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Some problems related to iterative methods in conformal
mapping

By INcEMAR LinD

Introduction

A. The conformal mapping problem for domains of connectivity greater than one
has been attacked in several ways. The desired mapping function can sometimes be
found as the solution of an extremal problem or of an integral equation or its existence
may in certain cases be proved by means of the method of continuity. Another
method, sometimes called the function-theoretical iteration process, is to express the
mapping function F(z) as a composition of functions {f,};":

Fo(2)=fulfn-1(..- (f1(2) .- ));
F(z)=lim F,(2),

n—>o0

(A1)

where the f, (determined in some way, e.g. see Hiibner below) are meromorphic and
univalent in certain simply connected domains. An advantage of this method is that
it connects the theoretical and the constructive questions about the mapping.

Hiibner ([10] pp. 43-55) has constructed a process—the general iteration process—
by means of which every function F(z) conformally mapping one domain onto a
domain with analytic boundary can be expressed according to (Al). Thus, theore-
tically several of the well-known canonical mappings can be expressed in this way.
However, the determination of f,, n=1, 2, ..., as a rule requires knowledge of F(z)
itself and thus the process from a constructive point of view has little interest.
But there exist exceptions, namely the circular ring mapping and the mapping onto
the lemniscate domain, studied earlier by Walsh, Grunsky and Landau.

A detailed account of the problems referred to in this section and the following is
found in [3] pp. 208-240.

B. A straightforward attempt to use the function-theoretical iteration process is
sketched below. For brevity we call it the sterative process. Here the determination
of the functions f, causes no trouble but on the other hand the convergence question
is more intricate.

Let D be a domain of connectivity £>2 on the z-sphere with the continua C{”,
v=1, 2, ..., k, as boundary components. Let D" = F,(D) (F, to be determined later)
have boundary components CS® corresponding to C*, »=1,2, ..., k. It is required
to find F(z), eventually restricted by some normalization conditions, conformally
mapping D onto a domain Q so that O corresponds to L,, v=1,2, ..., k. Here L,
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is some definite continuum (e.g. the unit circle) or some type of a continuum (e.g. a

circle or a slit making a prescribed angle with the positive real axis), v=1, 2, ..., k.
It is of course to be understood that the mapping conditions are appropriately for-
mulated so that the mapping is not “overdetermined”. Then f,,,, n=0,1,2, ..., is

determined in the following way. According to some rule we choose a natural num-
ber v,, 1<v,<k, and look at the simply connected domain D{” bounded by C{*
and containing the other components. This domain is mapped conformally onto a
domain bounded by the continuum or the type of continuum L, associated with

052) . Together with suitable normalization conditions this determines f,,, and
Cr p=1,2 ... k, as well.
The iterative process has proved successful mainly in two cases, namely (a) the
circle domain mapping and () certain simple slit mappings. '
Case (a) is due to Koebe [12]. Suppose that the point at infinity belongs to D.
We require that
F(z)=z+%+...+f“ﬁ+... (B2)

Zn

be the Laurent expansion in the neighbourhood of infinity. We normalize f, in the
same manner and for example choose », so that »,—1=% (mod k), n=0,1,2, ....
The proof of convergence is based on the following. It can be shown that every kernel
of {D™}{° has a specific reflection property (compare [3] pp. 212-214) and that every
domain having this property is necessarily a circle domain.

Koebe ([13] especially pp. 288-296) also gave another proof for the same theorem
using a somewhat different iterative technique (‘‘das Iterationsverfabhren’ as distinct
from the former, called ‘“das iterierende Verfahren’) in which in order to obtain
quicker convergence the reflection properties are exploited more.

Komatu [14] has used the iterative process for the circular ring mapping. Cer-
tainly this is & special case of Koebe’s general theorem but Komatu uses a measure
of convergence which does not involve reflection.

Case (b) is due to Grotzsch ([6], [7], [9]) and partly to Golusin [4]. The proofs are
carried out for the parallel, eircular and radial slit mappings. In the case of a parallel
slit domain, where the slits are parallel to the real axis, the process can be outlined
as follows: Assuming as before that D contains the point at infinity, we require
that F(z) and f, are normalized according to (B2). Let a{® be the first coefficient of
the Laurent expansion of f, in the neighbourhood of infinity and A{” the correspond-
ing coefficient of F,. Then A{™ =>7_,a{’. Also v, may be chosen as above (other
rules of choice may however lead to quicker convergence). The proof of convergence
is based on the following. If { D™ }{* is supposed to have a kernel which is not a parallel
slit domain, then necessarily >7_; Re a{”’—>oco. On the other hand, it is clear that
| Af”| is uniformly bounded and this gives a contradiction. The well-known extre-
mal property of the mapping in question is an immediate by-product of this. The
circular and radial slit mappings are treated in a similar way. Grétzsch also gives
estimates concerning the rate of convergence especially in [9].

C. The vital point of the proofs of Grétzsch and Golusin above is the very simple
behaviour of the functionals a{”. It seems reasonable to suppose that proofs based
on less special properties may have wider scope. A similar remark can be made
about Koebe’s proof.
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The following paper mainly deals with constructions of such alternative proofs,
discusses some possible extensions and in certain cases carries them through.

In Chapter I is introduced a modified iterative process in which every step in-
volves a conformal mapping of a (k—1)-connected domain—the original domain
being k-connected. It is proved that this process can be successfully applied to a
number of slit mappings. The proofs of convergence are essentially dependent on
the maximum principle for harmonic functions. Besides two examples of extremal
properties connected. to the mappings referred to in this paragraph are proved with
the aid of the iterative process. We conclude the chapter with an estimate of the
rate of convergence of Grotzsch’s process.

In Chapter II the iterative process is applied to the case where the boundary
components of Q (see B) are required to be simple, closed and analytic, for the rest
they are of arbitrarily prescribed types. It is proved that the process converges if
D is subjected to certain geometrical conditions, depending on 8D and 92, and essen-
tially meaning that the boundary components are sufficiently separated from each
other. '

Chapter 111 deals with two eigenvalue problems, which may have a certain inte-
rest in themselves. Some partial results are deduced and the connection between
these problems and the classification problem of certain Riemann surfaces is dis-
cussed. Especially this problem is studied for a surface, which can be associated with
a circle domain and which also plays an important part in Koebe’s proofs referred
to above.

The aim of Chapter IV is to discuss an application of the process of Chapter T
in the case when Q is a mixed rectilinear slit domain of connectivity 2, that is its
boundary consists of two rectilinear slits making a non-zero angle with one another.
D is supposed to be of “nearly right”” shape. We state a sufficient convergence con-
dition which is connected with the eigenvalue problems of Chapter III.

Professor Lennart Carleson suggested the subject of this paper. I wish to express
my gratitude for his generously given advice and kind interest in my work.

I. Conformal mappings onto certain domains of slit type
1. Definitions
By a k-connected domain D we shall in this paper understand a domain bounded

by £k disjoint continua Oy, C,, ..., Cy, 0D =U¥L,C,.
Let D be a domain on the z-sphere. Then we make the following definitions.

Definition 1.1. Z(D) is the class of functions f(z) meromorphic and univalent in D
which have the Laurent expansion

a a
fe)=ztag+-L+ . +=+ ..
z z
wn the neighbourhood of infinity. It is to be understood that D contains the point at
nfinity.
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Definition 1.2. X'(D) is the subclass of (D) consisting of those functions for which
Gy =0.

Defmmon 1.3. Zo(D) s the subclass of (D) consisting of those functions ]‘or which
f(0)=0. It is to be understood that D in this case coniains the origin.

2. The modified iterative process

Our aim is to express a canonical mapping F(z) in the form

2 (@) =2 (zn-1 (- (21(2)) -..)); F(2)= lim 2, () (2.1y
where z,(z,_;), n=1, 2, ..., (3y==2), is a conformal mapping of a certain (k—1)-con-

nected domain on the z,_,-sphere—the original domain being k-connected. We write
20 (Zpn) =2,(Zn-2(-..(2)-..)), » >m, and denote the inverse of z,(z,) by z,(z,).

Some formal notation will be used throughout this chapter. Let D=D® be a

k-connected domain on the z-sphere andlet 9D = Uf_1C, where C,=CP, u—=1,2, .
k, are the boundary components. We write D™ =z (D) and 8D — Uk..om where
OV corresponds to C under the mapping z,(z), u=1, 2, ..., k. By D{® is meant the
(k—1)-connected domain such that 6D = U ,..,C" and O,‘,")C Df,”). Unless other-
wise mentioned the letter £ stands for connectivity and D for domain.

The precise desecription of the modified iterative process differs slightly from one
case to another. The differences however are purely formal and therefore it is suffi-
cient to describe a typical situation.

Our result is that for any finitely-connected domain D on the z-sphere (oo € D) there
exists F(z)€2'(D) mapping D onto a canonical domain of some type 4 (e.g. a
parallel slit domain). Our proof runs in three steps. (a) The statement is proved
true for k=1. (b) Assuming it true for k—1 we determine 2, ,(2,) as follows: Let

Zn1(2,) €X' (D) and let it map D¥ onto a domain of type 4, n—=0,1, 2, .... Here
{v,}¢° is any sequence of the numbers 1, 2, ..., k such that v,,,+v,, n=0,1,2, ...
Then it is proved that F(z)=lim,_,, z,(z) €Z'(D) exists, and hence necessarily maps
D onto a domain of type 4. (¢) By induction the statement is true.

Fig. 1 shows the first steps in a modified iterative process in the case k=3. The
canonical domain in question is a parallel slit domain.

3. Slit mapping theorems

The proof of Theorem 3.1—with some formal differences—is found in [15]. For
the convenience of the reader it is repeated here. Theorems 3.1-3.10 are classical
and of course there exist several proofs of them, (see e.g. [11]). Throughout this
paper a slit is to be thought of as having two different edges.

Theorem 3.1. For each 0, 0<0<um, there exists a unique function @g(z)€2X' (D)
mapping D onto a domain bounded by rectilinear slits making the angle 0 with the positive
real axis.

Remark. We call sach a domain a §-angled parallel slit domain.

Proof. Suppose that Q is a 0-angled parallel slit domain on the w-sphere and
suppose that f(w)€X'(Q) maps Q onto another domain of the same type. Then
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e (f(w) —w) is analytic and bounded in Q, it is zero at infinity and its imaginary
part is constant on each boundary component. Hence f(w)=w. Thus @g(2) is unique
if it exists.

The function @g(z) exists if £=1; this follows from the Riemann mapping theorem
plus an elementary transformation.

Applying the process described in the preceding section with z, ,(2,) EZ’(D,‘,:)) we
observe that

Un(2,) =Im e (2, (2,) —2,), n =2, 3, ..., (8.1)

is harmonic and bounded in D, that u,(c0) =0 and that it is constant on each boun-
dary component (not necessarily the same constant on each) but one, Oﬁ:}l. (It may
happen that it takes a constant value on this component too but in this case the
problem is solved.) Since u,(z,) is the imaginary part of a bounded and analytic
function in D this means that w,(z,) attains its maximum and minimum values
on C;7 . Write y,=C{” , T', = C{” and

A,= max |Ime {2z, —2;}| = max |u,(2s) — un(2)].

r e ;g
2,2 ey, 2 ZrEY,

In particular it follows that
lun(zn) l <Am Zne))n'

From the maximum principle we deduce that there exists a number ¢,, 0<g, <1,
such that
max |un (zr'z) Uy (Z;)I < AnQn-

;o
z el

From [1], Ch. IV, 26E, p. 263, combined with the compactness of X'(D), it follows
that it is possible to find a number ¢, 0 <¢<1, such that ¢, can be chosen <gq for all
n=2.

Thus max |u,(2,) — un(2)| < Ang.

2, 2pel’)
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it

But since Im e7*°z, is constant on I',, this means that

A<M
Thus when n—> oo we have
A,=0(q")~0. (3.2)

This implies that lim,_., 2,(z) exists. For suppose the contrary. Since X'(D) is a
compact family it is then possible to select two subsequences converging to different
functions w,(z), wy(z) EX’(D). From (3.2) it follows that w(D) and w,(D) are both
0-angled parallel slit domains. They are conformally equivalent under a mapping
belonging to X’ and thus according to the uniqueness ,(z) =w,(z) which gives a
contradiction. Theorem 3.1 is now proved.

Remark 1. The proof indicates that one can estimate the rate of convergence of
the process in terms of quantities which depend only on D. Let Q=gg(D) and let
@a(®) =2,(¢5 () which thus maps Q onto D™. From |Im e *¥(g,(0)—w)| <A,
w €8Q, it follows that in any closed subset 4 of Q we have

|<p,,(w) ——w| <K,A,, w€A,

where K, depends on 4 and Q only. The only non-rectilinear boundary component
of D™ is p, =2,(T,_;). Let z,_, be the reflection of z, ; with respect to I',_; (n=>3).
Then we define z, =2,(2,_,(2,)) to be the reflection of z, with respect to y,. It now
follows from the reflection principle that ¢,(w) can be analytically continued over
each of the boundary components of 9 onto a suitably chosen k-connected domain
G on a many-sheeted Riemann surface branched at the endpoints of the slits of 0€).
The continuations are given by @,(w*), where the symbols - and * denote the reflec-
tion operators with respect to a slit and its image respectively. From the compactness
of 3'(Q) it follows that &G can be chosen so that its projection onto the w-sphere
is a fixed, closed subset 4 of Q independent of n and such that |w*—w| <KA, ,,
w€A, (K independent of n). Observing that A,_, <K'q"™' we finally deduce from
the maximum principle for analytic functions that

|pal@) —w] <Og", w€2Q,

where O and ¢ depend only on D (or ). Similar remarks can be made in connection
with the following theorems of this chapter.

Remark 2. The argument in the proof of Theorem 3.1 built on [1], 26E, p. 263 and
the compactness of X'(D) will be frequently used in various forms in this chapter.
All of these forms are essentially the same as the following. Let F be a compact
family of k-connected domains D on the z-sphere such that (1°) 8D is contained in
|2] <R, (2°) <€D, (3°) z,€D and (4°) 2, is distant at least d >0 from 9D. Further
let u(z) be any harmonic function in D such that #(co)=0 and lim,, pluz)| =1.
Then |u(zp)| <q<1 where ¢ depends on F and d only.

Theorem 3.2. There exists a unique function ®(z)€EX (D) mapping D onfo a
domain bounded by slits on concentric circles with the origin as cenire.

Proof. The proof is analogous to the preceding one. With the same notation we
observe that the branch of log (f(w)/w) which is zero at infinity is analytic in Q and
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that its real part is constant on each boundary component. Thus uniqueness follows.
Prescribing z,,,(2,) €Z4(D{?) we choose the branch of log (2,,41(2,)/?,) which is zero

at infinity. We can now apply the same argutnent to

tn (20) = Re log @%@ n=2,3, ..., (3.3)

as we did to the functions (3.1).

Theorem 3.3. There exists a unique function V(2)€EZy(D) mapping D onto a
domain bounded by slits on half-rays emanating from the origin.

Proof. The proof is analogous to the preceding one. Here the imaginary part of
log ({{w)/w) is constant on each boundary component and instead of (3.3) we use

n (24) = T log “2%n). (3.4)

Zn

Theorem 3.4. For each 6, 0 <0<z, 0 +n/2, there exists a unique function f(z) € Zo(D)
mapping D onto a domain bounded by slits on logarithmic spirals making the angle 0
with half-rays emanating from the origin.

Proof. The proof is analogous to the preceding ones. Instead of (3.3) we use

U () = Tm &= 1og “251n) (3.5)

n

Theorem 3.5. There exisis a unique function w—=®,(2) conformally mapping D onto
a domain contained in |w| <1, bounded by |w|=1 corresponding to Oy and slits on
circles centred at the origin ond such that

,(0)=0, ®@;(0)>0, (0€D).

Proof. The proof (see e.g. [11] p. 74) may be based on the possibility of mapping
a certain domain of connectivity 2(k—1) conformally onto a circular slit domain
and this mapping can be represented in iterative terms according to Theorem 3.2.
The proof can be carried through in a direct way too. It is then more suitable to
change the conditions so that ®;(0)=1 and to let the radius of the outer circle be
unspecified. Then whenever »,=1, we define z,,,(z,) =®(z,)/®'(0) where @ is the
function of Theorem 3.2 with respect to D{™. The proof is analogous to that of
Theorem 3.2.

Theorem 3.6. There exists a unique function w=",(z) conformally mapping D onto
a domain contained in |w| <1, bounded by |w|=1 corresponding to C, and slits on
half-rays emanating from the origin and such that

¥,(0)=0, ¥(0)>0, (0€D).

Proof. The proof (see e.g. [11] p. 74) may be based on the possibility of mapping
a certain domain of connectivity 2(k—1) conformally onto a radial slit domain and
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this mapping can be represented in iterative terms according to Theorem 3.3. On
the other hand, the proof can be carried through in a direct way. As in the preceding
proof we change the conditions so that ¥{(0)=1. For k=2, { =1/z maps D onto D'.
Then it is possible to find a 0 such that g4(¢) (Theorem 3.1) maps D’ onto D” bounded
by two slits on one and the same line. A suitable, elementary root transformation
then maps D” onto a domain of the desired type. For k>2 we may assume that D
is contained in |z| <r and that () is the circle |z | =r. In the iterative process it is
then always possible to prescribe v, +1, n=1,2, ..., and 2,.4(2,) =¥(2,) (¥1(0)=1)
with respect to D{. Observing that the function

fue=log 2. 1 0)=0,

is analytic and bounded in D{™, that its real part is constant on C{” and that its

imaginary part is constant on each other boundary component but one, y,, we
conclude that Im f,(z,) attains its maximum and minimum on y,. Then the proof
is analogous to that of Theorem 3.3.

Thereom 3.7. Suppose that 1 €C, (analytic) and k>2. There exists a unique function
w D,(z) mapping D conformally onto a domain bounded by |w| =1 corresponding to

C, ]wl =r<1 (r may not be prescmbed) corresponding to Cy and slits on circles centred
at the origin, and such that ©y(1) =

Proof. The proof of uniqueness is analogous to that of Theorem 3.2.

In the iterative process we choose v, to be alternately 2 and 1. We identify
Zy1(2,) alternately with @,(z,)/®,(1) and (Dl(l)/(l)l(l/zn):(D’f(zn). Here @,(¢) is the
function of Theorem 3.5 with respect to D§™ in the former case and to D{® inverted
in |Z| =1 in the latter case. Thus ®f(z,) maps D{” onto a domain contalned in
ey >rn+1( <1) and such that Cf"*? is the circle lan] =7,,,. Further ®f(cc)=
and ®7(1) =1. The functions

Zn+1(%n)
2

n

Uy, (2,) = Re log n=2,3,..., (3.6)

being zero at z,=1 and being bounded and harmonic in Df? behave like the func-
tions (3.3). The z,(z) belong to a compact family of univalent functions. It follows
that every kernel of {D™}3° must be an annulus with circular slits of the type
described in the theorem. Together with the uniqueness this implies that ®y(z) =
lim,_, . 2,(z). Theorem 3.7 is proved. .

Remark. Unlike the preceding proofs the above is not inductive. For k=2 it is
essentially the same as that of Komatu (see the introduction p. 102).

Theorem 3.8. Suppose that 1 €C, (analytic) and k=2. There exists a unique function
o =Yy(z) mapping D conformally onto a domain bounded by le =1 corresponding to
Cy, |w]| =r<1 (r may not be prescribed) corresponding to Cy and slits on half-rays
emanating from the origin and such that W,(1)=1.
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Proof. The proof is analogous to the preceding one. The iterative process is based
on the function ¥',({) of Theorem 3.6. As above we use the functions

Zn+1 (zn)
b

n

Uy (2,) = Relog n=2,3,..., (3.7)

to prove the convergence. It is to be observed that u,(z,) attains its extremal values
on C"") (k>2; for k=2 Theorems 3.7 and 3.8 are identical) since log (2,.,(2,)/2n)

is analytlc and bounded in D{* and its 1mag1nary part is constant on C5, v 1, 2.

Theorem 3.9. For each 0, 0<0<2m, there exists a unique function Py(2)€Z, (D)
mapping D onto a domain bounded by slits on confocal co-azial pambolas with the origin
as focus and the axis making the angle 0 with the positive real axis.

Proof. Let £ be a domain on the {-sphere, 0, cc €Q. By () is meant the two-sheeted
covering surface of ) branched at zero and infinity.

Supposing Q on the w-sphere and Q' being parabolic slit domains of the type in
question conformally equivalent under a mapping f(w) € Zy(Q) we can define a bound-

ed analytic function in () to take the values

Vefiof(w) —Ve e

at points lying over w. It is zero at the branch points and its imaginary part is con-
stant on each boundary component. Hence f(w)=w which proves the uniqueness.
The theorem is true for k=1 (see e.g. [11], pp. 78-80).
The iterative process is constructed in the standard way (z, +1(zn)€ZO(D,(,:))). We

observe that the functions u,(P,) taking the values

Im{Ve 2,1 (2,) — Ve 2.}, n=2,3,..., (3.8)

at points P, Gﬁ,‘,:) lying over z,, are bounded and harmonic, are zero at the branch
points and are constant on each boundary component (of 8175:)) except two which
lie one over the other, with the boundary values differing only in sign. Thus the
functions u,(P,), n=2, 3, ..., behave like the functions (3.1) and it follows as in
Theorem 3.1 that every kernel of {D™}§° must be a parabolic slit domain of the type
in questlon From the uniqueness it then follows that Py(z) =lim,_, 2,(z). Theorem
3.9 is proved.

Theorem 3.10. For each a€D, a0, and «, 0 <ax<m, there exists a unique function
o =G(z) €Zy(D) mapping D onto a domain bounded by slits on curves belonging to
the family
G ia —ia
- i“) (e(c+it)e o g-toitie i)z

E

where t s a real parameter and ¢ a real constant.

Remark. The family of curves of Theorem 3.10 are trajectories of the family of
ellipses with foci at 0 and G(a). For «=0 we obtain these ellipses and for o =z/2
hyperbolas with foci at 0 and G(a).
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Proof. Let Q be a domain on the {-sphere, 0, a€Q (a+0). By Q(a) is meant the
two-sheeted covering surface of ) branched at 0 and a. Further we write formally

ot )= =5 +VEE= )], a+o

The uniqueness follows mainly as in the preceding proof. With analogous notation
it is possible to define a bounded analytic function in Q(a) to take the values

o 10g 201@), @)
9(w, a)
at points over w, being zero at points over co. Since its real part is constant on each
boundary component it follows that f(w)=w.
In the iterative process we choose z, 4(2,) €Xy(D5?) and the associated parameter

is a, =z,(a). The functions u,(P,) taking the values

Re ei“logw, n=2» 37 cte (3'9)

g(zn, a’n)

at points P, Eﬁiz)(an) then have properties similar to the functions (3.8) and the

argument runs as in the preceding proof.
As regards the case k=1, see e.g. [5], p. 128. Theorem 3.10 is proved.

Theorem 3.11. For each a € D (a+0) there exists a unique function @ = C,(2) € Zo(D)
mapping D onto a domain bounded by slits on circles going through 0 and C,(a).

Proof. Suppose that Q on the w-sphere is a slit domain of the type described in
the theorem (associated parameter a) and suppose that there exists f(w)€Zq(Q)
mapping €2 onto another domain of the same type (associated parameter f(a)). Then

1o @U@~ fl@)
718 oy (wa)

g(e=)=0
is analytic and bounded in Q and Im g(w) is constant on each boundary component
and this implies that f(w)=w. Thus O,(z) is unique if it exists.

In the case k=1 we must prove that there exists a function w=/f({), univalent
and meromorphic in E:|{| <1, having a simple pole with residue 1 at the origin,
and mapping E onto a domain with boundary of the following type: Let o, €E,
o; +0 (1=1, 2), &, +a,, with o, o, otherwise arbitrary. Then the required boundary
is to be a slit on a circle through 0 =f(«,) and f(«,). Suppose first that the straight line
through «, and «, contains the origin and makes the angle § with the positive
real axis (0 <0 <z). Then the desired mapping is

Q)= —art +e (L —ay),

which maps E conformally onto a domain bounded by a slit on the straight line
through 0 =f(«;) and f(«,). In another case the system
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U oy - .
g, Iall,féz 1,2,
which is equivalent to |
% |“t
— = 2
‘“ TR I e oy

has a unique non-zero solution %, |u| <1 and

o) =—2=t it

S ul(l—al)  wey (1 — day)

is the desired mapping. If we write T({) = («—{)/(ul(1 —%)) we can readily verify
that f(|] =1) is a slit on the circle |+ T'(e;)| = |#|~". This circle contains 0=f(a;)
and T'(oy) — T(0g) =f(otp) since |uT(a;)| =1, i=1,2, according to the choice of u
above. Thus the theorem is true for k=1.

As regards the iterative process, we have z,,,(z,) €Z,(D;») and the associated

parameter is a, =z,(a). The functions

(zn+l (zn) - a’n+1) Zn
(2n — @n) 2n11(2n) ’

Uy, (2,) = Im log =2,3,..., (3.10)

behave like the functions (3.3) and thus together with the uniqueness lead to C,(z) =
lim,, ., 2,(2). Theorem 3.11 is proved.

Theorem 3.12. For each a € D (a +0) there exists a unique function w=Cy(2) EZy(D)
mapping D onto a domain bounded by slits on the circles |(w —Cy(a))/w| =const.

Proof. The proof is analogous to the preceding one. As regards the uniqueness we
observe .that with analogous notation Re g(w) is constant on each boundary com-
ponent.

For the iterative process, instead of the functions (3.10) we use

(zn+1 (zn) - an+1) Zn
u,(2,)=Relo ) =2,3,
(&) (22— ) 2n+1(20)

In the case k=1 the theorem is proved in a way similar to that of the preceding
proof. With the same notation we first suppose that |a;| =|c|. Then it is possible
to find 6 and ¢, 0<O<m, £+0, so that a; =0e'®?, ay=0e'® . Then the desired
mapping is

Q) ==t +e 0 — o),

which maps E conformally onto a domain bounded by a slit on the perpendicular
bisector of the straight line segment joining 0 =f(a,) and f(ay). If |oy| == |a,| then

u—=§  u—o
wl(l—ul) woey (1 —dioy)

o=

is the mapping where u =re'? is the (unique) solution of
_i(p iw -
r= e_°i2__J_r_e_ﬁ (3.12)
1+a; e,
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such that 0<r<1. To verify the existence of the solution we may suppose that
|og]| <|o]; the other case is symmetrical to this. Taking imaginary parts of (3.12)
we obtain

Im e ' (o (1 ~ | ot |2) — 0tp(1 — | 05 |2)) =0. (3.13)

It is easily verified that there exists ¢ satisfying (3.13) and such that Re e *%o, >0
since otherwise we obtain a contradiction to |a| <|as|. Choosing this value we
observe that
2+ a,e
@@ =13 +zoge” "

maps |z| <|a,| onto a disc intersecting the real axis along the segment 0 <Re w <
(2 Re e Pap) /(1 + |ap|2) <1. Further r=c(e'%d;) is real. Hence 0<r<1. If T({)=
(u—0)/(wl(1 —aZ)) then (3.12) is equivalent to |u]2T(ac1 T(ay)=1. It is readily
verified that f(|(| =1) is a slit on the circle w(t) = —T'(oy) + |u| ¥, 0<t<2m. The
choice of » implies that

, w(t) — flo
() — flay

Theorem 3.12 is proved.

|u| T(“z)

=|u| | T(ay)] _’t—ITT )
2

=|u| | T(xg)]-

Remark. Letting a—>co we see that every kernel of {Cy(D, a)} is a radial slit
domain and that every kernel of {Cy(D, a)} is a circular slit domain, (C\(z, a) =C(2),
¢=1, 2). From the uniqueness of the mappings ®(z) and ¥(z) of Theorems 3.2 and
3.3 it follows that ®(z) =lim, ., Cy(z, @) and ¥(z) =lim,, . C:(z, a).

Letting a—>0 we see that every kernel of {Cy(D, a)} and {Cy(D, a)} is a domain
bounded by slits on circles Re e?w—1=const. (0 <@ <z). It is readily verified that
there exist kernels corresponding to any ¢, 0 <¢ <u.

We conclude this section with a brief discussion on the application of the modified
iterative process to the following problem: Does there exist w =f(z) €X'(D) mapping
D onto a domain bounded by slits on lemniscates |w —f(a,)||w—f(as)| =const.,
where a, and a, are given points in D? If the choices of @, and a, are restricted in a
certain way depending only on D then such a mapping exists.

Suppose first that k=1. The sets E,={f(a;)|[f€Z'(D)}, i=1, 2, are certain closed
dises ([5] p. 129) and let E={] w1+w2) |w; €E;, i=1,2}. Further there exists a
closed disc K such that the boundary of f(D) is contained in K for all feX'(D)
([6] p. 178). We now make the assumption that K N E=¢. This condition is for
example satisfied if the points a,, =1, 2, are at a sufficiently great distance from
oD. Let b,€E,, i=1, 2. We indicate the construction of a family F of simple closed
Jordan curves in the w-plane, as follows (Fig. 2). Let L be the perpendicular bisector
of the straight line segment through b, and b, and let K’ be the reflection of K in
the segment. Now L divides the plane in the half-planes H, and H,. We demand that
LcH, (so that H; is closed and H, open) and suppose for example that the centre
of Kisin H,. We deflne H{tobe H, UK UK’ and let H, be its complement. A curve
belonging to F is to consist of an arc of a lemniscate o —b; | |w —b,| =const., w €Hj,
if this does not intersect 8H; and such an arc completed by drawing a mrcular arc
|w—3(b, +b,)| =const., w€Hj, if the lemniscate does intersect 0H;. Through each
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Fig. 2.

point in the plane there passes precisely one member of the family. A slit on a curve
in F (which in the present case may be along the whole closed curve) is uniquely
determined by three real parameters. A standard application of the method of
continuity proves that there exists a unique function f(z; b;, b,) €X'(D) which maps
D onto a domain bounded by a slit on a curve in F (see [8]).

From the choice of K it follows that this slit must be situated within K. Further
it is clear that f(zq; by, by), 2,€ D, b,€KE,, i=1,2, is continuous with respect to b,
and b,. Regarding b; =f(a; by, by), 1 =1, 2, as a transformation of (b, b,) the condi-
tions for an application of Brouwer’s fixed point theorem are fulfilled. Hence there
exist b,€ E,, such that b,=f(a;; by, by), 1=1, 2. Thus our statement is true for k=1.

If the choices of a;, i =1, 2, are appropriate (depending in particular on k, compare
[11], p. 96) the iterative method can be used. The proof of convergence is based on

the functions
(n +1)

Uy (z) = Relog[[ 2t =6 7 o5

i=1 Zy ___a(n)

where 2,.,(2,) €X'(D§?) and af® =z,(a,), i=1, 2.

As regards the uniqueness we obtain the condition

(1) — H@)) () — ) = (0 — ) (@ —a).

with obvious notation. Since f(w) €Y’ it follows that a, -+as=f(a,)+ f(a,). Further
F (@) /() = (i@ + fa)] = o — ba, +a).

Since }(a;+a,)€D it necessarily follows that f(3(a, +as)) = 3(f(a;) +f(@s)). It now

easily follows that a, —a,=f(a,) —f(as). Thus f(a;)=a; t=1,2, and finally f(w)=w.

4. Extremal properties

Most of the mappings of the previous section have simple extremal properties,
which as a matter of fact uniquely characterize them. The modified iterative process
may enable the actual calculation of the extremal quantities in certain cases. We
give two examples of the extremal properties.
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Corollary 4.1. Max;.5.p) Re {e=2%a,} =Re {€2%a,} >0, 0<0<m, where [(z)=
2+ (ayf2) + ... and @p(z) =2+ (ap/z)+... are the Laurent expansions near the point at
infinity and @q(z) 1s the function of Theorem 3.1. Equality occurs if and only if D is
a O-angled parallel slit domain.

Proof. Since X'(D) is compact the existence of a solution within the class is guaran-
teed. Thus it is sufficient to prove that Re {e-2"a,} >0 with equality if and only
if D is a 6-angled parallel slit domain. Supposing this done we let { = f(z) =2+ (a,/2) + ...
map D onto Q, which is not a f-angled parallel slit domain, and let w=g4(l)=
C+(bg/C) + ... be the function of Theorem 3.1 with respect to Q. Then g4(f(z)) =
z2+(a,+bp)fz+...€Z'(D) and

Re 2%a, +by) >Re e %a,.

Thus f(z) cannot be extremal.

The corollary is true for k=1 which for example can be proved with the aid of the
area theorem. Supposing it true for k —1 we express @g(z) iteratively as lim,,, o, 2,(z)
according to Theorem 3.1. Writing z,,,(2,) =2, +a§” /2, +... we deduce that

(o] ¢
= af”
ae - ao .
n=0
Hence we have

Roe gy~ § Roe™*taf) >0 (¢

Clearly equality occurs if and only if all terms are zero, which means that D is a
0-angled parallel slit domain.
By induction Corollary 4.1 is true for all k.

Remark. As far as Corollary 4.1 is regarded as a purely qualitative statement the
proof may be simplified. Then the only essential points are the compactness of
Y'(D) and the truth of the corollary for k=1. Considering the remark of Theorem
3.1, (4.1) however enables us to estimate the extremal value. For example given D
we can find constants B and ¢ <1 such that Re ¢~#%{"” < Bq" and hence Re ¢ *’ag=

N3 Re ¢ %% + O(¢"). The extremal properties of ®(z), V'(2), fo(z), P1(2), ¥i(2)
(compare [11] pp. 72-77) and G(z) ([5] p. 128) of Theorems 3.1-3.6 and 3.10 can be
treated in a similar way.

We return to the extremal property of gy(z) in Section 5.

As a less obvious example we now prove the extremal property of ®,(z) in Theorem
3.7 which in fact also gives an alternative proof of the existence of the mapping.

Corollary 4.2. Let F,,= F,,(D) be the class of functions, w =f(z), regular and univalent
in D such that C, corresponds to |w| =1 and Cyto |w| =r<1 (k=>3). Then

Max r="7
feFy

where |w| =7 corresponds to Cy under ®y(z) and where ®y(2) is the function of Theorem
3.7. The maximum is attained for the functions € ®y(z) (y real) only.
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Proof. F,, is compact which guarantees the existence of a maximum. We may
suppose that D is contained in the annulus r'<|z| <1 (Cy:|z| =1, Cy:|z| =) and
that at least one of the remaining boundary components is not a slit on a circle of
centre the origin. We now apply an iterative process, which mainly is that of Theorem
3.7 but with the difference that z,.,(z,) is identified alternately with ®, (z,)/®1(0)
and ®{(0)/®y(1/z,) (p. 107). Let o™ be the inner radius (with respect to he origin)
of the finite domain bounded by C{™ and let 5{™ be the outer radius of the infinite
domain bounded by C{¥, i=1,2; n=0, 1, 2, .... Then o{™ <g{” where equality occurs
if and only if C{™ is a circle of centre the origin. Further, we construct the iterative
process so that Cf*"* and C£™ are circles. We denote their radii Ry,,, and ry,
respectively. According to the extremal property of ®,(() we obtain

_~2n) @n)
By, i =01 =01 2 By,

@n-1) - =2n-1)
Ton—2 =02 <@z <roy, n=1,2, ....

Thus ry,->r>7" and R,,,,—~R<1 (since R,< R,=1). This proves in particular that
{za(2)}1° belongs to a compact family of univalent functions and as in Theorem 3.7
it follows that every kernel of {D™} must be an annulus r<|w| <R with circular
slits. Further +' <r/R which proves the extremal property. Corollary 4.2 is proved.

A remark similar to that of Corollary 4.1 concerning the possibility of estimating
7 can be made here.

5. On rates of convergence

Grotzsch indicates in [9] (for the case of circular slits) a method of obtaining esti-
mates of the rate of convergence of the iterative method used by him. In the present
section we give a similar method concerning mappings onto zero-angled parallel
slit domains, a method which gives an explicit estimate of the rate of convergence.
This is not exponential (k>3), contrary to the rate of convergence of the modified
iterative process (Theorem 3.1, see Remark 1, p. 106). The precise rate is not known,
(compare also [3], pp. 236-238).

Let the width of a slit I" be defined as Max, ,r Im (@ —b) and let A, be the maxi-
mal width of the slits {C{”}{. Kach step in the iterative process is determined in
the following way. Consider the simply connected domain which is bounded by a
slit of maximal width (we denote one such slit by ,). This domain is mapped onto
a zero-angled parallel slit domain. The mapping functions are normalized in the

usual manner:
a(n)

zn+1(zn)=zn+ZL+ e, n=0,1,2, ...,
and we write Re a{® =y, for short. We pose the following problem (k> 3):

Given £>0, find o number N, such that A, <& whenever n>=N,.

Suppose that y, =C{™ (n>n,). Let n* be the greatest index <n such that y,._, =
C*~D Then O™" is rectilinear and v, is the analytic image of C*" under the mapping
20(2n_q (- (Zns)...)).
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We need some notation. We say that n* is the first predecessor of n and that « is
the first successor of n*. Generically speaking n (<m) is a predecessor of m if there
exists a chain of indices n=n, <n,<...<n,=m such that », is the first predecessor
of n,.,, v=1,2, ..., p—1. Such a chain is said to have length p. The relation “n is a
predecessor of m or a successor of m or equals m” is an equivalence relation. It is
easily seen that the number of equivalence classes is at most £—1. We denote them
by E,, E,, ..., E,_,. We say that A, satisfies a condition of quotient or a §-condition if

An‘ < QAnv

where @ is an arbitrarily fixed positive number. To be concrete we shall in the fol-
lowing let @ equal 2“1, For convenience we suppose that the slits {C\”}% (one of which
is rectilinear) are analytic and that A,, n=0, 1, 2, ..., are small, which is guaranteed
if A, is sufficiently small. In the following the letter C' denotes a positive constant
not necessarily the same each time it occurs but in any case independent of =.

Lemma b5.1. 1°. If A, satisfies the Q-condition then
U, >CAZ, n=0,1,2, ...

2°. In any case it is true that

Mg

w<CAlogA)%, n=0,1,2,....

v=n

I

Proof. We observe that z,,,(2,), n >n, can be continued over y, = C{™ into a double-
sheeted Riemann surface branched at the endpoints of y,. The conintuation is
given by

zn+l(zn‘(zn)) =2, + 7‘:+1(Zn),

where z,4(z,) is the mapping of D™ onto D™" etc., and ~ means reflection in C**P
and C*" respectively. By an argument similar to that of Remark 1 on Theorem 3.1
(p- 106) we conclude that

IrZ+1(zn) l <O(An* +An+1)7 2n EL7

where L is the curve d(z,, y,) =d >0 thought of as lying in the second sheet. Here
d(z,, y,) is the distance between z, and v, and d can be chosen independently of »
as a consequence of the compactness of X'(D). If, besides, A, satisfies the @-condi-
tion then also using A, , <2A, (which is always true) we have

IT:+1(Zn) l < OAm Zn €L.

We shall study the inverse of z,.,(z,) and for simplicity we write it as w =f(z) =
Z2+a,/z+ ..., where a, = —a{®., Since the z,(z) belong to the compact family X’(D)
there is no loss of generality in supposing that the rectilinear slit C**" equals
{2011 || <2, y=0}, 2,,, =2 +iy. At worst this will only cause simple modifications
of the constants involved. Further we write A instead of A,.
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According to the above the function
GO =HE+EN) =L+ HR(E) =L+ (1 +ap) +agl?+
is meromorphic (singular part (') in a fixed domain containing some closed dise

(| <R (R>1 and is independent of A, i.e. of ) and it is, moreover, univalent in
¢| <1. Further we have

Im A(0)| <A, |C} =1, (5.1)

and there exists some point §;, |£,| =1, such that
|Im A(Ly) | = AJ2. (5.2)
If, moreover, A, =A satisfies the @-condition then

[h()| <A, |¢] =R (5.3)

The function g({) maps || <1 onto a domain which has a complement. of zero
area. Hence we obtain from the area theorem that

—2Rea,= w vlaylz (5.4)

v=

We now prove 1°. It follows from (5.2) and (5.3) that there exists an arc ¢ of
length ma (« independent of A) on the unit circle such that

|Im A(Z)| = A[3, {€o. (5.5)
We have

o 27T h 27
Svlaf=3lal -5 f hemfap= [ m b ag
27 0 T Jo

,,_

and hence from (5.4) and (5.5)
—2Rea,> A2

This proves 1°.

We now turn to 2°, which we prove by induction on . If k=1 then we use the
observations made above about the function f({) (here regarded as the inverse of
2,(z)). It follows from (5.1) that |a,| <2A and further we have [a,| <CR”’, v=1,

.. Choosing N =[log 2AC-/log R-1] we obtain

Svla|t= Z+ Z <2N(N+1)A*+C% > yR7%.
v=1

N+1

Hence from (5.4) we deduce that
—-2 Re a; <C(Alog A)2.

The constant O depends of course on the parameters determining D but C is uni-
formly bounded as soon as the parameters are suitably bounded.
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Thus 2° is true if k=1. Using (4.1), Section 4 (p. 114) we can now prove it true
for k if it is true for & —1. Tt is essential here that the widths in the modified iterative
process decrease exponentially and that X'(D) is compact. The details of the proof
are then elementary. Lemma 5.1 is now proved.

Lemma 5.2. 1°. We have sup,, A, <CA,|log A,|,n=0,1,2, ...
2°. Let n' be the smallest index >n such that A, <}A,. Then
n —n<C (logA)?% n=0,1,2, ...
Proof. From the convergence of the process it follows that sup,s, A,, is attained
for some (smallest) m, and we may suppose that m >n +k since otherwise A, <2*A,.

Further A,,_,>27*A,, »=0, 1, 2, .... If any one of the widths A,_,, v=0,1,...;k—1,
satisfies the @-condition it follows from Lemma 5.1 that

8

O@ AP < 3 <O(A,log Ay, (5.6)

and 1° follows. Suppose that none of these widths satisfies the @-condition. Then
the first predecessors (n>ng) of m, m—1, ...,m —k+1 are all <n since Ay =
QA2 F=A, for v=0,1, .., k—1, (Q=2%1). Thus the k consecutive indices m,
m—1, ...,m—k+1>n all have predecessors <n. But this is impossible. Thus (5.6)
is true and we have proved 1°.

To prove 2° we make two observations. First suppose that we have a chain
n<n;<ny<..<n,<n' such that A,, satisfies the @-condition. Then we have

M

fn, > POAL. (6.7)

1

v

1

We prove this by induction. If p =1 then (5.7) follows from Lemma 5.1, 1° (A, > A, /2,
n<m<n'). We suppose that (5.7) is true for p<p’. Let p">1 be the largest number
<p’ such that Anp,, satisfies the Q-condition. Then we have Anp,, =@ ? Anp, and

thus u, ,>(p’ —p"+1)CA;. Using the induction hypothesis and >, > 2771 Y, +
M, we deduce (5.7) for chains of length p’.

Secondly suppose that we have a chain n<n, <5, <...<n,<n' such that no one of
the widths A, , 1 <v<p, satisties the @-condition. Then we have

p<Clog|log A,| (5.8)

since in this case it follows that A, >@Q” ’lAnP >1@°'A,. Now according to Lemma
5.2, 1° we have
1QP A, <CA, |log A,
which proves (5.8).
Now we prove 2°. Write N, =n"~n and M,=Clog|log A,| (see (5.8)). We may
suppose that M, /N, is small. Let E; be the chain {»|v€ E;, n <<y <n’} and denote its
length by N/, i=1,2,....k—1. We suppose that N;>M,, 1<i<j, and N, <M,,
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j<i<k—1. It follows from (5.8) that at least one width A, has to satisfy the Q-
condition where m is one of the M, +1 first numbers of E; (: <j). Applying (5.7) we
obtain

> w=(Ni—M,) CA;L. (5.9)
veEjﬂ
Observing that SN —iM,>N,—(k—1) M,
iS5

we deduce from (5.9) that

ol i)
2 m>2 2 w>ON,AL

i=1 veE;

On the other hand, we know from Lemma 5.1, 2° that

§ C(A, log A,

Thus N,<C (log A,)2

Lemma 5.2 is now proved.

We now return to the problem posed in the beginning of this section: Given
£>0 we let ¢’ =¢? (¢ small). Then if Ay<e¢’ for some index N it follows from Lemma
5.2, 1°, that A, <e, n=N. Hence this N would be a solution of our problem. To find
such an index we successively determine indices =, such that A,  <}A, , where

N4 18 the smallest index >n, with this property, and n,=0. Suppose that A, >¢',
v<p and that A,  <¢'. Applying Lemma 5.2, 2° we obtain

z\7=np+1=v§po(m+1 m) oi (log A, )? <0§ (log (' 2"))?
But obviously p<C |log ¢'| and inserting &' =&2 we have
N< Ové (log (¢'27))? < C(log e ).
Of course the same estimate is true if the parallel slit domain is f-angled. Let
@e(2) be the function of Theorem 3.1. The following theorem follows at once from

the above (for Grotzsch’s method, see p. 115).

Theorem 5.1. Let @g(2) =lim,, o, 2,(2), where the z,(z) are determined by Grotzsch’s
method. Then there exist constants C and q, 0 <q <1, independent of n such that

|#o(2) ~z(a)| <Cg*
wn any fized closed subset of D.

Remark 1. According to Theorem 3.1, the modified iterative process shows that
all widths are <g after N, =0 (log £~1) mappings. Since the number N, here means
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a number of mappings of (¥—1)-connected domains this estimate and the one above
concerning Grotzsch’s process are not comparable from a practical point of view
(k=>3). However, the modified process can be approximated as follows. For example,
if k=3 we first perform N, mappings of simply connected domains involving slits
which are numbered 1 and 2. If N, is large then these slits are “‘nearly” rectilinear.
Then we perform N, mappings involving slits which are numbered for example 2
and 3 so that they become “nearly” rectilinear etc. Given ¢ >0 we may seek a num-
ber N,(¢) such that all widths are <g after N, (&) mappings (in the indicated manner)
of simply connected domains. We indicate the proof of the following estimate:

N,(¢) =0 ((log e2)*). (5.10)

This estimate is true for k=2 (the proof of Theorem 3.1) and we suppose that it
is true for £—1. Let D be a given k-connected domain and let f(z) EX'(D), Q=f(D).
By excluding one arbitrarily chosen boundary component of 62 we obtain a (k—1)-
connected domain ('. Consider the set of all such domains Q' obtained under all
mappings f(z) €X'(D). From the induction hypothesis and the compactness of X'(D)
it is obvious that it is possible to choose a number N =N,_, (&%) =0 ((log £-1)*~2) such
that the approximate iterative process described above gives slits of widths <eg?
after N mappings starting from any one domain Q'.

We write the approximate mapping of D as o =f,(f,_1(-.-(2)...)) = F,(2) where the
f, refer to mappings of (k¥ —1)-connected domains and where these mappings are
composed of N mappings of simply connected domains. Let D,=F (D) and let A,
be the maximal width of the slits constituting D,. From the compactness of X'(D)
and the exponential rate of convergence of the modified process it follows that if
A,Z¢ for »<n then A, <Cg", 0<g<1 (¢ is supposed to be small). Thus necessarily
n<Clog ¢! and N,(e)=nN,_,(¢2)=0 ((log £ 1)*™1).

Remark 2. We conclude this section with a description of an iterative technique
which is intermediate between Grotsch’s process and the modified iterative process.

Suppose for example that we want to map the k-connected domain D conformally
onto a zero-angled parallel slit domain. Using induction we suppose that this map-
ping is possible for any domain of connectivity <k—1 and that these mappings
have the extremal property of Corollary 4.1. With the notation of Section 2 we
let z,,4(2,) =2, ta{/z, +... €T (D{P) where D is a domain of connectivity k,,
1<k,<k—1, bounded by k, of the continua C{, C¥, ..., 0. The choices of these
can be made arbitrarily with the restriction that each index 1, 2, ..., ¥ must occur
infinitely often. Let the width of C™ be A,,, v=1,2, ..., k and let A, =Max, A,,.
Suppose that lim, ., A,>0. Then there exists a sequence {n,} such that DJ? is
bounded by %9, 009, ..., 049, (1 <p<k—1), (where the indices are fixed), and such
that the maximal width of these continua is at least A>0. Then there exists A’ >0
such that Re a{"? >A’ because otherwise Re a{"? >0, D@~ D, (at least for a subse-
quence which we suppose already chosen). Thus there exists f(£) = +a,/ +... € 2'(Dy)
mapping D,, which is not a parallel slit domain, onto a zero-angled parallel slit
domain with Re a, =0, which contradicts the assumption that Corollary 4.1 is true.

iagu)
We have Za2) =2+ 20—+ .
z
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and it follows that Re S72_af?”->co while, on the other hand, by the compactness of
2'(D) we have |>7_oaf| <C. This is a contradiction. Thus lim,_,., 2,(z) converges
and the extremal property for connectivity k follows at once.

IL. On conformal mappings onto domains of general type

6. Notation and definitions
Let L,:o=w,(t), 0<t<1, v=1,2, ..., k be simple closed, analytic curves in the
w-plane. A curve L} :0 =a,0,(t) +b,, 0<t<1, where a,>0 and b, are constants, will
for short be referred to as a curve of type L,.
Let Gy :z=2z,(), 0<t<lI, »=1,2, ...,k be k fixed and bounded continua in the
z-plane. Let C,:z=z,(t)+¢,, where ¢, is a constant, v=1,2, ..., k. Writing p=
{cy, €gs ..., ¢;) Wwe make the

Definition 6.1. We say that p is admissible if {C,}f are the boundary components of
a k-connected domain D = D(p) such that the point at infinity belongs to D.

Let p be admissible and let d(p) =d(C,, C;) be the distance between C; and C,
(¢ 7). Let 4, (independent of p) be the diameter of O,. Then we write

d(p)= Min d,(p), A=Max A, a=Min 4,.
1<i<i<k L<i<k 1<i<k
Definition 6.2. D(p) is (d, B)-bounded if
1° p is admissible,
20 d(p)>dA, ([@>0),
3° there exists b such that 2 € l,le,,: |z —b| <Bd(p).

The aim of this chapter is to apply the iterative process to domains D(p) suitably
bounded in the sense of Definition 6.2 and prove the existence of w=F(z)=
lim,_, o, 2,(2) €X' (D(p)) mapping D(p) onto a domain bounded by % curves L of type
L, in such a way that L corresponds to C,, v=1,2, ..., k.

7. The iterative process and the main theorem

We will here use the iterative process described in the introduction, (B, p. 101)
in the following way. Let z,,,(z,) €X'(D{™) map the simply connected domain D
bounded by Oi:) (oo EDI(,:)) onto a domain bounded by a curve C’f,:”) of type L,
1<%,<k (Riemann Mapping Theorem). As before z,,,(C)=C"*V, vy, and
D™V =z, (D™, D®= D(p), zg=2, C¥=0C,, v=1,2, ..., k. Further we choose v,
so that v, —1=n (mod k). This particular choice is not necessary but it provides
some formal simplification. We observe that 2,(z,)=2,(2,_1(..(2m)...)) EX (D™),
(n>m). If F(z)=lim, .. 2,(2) exists then necessarily F(z) €X'(D(p)) maps D(p) onto
a domain bounded by U,..L} where L} corresponds to 0,, v=1,2, ..., k.

Theorem 7.1. There exists a number d>0 depending only on {C}}¥, {L,}{ and B
such that lim,, ., z,(z) exists for any (d, B)-bounded domain D(p).
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8. Lemmas

For the proof of Theorem 7.1 we need three lemmas.

Lemma 8.1. Let D(p) be (d, B)-bounded and let o= F(z; p)€X'(D(p)) map D(p)
onto D'(p). Let d'(p), A'(p) and a’(p) have the same meaning with respect to D'(p) as
d(p), A and a have with respect to D(p). Then there exist constants N, >0, 1=1,2, 3,
independent of p and F such that

d'(p)>Nd(p), (8.1)
A'(p)<N,A, (8.2)
a'(p)> Na. (8.3)

Proof. We may suppose that 4 =1 and b=0 (Definition 6.2). Suppose that (8.1)
is false. Then there exist sequences {p,}i° and {F,(z; p,)}1°, F,€X'(D(p,)) such that
d'(p,)/d(p,)~0 when »—oco. Either we can select a subsequence {pvﬂ}f“ such that
Py, Py Or d(p,)—co when y—>oco.

In the former case we may suppose {p,,”}i" selected so that F,,ﬂ(z; p,,”)—>F0(z; Po) €
2'(D(py)) when p— oo. Then d’(p,) >0 which contradicts d'(py)/d(p,) =0.

In the latter case G(0)=d(p,) F,(ld(p,)EX'(S,) where €S, =ld(p,)€D(p,).
Thus 8, is a domain such that (€8, = || < B and such that the boundary compo-
nents have distances >1 from one another. As above this gives a contradiction.
Thus (8.1) is true.

We prove (8.2) and (8.3) in a similar way. If Py, Po the argument is the same. In
the case d(p,)— co there is no loss of generality in supposing C; to be the circle |z| =7;
and O corresponding to C to be |o—w,| =r;,. Also F,(z; p,) is univalent and ana-
lytic in 7, < |z| <d(p,) and as in the proof of (8.1) it is clear that there exist constants
m, >0 and m, independent of p and F such that

mld(pv)gva(z;pv) _wvlgmzd(pvx |Zl:d(1’v)

Thus according to a well-known property

’

,
Ti» L i

myd(p,) d(p,)  mydip)

Thus mMyT; < ri,v < Moty
and this proves (8.2) and (8.3). Lemma 8.1 is proved.

Lemma 8.2, Let D be a simply connected domuin on the z-sphere, oo € D. Let the
diameter of its boundary 0D be < R and let f(z) €X' (D). Then

3R?
- L<—
If(z) Zl l[axlz_ar
aedD

2€ D,
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Proof. Choose any a€dD. Then 8D< Dy where Dy is the disc |z—a| <R. It is
a well-known fact that |f(z)—a|<2R, 2z€ DN Dy Also g(z, a)=(z—a)(f(z) —2) is
analytic in D and we have

|g(z, a)| <3R2, 2€DN Dp.

From the maximum principle it follows that this holds for z€ D. Since a is arbitrary
this means that
3R?

< v .
T Max |z—al
aegdD

|#(z) — 2|

Lemma 8.2 is proved.

Lemma 8.3. 1°. Let A be a family of simple closed analytic curves of type L such that
0<m <)< M < oo, where T") is the length of T'€A.

2°. Let Ur={z|d(z,I')<g} where T €A, 0>0 and d(z,T') is the distance between 2z
and T.

3°. Let Fs(I')=Fs be the family of functions f(z)=z+1(z), analytic and univalent in
Ur and such that |r(z)| <6, z€ Ur.

4°. Let D* be the domain bounded by I'*=f(I"), oo € D* and let gr«(z) =g(2) €Z'(D*)
map D* onto Q which is bounded by a curve I of type L.

Then there exist 6,>0 and K depending only on L, m, M and ¢ such that for all
T'eA and for all f€ Fs; 6 <0y we have

lg(z) —z| <Ko, =€

Proof. We may without loss of generality suppose that z€I'=|z| <M for any
I"€A. If 8, is chosen sufficiently small then Fs, 8 <4,, is necessarily compact. Suppose
that Lemma 8.3 is false. Then it is possible to select a sequence {I",, 8,, f,, 9,, 2, }1°
such that T',€A, 8,-0 (8,<0,), {,€Fs,, f([',) =T, w=g,(z) =gr+(2), z,€T; and

5;1|gv(zv)—zvl 0. (84)

Let D, and D} be the domains bounded by I', and I’} respectively (oo €D,, D})
and let ¢(Df)=Q,, 0Q,=L,, where L, is of type L.

Let W=h,(w) be the analytic function conformally mapping €, onto the interior
of the unit circle such that A, (w)=c¢,,/ow+cy,J0?+..., ¢;,>0 near the point at in-
finity. Then { =#(z) =h,(x,z+f,) with suitable constants «,>0 and f, is the cor-
responding function with respect to the domain D,.

Since I, is of type L (analytic) and 0 <m <I(I',) <M there exists a number A>0
independent of » such that h)(z) is analytic and univalent in a domain containing
D, and in particular all points interior to ", and distant at most A from I',. For
v>v, we have Max,.rx d(z, I',) <}A. For v>v,>v, k(I is star-shaped with re-
spect to the origin (since |r,(2)|, 2€T",, becomes arbitrarily small). Thus 4y (L;) may
be represented in polar coordinates
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1. LIND, lierative methods in conformal mapping
R,(p)e =hy(f,(hy1(e®)), —m<gp<m,
where R,(p) is absolutely continuous in —z<g<w, |R,(p)/R,(p)|<Kj, and

| R.(p) —1| <K,5, where K, and K, are independent of ». Then an elementary modi-
fication of Satz 3, ([3], p. 261) gives

[hE g, { (b (W)~ W | <K, | W] <1 (8.5)
where K, is independent of ». This is equivalent to
|y (ug5 (@) +B,) —hy(w) | <Ksb,, 0 €L, (8.6)
From (8.5) it follows in particular that for v Zv, 2,
|a,—1| <K,6,, |B,] <Kb, (8.7)
For v>y,>v, the straight line segment conmnecting 4,(w) and A,(x,g, Yw)+8,),

w€L,, is the image of an analytic curve s, connecting o and w; =a,g, Yew)+B,, and
[h(w)| > Ks>0, wEs,, where K is independent of ». Thus using (8.6) we obtain

K38, | hy(y) —hyw)| = f |5(@)| |deo] = Kol o] 8.8)

Using |2| <M +26, on I} we finally deduce from (8.7) and (8.8) that
|g.(2) —2| <Kid,, 2€LY, (8.9)
where K; is independent of ». However (8.9) contradicts (8.4). Lemma 8.3 is proved.

Corollary 8.1. With the hypothesis and notation of Lemma 8.3

MK§

< Y
" Max [z —al
ael'*

lg(z) — 2| , 2€D¥, 6<60(<%).

Proof. Choose any a €. The function F(z, a)=(z—a)(g(z) —z) is analytic in D*
and according to Lemma 8.3 we have
| F(z, a)| <MK6, =z€I™.

The statement follows as in the proof of Lemma 8.2.

9. Proof of the main theorem

We choose d’>0 and B>0 and consider all (d’, B)-bounded domains D(p) (B
large). Without loss of generality we may assume that A =1 and =0 (see Defini-
tion 6.2). In the iterative process the curves Cr*P, n=0, 1,2, ..., are of type L,,.
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Then according to Lemma 8.1 it is possible to determine constants m, , M, such
that 0<m, <{(O;2*P)<M, for all (d', B)-bounded domains D(p). Then we apply
Lemma 8.3 with some arbitrarily fixed g >0 (see 2°) to the family A, of curves I',
of type L, for which m,<I(I',) <M ,. We obtain constants K, and ,, (v=1, 2, ..., k)
corresponding to K and §, of the lemma. Write M =Max, M,, K=Max, K,, §o=
Min, d,, and d,=min (d,, M/4, o).

Let d, (p) =Min < < i d(CV, CP) and

U,={C]d¢, P ) <o)}, n=12,...,

and take any ¢, 0<¢g<1.
The condition
inf, d,(p)=MKq1(k—1)+3¢ (9.1)

can be realized according to Lemma 8.1 for all (d”, B)-bounded D(p) if d">d’ is
sufficiently large.
Writing z, =2,(z,_4(...(2;)...)) for short we can satisfy the conditions

Izk—zi|<z—:%6o, n€U, i=1,2 .., k-1, (9.2)

according to Lemma 8.2 for all (d, B)-bounded D(p) if d>d" is sufficiently large.
Now according to Lemma 8.3 we have

k
| 242 — 2| <Ky, 2,ECLP.

We observe that the distance between z,(U,) and C{ is at least dy(p)—
P—2(k—13) dp/(k—1)2MKq Y k-1), i=2,3, ..., k—1, and thus according to Corol-
lary 8.1 and (9.2) we have

E+1—14 .
|2k+1—2i|<'k_——1@60, z,»E Ui: i:2,3,...,]€—1,
1
|2k+1 _zk‘ <k_———l 969, 2 € Uy,
and by repetition

k—1 .
|22k_zi+kI<kT1iq60, z,-+kE Ui-l—k: @:1,2,...,]0_1. (93)

The conditions for a repetition of the argument from (9.2) leading to (9.3) are a
fortior: satisfied, now with (9.3) as starting point and §yg replacing 6,. Thus

k—1 ,
|21 — 21 42 <mq250, Zivow € Upsar, =12, ...,k 1,

and inductively

) ,
|Z(m+1)k—zi+mk|<mqm503 Zivmi € Upsme, 0=1,2,...,k—1, (9.4)
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I. LIND, Iterative methods in conformal mapping
It follows from (9.4) and Lemma 8.3 that
|20 (2) =2, (2) | @M1 (K +1) 1 —q) Y, »' >n>k, 2€0D(p).

Since 0<<g<1 it finally follows that lim,_,, z,(2) exists for all (d, B)-bounded do-
mains D(p). Theorem 7.1 is now proved.

III. Two eigenvalue problems

10. Statement of the problems

Let T"; and I', be two disjoint and bounded rectilinear slits considered on the
z-sphere making the angles a; and «, respectively with the positive real axis
(0<a,<am, »=1,2) and bounding a doubly connected domain D. Let D, be the
simply connected domain bounded by I',, »=1, 2.

The first problem is:

A. Find {,(2), non-constant, bounded and analytic in D,, v=1, 2 and a number u
such that
Im e " (2) =Im e *f,(z), z€T',
(10.1)
Im e *fy(z) =p Im e *,(2), z€T,.

It is to be understood that, for example, Im e *f,(z) takes equal values on the
edges of Ty, Im e " (2)=Tm e "f,(2~) =Im e *fy(2). With the aid of a linear
transformation kz+!—z we may in various ways normalize D. Thus there are 4 real
parameters p=(p,, Ps, P3, P4) Which are essential for the problem. We sometimes
write D(p) instead of D and do similarly with the other notation.

It [, =T ={re?|0<a<r<b, =0}
and Py=eT' ={re!|a<r<b,0=a}, 0<o<m, z=re®,

then we also take into consideration the following problem which is closely related
to Problem A:

B. Find f(z), non-constant, bounded and analytic outside I" and a number u such
that

Im f(r) =p Im e *f(re"™), a <r<b. (10.2)
Letting I', be a slit on the straight line L,, =1, 2, we may in A suppose that
Re e 'f ,(2)=0, 2€L,-T,, v=1, 2, (10.3)

unless g =cos 2(ay—0a;)>1, |oy—oy| +0, /2. This is a consequence of the easily
verified fact that A has trivial solutions f,(z) =¢™(a,+1b,), v=1, 2, where a; and
a, can be arbitrarily chosen with the above exception. In order not to complicate
the discussion we accept (10.3) as a restriction in the exceptional case. By a similar
argument
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Re f(r)=0, r<a,r>b (10.4)
in B.
We do not solve the problems A and B in general but simply draw some conclusions
of general character and discuss these problems in certain special cases.

11. Collinear slits

Theorem 11.1. Let T'; and T, be slits on the real axis, and let R be the modulus of D.
Then there exist solutions of A with w=p;=((R'+R™)[2)?, j=1,2, ... There are no
other solutions.

Proof. If we set a,, ¢, =0 then (10.1) and (10.3) become

Im f,(2) =Im fy(z), €I,
(11.1)

Im fy(z) =p Im f,(2), z€,,

Let S, be the z-sphere slit along I'; and T',. We construct a Riemann surface R
by taking an infinity of such spheres each joined to two others, one crosswise along
I"; and one crosswise along I',. We denote by P =P(z) any point € R lying over z€.S,.
Now every function F(z)=a,f,(2) +a,fs(z) (where @, and a, are complex constants)
originally defined on. S, can be analytically continued to the whole of R. In fact,
according to (11.1), f,(z) can be continued over I'; so that on the sphere S; joined to

8, along I'; we have i
H(P(R) =F(2) +/5(2) —f2(2), PES,

h(P() = —fi(z) +2fa(2), PES,;. (11.3)

or according to (11.2)

In the same way we deduce that
foP(2)) = —f2(2) +2pfi(2), PES,, (11.4)

where 8, is the sphere joined to S, along I'y. Then (11.3) and (11.4) imply that the
continuation is possible to the whole of R.
Let F(z)=(7 +1)f(2) —2f4(z) where 7, |7| >1 satisfies the equation

24+27(1 -2u) +1=0. (11.5)

Then the following is easily verified. Continuing F(2) first over I'; to 8; then over

T, to 8y, gives

\ F(P(2)) =tF(z), PES,s. (11.6)
Continuing F(z) first over I'y to S, then over I'; to S,, gives

F(P(z))=11F(z), PES,. (11.7)

R can be conformally mapped onto the w-sphere punctured at the origin and infinity
so that I'; corresponds to |w|=R>1 and T'; to |w| =1 (see e.g. [16] pp. 424-425).
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L. LIND, Iterative methods in conformal mapping

Let P =g(w) be the inverse mapping. Then f(w) = F(g(w)) is analytic in 0 < |w| <co.
From (11.6) and (11.7) it follows that

HEB¥w) =7"f(w), v=0, +1, £2, ... (11.8)

Suppose that 0<p<1. Then from (11.5), |7| =1 and according to (11.8), f(w) is
bounded in 0<|w|<oco and this implies that f(w)=const. It follows that f,(z)=
const. and f,(z) =const. This is of course merely a verification of what can be directly
concluded from the maximum principle for harmonic functions.

Suppose that x <0 or x>1. Then |v| >1. By (11.8), f() is bounded in 0< [w| <1
and is thus analytic at & =0. As regards the behaviour near infinity, (11.8) means
that f{w) grows at most polynomially when w— oo and is thus necessarily a poly-
nomial. It easily follows that the only non-trivial possibilities are

Ho) =0, 0!, v;= R¥, C,%0, j=1,2, ..., (11.9)

and so from (11.5) we have

j -5\ 2
‘u,=(R ;R ) >1, j=12,.... (11.10)

Thus g <0 is not possible.

Let w(z) be the function that maps S, conformally onto 1 < |w| <R (I'; corresponds
to |w|=1) so that Im w(z) =0, 2 real and z¢['; UT,. For any fixed j=1, 2, ..., the
two functions

¢ . _
fu(@) =17z (0E) T o) s
(11.11)
e =5 (B () + () )
satisfy the relations (11.1) with g =g,. This is easily verified. In particular
Im f,(zt)=1Im f,(z7), %,z €5, v=1, 2, (11.12)

where z+ and z- are opposite points on the edges of I'; and 5=, #=1 or 2. Further
it is readily verified that

Re f,,(z) =0, z€L-T',, =1, 2, (11.13)

where L is the real axis. From (11.12) and (11.13) it follows in particular that f,;(z)
is analytic in D,, »=1, 2. Thus the functions (11.11) are a solution of A with y=u;.
Theorem 11.1 is proved.

12. Orthogonal slits

Theorem 12.1. Let ', ={z|0<a,<z<b;, y=0} and T'y={z|2=0, 0<a,<y<b,},
z=x+ty. If A has solutions then necessarily |u| >2.
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Proof. Writing £,(z) =u,(2) +1,(2), v=1, 2, we obtain (10.1) and (10.3) in the form

v (2)=v,(2), 2€LY,
Us(2) = pty (2), 2€ Ty, , (12.1)
Uy (00) =vy(c0)=0.

Let 7o) =[(t—a,) b, — ]}, v=1,2,

by
and Il =2 f Kydt, v=1,2,

for h real-valued and continuous on I',. Since #, and v, are the normalized conjugates
of v; and u, respectively (i.e. u;(co) =v,(c0)=0) we have

fealls <Iloallx } (12.2)

(AP AP

By Schwarz’s inequality (y = 0; u,(x) =u,(x +10)) we have

. I [ wu () 21y 1 y
uy ()2 = [Im = J:h mdw] <% J‘,h P dxy—t J:h mul(x)z dx

1 b Y
<_27t fa mul(x)zdx

1 [ 1 by
s fuli<gs [ u@r L s a] el 029
. .
h M= Max YA®) J" Y
where R = —I-y2 v y) dy.
In the same way we obtain
lloallf < & 2% |[o-ll2, (12.4)
—1 by
wh Mi= M ye(y) x .
ere 2 a,gjzb, - N v, (@) dx

Observing that the function (f—a) (£-+5% "%, a>0, is increasing for £>0 we have

- b,—x (by—a,)?
Mi= M Yal(— m)) <M 0y 1 < 1~ 0 .
' ”‘( 1@ ) e, @+ adt @0 05 +ad)t (aF + oY)

M% < (b a2)

and in the same way BIT )t (@ b0t

bi—a, by—a, a, @y
and thus (M, M,)2 < SEra)l (b§+a%)’1'< (1 —b—l - =<1 (12.5)
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From (12.1)-(12.4) it follows that

oalls = llwally <27 My logll, <273 My luglla = || 27% M, [y
< %'/"Mle ||u1||1 <% |:“|M1M2 "U1”1-

From this and (12.5) we finally have

|u| =200, M, >2.
Theorem 12.1 is proved.

13. General conclusions

In (10.1) we normalize D so that I'; is a fixed slit on the real axis of length 1. There
is no loss of generality in supposing the length I of I'; to be <1. Let d be the distance
between I'; and I',. Let E’ be the set of parameters p (see p. 126) for which A has
solutions and Ej the subset of £’ for which |u| >k holds for every solution. Let B”
be the set for which A has no solutions and let E, = E; U E”. We sum up some general
conclusions in a theorem:

Theorem 13.1. For Problem A the following s true:
1°. pEE =p=+1.
2°. p€E = |pu| 2d U Md+1+ )N d+12+1)
3°. p€E and T, and T'; are parallel = |u| >1.
4°. E, is open.
Proof of 1°. Suppose that A has a solution with g =1 and functions f,(z) and fu(2).
Then the function F(z) =f,(z) — f,(2) is analytic and bounded in D and Tm e~ **F(z) =0

onT',, v=1, 2. This clearly implies that F(z)=const. and hence f,(z) =const., v=1, 2,
which gives a contradiction.

Proof of 2°. Let v(z) be a real-valued continuous function on I',. We write

llol, = Max |v(z') —v(z")], »=1,2. (13.1)
2, 2"el

v

Further we write p(z) =[(z —a) (b—2)] * where a and b(=a + 1) are the end-points
of I';. Since

fl(z)=y(z)_1 f " Imf () y(z)dw, 2€ Dy, (13.2)

T J. %x—z
it follows elementarily that
e l
[[Tm et *f1(2)||z<$(d+l+%)||1mf1(2)||1 (13.3)

and in a similar way
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1o sl = 5s (a4 5-+1) e, @l (13.4)

From (10.1), (13.3) and (13.4) it now follows that
1 l —iog
I £y @)l < 3 (4 2+ 1) [1m e o2l

I
[Tm e~ fy @)|a <] 5 @+ 1+ ) [[Tm fy @]

Thus |u|=d* " @d+1+3) " {d+1/2+1)"" and 2° is proved.
Remark. In particular we obtain from this that
d>3(1+V7)=|u|>1.

Proof of 3°. We have a;=o,=0. Letting ||v||,, »=1, 2, have the same meaning
as above we deduce from the maximum principle for harmonic functions that

”Im f1(z)||2 <q1”Im f1(z)“1’
”Im fz(z)“1 <q2“Im f2(2)”2>

where g, <1, v=1, 2. Thus as above we have
|| = (g192) 7 > 1.
Proof of 4°. Let p€ E,. Suppose contrary to the hypothesis, that there exists a
sequence {p,}{° with p,—~p such that A has for »=1, 2, ..., solutions {x,, f1,, fo»)

corresponding to p, with |u,| <1. We may suppose without loss of generality that
wo=p, 0< || <1. We write (see (13.2))

-1 b
Tm e i® fl (2) = Tm e~ y(z) f I_nLl(x) y(x) dx, z€ Fg
14 a r—z

in the form Ime f, (I'y) = Py (Im £, (Ty))
and analogously we may write
Im f,(T')) = Py, (Im 7% £, (Ty))-
Writing v(z) =Im f,(z), e <z <b and T =P,,P,, we obtain A in the equivalent form
(I —uT)yw =0, v = const. (13.5)
In the present case we have
I—p,T,pw,=0,v=1,2, .., (13.6)
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1 b
w>ps |u <1, p,>p and IIUVI|2=;f sy de=1,

a

where y =y(z) =[(x —a)(b — )] . According to (13.6) v,(z) coincides with the imagi-
nary part of a function which is analytic in the simply connected domain Dy(p,)
bounded by the slit I'y(p,). These functions (v=1, 2, ...,) are analytic and uniformly
bounded in a fixed domain containing I';. Thus it is possible to select a subsequence
{v, }1°, which converges to a continuous function v in the norm, i.e. ||v—v,,‘||—>0
and so ||v|| =1. Suppose this subsequence already selected and let 7' correspond to p.
Obviously |7 —T,|| +0. We have

| —pDpl <= Tl —ol + L= 1T+ s T =T

The right hand side becomes arbitrarily small for v sufficiently great. The left hand
side being independent of v thus equals zero. Hence (I —uT)v=0 and obviously
v = const. contradicting the hypothesis that p€ E;. Thus E, is open. Theorem 13.1
is proved.

In (10.2) let b=a 41 (the parameters p then are ¢ and «) and let B, have the same
meaning as before.

Theorem 13.2. For Problem B the following is true:
1° p€E =>u<0, u+~1orpu=>1.

-1

2°. p€E = |u| >8a? sinzg (4@ sin g+ 3)
3°. E, is open.

Proof. The proofs of 2° and 3° are analogous to the corresponding ones in Theo-
rem 13.1. In 1° suppose first that |u|=1. The F(z)=f(z) —ue*f(z¢™'*) is bounded
and analytic in D (the domain bounded by I" and ¢°T") and observing that f(2) = —f(z)
we have Im F(2) =0 on I" and Im ¢ "*F(z) =0 on ¢"°T". It follows that f(z) = const.

Suppose now that there exists a solution with u such that 0 <y <1. The function
v(z) =1Im [(f(2) — f(0))/2] is harmonic and bounded outside I". From (10.2) we obtain

v(r) = Ar1+pv(re’®), a <r<b,
(13.7)
v(o0) =0,

where 4 = B(u cos «—1) and 4B =f(0). According to the maximum principle, (13.7)

with 0 <y <1 is possible only if 4 4-0. We may suppose that 4 >0. Write v(re'®) =
Py(r), where P is the Poisson transformation. Then (13.7) is equivalent to

v(iry=A4 S nprypl
=42 p (13.8)
v(00)=0.
Since v(r) >0 and v(cc) =0, {(13.8) is a contradiction. Theorem 13.2 is proved.
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14. Description of the set K

Before concluding the study of the eigenvalue problems of Section 10 we devote
this section and the next one to a study of the properties of a certain point set K
described below. In Section 16 it is shown that the properties of K may be of some
importance for the eigenvalue problems. Besides K plays an important part in
Koebe’s mapping theorem concerning the circle domain referred to in the introdue-
tion (p. 102).

Let D, be a k-connected domain on the z-sphere (k>3) bounded by circles C° =
C,:|z—a,|=R,>0, v=1,2,.., k, €D, Let s, be the reflection operator with
respect to C, ie. s,(z)=a,+ RZ/(Z—a,). The circles O™ :81,81,1 ... $,(Cy), 1<3, <k,
Y1 Fhe p=0,1,2, .., n—1, constitute the boundary of a domain D, of connectiv-
ity w,=k(k—1)". Also D,-D, a domain on the z-sphere. We denote its comple-
ment by K. It is completely determined by the circles {C”}{, which we call the
fundamental circles of K. A circle Cy is said to be of generation =.

Let W be a domain on the z-sphere. We define WeP,, WEP,, and WEP,,
respectively if Green’s function exists in W, if there exist non-constant, bounded,
analytic functions in W and if there exist non-constant analytic functions in W with
finite Dirichlet’s integral over W. The complements of P, P, and P, are denoted
O, O4p and O, respectively. If WEP,,; the complement of W has positive analytic
capacity, otherwise the analytic capacity is zero.

15, Remarks on K
First we prove a lemma.

Lemma 15.1. Let A be the class of linear transformations 8i,8u,_1 ... 8,(2) (n even)
OF 8inSin_1 ... $;,(2) (1 0dd), 1,4 %1,. Let aoco0 be a fixed point €D,. Then there exist
positive constants b and B such that

k
bV ()| <|V ()| <B|V(a)|, z€8Dy= U CP
v=1
for any l(z) EA.
Proof. Apart from the trivial case I(z) =z, the I(z) are uniformly bounded, z€.D, U
9D,. The statement now follows from Koebe’s distortion theorem.

K has a number of well-known properties, some of which we list below. For 1°-2°

see [16], p. 111. The third property should be compared with [16], p. 422.
1°. The measure of K, m(K) is zero.
2°. D€ Pq (k=3).
3°. If {(z) is analytic in D and if for any &> 0 there exists n. such that
Hn

Swih<e for n>n,
p=1 .

where 0= Max |f(z;) —f(z,)] then f(z)=const.
el,z,ecv")

4°. D€ Oyp.
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Proof. We use the criterion of Theorem X.22 ([16], p. 446). It is required to con-
struct a regular covering of {6D,} such that 2> N*(n)~!=oco where N*(n) has the
meaning of Theorem X.22. Let the dises C,,, p=1,2, ..., N(»)<oo, be centred at
CP®, v=1,2, .., k. Further we demand that O, ,, NC, ,,=¢, v+, C,NoD,=¢
and G, .1 N C,,+¢ (where C, y4y:1=Ch). Then Uy=U,,.0,, is a covering of 6D,.
With the aid of the reflection operators we can map U, (directly or indirectly)
conformally onto U, to cover 8D,, n=1, 2, .... It is readily seen that {U,} is a regular
covering of {#D,} such that N*(n)=N=Max, N(»). Thus XN*(n)~! diverges and
hence D€EO,p,.

Remark. Koebe’s proofs, mentioned in the previous section, are connected with
property 3°. A modification showing the connection with property 4° can be made
as follows. We temporarily adopt the notation of Theorem IX.35 ([16], pp. 424-426)
and give a slightly modified form of the proof of that theorem as follows. The re-
flection property of C, means that there exists a function f,({) analytic and univalent
in a neighbourhood of the unit cirele so that f,(|| =1)=C,. A suitable covering of
the unit circle, similar to the above, can then with the aid of f,({) and the transfor-
mations of @ be mapped directly or indirectly conformally to cover 2Q,, (N.B. the
Q,, exhaust Q). As above it follows that Q€0,,. Since S,(w) is meromorphic and
univalent in Q it follows that S,(w) is linear ([16], p. 445) and it follows in an ele-
mentary way that C, is a circle.

Since 0y<0,5< 0, with strict inclusions it is a natural question to ask whether
it is in general true that D€EP,, or O, ;. The following points, 5°-8°, show that the
answers to both questions are negative.

5°. DEO i C,, v=1,2, ..., k, are orthogonal to one and the same circle C.

Proof. We may suppose that C is the real axis since the property D€0,,is invariant
under linear transformations of D. Then C:|z—a{|=R{® with Im a{> =0,
v=1,2, ..., 4y, n=0, 1,2, .... Let the circle of generation n+1, C5;*", be interior to
C”. From the geometric positions of these circles and Lemma 15.1 it follows that

k-1
ZIR,(,Z“’ <qRP, u=1,2,..., s

for some fixed ¢ < 1. Thus

Fnt

1 Hp
> RV <qg>S R™, 2=0,1,2,....
v=1

v=1

It follows that gR,(,") = 0(q") 0. Thus K has linear measure zero and this implies
that D € 0,5 ([1], . 252).

6° k=3=DEOD,

Proof. 6° is an immediate corollary of 5°.

7. |a;—a;| > R(1+ R(k—1)) = D€O, 5 where R=Max, R,.
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Proof. Let a circle C with radius 7 interior to C; be reflected in C,, i+j, to a circle
C with radius 7. Then

R%r qr
F < ! < , O<g<l.
"Sla—a|— R, k-1 =4
Hn+1 Hp
It follows that > RV <q T RM.
v=1 v=1

Thus K has linear measure zero and D€0,.

8°. There exists K posilive analytic capacity, i.e. DEP 4p.

Proof. According to Theorem 4 ([2], p. 613) there exists K with Hausdorff dimen-
sion d(K)>1. This implies that there exists a distribution g of the unit mass with
support on K, and constants 4 and «>1, such that u(C)<AR® for any disc C of
any radius R. Then

du(?)

gl—%2

fz)=

is a non-constant, bounded, analytic function in D.

16. Analytic continuation

The method of analytic continuation used in Section 11 can be generalized and
this shows a connection between the eigenvalue problems A and B and the classi-
fication problem for certain Riemann surfaces. The special case of Section 11 gives
a very simple surface, which however is not so for other choices of parameters p
determmmg I', and T'. The aim of this section is to exemplify this method.

Let o in (10 2) equal ;ir (0<r<1) where r is a ratlonal number and write & =¢"*
Then there is a smallest natural number N such that ¢¥=1. Let I',=¢'T", =0, 1
12, .., ([, ,x=T),) and let f,(z)=f("2), »=0, +1, £2, .., (f,,+N(z)E]‘,,(z)). Then
f.,(2} is analytic and bounded outside ", and from (10.2) it follows that

Imf(z)=pIm & f,_,(2), z€T,. (16.1)

Let S, be the z-sphere slit along I',, »=0, 1, ..., N —1. We connect replicas S, of S,
to 8, crosswise along I',, »=0, 1, ..., N—1. Let P,(z) be the point of S, lying over
2€8,. From (16.1) it follows that f,(z) can be continued into S, and observing the
property (10.3) we obtain

fv(Pv(z)): _fv(z) +/‘“_3fv—1(z) +,uef,,+1(z), 7’20: il, izﬁ (162)

Let F(2) =>4 a,f,(z) where {«,}§ ! are complex constants. From (16.2) it follows
that F(z) can be continued into a Riemann surface R obtained by connecting to
each other an infinity of replicas of S, crosswise along the slits according to a rule
whose form depends on 7. We exemplify this rule briefly as follows. If r=2/3 then
N =3 and R is a surface of planar character (see [16], p. 421) such that each sphere
is connected to three others. If r 4-2/3 (0 <r <1) then N >3 and it follows from (16.2)
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.

r=1/3 r=%/3
Fig. 3.

that continuations over non-consecutively numbered slits (e.g. I'y and I',), commute.
Thus the associated Riemann surface R is not of planar character. (In Fig. 3 Ris
indicated in the cases r=2/3 and r=1/3.) In this case the Riemann surface of planar
character, R, obtained by connecting to each S, first S, (»=0, 1, ..., N —1) and then
to each 8, N —1 new replicas and so on, is a covering surface of R. (Thus R =R in the
case r =2/3). Also R is conformally equivalent to a domain  on the w-sphere bound-
ed by the point set K of Section 14 (see [16], p. 424) which has the circles (orthogonal
to the unit circle)

C,:lo—¢ V1 +¢*|=0,7=0,1, .., N1,

as fundamental circles. Here C, corresponds to I',€S, and p depends on the para-
meters p only. Let P=h(w) be the inverse mapping and let g{w)=F(h(w)). We
exhaust Q by Q, where 20, is bounded by the union of the circles of generation «.
Letting /(o) be the total length of these circles and writing M, () =Max,caq, |g(w)|
we have

l9' ()| = if g"(w)—dwl<Ou,,l,,(9)M,,(M), 0y €Q, 7=0,1,2,.... (16.3)

27”/ 0Qa (w - a‘)())2

Thus if lim I,(¢) M, (u) =0 then B lacks solutions for the g and p concerned.
N0
It follows from the proof of 5° that I,(p) < Aq; where 0<g, <1 and that ¢, becomes
arbitrarily small if ¢ is sufficiently small. Further it is possible to estimate M, (u)
in various ways essentially in terms of u only. For instance it follows from (16.2)
that
M) <M+ |

With these estimates the sufficient condition above is satisfied if
1+ |p)g.<1.
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IV. On conformal mappings onto rectilinear slit domains

17. Definitions and notation

Let D be a k-connected domain on the z-sphere bounded by % continua {C,}{,
o €D. Let {«,}7 be any set of real numbers such that 0<«a,<m,v=1,2, ..,k A
rectilinear slit I" making the angle o (0 <a<7m) with the positve real axis we call an
a-slit for short. There exists a unique functien w =f(z) €X'(D) mapping D onto a
domain bounded by rectilinear slits {I",}{, where I, corresponds to C,, v=1,2, ..., k,
such that I', is an o,-slit. This can for example be proved as a limiting case of more
general mapping theorems. The question of whether the iterative process can be
applied in general to this canonical domain may be difficult to answer. Probably
we can expect to find neither a simple “measure of deviation” acting monotonically
as we could for the mappings of Chapter I nor a simple functional as in [7] for the
parallel slit mapping. However something would be gained if it were possible to
apply the iterative process in the case when D is of “nearly” desired shape. Then
the mapping functions are available for approximations with the aid of which we
obtain the convergence of the process in certain cases.

We confine ourselves to the case k =2. Let Q be a mixed slit domain on the {-sphere
bounded by an «;-slit, I';, and an oy-slit, I',. We may normalize 2 by the require-
ment that one of the slits be identical with a pre-assigned slit.

Then Q=CQ(p) is determined by a set, p, of 4 real parameters. Let D =D(A; p)
on the z-sphere be conformally equivalent to Q(p) under a mapping in X'(Q(p)).
Let the boundary of D be an a,-slit, ', and another slit I'Y’, which “‘deviates
very little” from an a,-slit (in some suitable definition of the term), the measure of
deviation being at most A,. More precisely we prescribe I'Q” to be rectilinear and such
that Max,, per, @ |Im e (@ —b)] <A). We can map Q conformally onto such a
domain as was remarked above. With D as starting-point an iterative mapping chain
is constructed as follows:

1° 2,00 =2, 4(2) =2, + T (2), n=0, 1, 2, ..., (2,=2). 2,(2m) =Zn(Zn_1(--(Zi)... )}, B >m;
zn(z) =zn(Z; A07 p)

2°. z,(D)=D™ where D™ is bounded by I’ corresponding to I'\”, »=1, 2. Let
‘D be the simply connected domain bounded by I'(”.

3°. 2,44(2,) €X/(DP) and T**P is an «,, -slit, n=0, 1, 2, ..., where v, =1 if n is odd,
v, =2 if n is even. k

The boundary components of D™ i.e. ['{" and ['{" will also be denoted by '™ —
the o, -slit and ['™ = the other slit. By the width of '™ we mean the quantity

A, =Max, ,pwe  "a(a—b).

Let F,({)=C + R,(£)EX(Q(p)) be the mapping of Q onto D™,

Let U, —={¢[d(¢, T',)<d,} and L,=aU,, v—1, 2.

We choose dy>0 so small that U, N U,=¢. Let L = F,(L,) and let US” be the
point set consisting of the domain containing I'™ and bounded by L{™® together with
this boundary, » =1, 2. From the compactness of X'(Q( it follows that d(L{®, L§) >
k,>0 and d(I'\™, L) >k, >0, v=1, 2, where k, and k, are independent of «.

Let h(z; T, v) be the uniquely determined function, which (1°) is bounded and
analytic in the domain bounded by the rectilinear slit I', (2°) is zero at infinity and
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q(y )

)
-

g
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(3°) has, with respect to I', a symmetric imaginary part with continuous boundary
values v+ C, where C is a constant determined from (2°).
We make the

Definition 17.1. The domain Q(p) ts an iteratively stable domain if there exists a
number A(p) >0 depending only on p such that lim,_, . 2,(z; Ay, p) exists for all Ay < A(p).

If lim,,, z,(2; A, p) exists then necessarily the limit function belongs to X'(D)
and maps D onto €.

18. Lemmas

Lemma 18.1. There exists a constant K independent of n such that

[Pwis(zn)] SKAn_y, 2, €0, (18.1)

| Ro(0)| KA, CET UTy, n=1,2, ..., (18.2)

and |ri(2)| <KA,, 2€TY, (18.3)
| By(0)] <KA,, CETUT,. (18.4)

Proof. From the compactness of X'(Q) it follows that the inequalities are true if

A,_1>A>0. Hence we suppose that A,_, is small. Let z, denote z, reflected in e,
The constants K,, i=1, 2, 3, 4, appearing below are all mdependent of n which fol-
lows from the compactness of X'(L2).

We now prove (18.1). Since |Im e a1 7,(2,_;)| <A,_4, 2a LET™ D it follows that
|7n(2n_1) | <K Ay, 2,4, €LYV and in particular that An<2K A, ;. Thus

|7nsa(zn) | <K A, 4, 2z, €LY, (18.5)

The function z,,,(z,) can be analytically continued over I'™ to a double-sheeted
Riemann surface branched at the endpoints of I'™. The continuation is given by

z:+1 (zn) = 5n+1 (zn (gn—l(zn))) =Zn + a, + T:+1(Zn)
where 75,1 (o0)=0. It follows that (z,_1=2,_1(2,))
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|T:+1 (zn)l < Irn(zn—l)l + |'rn(£n*1)‘ + Irn+1 (zn(énfl))l

and that |an| <2K;A, ;.

If A, ;<A (independent of n) then the continuation over I'™ is certainly pos-
sible up to and onto L{”, which is thought of here as lying in the second sheet and

also
|2 11) — 20| < KyAn_s, 2, € LS. (18.6)

Applying the maximum principle we deduce (18.1) from (18.5) and (18.6).

To prove (18.2) we observe that Tme "»+1R,(()=C,, €I, , where C, is a
constant. Since we also have R, (oo ) = 0 it necessarily follows that | Im e_i“”"Rn(C )| <A,
(el UQ. Thus |R,(O|<K,A,<2K,K,A,_1, (€L UL, Writing F,()=
Fopi1(Q)— (Fr1(8)— F,(C)) we realize that |C,| <A, +K A, <3K,A, <6KiA,_:.
With these observations it is possible to conclude that

n+1°

| Rn(z) [ < K4An—1! C € Pl U F2’

in the same way as in the proof of (18.1) where we now continue F,({) over I'; as

well as over I',. The continuations are given by F,(¢) and z,(#,_,({)) where the
reflections are made in a slit and its image.

The function z;(z) can simply be written explicitly and (18.3) is readily verified
by elementary means.

To prove (18.4) we have [Ime Ry ()| <Ay CET,UQ and | R,y (0)| <K,A,,
{€L,U L, as above. Further

|Tm e~ By ()| <3K, Ay, €T,

Using the condition that I'Y, =1, 2, are rectilinear, we obtain (18.4) with the aid
of analytic continuation as above. Lemma 18.1 is proved.

Lemma 18.2. There exist 6, >0 and A independent of n such that if A, _, <0, then

Fos1(zn) = —€ "2 h(z,; T, , Ime "r,) + 0,1 (20), (18.7)
where |on+1(2n)| <AAE_,, anL,(,:’H, n=1,2,....

Proof. To avoid complicated notation we perform the proof for the special case
n=1. It is readily seen from the text that we can determine ¢, and 4 independently
of n. This is a consequence of the compactness of X'(D). The constants 4;, i=1, 2,
3, 4, appearing in the present proof are of this kind. Of course we do not use here
the condition that I'® is rectilinear.

If n=1 then (18.7) becomes

Tg(2) = — eialh(zﬁ Iy, Ime ™))+ 02 (21)-
We have Ime *™ry(z,) =co— Ime "™z, 2, TP
or Im e ™ py(z+ 1 (2)) =cy—co—Ime ™7 (2), z€P,
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where ¢, and ¢, are constants. Let v(z) be the bounded harmonic function in DL
which takes the values ¢,—c,—Ime ™7 (2) on I'". Let @ and b be the endpoints
of I'® and z=8(w)=(b—a) (w+w™')/4+ (b+a)/2. Then r,(S(w)) is analytic in a
ring 0! <|w| <, where p>1 depends only on the length of I'{® and &(I'{”, T'y"). If

Rlw)=-1 f (8@)) 4 (18.8)
271 lo)=¢ W — W
then r, (S(w)) = B(w) + B(w™ ") + const.
and hence v(S(w)) = — Im e "™ (R(w) + R(@)) + const. (18.9)

Since |ry(z)| <KA, (Lemma 18.1) it follows from (18.8) and (18.9) that
[0(S(ey)) — 0(S(ws)) | < Koy KAg| w0y — 5| (18.10)
if [w,], |ws] <o’ <g. Here K, depends on ¢’ and g only. L

Let {(z) = Bz + B’ be such that I-1(a) =z,(a) and 1-1(b) =2,(b). Then [(T'{") is a slit
with end-points a and b.

Now we choose 8, >0 so small that A, <8, implies the following: (1°) {T'{’) = Uﬁ‘f’;
(2°) UT'{) is the image under S(w) of a star-shaped (with respect to w = 0) analytic
are w=R(0) ¢, 0 <0 <z connecting » = +1; (3°) T', 1" (I'") < Uf". In (2°) we ob-
serve that |r,(z)| <K A, implies that |r; (2)| < K'A,, z € I'{” which ensures that (2°)
can be satisfied. .

Now let S(¢') =z and S(R(w)e'*) =1(z +7,(z)) where z€I'{” and 0<6, y <z. Then it
is elementarily verified that

| Re'* — '] <A, A§.
Inserting this in (18.10) and using (1°) we obtain
|2(l(z +74(2))) —v(2)| <4,A§, €LY,
or according to the definition of »(2)

|9(l(z,)) — Tm e "1y (2,) | < A2 AJ, 2 €T

From the maximum principle it follows that this is true for z, € D{* UT{’ and
hence if A, <6, that

ra(y) = €% h(zy; I (TF), —Im e r, (fzy)) + 03, (18.11)

where |03 | < 43A4, z, € LY.
Using (3°) and Lemma 18.1 we have for Ay <d, that

|h(zy; Ty, — Im &™) ~ h(zy; 1 H(TP), — Im e 7y (Uzy))| A4S, 20 € L. (18.12)
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Combining (18.11) and (18.12) we obtain the statement of the lemma for n=1 and
referring to the preliminary remark we find that Lemma 18.2 is proved.

Remark. Using the rectilinearity of I'f® we find that Lemma 18.2 is true for n=0
with the formal difference that |g,(z)| <AAE, z€L{”. The proof is analogous to
the above and it may also be carried through in a direct way since the function z,(2)
can be written down explicitly.

19. The main theorem

Let E, have the meaning of Section 13 (p. 130).
Theorem 19.1. If p€ E, then Q(p) is iteratively stable.

Proof. Let v, be a real-valued, continuous function given on I'y. Then denote
Im @ *p(z; Ty, —v,), 2€0,, by v, and write v, =T v,. Further let vy=T",0, be
the function which takes the values Im e/~ h(z; I'y, —v,), 2€";. Hence vy =T1,T5v,
and we pose the eigenvalue problem

MA=T,,Tsv. (19.1)

If T, can be obtained from I'; by a rotation 7';,=Ts =T where v;, v, and v, are
thought of as being defined on I';. In this case we pose the problem

lv="Ty. (19.2)

If (19.1) has a solution (4, v), 1==0, v = 0, we define f,(2) =¢/“h(z; I[';, —v) and fy(2) =
€h(z; Ty, —Tyv). Then f,(2) is analytic outside I',, v=1, 2. From (19.1) follows
that v coincides on I'; with the values of a function that is harmonic outside T'.
In particular this implies that f,(z) is bounded. In the same way we conclude that
fo(2) is bounded. Further f,(c0)=0, y=1, 2, and so (19.1) takes the form

AIm (M L) =10,— Im.e"'“‘fz(z), z€ly, (19.3)
Im e—m,fg (Z) — 02 —Im e—mzfl (Z), z € Pg,

where O, and C, are real constants due to the conditions f,{cc)=0, y=1, 2. In (19.3)
A=1, which follows in the same way as in Theorem 13.1, see 1°, p. 130.

If A<cos? (ap—ay) then we can replace fy(z) by A~ (2)+4¢'4; and fy(z) by
—fo(2) +1€' A4, where A, and A4, are determined by

Ad,+ A,y cos (og — o) =ACY,

A, cos (ag—ay) + A, =0,
Writing u =1~ we obtain

Ime ™ f (z) =Ime ™f,(z), 2€TY,
Ime "™ f,(2)=puTme ™ f, (z), 2€TY, (19.4)
Ree ' f,(0)=0, y=1,2.
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Now (19.4) is identical with (10.1) in Problem A (p. 126) together with the condi-
tion (10.3). If A =cos? (x, — ;) then A <1 (A =1 is excluded).

In a similar way (19.2) can be rewritten in the form of (10.2) together with the
condition (10.4) (p. 126) for A<+ —cos (ay —04). Here necessarily A<=+1 and if the
exceptional case A= —cos (a, — a;) occurs then {1 <1.

Thus if p € E; with respect to A then necessarily || <1 in (19.1) if there are any
solutions and analogously |A] <1 in (19.2). We perform the proof in the former case.
The latter one can be handled analogously. The transformation 71',,7, has a con-
tinuous and bounded kernel and it follows that there exist ¢, 0 <¢ <1, and m, depend-
ing only on p such that (||v]| see below)

WT1To)™| <q™ m>my. (19.5)

We now turn to the iterative process. Suppose that Lemma 18.2 can be applied
to 2m (m=>m,) consecutive functions r,(z,_,) starting with r,,,(2s,), n=>1. Then

Im e "7y, 5n41(2amson) = (T12T20)™ (1M €770 1) + 1y Zamy2n €L, (19.6)
where |5,,| <K,,A},_,. Here K, depends on p and m only. Let
lollr = Max |v(2)].
2eI’
From Lemma 18.1 we obtain

“IIme ie l7‘2,,,+2nJr1||1—‘(2m+2n)_‘ "Ime i“’72m+2n+1|[n| <K” 2n 15 (197)

where K7, depends on p and m only. Observing that |Im e 7y, ,,|r, <KAg
where K is the number of Lemma 18.1 we deduce from (19.5)—(19.7) that

“Im e_ia‘72m+2n+1”r(12m+2n) < quAgn,I + KmAgn—lr (19.8)

where K,, depends on p and m only. In particular
A2m+2n+1<2I{'qu2n—1-}-ZI{mA;%n—l- (199)

The same argument holds if »—0. In this case A,,_, is replaced by Ay, and A, 004

by Aszrl’
Let ¢; be a number such that 0<g, <1. Then we fix a number m >mg such that

G
m A1
" Sk

It follows from Lemma 18.1 that it is possible to find a number §,,>0 depending
only on p and m such that the argument above, (19.6)—(19.9), is justified as soon as
A2n—1 < 6m(A0 < 6m)

Thus with m and &, fixed we prescribe that Ay<Min (4, (¢,/4K)?) =A(p)>0.
We now deduce from (19.9) that with A, replacing A,,_;,

PSP NAPRS A(p).
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The conditions for an application of the argument leading from (19.6) to (19.9) are
a fortiori satisfied with r,, 4 as starting-point. We obtain

Agmis < Q%Ao <A(p)
and inductively Aovmin_1SqiA,, N=1,2, ..,

which implies that lim,, z,(2; Ay, p) exists if Ay<A(p). Thus Q(p) is iteratively
stable. We have, moreover, according to Lemma 18.1,

|1B,0)] = 0(gm=l) =0@), e uT, 0<gp<1.

1

Theorem 19.1 is proved.
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