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Multi-dimensional integral limit theorems for large deviations 

B y  BENGT VON BAHR 

l .  Introduction 

The problem of large deviations in the central limit theorem was first t reated by  
Khintchine [3] in a special case and later by  Cram6r [2] in a more general one-dimen- 
sional case. His results were slightly improved by  Petrov [4], who studied the distri- 
bution of sums of independent but  not necessarily identically distributed random 
variables. Richter has proved local central limit theorems in the one-dimensional 
ease [5] and in the multi-dimensional case [6], when the distribution of the sum is 
either absolutely continuous or of lattice type. He has also stated theorems of 
integral type [7], but, as he pointed out, he was obliged to restrict himself to the 
above-mentioned special cases, mainly because the ordinary integral limit theorems 
were lacking. 

Here I want  to use the results obtained in [1] to generalize Richter 's  results in 
[7] and one of Cram6r's results [2] to the multi-dimensional case. I shall only t reat  
the case of a sum of independent and identically distributed random vectors (r.v.'s), 
the generalization to non-identically distributed r.v. 's being straightforward but  
somewhat cumbersome. 

2. Statement of the problem 

Let X = ( X  1 .. . . .  Xk) be a r.v. in Rk, / c>l ,  with the distribution function (d.f.) 
F(x),  x = (x 1 . . . . .  xk), with zero mean and non-singular covariance matr ix  M. Further- 
more let, for some ho>0 , the moment  generating function (m.g.f.) of X ,  

fR k R(t) = ee '~dF(x) ,  (t, x )=  ~ tjx~ 
k i=1 

exist for all t = (tl, . . . ,  tk) with It I = (~Llt~)�89 < h 0 
I f  X ~t~ ..... X ~n~ is a sequence of independent r .v. 's  with the same d.f.'s as X, and 

Y, = (1/~/n)Y.~=IX ~v~, the problem is to estimate the probabil i ty P ( Y n e B ) ,  where B 
is a Borel set of a type specified in section 4. In  Theorem 1, B is contained in a sphere 
with its center in the origin and of radius R ~<e0~n, and in Theorem 2, B is contained 
in the complement of such a sphere. In  Theorems 3 and 4, I give applications to the 
d.f. 's of [ Yn] and Yn respectively. 
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3. Transformation of the distribution function 

Following Cramdr, we introduce for a fixed h E Rk, t hi < h0, the d.f. F (x, h) de- 
fined by  

e (h' ~)dF(x) 
dF(x, h) R(h) 

Let  X(h)=(Xl(h) ,  . . . ,  Xk(h)) be a r.v. with the d.f. F(x, h), with the mean  m=m(h)  
and the non-singular eovarianee mat r ix  M(h). X(h) (~) ..... X(h) r is a sequence of 

independent  r.v. 's with the same d.f. as X(h) and Y~(h)=(1/l/n)(Z2=iX(h) (€ 
is its normed sum. The m.g.f, of X(h) is 

and tha t  of ~_~X(h )  (~) is 

R(t + h) 
R(t,  h) = - - -  

R(h) 

Rn(t, h)= (R(t, h)) ~ =R~(t + h) (1) 
R,,(h) 

where R=(t)=(R(t)) ~ is the m.g.f, of ~= Y(') /_~=1-- �9 I f  G~(x) and G~(x, h) are the d.f. s 
of ~2_1X (~ and ~2=lX(h) (~) respectively, then according to (1) 

e (h" ~)dG~ (x) 
dG~ (x, h) 

R,~(h) 
This relation can be wri t ten 

dFn (x) = Rn(h) e -V;~(h" X)dFn (x - m ~n, h) (2) 

where F~(x) and F~(x, h) are the  d.f. 's of Yn and Yn(h) respectively. We shall use 
(2) to est imate the probabi l i ty  t h a t  Y~ will fall into a set in the neighbourhood of 

the point  mV~. Now, m=m(h)  is, for [hi < h  0, given by  

f xe( ~, x)dF(x) 
m = i h  + O(Ihl 2) 

R(h) 

where Mh is a vector,  the i th  component  of which i s  ~=lMijh  j. The Jacob ian  of the  
t ransformat ion h-~m(h) is [M(h)[=det(M(h))>O and thus  the  t ransformat ion  is 
invertible, and we obtain  

h =h(m) = A ~  + O(]m[3) (3) 

where A = M -1 (the inverse matr ix  of M). Consequently, there exists an e 0 > 0 such 

that ,  for every x E R  k with Ixl/V~n<e0, h can be chosen so t h a t  m=x/~n .  
According to the  central  limit theorem [1], Fn(x, h) is approximat ive ly  a normal  

d.f., and therefore we shall approximate  dFn(x) by  dWn(x)=Wn(X)dx, where dx is 
the volume element of Rk, and 

w .  (x) = (2n)-~ '~IMI- �89 x) 
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We put  d(v)=(h(v), v ) - l o g  R(h(v)) for Iv] ~<e0, and thus obtain 

w~ (x) = (2~)k/~ I M [- �89 e -n~(~/V~) �9 

The function d(v) is analytic for [v[<e0, and a simple calculation of the MacLaurin 
expansion gives 

d(v) = �89 (v, hv)  - ~ Q~(v) (4) 

where Qv(v) are homogeneous polynomials of degree v, the coefficients of which are 
functions of the semi-invariants of F(x) of order not greater than  ~. 

4. A class  o f  Borel  sets 

The central limit theorem in Rk is proved for a class Ba of Borel sets [1], and it is 
probable tha t  the following estimations may  be carried out with the appropriate 
modifications in this class. However, I shall confine myself to the class O of logical 
differences between convex Borel sets, tha t  is, D E O  if D = A a N A ~ ,  where A 1 and 
A S are convex Borel sets. Without  loss of generality, we can assume tha t  A 1 is the 
convex hull of D and A2~A1,  and thus we write D = A 1 - A  2. We define for every 
(~ > 0 the exterior parallel set B~ of a Borel set B by  Bo = (J l u I< 1 ( B + 6u), where B + (~u 
is the translate of B by  6u, and the union is taken over all u E R k with ]u i<  1. We 
denote by  V(B) the /c-dimensional volume of the set B, and by  S(B)  the ( /c-1)-  
dimensional area of the boundary points of the set B, both being defined for B E C = 
the class of all convex Borel sets. 

5. Two l e m m a s  

We first prove the following lemma, which gives an estimate of Fn(D) for a small 
set D f i O  belonging to the sphere {x: [xi--<e0V-n}, where e0>0 is independent of n 
and sufficiently small. 

Notations. C and c are unspecified positive finite constants, 0 satisfies ]O[<~C, 
and O(z) stands for a function satisfying ]O(z)[<~ Cz for z > 0. 

Lemma 1. I[ D = A I - A 2 E O and D is a subset o/both the spheres ( x: i x I <~ R } and 
( x : i x - a ]  ~ I / R }  /or some aER k and 1 <~R<~eo|Tn, then 

Fn(D) = Wn(D) (1 + O(R/~n)  ) + (0/~n)e-n~(~lV~)S((A1)clV~) �9 

Proo[. Putt ing h = h ( a / ~ n )  we get mVn =a, and thus form (2) 

F n (D) = R n (h(a/~n)) f e-V~(x, h(a/Vn))dF n (x - a, h(a~n)) = e-hal(alVa)I, 
JD 

where I = fD-~ e-V~(x, h)dFn(x, h) 
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According to the central  limit theorem [1], 

F n (x, h) = (I)(x, h) + Hn (x, h) (5) 

where (I)(x, h) is the  normal  d.f. wi th  zero mean  and convariance mat r ix  M(h), and 

C 
]H,~ (A, h)] <. ~nn { V(Ac/R) + S(A c/V~)} (6) 

for every  A E C. 
F rom (5) we get I = 11 + 13, where 

= (2:~)-k/2] M(h)I-  �89 fD-a e--I/~(x' h)--�89 A(h)X)dx I1 

= (2,)~,2 iMi,fo_o,-v~(x..,-,(x. A~)dx(1 + O(Ihl) ) 

for  the components  of A(h) are Ass (h)=  A~j + O( I hi), and Ix] ~< 1 when x E D -  a. 
We shall compare this expression for I 1 with 

W~ (D) = (2~)- k/2[M[- �89 -na(a/I/~) f D- a e--n[d((a + x)/Ifn)-a(a/I/-n)]dx" 

From (4) we obtain if, ]u ] + iv ] ~ e 0 and e 0 is sufficiently small 

d(v + u) - d(v) = �89 h u )  + (u, Av) + O([u I �9 Iv[ 2) 

and thus, because of (3), 

n[d((a 4- x)/]/n) - d(a/IFn] = �89 Ax) 4- V~(x, h) 4- O(]x] [a]2/Vn). 

Since Ix I l a 1 2 / ~  = O(R/Vn) and I hi = O(R/V~), we get 

Wn (D) = e-na(a/V~)Ii (1 + O(R/I/n)). 

I t  now remains to est imate 13 . We pu t  

For  v = 1 and 2 respectively, we pu t  

A~(z) = (A , -a )N(x :n (h ,  x) <<.z) and Q~(z) =H,~(A~(z), h). 

Now, Av(z ) is convex, and thus  the  inequal i ty  (6) holds for  Qv(z) with A =A~(z) bu t  
since V(A)<ckRaS(A), A EC, where Ra is the  radius of the sphere circumscribed A, 
we get, with a new value of C, 

C C A Q,(z) <~ ~S((A,)c/VT~) <~ ~ S ( (  ~)~/V~). 
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~n(h, x) 

and fir= sup ~n(h, x) 
x ~ A  r a 

~flv z 
then 112~1= ] e-dQr(z)  ~<2e-% sup IQr(z)l 

�9 J ~ r  % ~<z~<fir 

and since o~ = O(Vnlh I �9 Ix[) = 0(1), we get 

C 
II~l < II~1 + II==l < ~ 8((Ai)cll/n ). 

The lemma is proved. 

Lemma 2. There exists a positive consant ~ such tt, at 

P([ Y.I > ~oV~) <Co -c". 

Proo]. I t  suffices to prove that  for every j, 1 ~< j ~< k the component Y,s of Yn 
satisfies 

P(I r d  > eol/n/k)-<<e -c"- 

Since R(h) = 1 + �89 Mh) + O(]h[ 3) ~ e  c[hl' 

for [h I sufficiently small, we have 

E(eV~h~r,J) = (R(O, . . . ,  h i . . . ,  0))" ~< eC"h; 

and thus from Chebyshev's inequality 

P (I YnJl > eol/~/k) ~ - -  

if hj is sufficiently small. 

2 ecnhj 
= e - ~ n  

6. Main theorems 

The following two theorems are the fundamental limit theorems for large devia- 
tions in R~, and can now easily be proved by summing estimates of the probabilities 
of small sets obtained in Lemma 1. 

Theorem 1. I / D E O  is a subset o/the sphere {x:lx[ ~R},  where 1 <~R ~eo~n, then 

R D .Fn(n)= W,(D)+O-~n W,~( 2m). 
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Proo/. We divide D into a disjoint union of sets D N K~, where K v are congruent  
half-open cubes with the edges parallel to  the  coordinate axes and with the edge 
length d = 2/(Rl/]c). 

Now D 17 g ~  e ~ and D I'1K~ ~ {x:Ix - a v I ~< 1/R}, if a v is the centre of Kv, and we 
thus obtain from Lemma 1: 

Fn(D) = Wn(D) (1 + O(R/]/n)) + ~ ~ e-nd<a~'/Wn's((Uv)c/[/n ). 

We shall compare the terms in the sum with W~ (K~). We have 

w ,  (K.) = k' lM l- + O(R/~n)) 

in the same way  as in the proof of Lemma 1 (h. = h(a./~n)). Because the exponent  
in the above in tegrand is bounded,  we get  

and  thus  because 

the sum is 

The theorem is proved.  

Wn (K~) ~ CR-% -nn(a'/V~) 

S((K.)c/V~) < CR -k+l 

N 

Remark. As ment ioned in Section l, Richter  [7] has studied the same problem 
when E(x) is a lattice d.f. and when Fm(x ) is absolutely continuous, some m ~> 1. 
He  considers sets B of the type  

where 0 ~-~tl<~ 2 =0(~'~) and f2 is a subset of the  surface ~ 0 = { x :  Iz[ =1} with positive 
Lebesque measure. His proposit ion is 

F.(B) = Wn(B) (1 + O(Q/~Vn)). 

This is obviously not  correct if F(x) is a lattice d.f. 
For,  let ~ =~ l I - J  ~ ,  where f~l has positive Lebesque measure, and ~2 is the  

denumerable set of points x/lx] (x#O) corresponding to all points xeRk, with 
Fm({x}) > 0  for some m~> 1. Then 

W.(B)= f w.(x)dx 
zl xl ef~ 
t~<lx <~t2 

but  F n (B) = P(t I < [ Yn [ <~ Q), independent ly  of g21. 
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Theorem 2. I / D e ~  and D ~ { x: R <. I x l <<. eo ~n }, then 

0 f~ [xlw~(~)gx. Fn(D) = Wn(D) + ~n ~,n 

Proof. As in the proof of the preceding theorem, we divide D into a union of sets 
D [7 Kv where K v are cubes with the edges parallel to the coordinate axes, but  here 
the edge length of K ,  must depend on the distance to the origin. Consider a rec- 
tangular grid in Rk with the edge length d=l/(R~/]~), and take out those cubes 
which lie in the sphere (x: Ixl ~<2R}. Divide each of the remaining cubes into 2 k 
congruent cubes with the edge length d/2 and take out those which lie in the sphere 
{x: I xl ~< 4 R}, and so on. In  this way, we obtain a finite number of cubes K~ inter- 
secting D, and we can apply Lemma 1 for each D N Kv. If a,  is the centre and d, 
the edge-length of Kv, then 1 <lavl d J ] c < 2 ,  and thus 

0 0 e-~<~/V~>d~ k + 1 F.(D)-- W.(D)+~n ~[a:IW.(DNK:)+~- ~ 

The theorem follows after simple calculations. 
The magnitude of the remainder terms, in proportion to the main terms in Theo- 

rem 1 and Theorem 2 depends on the relative difference in size (volume) between 
D and D1/R. If this is negligible, as is the case if the dimensions of D are very large 
compared with l /R,  we obtain the relation 

Fn(D) = Wn(D)(1 + O(R/~n)) 
in both theorems. 

We shall obtain results of this type in the following sections. 

7. Appl icat ions  to the  distribution o f  ]Y. ]  

The following theorem was stated in a slightly different form by Richter [7] in 
the two special cases mentioned earlier. His proof is, however, not satisfactory. 

Theorem 3. There exists a constant ~o>0 such that, if 1 <~t ~ o ~ n ,  then 

P,l Y.I + f=  .exp 

• f / e  -(u" Au)~'l~yk-ldy(1 + O( t /~ ) )  

where dS is the surface element of ~)o= {u:lu[ = 1}. 

Proof. Putt ing D = {x: t <  Ix[ ~< e0V~}, we immediately obtain from Theorem 2 

0 ( [xlw.(x)dx. (7) F= (D) = W= (D) + ~n JD~,, 
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We have 

W,~ (D) = (2zr)-~'~lM[- tfu ~ adS 

) •  exp -(u, Au)y2/2+n,=s ~ (y/Wn)"Q"(u) y~-ady (8) 

and we shall show that  

W.(D)=(2~)-k'2[M]-~ exp n (t/ l /nYO,(u) 
d u r  

.It 
(9) 

For that  purpose, we form the absolute value of the difference between (8) and the 
main part of (9). I t  is at most equal to 

l~=(2zr)-k~21M]-J fu~noeXp (n ~=a(t/~n)'Q,(u)) dS 

• ~~ (n ~=a(yV--t~)n-'/2Q~(u))-- llyk-idy. (10) 

We denote the inner integral by 12, and obtain after simple estimations of the 
exponent, if e0 is sufficiently small, 

12 <~ Jt e-(U' A u ) y ~ 1 2 ( e C y ~ ( Y - - t ) / V n  - -  1)Yk-ldY 

7 e-(U, Au) (z+z2/2nv ~) ( 1 e -(u' Au)t~/2tk-2joVte'-v) + z//nv2) ~-1 (e cvz(l+zjnv')~ -- 1)dz 

where we have put y=t+z[t and t=vlTn. 
I t  is elementary to show that  this integral is O(v) for 1/~n ~<v ~e0, that  is 

12 ~ Ctk-l e-(u'Au)t'/2//]/~n ~ C ~ f[~ yZ-l dy. 

This result, introduced into (10), proves (9). 
The second term of (7) is treated in a similar way and the result is that  Fn(D ) is 

given by exactly the same formula (9) as Wn(D). Clearly, we can also change the 
upper limit e0~n to + oo in the second integral of (ll),  without breaking down the 
equality. 

I t  remains to show that  Fn({x: Ix] > e0~n}) is negligible compared with Fn(D), 
but since Fn(D),,, e -ct', this follows from Lemma 2, if t<60~n and (~0 is sufficiently 
small. The proof is concluded. 
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By simple calculations, we obtain from Theorem 3 the following results, also stated 
by  Richter [7] in slightly different forms: 

P(] Y=I >t+g/t)=t~-2f e-~(u'h=)w=(tu) (u, Au)-~dS 
J ueDo 

• (1 +0( (1  +g2)/t~)+ 0((1 +g)ffVn))  

and if M = Ek (unit matr ix  of order k • k). 

P(t< I Y=I <t+g/t)_ 1 - e - g +  0((1 +g2)/t ~) +0((1  +g)t/lFn) 
P(I Y,, I > t) 

for t~>l, O<g<t2/2 and t+g/t<~Oo~n. 
The last relation shows tha t  the distribution of ]Y=I asymptotically satisfies the 

same functional equation as the distribution of a one-dimensional Gaussian random 
variable with unit s tandard deviation. This is a generalization of a result obtained 
by  Khintehine [3] and Cramdr [2] in the one-dimensional case. 

8. Appl icat ion  to  the  distr ibution func t ion  of  Yn 

We now return to the relation (2) and shall use it to estimate P(Y~j>as, 1 < j~<k), 
where 1 ~<aj=o(~n), when the components of X are uncorrelated. With no loss of 
generality, we may  thus assume tha t  M = E k. The result is a direct generalization of 
one obtained by  Cramdr [2] in the one-dimensional ease. 

Theorem 4. I / 1  <~a~=o(Vn) and a~>~:r ]a I, 1 <~ j <~k, /or some positive constant a, 
then, i / M  = Ek, 

P(Y,,>a,,  l<'--?<--k)/sl~_l(1-~P(a,))=exp (n~=aQ~(a/~-n)) ( l §  

where r z e R1, is the normalized normal d.f. 

Remark. The theorem cannot be true in an equivalent form for every covarianee 
matr ix  M 4 Ek. For, according to Theorem 2 and Lemma 2 the probabili ty concerned 
is approximated by 

a l l  x 1 > a t 

and this cannot for all a be almost equal to 

a l l  x j > a /  

unless the max imum of e - (x 'Ax) /2  in {x: all xj>~ %} is at tained in the point x= a. 
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Prowl. Putt ing h = h(a/]/n) in (2), we obtain 

P(Ynj>aj, 1 <~j<~k) =e -nd(a/V~) f e-~(h'X)dFn(x, h) 
all  x i>0  

We denote the integral by  I ,  and divide it according to (5) into I1 + 12, where 

I1=(2:z) kl2]M(h)]-�89 f e--Wn(h,x)--(x, A(h)x)/2 d x  

all xj>~O 

From (3) we get 

a,/]Fn = h, + O(I hi 2) 

but  aj > a I a ] i m p l i e s  ]hi = O([hj ]), and thus we have 

h,~n = a,(1 + O([a[/Vn)) >~ c 

B y  using methods similar to those used to obtain (9) out of (8), we get 

II=(2:re) k/2 f e-(a'z)-Ixl'/2(l+O([h[))=elal'/u~](1-~(a]))(l+O(]~n))'i=l 
all x~>0 

In  order to estimate 

e-V~(h'X)dHn(x, h) 12= 
I I  

all xi > O 

we form for every z > 0 the polyhedron 

P(z) = {x: ]/n (h, x) < z, all x, > 0} 

and put  
K(z) = Hn (P(z), h) 

We then get 

I2= foe-~dK(z)= f: e-~ 
Since P(z) 
tions give 

(11) 

is convex, K(z) satisfies an inequality of the type (6). Simple calcula- 

C - 1  k 

From (11) we get 

11 >~ C aj 

and thus I2/I 1 = O(Ihl). The theorem follows. 
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