}$ (unit matrix of order $k \times k$).

$$
\frac{P\left(t<\left|Y_{n}\right| \leqslant t+g / t\right)}{P\left(\left|Y_{n}\right|>t\right)}=1-e^{-g}+O\left(\left(1+g^{2}\right) / t^{2}\right)+O((1+g) t / \sqrt{n})
$$

for $t \geqslant 1,0 \leqslant g \leqslant t^{2} / 2$ and $t+g / t \leqslant \delta_{0} \sqrt{n}$.
The last relation shows that the distribution of $\left|Y_{n}\right|$ asymptotically satisfies the same functional equation as the distribution of a one-dimensional Gaussian random variable with unit standard deviation. This is a generalization of a result obtained by Khintchine [3] and Cramér [2] in the one-dimensional case.

8. Application to the distribution function of $\mathbf{Y}_{\boldsymbol{n}}$

We now return to the relation (2) and shall use it to estimate $P\left(Y_{n j}>a_{j}, 1 \leqslant j \leqslant k\right)$, where $1 \leqslant a_{j}=o(\sqrt{n})$, when the components of X are uncorrelated. With no loss of generality, we may thus assume that $M=E_{k}$. The result is a direct generalization of one obtained by Cramér [2] in the one-dimensional case.

Theorem 4. If $1 \leqslant a_{j}=o(\sqrt{n})$ and $a_{j} \geqslant \alpha|a|, 1 \leqslant j \leqslant k$, for some positive constant α, then, if $M=E_{k}$,

$$
P\left(Y_{n_{j}}>a_{j}, 1 \leqslant j \leqslant k\right) / \prod_{j=1}^{k}\left(1-\Phi\left(a_{j}\right)\right)=\exp \left(n \sum_{p=3}^{\infty} Q_{\nu}(a / \sqrt{n})\right)\left(1+O\left(\frac{|a|}{\sqrt{n}}\right)\right)
$$

where $\Phi(z), z \in R_{1}$, is the normalized normal d.f.
Remark. The theorem cannot be true in an equivalent form for every covariance matrix $M \neq E_{k}$. For, according to Theorem 2 and Lemma 2 the probability concerned is approximated by

$$
(2 \pi)^{-k / 2}|M|^{-\frac{1}{2}} \int_{\substack{\text { all } \\|x|<\varepsilon_{0} / a_{j}}} \exp \left((-x, \Lambda x) / 2+n \sum_{v=3}^{\infty} Q_{v}(x / \sqrt{n})\right) d x
$$

and this cannot for all a be almost equal to

$$
\exp \left(n \sum_{v=3}^{\infty} Q_{\nu}(a / \sqrt{n})\right)(2 \pi)^{-k / 2}|M|^{-\frac{1}{2}} \int_{\text {all } x_{j}>a_{j}} e^{-(x, \Lambda x) / 2} d x
$$

unless the maximum of $e^{-(x, \Lambda x) / 2}$ in $\left\{x\right.$: all $\left.x_{j} \geqslant a_{j}\right\}$ is attained in the point $x=a$.

B. von bahr, Integral limit theorems for large deviations

Proof. Putting $h=h(a / \sqrt{n})$ in (2), we obtain

$$
P\left(Y_{n j}>a_{j}, 1 \leqslant j \leqslant k\right)=e^{-n d(a / \sqrt{n})} \int_{\text {all } x_{i}>0} e^{-\sqrt{n}(h, x)} d F_{n}(x, h)
$$

We denote the integral by I, and divide it according to (5) into $I_{1}+I_{2}$, where

$$
I_{1}=(2 \pi)^{-k / 2}|M(h)|^{-\frac{1}{2}} \int_{\text {all } x_{j} \geqslant 0} e^{-\sqrt{n}(h, x)-(x, \Lambda(h) x) / 2} d x
$$

From (3) we get

$$
a_{j} / \sqrt{n}=h_{j}+O\left(|h|^{2}\right)
$$

but $a_{j}>\alpha|a|$ implies $|h|=O\left(\left|h_{j}\right|\right)$, and thus we have

$$
h_{j} \sqrt{n}=a_{j}(1+O(|a| / \sqrt{n})) \geqslant c
$$

By using methods similar to those used to obtain (9) out of (8), we get

$$
\begin{equation*}
I_{1}=(2 \pi)^{-k / 2} \int_{\text {all }} e^{-(a, x)-|x|^{2} / 2}(1+O(|h|))=e^{|a|^{2} / 2} \prod_{j=1}^{k}\left(1-\Phi\left(a_{j}\right)\right)\left(1+O\left(\frac{|a|}{\sqrt{n}}\right)\right) . \tag{11}
\end{equation*}
$$

In order to estimate

$$
I_{2}=\int_{\text {all } x_{j}>0} e^{-\sqrt{n}(h, x)} d H_{n}(x, h)
$$

we form for every $z>0$ the polyhedron

$$
P(z)=\left\{x: \sqrt{n}(h, x)<z, \text { all } x_{j}>0\right\}
$$

and put

$$
K(z)=H_{n}(P(z), h)
$$

We then get

$$
I_{2}=\int_{0}^{\infty} e^{-z} d K(z)=\int_{0}^{\infty} e^{-z} K(z) d z
$$

Since $P(z)$ is convex, $K(z)$ satisfies an inequality of the type (6). Simple calculations give

$$
\left|I_{2}\right| \leqslant \frac{C}{\sqrt{n}}\left(\prod_{j=1}^{k}\left(h_{j} \sqrt{n}\right)\right)^{-1}\left(\sum_{j=1}^{k} h_{j} \sqrt{n}\right)
$$

From (11) we get

$$
I_{1} \geqslant C\left(\prod_{j=1}^{k} a_{j}\right)^{-1}
$$

and thus $I_{2} / I_{1}=O(|h|)$. The theorem follows.

REFERENCES

1. von Bahr, B., Multi-dimensional integral limit theorems. Arkiv för Matematik, 7, pp. 71-88 (1967).
2. Cramér, H., Sur un nouveau théorème-limite de la théorie des probabilités. Actualités Scientifiques et industrielles, Paris, 736, s. 23 (1938).
3. Khintchine, A., Über einen neuen Grenzwertsatz der Wahrscheinlichkeitsrechnung. Math. Annalen 101, 745-752 (1929).
4. Petrov, V. V., A generalization of Cramér's limit theorem, Uspekhi Mat. Nauk. 9 Vol. 4, 195-202 (1959) (in Russian).
5. Richter, V., Local limit theorems for large deviations. Theory of Probability and its Applications, 2, 206-220 (1957).
6. Richter, V., Multi-dimensional local limit theorems for large deviations. Theory of Probability and its Applications, 3, 100-106 (1958).
7. Richter, V., Multi-dimensional limit theorems for large deviations and their application to the χ^{2}-distribution. Theory of Probability and its Applications, 9 No. 1, 28-37 (1964).
