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S o m e  prob lem s  related to i terative methods  in e o n f o r m a l  

mapping  

By II~GEMAR LIND 

Introduction 

A. The conformal mapping  problem for domains of connect ivi ty  greater than  one 
has been a t tacked in several ways. The desired mapping  function can sometimes be 
found as the solution of an  extremal  problem or of an integral equat ion or its existence 
m a y  in certain cases be proved by  means of the method  of continuity.  Another  
method,  sometimes called the /unction-theoretical iteration process, is to  express the 
mapping function F(z) as a composition of functions {/n}7: 

~ ( Z ) =  /n(/n-l( . . .  (/I (Z)) .-.)); 
(A1) 

F(z) = lim F~ (z), 
n - - ~  oo  

where t h e / n  (determined in some way, e.g. see Hiibner below) are meromorphic  and 
univalent  in certain simply connected domains. An  advantage  of this method  is tha t  
it connects the theoretical and  the constructive questions about  the mapping.  

Hiibner ([10] pp. 43-55) has constructed a process--the general iteration process-- 
by  means of which every funct ion F(z) con_formally mapping one domain onto a 
domain with analytic boundary  can be expressed according to (A1). Thus, theore- 
tically several of the well-known canonical mappings can be expressed in this way.  
However,  the determinat ion of /n ,  n = 1, 2 .. . . .  as a rule requires knowledge of F(z) 
itself and thus the process from a constructive point  of view has little interest. 
But  there exist exceptions, namely  the circular ring mapping  and the mapping  onto 
the lemniscate domain, studied earlier by  Walsh, Grunsky  and Landau.  

A detailed account  of the problems referred to in this section and  the following is 
found in [3] pp. 208-240. 

B. A straightforward a t t empt  to use the function-theoretical  i teration process is 
sketched below. For  brevi ty  we call it the iterative process. Here the determinat ion 
of the funct ions/~ causes no trouble bu t  on the other  hand  the convergence question 
is more intricate. 

Let  D be a domain  of connect ivi ty  k >~2 on the z-sphere with the cont inua C~ (~ 
v = 1, 2 . . . . .  k, as boundary  components.  Let  D (n) = Fn(D) (F,~ to be determined later) 
have boundary  components  C~ (n) corresponding to C~ (~ v = 1, 2 .. . . .  k. I t  is required 
to find F(z), eventual ly restricted by  some normalizat ion conditions, conformally 
mapping D onto a domain ~ so tha t  C~ (~ corresponds to L~, v = 1, 2 .. . . .  k. Here L~ 
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is some definite continuum (e.g. the unit circle) or some type of a continuum (e.g. a 
circle or a slit making a prescribed angle with the positive real axis), v = 1, 2 ..... k. 
I t  is of course to be understood tha t  the mapping conditions are appropriately for- 
mulated so that  the mapping is not "overdetermined".  Then/n+l,  n=O, 1, 2, ..., is 
determined in the following way. According to some rule we choose a natural  num- 
ber r~, 1 <vn <k,  and look at  the simply connected domain D (n) bounded by C (n) v~ v n 

and containing the other components. This domain is mapped conformally onto a 
domain bounded by  the continuum or the type of continuum L, ,  associated with 
C~ (~ Together with suitable normalization conditions this determines /~+i and 
C~ (~+i), v -  1, 2 ..... k, as well. 

The iterative process has proved successful mainly in two cases, namely (a) the 
circle domain mapping and (b) certain simple slit mappings. 

Case (a) is due to Koebe [12]. Suppose that  the point at  infinity belongs to D. 
We require that  

F ( z ) = z  + a i  + ... + a ,  + ... (B2) 
Z Z n 

be the Laurent expansion in the neighbourhood of infinity. We normalize/n in the 
same manner and for example choose Vn SO that  v n - - l - - n  (mod ]c), n = 0 ,  1, 2 . . . . .  
The proof of convergence is based on the following. I t  can be shown tha t  every kernel 
of {D(n)}~ has a specific reflection proper ty  (compare [3] pp. 212-214) and that  every 
domain having this property is necessarily a circle domain. 

Koebe ([13] especially pp. 288-296) also gave another proof for the same theorem 
using a somewhat different iterative technique ("das I terat ionsverfahren" as distinct 
from the former, called "das iterierende Verfahren") in which in order to obtain 
quicker convergence the reflection properties are exploited more. 

Koma tu  [14] has used the iterative process for the circular ring mapping. Cer- 
tainly this is a special case of Koebe 's  general theorem but  Komatu  uses a measure 
of convergence which does not involve reflection. 

Case (b) is due to Gr6tzsch ([6], [7], [9]) and part ly  to Golusin [4]. The proofs are 
carried out for the parallel, circular and radial slit mappings. In  the case of a parallel 
slit domain, where the slits are parallel to the real axis, the process can be outlined 
as follows: Assuming as before that  D contains the point at infinity, we require 
that  F(z) and/~  are normalized according to (B2). Let a(1 n) be the first coefficient of 
the Laurent  expansion of/~ in the neighbourhood of infinity and A(1 ~) the correspond- 
ing coefficient of F~. Then A(1 n) = ~  a (') Also v~ may  be chosen as above (other / ~ 1  1 * 

rules of choice may  however lead to quicker convergence). The proof of convergence 
is based on the following. If {D (n) }F is supposed to have a kernel which is not a parallel 

R slit domain, then necessarily ~ ,=l  e a(i ")-+ ~ .  On the other hand, it is clear tha t  
I A(I")I is uniformly bounded and this gives a contradiction. The well-known extre- 
mal property of the mapping in question is an immediate by-product  of this. The 
circular and radial slit mappings arc treated in a similar way. Gr6tzsch also gives 
estimates concerning the rate of convergence especially in [9]. 

C. The vital point of the proofs of Gr6tzsch and Golusin above is the very simple 
behaviour of the functionals a(i n). I t  seems reasonable to suppose tha t  proofs based 
on less special properties may  have wider scope. A similar remark can be made 
about  Koebe's  proof. 
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The following paper  mainly deals with constructions of such alternative proofs, 
discusses some possible extensions and in certain cases carries them through. 

In  Chapter I is introduced a modified iterative process in which every step in- 
volves a conformal mapping of a (k-1)-connected  domain- - the  original domain 
being k-connected. I t  is proved tha t  this process can be successfully applied to a 
number  of slit mappings. The proofs of convergence are essentially dependent on 
the maximum principle for harmonic functions. Besides two examples of extremal 
properties cormected to the mappings referred to in this paragraph are proved with 
the aid of the iterative process. We conclude the chapter with an estimate of the 
rate of convergence of Gr6tzsch's process. 

In  Chapter I I  the iterative process is applied to the case where the boundary 
components of s (see B) are required to be simple, closed and analytic, for the rest 
they are of arbitrarily prescribed types. I t  is proved that  the process converges if 
D is subjected to certain geometrical conditions, depending on ~D and ~s and essen- 
tially meaning tha t  the boundary components are sufficiently separated from each 
other. 

Chapter I I I  deals with two eigenvalue problems, which may  have a certain inte- 
rest in themselves. Some partial  results are deduced and the connection between 
these problems and the classification problem of certain Riemann surfaces is dis- 
cussed. Especially this problem is studied for a surface, which can be associated with 
a circle domain and which also plays an important  par t  in Koebe's  proofs referred 
to above. 

The aim of Chapter I V  is to discuss an application of the process of Chapter I 
in the case when s is a mixed rectilinear slit domain of connectivity 2, that  is its 
boundary consists of two rectilinear slits making a non-zero angle with one another. 
D is supposed to be of "nearly r ight" shape. We state a sufficient convergence con- 
dition which is connected with the eigenvalue problems of Chapter I I I .  

Professor Lennart  Carleson suggested the subject of this paper. I wish to express 
m y  gratitude for his generously given advice and kind interest in my  work. 

I.  Conformal  mappings  on to  certa in  d o m a i n s  o f  slit  type  

1. Definitions 

By a k-connected domain D we shall in this paper  understand a domain bounded 
by  k disjoint continua C1, C,, .... 6~, 0D = [.iv=iCy . k  

Let D be a domain on the z-sphere. Then we make the following definitions. 

De/inition 1.1. Y,(D) is the class o//unctions/(z) meromorphic and univalent in D 
which have the Laurent expansion 

/(z) =z+a~ "'" + ~ + " "  

in the ncighbourhood o/ infinity. It is to be understood that D contains the point at 
in/inity. 
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Definition 1.2. E ' (D)  is the subclass o /E(D)  consisting o/those/unctions/or which 
a o = O. 

Definition 1.3. E0(D ) is the subclass o/ E(D) consisting o/those/unctions/or which 
/(0) =0 .  It is to be understood that D in this case contains the origin. 

2. The modified iterative process 

Our aim is to express a canonical mapping  F(z) in the form 

zn(z) =zn(z~- l ( . . .  (zl(z)) . . .));  F(z)= lim z~(z) (2.1) 
n - - > ~  

where zn(z~_i), n = l ,  2 .. . . .  (z0=z), is a conformal mapping of a certain (k -1 ) - con -  
nected domain on the z~_l-sphere--the original domain being k-connected. We write 
z~(zm) =z~(z=_l(...(zm)...)),n>m, and denote the inverse of z~(zm) b y  Zm(Z~). 

Some formal nota t ion will be used th roughout  this chapter.  Let  D = D  (~ be a 
k-cormected domain on the z-sphere and let ~D = [3 ~=lCg where Cg = C~ ~ = 1, 2 . . . . .  
k, are the boundary  components.  We write D (~) =zn(D) and ~D (~) = U~=lC<ff where 
C(~) corresponds to C (~ under  the mapping  z~(z), # = 1, 2, k. By D~ ~) is meant  the 
(k -1 ) - connec t ed  domain such tha t  ~D~<~)= [J,.~C~ ~) and C~)~D~ ~). Unless other- 
wise ment ioned the letter k stands for connect ivi ty  and D for domain. 

The precise description of the modified iterative process differs slightly f rom one 
case to another.  The differences however  are purely formal and therefore it is suffi- 
cient to describe a typical  situation. 

Our result is tha t  for any  fini tely-connected domain D on the z-sphere ( ~  E D) there 
exists F(z)EE'(D) mapping D onto a canonical domain of some type  A (e.g. a 
parallel slit domain). Our proof runs in three steps. (a) The s ta tement  is proved 
t rue for k = 1. (b) Assuming it t rue for k - 1  we determine z~+i(z~) as follows: Let  
z~+l(z~) EE'(D~: )) and  let it map  D~: ) onto a domain of type  A, n - 0 ,  1, 2 . . . . .  Here 

{v=}~ is any  sequence of the numbers  1, 2 .. . . .  k such tha t  Vn+l~=v~, n = 0 ,  1, 2 .. . . .  
Then it is proved tha t  F(z)=lim=_.~ z~(z)EE'(D) exists, and hence necessarily maps  
D onto a domain of type  A. (c) B y  induct ion the s ta tement  is true. 

Fig. 1 shows the first steps in a modified iterative process in the case k = 3 .  The 
canonical domain in question is a parallel slit domain. 

3. Slit mapping theorems 

The proof of Theorem 3 .1- -wi th  some formal differences--is found in [15]. For  
the convenience of the reader it is repeated here. Theorems 3.1-3.10 are classical 
and of course there exist several proofs of them, (see e.g. [11]). Throughout  this 
paper  a slit is to  be thought  of as having two different edges. 

Theorem 3.1. For each O, 0~<0<~,  there exists a unique /unction ~%(z)EE'(D) 
mapping D onto a domain bounded by rectilinear slits making the angle 0 with the positive 
real axis. 

Remark. We call such a domain a 0-angled parallel slit domain. 

Proo/. Suppose tha t  ~ is a 0-angled parallel slit domain  on the w-sphere and 
suppose tha t  / (w)EE ' (~ )  maps  ~ onto another  domain of the same type.  Then  
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Fig. 1. 

e-~~ ) -~o) is analyt ic  and bounded in t~, it is zero at  infinity and its imaginary 
par t  is constant  on each boundary  component .  Hence [(c0)-o). Thus qJo(Z) is unique 
if it exists. 

The funct ion Cfo(Z) exists if k = 1; this follows f rom the g i e m a n n  mapping  theorem 
plus an  elementary t ransformation.  

Applying the process described in the preceding section with Z.+l(Zn)E Y/(D~(~ )) we 
observe tha t  

un(z.) = I m  e-~~ -z . ) ,  n =2 ,  3 .. . . .  (3.1) 

is harmonic and bounded in D~(: ), t ha t  u.(oo) = 0  and tha t  it is constant  on each boun- 

da ry  component  (not necessarily the same constant  on each) bu t  one, C~(~_) 1. (I t  m a y  

happen tha t  it takes a constant  value on this component  too bu t  in this case the 
problem is solved.) Since un(Zn) is the imaginary pa r t  of a bounded  and analyt ic  
funct ion in D~ (n) this means tha t  un(z.) at tains  its max imum and  min imum values 

on C~:) r Wri te  7 ' . -  C~(:_)~, F ~ -  C~(: ) and 

A n =  max  ] I m e - ' ~  max  l u . ( z ; ) - u . ( z ; ) l .  
z;,, z;~ ~ y .  z~,, z;i ~ rn 

In  part icular  it follows tha t  
[u.(z.)[ <An, z.eT'., 

From the max imum principle we deduce t h a t  there exists a number  q., O < q. < 1, 
such tha t  

max lUn(Zn)-Un(Zn)l~.Anqn. 
z;e z;i ~ P. 

F rom [1], Ch. IV, 26E, p. 263, combined with the compactness  of E'(D), it follows 
tha t  it is possible to find a number  q, 0 < q < 1, such tha t  qn can be chosen ~ q for all 
n~>2. 

Thus max lu,(z~)-u,(zn)l <~A,q. 
z;~. z;; ~ P, 
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But since I m  e-~az,~ is constant on F~ this means that  

Thus when n-~ c~ we have 
A.+ x ~< A.q. 

A. =O(q")~O. (3.2) 

This implies that  limn_~r zn(z) exists. For suppose the contrary. Since E'(D) is a 
compact family it is then possible to select two subsequences converging to different 
functions ~ol(z), ~o2(z ) EE'(D). From (3.2) it follows tha t  (Ol(D) and ~o2(D ) are both 
0-angled parallel slit domains. They are conformally equivalent under a mapping 
belonging to E '  an~l thus according to the uniqueness eol(z ) -~%(z) which gives a 
contradiction. Theorem 3.1 is now proved. 

Remark 1. The proof indicates that  one can estimate the rate of convergence of 
the process in terms of quantities which depend only on D. Let  ~ =~o(D) and let 
~)n(W)=Zn(~oa(o))) which thus maps ~ onto D ("). From l i m e  i~162 ~<A~, 
toE,S ,  it follows tha t  in any  closed subset A of ~ we have 

l%(o~)-co I <KAA,, eoeA, 

where K A depends on A and ~) only. The only non-rectilinear boundary component 
of ~D (~) is 7~ = zn(F~-l). Let zn-1 be the reflection of z~_ t with respect to lP~_1 (n ~> 3). 
Then we define zn =z~(zn-l(z~)) to be the reflection of zn with respect to ~n" I t  now 
follows from the reflection principle that  ~v~((o) can be analytically continued over 
each of the boundary components of ~ onto a suitably chosen k-connected domain 
G on a many-sheeted Riemalm surface branched at  the endpoints of the slits of ~ .  
The continuations are given by ~(oJ*), where the symbols - and * denote the reflec- 
tion operators with respect to a slit and its image respectively. From the compactness 
of Y/(~) it follows that  ~G can be chosen so tha t  its projection onto the to-sphere 
is a fixed, closed subset A of ~ independent of n and such tha t  I ~ * - w ]  ~<KAn_I, 
r EA, (K independent of n). Observing tha t  A~_ 1 <~K'q n-I we finally deduce from 
the maximum principle for analytic functions tha t  

I~.(o)-o~ I ~<~r ~ee~, 

where C and q depend only on D (or ~).  Similar remarks can be made in connection 
with the following theorems of this chapter. 

Remark 2. The argument in the proof of Theorem 3.1 built on [1], 26E, p. 263 and 
the compactness of VJ(D) will be frequently used in various forms in this chapter. 
All of these forms are essentially the same as the following. Let  F be a compact  
family of k-connected domains D on the z-sphere such tha t  (1 ~ ~D is contained in 
]z I ~ R ,  (2 ~ c~ ED, (3 ~ ZDED and (4 ~ z D is distant at  least d > 0  from__ ~D. Fur ther  

let u(z) be any harmonic function in D such tha t  u (oo)=0  and limzeDIU(Z)[ =1.  
Then ]U(ZD)] ~< q < 1 where q depends on F and d only. 

Theorem 3.2. There exists a unique /unction O(z)E~J0(D ) mapping D onto a 
domain bounded by slits on concentric circles with the origin as centre. 

Proo/. The proof is analogous to the preceding one. With the same notation we 
observe that  the branch of log ([(eo)/eo) which is zero a t  infinity is analytic in ~ and 
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tha t  its real par t  is constant on each boundary component. Thus uniqueness follows. 
Prescribing Z~+I(Zn)EEo(D~(: )) we choose the branch of log (z~+l(zn)/Zn) which is zero 
a t  infinity. We can now apply the same argul~ent to 

un (z~) = l~e log zn +1 (z~), n = 2, 3 . . . .  , (3.3) 
gn 

as we did to the functions (3.1). 

Theorem 3.3. There exists a unique /unction tF(z)EEo(D) mapping D onto a 
domain bounded by slits on half-rays emanating from the origin. 

Proof. The proof is analogous to the preceding one. Here the imaginary par t  of 
log (f(~o)/~o) is constant on each boundary component and instead of (3.3) we use 

Zn+l(Zn) u~ (z~) = I m  log - -  (3.4) 
Zn 

Theorem 3.4. For each O, 0 <0 <~r, 0 4=:r/2, there exists a unigue /unction /o(Z) EF, o(D) 
mapping D onto a domain bounded by slits on logarithmic spirals making the angle 0 
with half-rays emanating from the origin. 

Proof. The proof is analogous to the preceding ones. Instead of (3.3) we use 

un (Zn) = I m  e -~~ log z~ +1 (Zn). (3.5) 
Zn 

Theorem 3.5. There exists a unique/unction (o = Ol(z) conformally mapping D onto 
a domain contained in Ir [< 1, bounded by I w [= 1 corresponding to C~ and slits on 
vircles centred at the origin and such that 

' > O~(o)=o, o~(o) o, (OeD). 

Proof. The proof (see e.g. [11] p. 74) may  be based on the possibility of mapping 
a certain domain of connectivity 2 ( k - l )  conformMly onto a circular slit domain 
and  this mapping can be represented in iterativc terms according to Theorem 3.2. 
The proof can be carried through in a direct way too. I t  is then more suitable to 
change the conditions so tha t  (I)~(0)= 1 and to let the radius of the outer circle be 
unspecified. Then whenever % = 1 ,  we define Z=+l(Zn)=~(z~)/O'(O) where (I) is the 
function of Theorem 3.2 with respect to D (n). The proof is analogous to tha t  of 
Theorem 3.2. 

Theorem 3.6. There exists a unigue /unction ~o =tFl(z ) con/ormally mapping D onto 
a domain contained in ](o I <  1, bounded by I w ]= 1 corresponding to C 1 and slits on 
half-rays emanating from the origin and such that 

~1(0)=0, W~(0)>0, (0eD). 

Proof. The proof (see e.g. [11] p. 74) may  be based on the possibility of mapping 
a certain domain of connectivity 2 ( k - 1 )  conformally onto a radial slit domain and 
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this mapping  can be represented in iterative terms according to Theorem 3.3. On 
the other  hand, the proof can be carried through in a direct way. As in the preceding 
proof we change the conditions so tha t  ~F~(0)= 1. For  k = 2 ,  ~=  1/z maps D onto D' .  
Then it is possible to find a 0 such tha t  ~0(~) (Theorem 3.1) maps  D '  onto D" bounded 
by  two slits on one and the same line. A suitable, e lementary root  t ransformat ion 
then maps D" onto a domain of the desired type.  For  k > 2 we m a y  assume tha t  D 
is contained in {z {<  r and tha t  C1 is the circle [z { = r. I n  the iterative process it is 
then always possible to prescribe vn 4=1, n = l ,  2, ..., and Z~+l(Z,)~Fl(z~) (/F~(0)=1) 
with respect to D~: ). Observing tha t  the function 

/n(Zn)=logZn+l(Zn~); /n(O)=O, 
Zn 

is analyt ic  and bounded  in D (n) tha t  i ts real par t  is constant  on C(~ ~) and tha t  its 
imaginary par t  is constant  on each other boundary  component  bu t  one, ?~, we 
conclude tha t  Im/n(z~) at ta ins  its max imum and  min imum on ?n" Then the proof  
is analogous to tha t  of Theorem 3.3. 

Thereom 3.7. Suppose that 1 E C 1 (analytic) and k >~ 2. There exists a unique/unct ion 
o~ = (O2(z) mapping D con/ormally onto a domain bounded by [w[ = 1 corresponding to 
CI, ] co [ = r < 1 (r may  not be prescribed) corresponding to C2 and slits on circles centred 
at the origin, and such that (I)~(1) = 1. 

Pros/.  The proof of uniqueness is analogous to tha t  of Theorem 3.2. 
I n  the iterative process we choose v~ to be al ternately 2 and 1. We identify 

Zn+l(Z,) al ternately with (Dl(z~)/q)l(1) and r ) =(P*(z~). Here (DI(~) is the  
funct ion of Theorem 3.5 with respect to D(~ ~) in the former case and to D1 (~) inverted 
in ~- =1  in the lat ter  case. Thus (I)~(zn) maps Dx (~) onto a domairt contained in 
[zn+, > r~+l( < 1) and such tha t  C(2 ~ +1) is the circle [z,+ 1 { = r~+ 1. Fur the r  (I)~'(c~) = c~ 
and (I)*(1) = 1. The functions 

u~ (zn) = Re l o g - - ,  n = 2, 3 . . . . .  (3.6) 
2~ n 

being zero at  z n = 1 and being bounded and harmonic in D~(: ) behave like the func- 
tions (3.3). The zn(z) belong to a compact  family of univalent  functions. I t  follows 
tha t  every kernel of {D(n)}~ r mus t  be an annulus with circular slits of the type  
described in the theorem. Together  with the uniqueness this implies t ha t  (b2(z) = 
lim~_+r162 zn(z). Theorem 3.7 is proved. 

Remark.  Unlike the preceding proofs the above is not  inductive. For  k = 2  it is 
essentially the same as tha t  of K o m a t u  (see the introduct ion p. 102). 

Theorem 3.8. Suppose that 1 E C 1 (analytic) and k >~ 2. There exists a unique/unct ion  
r =~F~(z) mapping D eon/ormally onto a domain bounded by [co[ = 1 corresponding to 
C1, [~o[ = r  < 1 (r may  not be prescribed) corresponding to C~ and slits on hall-rays 
emanat ing/rom the origin and such that ~F2(1 ) = 1. 
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Proo/. The proof is analogous to the preceding one. The iterative process is based 
on the function tFl(~) of Theorem 3.6. As above we use the functions 

Zn+l(Zn) 
U n ( Z , ~ ) = R e l o g - - ,  n = 2 ,  3 . . . . .  (3.7) 

Zn 

to prove the convergence. I t  is to be observed that  u~(zn) attains its extremal values 
on C~(~_) (k>2;  for k = 2  Theorems 3.7 and 3.8 are identical) since log (Z~+l(Z,)/z~) 
is analytic and bounded in D~(: ) and its imaginary par t  is constant on C, (~), ~ 4= l, 2. 

Theorem 3.9. For each 0, 0 < 0 < 2 z ,  there exists a unique/unctionPo(z)EZo(D) 
mapping D onto a domain bounded by slits on con/ocal co-axial parabolas with the origin 
as/ocus and the axis making the angle 0 with the positive real axis. 

Proo]. Let f2 be a domain on the ~-sphere, 0, oo E ~.  By ~ is meant  the two-sheeted 
covering surface of ~ branched at  zero and infinity. 

Supposing ~ on the w-sphere and f2' being parabolic slit domains of the type in 
question conformally equivalent under a mapping/(co) E E0(~ ) we can define a bound- 
ed analytic function in ~ to take the values 

V ~ / ( ~ o )  - Ve - '~  o~ 

at  points lying over o). I t  is zero at  the branch points and its imaginary par t  is con- 
stant  on each boundary component. Hence /(o))-o) which proves the uniqueness. 

The theorem is true for k = l  (see e.g. [11], pp. 78-80). 
The iterative process is constructed in the standard way (zn+l(zn)EE0(D~(:))). We 

observe that  the functions un(P~) taking the values 

Im{Ve-*~ - ~ } ,  n = 2 , 3  . . . . .  (3.8) 

at points P~ E~(:  ) lying over z~, are bounded and harmonic, are zero at the branch 
points and are constant on each boundary component (of ~/),(:)) except two which 
lie one over the other, with the boundary values differing only in sign. Thus the 
functions u~(Pn) , n = 2 ,  3 ..... behave like the functions (3.1) and it follows as in 
Theorem 3.1 tha t  every kernel of {D(n)}~ must be a parabolic slit domain of the type 
in question. From the uniqueness it then follows tha t  Po(z)=lim~_~ z~(z). Theorem 
3.9 is proved. 

Theorem 3.10. For each a E D, a 4=0, and o~, 0 <o~<7~, there exists a unique/unction 
r ) mapping D onto a domain bounded by slits on curves belonging to 
the/amily 

G(a) (e(C+u) e-t~ "~- e_(C+tt)e-in)2, 
co= 7 

where t is a real parameter and c a real constant. 

Remark. The family of curves of Theorem 3.10 are trajectories of the family of 
ellipses with loci at  0 and G(a). For ~ = 0  we obtain these ellipses and for o~=~/2 
hyperbolas with loci at  0 and G(a). 
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Proo/. Let ~ be a domain on the ~-sphere, 0, a E ~  (a#0) .  By  (](a) is meant  the 
two-sheeted covering surface of ~ branched at  0 and a. Further  we write formally 

g(~,A) = ~  

The uniqueness follows mainly as in the preceding proof. With analogous notation 
it  is possible to define a bounded analytic function in ~(a) to take the values 

e '~ log g(/(eo),/(a)! 
g(~o, a) 

a t  points over r being zero at  points over cr Since its real par t  is constant on each 
boundary component it follows that/(o~) ~w.  

In  the iterative process we choose zn+:(z~)E Y~o(D(~:) ) and the associated parameter  
is a n =zn(a ). The functions un(Pn) taking the values 

Re e ~ log g(zn+l (Zn), an+l) 
g(Zn, an) , n = 2, 3, . . . ,  (3.9) 

a t  points P E/~ (n)+" " n ~, t+n) then have properties similar to the functions (3.8) and the 
argument  runs as in the preceding proof. 

As regards the case k = l ,  see e.g. [5], p. 128. Theorem 3.10 is proved. 

Theorem 3.11. For each a E D (a #0) there exists a unique/unction co = CI(Z ) E F~0(D ) 
mapping D onto a domain bounded by slits on circles going through 0 and C:(a), 

Proo/. Suppose that  ~ on the ~o-sphere is a slit domain of the type described in 
the theorem (associated parameter  a) and suppose that  there exists /((o)EE0(~ ) 
mapping ~ onto another domain of the same type (associated parameter / (a)) .  Then 

I go(/(to) - / ( a ) )  og 

is analytic and bounded in ~ and I m  g(w) is constant on each boundary component 
and  this implies tha t / (w)  =~o. Thus Cl(Z) is unique if it exists. 

In  the case k = l  we must prove that  there exists a function ~o=/($), univalent 
and meromorphic in E:[ ~[ < 1, having a simple pole with residue 1 at  the origin, 
and  mapping E onto a domain with boundary of the following type: Let  a~EE, 
~, # 0  (i = 1, 2), :r #~2, with al, a2 otherwise arbitrary. Then the required boundary 
is to be a slit on a circle through 0 =/(al)  and/(as).  Suppose first that  the straight line 
through ~1 and as contains the origin and makes the angle 0 with the positive 
real axis (0 ~<0 <~r). Then the desired mapping is 

which maps E eonformally onto a domain bounded by  a slit on the straight lino 
through 0 =1(~1) and/(:r In  another case the system 
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[u--0Q [ 
i =  1,2,  

which is equivalent  to 
~ [~[ 

u =i+I  F 

has  a unique non-zero solution u, [u[ < 1 and 

i = 1 , 2 ,  

U-- ~ U --061 /(~) - 

u ~ ( 1  - ~ )  ual(1  - ~al) 

is the desired mapping.  I f  we write T(~)= ( u - ~ ) / ( u ~ ( 1 - z ~ ) )  we can readily verify 
that / (1~1 = l )  is a slit on the circle ~o+T(~l) = u -1. This circle contains 0=/(6r 
and  T(o,2)-T(oh)=/(o~2) since u T ( a i )  =1 ,  i = 1 ,  2, according to the choice of u 
above.  Thus the theorem is t rue for k = 1. 

As regards the iterative process, we have zn+l(zn) EEo(D(~: )) and  the associated 

parameter  is a~ = zn(a). The functions 

un (z,) = I m  log (zn + 1 (zn) - -  an + 1) Zn 
( z ~ - a n )  z~+l(z,) ' n = 2 , 3  . . . . .  (3.10) 

behave  like the functions (3.3) and thus together  with the uniqueness lead to Cl(z ) = 
limn_,~o z=(z). Theorem 3.11 is proved�9 

Theorem 3.12. For each a E D (a # 0 )  there exists a u n i q u e / u n c t i o n  eo = C2(z ) E Eo( D ) 
m a p p i n g  D onto a domain  bounded by slits on the circles I (eo-C~(a)  )/eo [ =cons t .  

Proo/. The proof is analogous to the preceding one. As regards the uniqueness we 
observe ~that with analogous nota t ion  Re g(w) is constant  on each boundary  com- 
ponent .  

For  the i terative process, instead of the functions (3�9 we use 

Un (z.) = Re log (Zn+l (zn) - -  an+l) z n  

( z n - a n )  Zn+l(z,J ' n = 2 ' 3 ' " ' "  

I n  the case k = 1 the theorem is proved in a way  similar to t ha t  of the  preceding 
proof. Wi th  the same nota t ion we first suppose tha t  I zr = ] a~l" Then it is possible 

�9 < < ~(o+t) ~(o-t) he desired to  fred 0 and t, 0-~0 :z, t # 0 ,  so tha t  ~ l=~e  , a~=~e . Then t 
mapping  is 

/(~) =~--1 __ ~1-1 _~_ e-2io(~ _ 0~1) ' 

which maps  E conformally onto a domain bounded by  a slit on the perpendicular 
bisector of the straight  line segment joining 0=/(31)  and/(~e) .  I f  ]31[ ~=[~2[ then 

U-- ~ U--~ I /(~) - 

u~(1--45) Ugl (1  -- ~ 1 )  

is the mapping  where u = re t~176 is the (unique) solution of 

e-iq~062 -~ eieP ~1 
r - (3.12) 

1 + ~x ~2 
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such tha t  0 < r  < 1. To verify the existence of the solution we m a y  suppose that, 
I~1]<  [~zl; the other case is symmetr ical  to this. Taking imaginary par ts  of (3.12} 
we obtain 

I m  e '~(~1(1-  [ ~ [ 2 ) - ~ ( 1 -  (3.13) 

I t  is easily verified tha t  there exists ~ satisfying (3.13) and such tha t  Re e-~*~2 > 0  
since otherwise we obtain a contradiction to ] ~ ] <  I ~ l "  Choosing ~his value we 
observe tha t  

+(~) 
1 + z ~  e - ~  

maps I zl < I ~1 onto a disc intersecting the real axis along the segment 0 < R e  o) < 
(2 Re e-~r + la212)<1. Fur the r  r=w(et~51) is real. Hence 0 < r < l .  I f  T(~)=  
(u-$)/(u~(1-(t~)) then (3.12) is equivalent to [u]2T(~l)T(~2)=1.  I t  is readily 
verified tha t  ]([ ~] = 1) is a slit on the circle ~o(t) = - T(zq) + [u [ -le ~t, 0 ~< t < 2z. The  
choice of u implies tha t  

w(t)-/(~)[=[ul[T(g2)[ I ea-[ul_T_(~2) = 
~--1(~:1) 1--r lullT(  )l. 

Theorem 3.12 is proved. 

Remark. Lett ing a-~c~ we see tha t  every kernel of {CI(D, a)} is a radial slit 
domain  and tha t  every kernel of {C2(D, a)} is a circular slit domain,  (C,(z, a)=-C,(z), 
i = 1, 2). F rom the uniqueness of the mappings (])(z) and W(z) of Theorems 3.2 and 
3.3 it follows tha t  (I)(z)=lima_~r Cs(z, a) and ~F(z)=l ima_~ Cl(z, a). 

Lett ing a->0 we see tha t  every kernel of {el(D, a)} and {c2(n, a)} is a domain 
bounded by  slits on circles Re ei%o -1 =const .  (0~<~<~). I t  is readily verified t h a t  
there exist kernels corresponding to any  % 0 ~<~ < z .  

We conclude this section with a brief discussion on the application of the modified 
i tcrative process to the following problem: Does there exist w = / ( z )EZ ' (D)  mapping  
D onto a domain bounded by  slits on lemniscates Iw-/(al)[ ]w-/(au) [ =const . ,  
where a 1 and a 2 are given points in D? If  the choices of a 1 and a S are restricted in a 
certain way  depending only on D then such a mapping exists. 

Suppose first tha t  k = 1. The sets E~ = {/(a~)[/EZ'(D)}, i = 1, 2, are certain closed 
discs ([5] p. 129) and let E={�89 i = 1 ,  2}. Fur ther  there exists a 
closed disc K such tha t  the boundary  of /(D) is contained in K for all /EZ'(D) 
([5] p. 178). We now make the assumption tha t  K N E = r  This condition is for 
example satisfied if the points a~, i = 1, 2, are at  a sufficiently great  distance f rom 
OD. Let  b~ E E~, i = 1, 2. We indicate the construction of a family F of simple closed 
J o r d a n  curves in the w-plane, as follows (Fig. 2). Let  L be the perpendicular bisector 
of the straight line segment through b 1 and b~ and let K '  be the reflection of K in 
the segment. Now L divides the plane in the half-planes H 1 and H e. We demand  t h a t  
L c H  1 (so tha t  H 1 is closed and H2 open) and suppose for example tha t  the centre 
of K is in H I. We define Hi  to be H 1 U K U K '  and let Hi  be its complement.  A curve 
belonging to F is to consist of an  arc of a lemniscate I w -  b x [[ e o -  b2 [ = const . ,w E Hi ,  
if this does not  intersect ~H~ and such an arc completed by  drawing a circular are 
]o~-�89 1 +b~) I=cons t . ,  w E H~, if the lemniscate does intersect OHi. Through each 
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• b z 

F i g .  2. 

point  in the plane there passes precisely one member  of the family. A slit on a curve 
in F (which in the present case m a y  be along the whole closed curve) is uniquely 
determined by  three real parameters.  A s tandard  application of the method  of 
cont inui ty  proves tha t  there exists a unique funct ion/ (z ;  b 1, b2)EZ'(D) which maps  
D onto a domain bounded by  a slit on a curve in F (see [8]). 

F rom the choice of K it follows tha t  this slit must  be si tuated within K. Fur ther  
it is clear tha t  /(z0; b 1, b2), zoED, b~C E ,  i =  1, 2, is continuous with respect to b 1 
and b e. Regarding b[ =/(a~; b 1, be), i = 1, 2, as a t ransformat ion of (b 1, b2) the condi- 
tions for an  application of Brouwer 's  fixed point  theorem are fulfilled. Hence there 
exist b~CE~, such tha t  b~=/(a~; bl, b2), i = 1 ,  2. Thus our s ta tement  is t rue for k = l .  

I f  the choices of a~, i = 1, 2, are appropriate  (depending in part icular  on k, compare 
[11], p. 96) the iterative method can be used. The proof of convergence is based on 
the functions 

Zn+l (~) a~ n + l )  
u= (z=) = Re log 1~ a(n) , n = 2, 3, . . . ,  

i=l Zn --  i 

where Zn+l(Zn) E Z'(D~ (:)) and a~ n) =z~(a~), i = 1, 2. 

As regards the uniqueness we obtain the condition 

(/(OJ) - - / ( a  1)) ( / (~o)  - - / ( a 2 )  ) = (o)  - -  a l )  (o)  - -  as) ,  

with obvious notat ion.  Since/(co) E Y / i t  follows tha t  a 1 + a  2 =/ (a l )+/ (ae) .  Fur the r  

1' (o)) [/(w) - -  �89 +/(a2))] = eo -- �89 1 + a2). 

Since �89 1 +a2) ED it necessarily follows tha t  /(212(al +a2) ) =�89 +/(a2)). I t  now 
easily follows tha t  a l - - a e = / ( a l ) - - / ( a 2 ) .  Thus / (a~)=a,  i = 1, 2, and finally ](r 

4. Extremal properties 

Most of the mappings of the previous section have simple extremal properties, 
which as a mat te r  of fact  uniquely characterize them. The modified iterative process 
m a y  enable the actual  calculation of the extremal quantities in certain cases. We 
give two examples of the extremal properties. 
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Corollary 4.1. Maxr~r..(D , Re {e-2~~ {e-2~~ 0~<0<s, where / ( z )=  
z + (al/z) + ... and cfo(z ) = z +  (ao/z) + ... are the Laurent expansions near the point at 
in/ ini ty  and q)o(Z) is the /unct ion o/ Theorem 3.1. Equality occurs i/ and only i/ D is  
a O-angled parallel slit domain. 

Pros/.  Since Z'(D) is compact the existence of a solution within the class is guaran- 
teed. Thus it is sufficient to prove that Re {e-2i~ with equality if and only 
if D is a 0-angled parallel slit domain. Supposing this done we let ~ =/(z) = z + (al/z) +. . .  
map D onto ~,  which is not a 0-angled parallel slit domain, and let ~o =~o(~)= 
~+(bo/~)+. . .  be the function of Theorem 3.1 with respect to ~. Then Cfo(/(z))= 
z + (a 1 + bo)/z +...  E Z ' (D)  and 

Re-2~~ + bo) > R e  e-2~~ 

Thus/(z) cannot be extremal. 
The corollary is true for k = 1 which for example can be proved with the aid of the 

area theorem. Supposing it true for k - 1 we express 0So(Z) iteratively as lim~_~ z~(z) 
z~ + a(n)~z according to Theorem 3.1. Writing z~+l(z~)= ,, / n + ... we deduce that  

Hence we have 

as= a'o 
n = O  

Re  e-~i~ ao = ~ R e  e-2~~ a~ ~) >10. (4.1) 
n = 0  

Clearly equality occurs if and only if all terms are zero, which means that  D is a 
0-angled parallel slit domain. 

By induction Corollary 4.1 is true for all k. 

Remark.  As far as Corollary 4.1 is regarded as a purely qualitative statement the 
proof may be simplified. Then the only essential points are the compactness of 
Z'(D) and the truth of the corollary for k = 1. Considering the remark of Theorem 
3.1, (4.1) however enables us to estimate the extremal value. For example given D 
we can find constants B and q < 1 such that Re e-~i~ ~) <~ Bq ~ and hence l~e e-2~~ = 
~ = ~  Re  e ~*~ The extremal properties of (D(z), ~F(z), /o(z), (l)l(z), ~IZi(z) 
(compare [11] pp. 72-77) and G(z) ([5] p. 128) of Theorems 3.1-3.6 and 3.10 can be 
treated in a similar way. 

We return to the extremal property of ~0(z) in Section 5. 
As a less obvious example we now prove the extremal property of (D~(z) in Theorem 

3.7 which in fact also gives an alternative proof of the existence of the mapping. 

Corollary 4.2. Let Flu = F12(D ) be the class o//unctions,  co =/(z), regular and univalent 
in n such that C 1 corresponds to {co { = 1 and C 2 to {co { = r < 1 (k >~ 3). Then 

Max r = 
f E FI~ 

where {w{ = ~ corresponds to C 2 under (I)~(z) and where (I)2(z) is the/unct ion o /Theorem 
3.7. The m a x i m u m  is at tained/or the/unct ions eir(P2(z) (~ real) only. 

114 



ARKIV FOR MATEMATIK. B d  7 nr 8 

Proo/. F12 is compact which guarantees the existence of a maximum. We may  
suppose that  D is contained in the annulus  r '  < ]z] < 1 (C1: ]z I = 1, C2: ]z I = r ' )  and 
that  at least one of the remaining boundar3; components is not a slit on a circle of 
centre the origin. We now apply an iterative process, which mainly is that  of Theorem 
3.7 but  with the difference that  Z~§ is identified alternately with @l(Z~)/Ol(0) 
and O~(O)/q)~(1/z,) (p. 107). Let Q~) be the inner radius (with respect to he origin) 
of the finite domain bounded by C~ ~) and let ~(n) be the outer radius of the infinite 
domain bounded by  C~ n), i = 1, 2; n =0,  1, 2 ..... Then Q~ ~<~) where equality occurs 
if and only if C~ n) is a circle of centre the origin. Further, we construct the iterative 
process so that  C(~ 2n+l) and C~ 2~) are circles. We denote their radii R2~+1 and r2~ 
respectively. According to the extremal property of O1($ ) we obtain 

R~_I =512~) >el2 ~)>~ R2~+~, 

r 
~(2n-1)  < ~(2 n -  1) 2 , ~ - 2 = ~  <~r2~, n =  l ,  2, .... 

Thus r2~-+r > r' and R2n+l---> R < 1 (since R 1 < R 0 = 1). This proves in particular tha t  
{z~(z)}~ r belongs to a compact family of univalent functions and as in Theorem 3.7 
it follows that  every kernel of {D (~)} must  be an annulus r <  ] w ] < R  with circular 
slits. Further  r ' <  r /R which proves the extremal property. Corollary 4.2 is proved. 

A remark similar to tha t  of Corollary 4.1 concerning the possibility of estimating 
can be made here. 

5. On rates o f  convergence 

GrStzsch indicates in [9] (for the case of circular slits) a method of obtaining esti- 
mates of the rate of convergence of the iterative method used by  him. In  the present 
section we give a similar method concerning mappings onto zero-angled parallel 
slit domains, a method which gives an explicit estimate of the rate of convergence. 
This is not exponential (k>~3), contrary to the rate of convergence of the modified 
iterative process (Theorem 3.1, see Remark  1, p. 106). The precise rate is not known, 
(compare also [3], pp. 236-238). 

Let the width of a slit F be defined as Maxa. b~r I m  ( a - b )  and let A~ be the maxi- 
mal width of the slits {C~n)}~. Each step in the iterative process is determined in 
the following way. Consider the simply connected domain which is bounded by  a 
slit of maximal width (we denote one such slit by ?n). This domain is mapped onto 
a zero-angled parallel slit domain. The mapping functions are normalized in the 
usual manner: 

~(n) 

Z~+l(Zn)=Zn+ '~1 § . . . .  n = 0 ,  1,2 . . . . .  
Zn 

and we write Re a(1 n) =~t n for short. We pose the following problem (k~>3): 

Given ~ > O, f ind a number N~ such that A= < e whenever n >~ N~. 

Suppose that  ?n = C~ (n) (n > no). Let  n* be the greatest index < n such tha t  ?n*-I = 
C~ (~*-1). Then C~ ~*) is rectilinear and ?~ is the analytic image of C~ =*) under the mapping 
Z~(Zn_I(...(Zn*)...)). 

115 



L LIND, Iterative methods in conformal mapping 

W e  need some nota t ion .  We say  t h a t  n* is the/ irst  predecessor of n a n d  t h a t  n is 
the ]irst successor of n*. Gener ica l ly  speaking n ( < m) is a predecessor of m if there  
exists  a chain of indices n = n  1 < n  2 < ... <np  = m  such t h a t  n ,  is the  f irst  predecessor  
of n~+l, v = l ,  2, ..., p - 1 .  Such a chain is said to have  length p. The re la t ion  "n is a 
predecessor  of m or a successor of m or equals  m"  is an equivalence re la t ion.  I t  is 
easi ly  seen t h a t  the  n u m b e r  of equivalence classes is a t  most  k - 1 .  W e  denote  t h e m  
b y  El ,  E 2 . . . .  , Ek 1. W e  say  t h a t  An satisfies a condition o/quotient or a Q-condition if 

An. < QAn, 

where Q is an  a rb i t r a r i l y  f ixed posi t ive  number .  To be concrete  we shall  in the  fol- 
lowing let  Q equal  2 k-1. F o r  convenience we suppose t h a t  the  slits {C(~~ (one of which 
is rect i l inear)  are  ana ly t i c  and  t h a t  An, n = 0 ,  1, 2, ..., are small ,  which is gua ra n t e e d  
if A 0 is suff icient ly small .  I n  the  following the  l e t t e r  C denotes  a posi t ive  cons tan t  
no t  necessar i ly  the  same each t ime  i t  occurs bu t  in any  case independen t  of n. 

L e m m a  8.1. 1 ~ I / A n  satisfies the Q-condition then 

#n  ~> C A ~ ,  n = 0,  1, 2,  . . . .  

2 ~ . I n  any case it is true that 

oo 

ft, ~< C(A n log An) 2, n = 0, 1, 2 . . . . .  
v = n  

Proo]. W e  observe t h a t  z~+l(zn) , n > n o can be cont inued  over  ~n ----C~ ~) in to  a double-  
sheeted R i e m a n n  surface b ranched  a t  the  endpoints  of 7~. The con in tua t ion  is 
g iven b y  

$ 
z~+l(zn*(zn)) = zn + rn +l(Zn), 

where zn*(zn) is the  mapp ing  of D (n) onto  D (n*) etc.,  and  " means  ref lect ion in C(~ n+l) 
and  C~ (n*) respect ively .  B y  an  a r g u m e n t  s imilar  to t h a t  of R e m a r k  1 on Theorem 3.1 
(p. 106) we conclude t h a t  

Ir*+l(zn) l <~c(An, +An+l) ,  zn EL, 

where  L is the  curve d(zn, 7 , ) = d > 0  though t  of as ly ing in the  second sheet.  Here  
d(zn, 7n) is the  d is tance  be tween  zn and  ~n and  d can be chosen i ndependen t ly  of n 
as a consequence of the  compac tness  of E ' (D) .  If,  besides, An satisfies the  Q-condi- 
t ion then  also using An+l < 2An (which is a lways  true)  we have  

]r*+l(zn) I ~<CAn, znEL. 

W e  shall  s t u d y  the  inverse of Zn+l(zn) and  for s impl ic i ty  we wri te  i t  as e ) = / ( z ) =  
z + a l / z §  .... where a i = - a ( 1  n). Since the  zn(z ) belong to the  compac t  f ami ly  Z ' ( D )  
there  is no loss of genera l i ty  in supposing t h a t  the  rec t i l inear  slit  C~ (n+l) equals  
{z,+l I I x 1<~2, y =0},  zn+ 1 = x  § iy. A t  wors t  this  will only  cause s imple modif ica t ions  
of the  cons tan ts  involved.  F u r t h e r  we wri te  A ins tead  of A,.  
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According to the  above  the  funct ion 

is meromorphic  (singular pa r t  ~-1) in a fixed domain  containing some closed disc 
I~l <~<RI" Further(R>l andwe haveiS independent  of A, i.e. of n ) a n d  it is, moreover ,  univa lent  i n  

} I m  h(~)l ~<A, I~[ =1 ,  (5.1) 

and  there exists some point  ~0, I~01 = 1, such t h a t  

I Ira h(~0) l >~ A/2. (5.2) 

If ,  moreover ,  A n = A  satisfies the Q-condition then  

Ih(~)l <cA,  I$l =R.  (5.3) 

The funct ion g(~) maps  I~1<1  onto a domain  which has a complement  of zero 
area.  Hence  we obta in  f rom the area theorem tha t  

cr 

--21:r ~ (5.4) 

We now prove  1 ~ I t  follows f rom (5.2) and  (5.3) t ha t  there exists an  arc ~ of 
length ~ (~ independent  of A) on the uni t  circle such tha t  

[ Im  h($)l >~A/3, ~Ea. (5.5) 
We have  

r = l  ~ = 1  

and hence f rom (5.4) and  (5.5) 

- 2 R e a  I ~ -~A 2. 
9 

This proves  1 ~ 
We now turn  to 2 ~ which we prove  by  induction on k. I f  k = 1 then  we use the  

observat ions  made  above  abou t  the func t ion / (~ )  (here regarded as the inverse of 
zl(z)). I t  follows f rom (5.1) t ha t  [a~[ ~<2A and fur ther  we have  [av] <~CR-", v = l ,  
2 . . . . .  Choosing N = [log 2AC-1/log R -1] we obta in  

v = l  I N + I  N + I  

Hence f rom (5.4) we deduce t ha t  

- 2  Re  a 1 <C(A log A)L 

The  constant  C depends of course on the pa ramete r s  determining D but  C is uni- 
formly  bounded  as soon as the  pa ramete r s  are sui tably  bounded.  
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Thus  2 ~ is t rue  if k = l .  Using (4.1), Section 4 (p. 114) we can now prove  i t  t rue  
for/C if i t  is t rue  for/c - 1. I t  is essent ial  here t h a t  the  wid ths  in the  modif ied  i t e ra t ive  
process decrease exponen t i a l ly  a n d  t h a t  E ' (D)  is compact .  The  deta i l s  of the  p roof  
are  then  e lementary .  L e m m a  5.1 is now proved.  

L e m m a  5.2. 1 ~ We have SUpm~>n Am ~< CAn ] log An[, n=0,  1, 2 . . . . .  

2 ~ Let n' be the smallest index > n such that A n, < 1 i  n. Then 

n ' -n<~C (log An) z , n = 0 ,  1, 2 . . . . .  

Proo/. F r o m  the  convergence of the  process i t  follows t h a t  SUpm~>n Am is a t t a i n e d  
for some (smallest) m, and  we m a y  suppose t h a t  m ~> n § since otherwise A m < 2kAn. 
F u r t h e r  A m _ , ~ 2  ~Am, v = 0 ,  l ,  2 . . . . .  I f  a n y  one of the  wid ths  Am_T, V=0,  1, ..., k - l ,  
satisfies the  Q-condit ion i t  follows f rom L c m m a  5.1 t h a t  

C(21 kAm)2 < ~/z~ < C(A n log An) 2, (5.6) 
y = n  

a n d  1 ~ follows. Suppose  t h a t  none of these widths  satisfies the  Q-condit ion.  Then  
the  f irst  predecessors  (n>n0)  of m, m - I  . . . . .  m - k + l  a re  all  < n  since A(~ ~).>~ 
QA~21 k - - A ~  for v = 0 ,  1 . . . . .  / c - - l ,  (Q=2~-1).  Thus the  /c consecut ive indices m, 
m - 1  . . . . .  m - k + l > n  all have  predecessors  < n .  Bu t  this  is impossible.  Thus  (5.6) 
is t rue  a n d  we have  p roved  1 ~ 

To prove  2 ~ we make  two observat ions .  F i r s t  suppose t h a t  we have  a chain 
n ~< n 1 < n 2 < . . .  < nv < n '  such t h a t  An, satisfies the  Q-condition. Then  we have  

W e  prove  this b y  induct ion.  I f  p = 1 then  (5.7) follows f rom L e m m a  5.1, 1 ~ (A m ~ An~2, 
n ~ m  < n ' ) .  We  suppose t h a t  (5.7) is t rue  for p < p ' .  Le t  p">~ 1 be the  larges t  n u m b e r  
~<p' such t h a t  A~p,, satisfies the  Q-condition. Then we have  Anp,, >~QV'-V"An~, and  

thus  , ,, 2 ~ '  _ >~xv,,-1. + #n,,, >~ (P - P  + 1)CA n. Using the  induct ion  hypothes is  a n d  ~v=lt~n, ~,=1 t~,, 

/~,p,, we deduce  (5.7) for chains of length  p ' .  

Secondly  suppose t h a t  we have  a chain  n ~< n~ < n2 < . . .  < n p  < n '  such t h a t  no one of 
the  wid ths  An~ , 1 ~< v ~<p, satisfies the  Q-condition.  Then we have  

p ~< C log[ log An [ (5.8) 

since in th is  case i t  follows t h a t  An, >~~ ~> ! t)v-1A Now according to L e m m a  n p  2 ~ n .  

5.2, 1 ~ we have  
1 Q ' - I A n  ~< C A .  ]log Anl 

which proves  (5.8). 
Now we prove  2 ~ W r i t e  N n = n ' - n  and  M n = C  log l log  An] (see (5.8)). W e  m a y  

suppose t h a t  Mn/N n is small.  Le t  E~' be the  chain {vlv 6 E~, n ~ v < n'} and  denote  i ts  
l ength  b y  N~', i = 1 ,  2 . . . . .  k - 1 .  W e  suppose t h a t  N[>Mn,  1<~i<~], and  N[~Mn, 
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j < i < ~ k - 1 .  I t  follows from (5.8) t h a t  a t  least one width  Am has to satisfy the Q- 
condition where m is one of the M~ + 1 first numbers  of E ;  (i ~<j). Applying (5.7) we 
obtain 

Z / ~ ,  ~> (N[ - Ms)  CA~. (5.9) 
veE~ 

Observing tha t  

we deduce from (5.9) tha t  

J 
~ N ; - i M , > ~ N , - ( k - 1 ) M ,  

i = l  

i >~ 2 

v = n  iffil veE~ 

On the other hand, we know from L e m m a  5.1, 2 ~ t h a t  

/x~ ~< C(A~ log A, )  2. 

Thus /Y~ ~< C (10g A~) 2. 

Lemma 5.2 is now proved. 
We now return to the problem posed in the  beginning of this section: Given 

8 > 0  we let 8' = 8  3 (8 small). Then if AN<8 '  for some index N it follows from L e m m a  
5.2, 1 ~ tha t  A n < 8, n/>~T Hence this 2V would be a solution of our  problem. To find 

-1A where such an  index we successively determine indices np such t h a t  An~+l <2  n,, 

nv+ 1 is the smallest index > n  v wi th  this proper ty ,  and  n o =0 .  Suppose tha t  A,~ >~ 8', 
v ~<p and tha t  A~p+x < 8'. Applying L e m m a  5.2, 2 ~ we obta in  

P p P 

N = nv +1 = ~ (n~+l - n,) ~< C Z (log A,~) ~ ~< C ~ (log (8' 2")) ~. 
v=O 'v=O ~,=0 

But  obviously p ~< C [log e' [ and inserting 8' = e ~ we h a v e  

N ~< C i (log (8'2~)) 3 ~< C(log e-1) a. 
V=0 

* 

Of course the same estimate is t rue if the parallel slit domain  is 0-angled. Let  
To(Z) be the funct ion of Theorem 3.1. The following theorem follows at  once from 
the above (for Gr6tzsch's  method,  see p. 115). 

Theorem 5.1. Let qvo(z)=limn~or zn(z), where the z~(z) are determined by GrStzsch's 
method. Then there exist constants C and q, 0 < q < l ,  independent o / n  such that 

]~o(z)-zn(z)[ <r 
in any/ ixed closed subset o /D .  

Remark 1. According to Theorem 3.1, the modified i terative process shows t h a t  
all widths are < 8 after N~ = 0 (log s -1) mappings.  Since the number  2Y~ here means 
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a number of mappings of ( k -  1)-connected domains this estimate and the one above 
concerning GrStzsch's process are not comparable from a practical point of view 
(k ~> 3). However, the modified process can be approximated as follows. For example, 
if k = 3 we first perform N~ mappings of simply connected domains involving slits 
which are numbered 1 and 2. If  N~ is large then these slits are "nearly" rectilinear. 
Then we perform N2 mappings involving slits which are numbered for example 2 
and 3 so that they become "nearly" rectilinear etc. Given s >0  we may seek a num- 
ber Nk(e) such that all widths are < s after Nt,(e) mappings (in the indicated mariner) 
of simply connected domains. We indicate the proof of the following estimate: 

~ k ( ~ )  = 0 ( ( l o g  ~:--l)k--1). (5.10) 

This estimate is true for k = 2  (the proof of Theorem 3.1) and we suppose that  it 
is true for k - 1 .  Let D be a given k-eoimeeted domain and let/(z) EE'(D), ~ =/(D). 
By excluding one arbitrarily chosen boundary component of 0~ we obtain a ( k -  1)- 
connected domain ~ ' .  Consider the set of all such domains g2' obtained under all 
mappings/(z) E E'(D). From the induction hypothesis and the compactness of E'(D) 
it is obvious that it is possible to choose a number N =Nk_l(e 2) = 0 ((log e-l) ~-2) such 
that  the approximate iterative process described above gives slits of widths < s 2 
after N mappings starting from any one domain ~ ' .  

We write the approximate mapping of D as o~ =/~(/~_l(...(z)...))= Fn(z) where the 
/~ refer to mappings of (k-1)-connected domains and where these mappings are 
composed of N mappings of simply connected domains. Le t  D ~ -  F~(D) and let A, 
be the maximal width of the slits constituting 0D~. From the compactness of E'(D) 
and the exponential rate of convergence of the modified process it follows that  if 
A~>e for v~<n then A~<~Cqn, 0 < q < l  (e is supposed to be small). Thus necessarily 
n ~< C log e -1 and Nk(e ) = n_Nk_l(s ~) = 0 ((log e-l) k '). 

Remark 2. We conclude this section with a description of an iterative technique 
which is intermediate between GrStsch's process and the modified iterative process. 

Suppose for example that we want to map the k-connected domain D coo_formally 
onto a zero-angled parallel slit domain. Using induction we suppose that  this map- 
ping is possible for any domain of connectivity ~<k-1 and that these mappings 
have the extremal property of Corollary 4.1. With the notation of Section 2 we 
let z~+l(zn) (~) = z~ + al /zn +... E F,'(D(, ~)) where D(, ~) is a domain of connectivity k~, 
1 ~< k~ ~ k - 1, bounded by k~ of the continua C(1 n), C(~ ~) . . . . .  C(k n). The choices of these 
can be made arbitrarily with the restriction that  each index 1, 2, ..., k must occur 
infinitely often. Let the width of C~ (~) be Aw, v = l ,  2 ..... k and let A~=Max~ Avn. 

Suppose that lim~_+oo An>0. Then there exists a sequence {nt} such that D(, ~) is 
bounded by C (n~) C(~) C (~) (1 ~<p ~< k - 1 ) ,  (where the indices are fixed), and such m~ ' Vm, ' ' " '  m p '  

that  the maximal width of these continua is at least A > 0. Then there exists A ' >  0 
a(nO --> such that Re a(1 n~) ~> A' because otherwise Re 1 0 ,  D(, ~'0-~ D, (at least for a subse- 

quence which we suppose already chosen). Thus there exists ](~) = ~ +al/~ + ... E Y~'(D,) 
mapping D,,  which is not a parallel slit domain, onto a zero-angled parallel slit 
domain with Re a 1 =0, which contradicts the assumption that  Corollary 4.1 is true. 

We have zn (z) = z + ,=0 + . . .  
Z 
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and it follows tha t  ~e/_,=0~1 ~ while, on the other  hand, by  the compactness of 
Z ' (D)  we have I ~ = 0 a ~ ) l  ~<C. This is a contradiction. Thus lim=_~ zn(z ) converges 
and the extremal p roper ty  for connect iv i ty  k follows at  once. 

II.  On conformal  mappings onto domains of  general type 

6. Notation and definitions 

Let  L~:co=co.(t), 0~<t~<l, v = l ,  2 . . . . .  k be simple closed, analyt ic  curves in the 
co-plane. A curve L* :co =a.co,(t) +b . ,  0 ~<t ~< 1, where a~ > 0  and b, are constants,  will 
for short  be referred to as a curve of type L~. 

Let  C*:z=z.(t), 0..<t~<l, v = l ,  2 . . . . .  k be k fixed and bounded continua in the 
z-plane. Let  C.:z=z~(t)+%, where c. is a constant ,  v = l ,  2 . . . .  , k. Wri t ing p =  
(c 1, c~. . . . .  , %) we make the  

De/inition 6.1. We say that p is admissible i/ {C~}~ are the boundary components o/ 
a k-connected domain D = D(p) such that the point at in/inity belongs to D. 

Let  p be admissible and  let d~s(p ) =d(Ci, Cj) be the distance between C~ and Cj 
(i #]) .  Let  A~ (independent of p) be the  diameter  of Ci. Then we write 

d(p) = ~ dtj(p), A = Max A~, a = Min A~. 

De/inition 6.2. D(p) is (d, B)-bounded i/ 

1 ~ p is admissible, 

2 ~ d(p) >~ dA, (d > 0), 
k 

3 ~ t.~ere exists b such tSat z E (.J C~ ~ ]z - b] <~ B d(p). 

The aim of this chapter  is to  apply  the iterative process to domains D(p) suitably 
bounded in the sense of Definition 6.2 and prove the existence of co = F ( z ) =  
lim~_~ z~(z) EE'(D(p))  mapping  D(p) onto a domain bounded by  k curvesL* of type  
L~ in such a way  tha t  L* corresponds to C~, v = 1, 2 .. . . .  k. 

7. The iterative process and the main theorem 

We will here use the it~rative process described in the introduction,  (B, p. 101) 
in the following way. Le t  zn+l(zn)EE'(D~)) map the simply connected domain D ~  
bounded  by  C (n) (cr ED(~)) onto a domain bounded  by  a curve C (~+1) of type  L~, 

v n  

1<~%<<.k (Riemarm Mapping Theorem). As before "~(=)~=C~ (n+l), zn+i(~ j v # %  and 
D (~+1) =Zn+x(D(n)), D(~ zo=z, C,(~ v = l ,  2, ..., k. Fur ther  we choose v n 
so tha t  % - 1  ~ n  (mod k). This par t icular  choice is no t  necessary bu t  it provides 
some formal simplification. We  observe tha t  z=(zm)=z=(z~_l(...(z,~)...))EZ'(D('~)), 
(n > m). I f  F(z) = lim~_~ zn(z) exists then necessarily F(z) E Z'(D(p)) maps D(p) onto 
a domain bounded by  k �9 �9 (J~=IL~ where L~ corresponds to C,, v = l ,  2 .. . . .  k. 

Theorem 7.1. There exists a number d > 0  depending only on {C*}~, {L,}~ and B 
such that limn_)~r z=(z) exists for any (d, B)-bounded domain D(p). 
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8. Lemmas 

For  the proof of Theorem 7.1 we need three lemmas. 

Lemma 8.1. Let D(p) be (d, B)-bounded and let co=F(z; p)EE'(D(p)) map D(p) 
onto D'(p). Let d'(p), A'(p) and a'(p) have the same meaning with respect to D'(p) as 
d(p), A and a have with respect to D(p). Then there exist constants N~ >0,  i = 1, 2, 3, 
independent o /p  and F such that 

d'(p) > N~d(p), (8.1) 

A'(p) <N2A , (8.2) 

a'(p) >Naa .  (8.3) 

Proo/. We m a y  suppose t h a t  A - 1  and b - 0  (Definition 6.2). Suppose tha t  (8.1) 
is false. Then there exist sequences {Pv}~ and (F~(z; p,)}~,  F,  EF/(D(p,))such t ha t  
d'(p,)/d(p~)-+O when v-+c~. Ei ther  we can select a subsequence {p,,}~r such tha t  

P~,~Po or d(p~)-~oo when v ~ o o .  

I n  the former case we m a y  suppose {p~}~r selected so tha t  F,,(z; p,,)-+ F0(z; P0) E 

Y/(D(po) ) when tt-+ o~. Then  d'(po) > 0  which contradicts  d'(po)/d(po) =0.  
I n  the lat ter  case G~(~) =d(p~)-iF~(~d(p~)) E F~'(S~) where ~ E S~r E D(p,). 

Thus S ,  is a domain such tha t  ~EOS~ ~ ]~] <~ B and such tha t  the boundary  compo- 
nents  have distances ~> 1 f rom one another.  As ~bove this gives a contradiction. 
Thus  (8.1) is true. 

We prove (8.2) and (8.3) in a similar way. I f  P,,-~Po the a rgument  is the same. I n  
the case d(p,)-+ ~ there is no loss of generali ty in supposing C~ to be the circle [ z[ = r~ 
and  C~' corresponding to C~ to be [~o-eo~]-r~'~. Also F,(z; p,) is univalent  and ana- 
lytic in ri ~< ]z[ <~d(p,) and  as in the  proof of (8.1) it is clear tha t  there exist constants  
m 1 > 0 and m 2 independent  of p and  F such tha t  

mid(p,) <~lF~(z; p~)-e%] <~m2d(p~), Izl-d(p,). 

Thus according to a well-known proper ty  

�9 s 
r ir  < r i  f i r  

m2d(P~) ~ mld(P~) 

Thus mxr i <~ r[~ <~ m2r ~ 

and this proves (8.2) and  (8.3). L e m m a  8.1 is proved. 

Lemma 8.2. Let D be a simply connected domain on the z-sphere, ~ E D. Let the 
diameter o/its boundary OD be < R and let/(z) eE'(D). Then 

3R ~ 
Ir <Max I=_al, 

a~OD 

zED.  
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Proo/. Choose any aE~D. Then ~ D ~ D R  where DR is the disc [z -a[  <R.  I t  is 
a well-known fact that  [ / ( z ) - a [  <2R, zED N DR. Also g(z, a ) = ( z - a ) ( / ( z ) - z )  is 
analytic in D and we have 

]g(z,a)[~<3R 2, z E D N D n .  

From the maximum principle it follows tha t  this holds for z E D. Since a is arbi t rary 
this means that  

3R 2 

Maxl -al 
aEOD 

Lemma 8.2 is proved. 

Lemma 8.3. 1 ~ Let A be a /ami ly  o/simple closed analytic curves o/type L such that 
O<m<~l(F)<<.M < ~ ,  where I(F) is the length o / F E A .  

2 ~ Let Ur={zId(z ,  F)~<O} where FEA,  ~ > 0  and d(z, F) is the distance between z 
and F. 

3 ~ Let ~0(F)-:~0 be the/amily o//unctions /(z)=z+r(z),  analytic and univalent in 
U r and such that ] r(z) J <~ 8, z E U r. 

4 ~ Let D* be the domain bounded by F*=/(F) ,  ~ ED* and let gr.(z)-g(z)EZ'(D*) 
map D* onto ~ which is bounded by a curve F' o/type L. 

Then there exist 8 o > 0 and K depending only on L, m, M and ~ such that/or all 
F E A  and/or all/E~o; 8<<.8 0 we have 

[g(z)-z[--<KS, zEF*. 

Proo/. We may  without loss of generality suppose that  z E F ~ ] z l < M  for any 
F E A. If  80 is chosen sufficiently small then :~a, 8 ~ 80, is necessarily compact. Suppose 
tha t  Lemma 8.3 is false. Then it is possible to select a sequence {F~, 8~,/r, gr, zr}~ 
such tha t  F ,EA,  8~-~0 (8~<80),/~E:~a~, /~(F~)=F*, o~=g,(z)=gr*(Z), zrEF* and 

8~a lg , ( z r ) - z~[ -+~ .  (8.4) 

Let  D,  and D* be the domains bounded by F~ and F* respectively (c~ EDp, D*) 
and let g(D*~) = ~ , ,  ~ =L , ,  where L ,  is of type L. 

Let  W=h,(eo) be the analytic function conformally mapping g2~ onto the interior 
of the unit circle such tha t  h~(~)=c1~/(o§ Cl,>0 near the point at  in- 
finity. Then ~ = h * ( z ) = h r ( ~ z + f l ,  ) with suitable constants ~, >0  and fi~ is the cor- 
responding function with respect to the domain D r. 

Since F ,  is of type L (analytic) and 0 < m  ~</(F r)~<M there exists a number  A > 0  
independent of v such that  h*(z) is analytic and univalent in a domain containing 
D r and in particular all points interior to F ,  and distant at  most A from Ft. For 

$ $ 
v ~> v 0 we have Maxz ~ r* d(z, Fr) < �89 For v >~ v~ ~> %, h~ (F~) is star-shaped with re- 
spect to the origin (since Ir:(z) l, z E F,,  becomes arbitrarily small). Thus h*(L*) may  
be represented in polar coordinates 
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R,(cf)e~=h*(/,(h*-l(e~))), -7e<cp<~z, 

where R v ( ~ ) i s  absolutely continuous in -zr<~v~<~r, ]R:@)/R,(~v)] <~KI(~ ~ and 
[ R~(q) -  1] ~<K2(~ ~ where K 1 and K S are independent of r. Then an elementary modi- 

fication of Satz 3, ([3], p. 261) gives 

I WI ~<1 (8.5) 

where K a is independent of v. This is equivalent to 

I h~(~g:~(~) +t~,) -h~(~) [ ~<Ka~, ~o EL~. (8.6) 

From (8.5) it follows in particular that  for v >~ v2 >~ vl 

l~-11 <K4~, (8.7) 

For v>~va>~% the straight line segment connecting h~(~o) and h~(~vff~l(o))+fl~), 
r is the image of an analytic curve s v connecting ~o and r 1 =z%gTl(o~)+/~, and 
[h~(~o)] >~K6 >0, ~o Es~, where K6 is independent of v. Thus using (8.6) we obtain 

Kab~> Ih:( )l Idol ~> K6 [COl-W ] �9 (8.8) 

Using [z[ ~<M+2~ 0 on F* we finally deduce from (8.7) and (8.8) tha t  

Ig , (z ) -z [  <~K~(~, zEF*, (8.9) 

where K~ is independent of v. However (8.9) contradicts (8.4). Lemma 8.3 is proved. 

Corollary 8.1. With the hypothesis and notation o/Lemma 8.3 

MK~iz_a,, zED*, ~ < ~ 0 ( ~ < M ) .  

Proo/. Choose any aEF*. The function F(z, a)=(z-a)(g(z)-z) is analytic in D* 
and according to Lemma 8.3 we have 

] F(z, a) ] <~MK~, z EF*. 

The statement follows as in the proof of Lemma 8.2. 

9. Proof of the main theorem 

We choose d ' > 0  and B > O  and consider all (d', B)-bounded domains D(p) (B 
large). Without  loss of generality we may  assume that  A = 1 and b =O (see Defini- 
tion 6.2). In  the iterative process the curves C~(~ +1), n =0,  1, 2 ..... are of type L~,. 
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Then according to Lemma 8.1 it is possible to determine constants m~,, M ~  such 
that  0 <m~4l(C(~ +1)) <~M,,~ for all (d', B)-bounded domains D(p). Then we apply 
Lemma 8.3 with some arbitrarily fixed ~ >0 (see 2 ~ to the family A~ of curves F~ 
of type L~ for which m~ ~<I(F~)<M~. We obtain constants K ,  and 60~ (v = 1, 2 ..... k) 
corresponding to K and 60 of the lemma. Write M = M a x ,  M~, K = M a x ,  K~, 6o= 
Min~ 6o, and 6o =min  (60, M/4, ~). 

Let d~ (p) = Minl<~<~<k d(C(~ '~ C~ n)) and 

and take any q, 9 < q < 1. 
The condition 

inf n dn(p) >~ MKq-~(k - 1) + 3~ (9.1) 

can be realized according to Lemma 8.1 for all (d", B)-bounded D(p) if d">~d' is 
sufficiently large. 

Writing z k =zk(%_x(...(z,)...)) for short we can satisfy the conditions 

. < k - i  
I zk -  z~l "~ ~__~ 60, z~ e U~, i = 1, 2 . . . . .  k -  1, (9.2) 

according to Lemma 8.2 for all (d, B)-bounded D(p) if d>~d" is sufficiently large. 
Now according to Lemma 8.3 we have 

We observe that  the distance between zk(U~) and C~(~ ) is at least dk(p)-- 
p - 2 ( k - i )  6o/(k-1)>~MKq-l(k-1),  i =2, 3 ..... k - 1 ,  and thus according to Corol- 
lary 8.1 and (9.2) we have 

. < k + l - i  _ 
[ z k + x - z ~ [ - - ~ - ~ - - 6 o ,  z~E U~, i = 2 , 3 ,  . . . .  k - l ,  

1 

[zk+l -zk[ ~<~-1 q60, zk E U~, 

and by repetition 

. < k - i  _ 
i =  1 ,2 , . . . ,  k -  1. (9.3) 

The conditions for a repetition of the argument from (9.2) leading to (9.3) are a 
[ortiori satisfied, now with (9.3) as starting point and 6oq replacing 6o. Thus 

k - i  2 
]Z~k--Z~+2k]<~q(~o, z~+~EU,+2k, i = 1 , 2  . . . . .  k - l ,  

and inductively 
.< k - i ,~ ]z(m+x)~--Z~+m~l~E~q 6o, z~+m~e U,+~, i=1 ,2 ,  . . . , k - l ,  (9.4) 
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I t  follows from (9.4) and Lemma 8.3 tha t  

I z=(~)l < + 1) (1 - q) - l ,  n' > n >~ l G z E ~D(p) .  

Since 0 < q <  1 it finally follows tha t  lim~_~ z~(z) exists for all (d, B)-bounded do- 
mains D(p). Theorem 7.1 is now proved. 

III. Two e igenvalue problems 

10. Statement of the problems 

Let  F~ and F2 be two disjoint and bounded rectilinear slits considered on the 
z-sphere making the angles ~ and ~2 respectively with the positive real axis 
(0~<~<7~, v = l ,  2) and  bounding a doubly  connected domain D. Let  D~ be the 
s imply connected domain bounded by  F~, v = 1, 2. 

The first problem is: 

A. Find /,(z), non-constant, bounded and analytic in D,, v -  1, 2 and a number 
such that 

I m  e ~l[t(z ) - I m  e i~l/2(z ), zEF  1, 
(10.1) 

I m  e-~'/~(z) =/u I m  e z~'/l(Z), z E F  2. 

I t  is to be unders tood that ,  for example, I m  e-~l/l(z ) takes equal values on the 
edges of Pl, I m  e-t~l/l(z+)=Im e ~l / l (Z - )= Im e ~l/~(z). With  the aid of a linear 
t ransformat ion kz + l ~ z  we m a y  in various ways normalize D. Thus there are 4 real 
parameters  p = (Pl, P~, Pa, P4) which are essential for the problem. We sometimes 
write D(p) instead of D and do similarly with the other notat ion.  

I f  Fi=F={re~~ 0 = 0 }  

and  F~=e~P= {re~~ <r<b, 0=~} ,  0<~<Tr ,  z - r e  ~~ 

then  we also take into consideration the following problem which is closely related 
to Problem A: 

B. Find /(z), non-constant, bounded and analytic outside I" and a number ~ such 
that 

I m / ( r )  =~u I m  e-~/(rel~), a <~ r <<. b. (10.2) 

Let t ing  P~ be a slit on the s traight  line L, ,  v = 1, 2, we m a y  in A suppose tha t  

Re e-~],(z) =0,  z E L ~ - F , ,  v - l ,  2, (10.3) 

unless # = cos-2(~ - ~1) > 1, I ~ -  ~ll #0 ,  ~/2. This is a consequence of the easily 
verified fact  tha t  A has trivial solutions /~(z)=e~(a~+ib~), v = l ,  2, where a 1 and 
a S can be arbitrari ly chosen with the above exception. I n  order not  to complicate 
the discussion we accept  (10.3) as a restriction in the exceptional case. By  a similar 
a rgument  
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Re/(r )  =0,  r < a ,  r > b  (10.4) 
in B. 

We do not solve the problems A and B in general but simply draw some conclusions 
of general character and discuss these problems iu certain special cases. 

11. CoUinear slits 

Theorem 11.1. Let F 1 and F2 be slits on the real axis, and let R be the modulus o/ D. 
Then there exist solutions o / A  with f f = # j = ( ( R ~  + R-J)/2) "z, j = l ,  2 . . . . .  There are no 
other solutions. 

Pro@ I f  we set ~1, ~ 2 - 0  then (10.1) and (10.3) become 

I m / x ( z ) = I m / 2 ( z ) ,  zEP1, 

I m / ~ ( z ) = # I m / l ( z ) ,  zEP2, 

L(~)=-l~(z). 

(11.1) 

(11.2) 

Let  S o be the z-sphere slit along F1 and F2. We construct a Riemann surface R 
by  taking an infinity of such spheres each joined to two others, one crosswise along 
171 and one crosswise along F2. We denote by P - P ( z )  any point E It  lying over z CS 0. 
Now every function F(z)--al / l (Z ) § ) (where a I and a~ are complex constants) 
originally defined on S o can be analytically continued to the whole of It. In  fact, 
according to (11.1),/l(Z) can be continued over Pl so that  on the sphere S x joined to 
S 0 along F 1 we have 

]~(P(z)) = [x(5) +/2(z) - [~(5), P E S x 
or according to (11.2) 

/x(P(z)) = - Ix(z) + 2/2(z), P E S x. (11.3) 

In  the same way we deduce that  

/2(P(z))= - /2(z)+2#/ l (Z) ,  P e S 2 ,  (11.4) 

where S 2 is the sphere joined to S o along Fe. Then (11.3) and (11.4) imply that  the 
continuation is possible to the whole of It. 

Let F(z) = (z + 1)/l(Z) - 2/~(z) where % I ~ ] >~ 1 satisfies the equation 

•2 §  + 1 = 0 .  (11.5) 

Then the following is easily verified. Continuing F(z) first over F 1 to S t then over 
F2 to $1~ gives 

F(P(z)) = TF(z), P e Sx~. (11.6) 

Continuing F(z) first over F2 to S 2 then over F1 to S~I gives 

Y(P(z))  = T -1F(z), P E S~r (11.7) 

R can be conformally mapped onto the o~-sphere punctured at  the origin and infinity 
SO that  PI corresponds to Iw] = R > I  and F~ to ]o I =1 (see e.g. [16] pp. 424-425). 
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Let  P =g(w) be the inverse mapping.  Then ](w)= F(g(co)) is analyt ic  in 0 < [w ] < c o  
F r o m  (11.6) and (11.7) it follows t h a t  

/(R2~@=~/(@, v = 0 ,  _+1, + 2  . . . . .  (11.8) 

Suppose t ha t  0~</x~<l. Then  f rom (11.5), ]~] = 1  and  according to (11.8), rico) is 
bounded  in 0 <  [co] < co and  this implies t h a t  / (co) -cons t .  I t  follows t h a t / l ( z )  = 
const, and/2(z) -= const. This is of course mere ly  a verif ication of wha t  can be direct ly 
concluded f rom the m a x i m u m  principle for harmonic  functions.  

Suppose tha t /~  < 0  or # > 1 .  Then  131 >1 .  B y  (11.8),/(co) is bounded  in 0 <  [co] < 1  
and  is thus  analyt ic  a t  co =0 .  As regards  the  behaviour  near  infinity, (11.8) means  
t ha t  /(co) grows a t  most  polynomial ly  when co-~co and  is thus  necessarily a poly-  
nomial .  I t  easily follows tha t  the  only non-tr ivial  possibilities are 

/(co) = Cjco j, T j = R  2j, C j # 0 ,  ~=1,  2 . . . . .  (11.9) 

and  so f rom (11.5) we have  

/z j =  > 1, ?" = 1, 2 . . . . .  (11.10) 

Thus  # < 0 is not  possible. 
Le t  co(z) be the funct ion t ha t  maps  S O conformally  onto 1 < I co ] < R (F2 corresponds 

to ]cot =1)  so t h a t  I m  co(z)=0, z real and  z~F~UF2.  For  any  fixed ] = 1 ,  2 . . . . .  the  
two funct ions 

i 
/ iJ  (Z) = 1 + R 2j (co(z)J + co(z)-~)' 

(11.11) 
i 

/2j (z) = ~ (R-2J co(z) ~ + co(z) -j) 

sat isfy the relat ions (11.1) wi th  ~t =/~j. This is easily verified. I n  par t icular  

Im/v j (z  +) = I m / ~ j ( z - ) ,  z +, z -EF; ,  v = l ,  2, (11.12) 

where z + and  z-  are opposite points  on the  edges of F;  and  ~ #v ,  ~ = 1 or 2. Fu r the r  
it  is readily verified t h a t  

Re/~j(z) =0 ,  z E L - F , ,  v = l ,  2, (11.13) 

where L is the  real axis. F r o m  (11.12) and  (11.13) it follows in par t icular  that /~j(z)  
is analyt ic  in D~, v = 1, 2. Thus the functions (11.11) are a solution of A with/~ =#s" 
Theorem 11.1 is proved.  

12. Orthogonal slits 

Theorem 12.1. Let Fl={Z]O<al <~X<bl, y = 0 }  and F 2 = { z [ x = 0 ,  O<a2<y<~b2 }, 
z = x + iy. I / A  has solutions then necessarily ]/~[ > 2. 

128 



ARKIV FOR MATEMATIK. B d  7 mr 8 

Proo]. Writing/v(z)  =uv(z)+iv, (z) ,  ~=1,  2, we obtain (10.1) and (10.3) in the form 

V 1 (Z) = V 2 (Z), Z e 1~1, 

U2(Z ) =/.~Ul(Z), Z e F2, (12.1) 

u l ( ~ ) = v 2 ( ~ )  =0. 

Let  y~(t) = [(t -a,)(b~ - t ) ]  -�89 v = 1, 2, 

and [[h]]~ 1 I b~ = -  h2?~dt, v =  1,2, 
2~ j ay  

for h real-valued and continuous on F, .  Since u i and v 2 are the normalized conjugates 
of vi and u2 respectively (i.e. Ul (~  ) =v2(c~) =0)  we have 

Jlu lll < IIv1111 / (12.2) 

By Schwarz's inequali ty (y >/0; ui(x ) =ul(x + iO)) we have 

_ ~, b, b, y 

Yy2dx l  fa~ X2_t_y2Ui(X)2dx uz(iY)2=[ Imlz~ fa~ xU~'X)-- ~Y dx]2<lj f~,x~+ 

1 fll y (x)Sdx" <~ ~ 1 x~ + Y 2 ul 

Thus Ilulll~< 1 u~(x)~ j~, x2+~r2~y yj dx<.~M~ Ilu~lll, (12.3) 

where M12= Max ? l ( x ) - l f a ~  Y ?2(y) dy. a~<<.x<o~ Y~ ~ X 2 3- y2 

In  the same way we obtain 
Ilve[[ 2 ~< i i ~  I[v21122 , (12.4) 

where M~ = Max Y2(~Y)-i f f '  x 
a2<~y<~b, 275 1 Y 2 3 - x 2 y l ( x )  dx" 

Observing tha t  the function ( t -  a) (t 2 + b2) -�89 a >/0, is increasing for t ~> 0 we have 

x - a  1 b 1 - x  ~< (b~-a l )  ~ M~=  Max I m ? ~ ( - i x ) ~ 2 ~ <  Max - e  - 
a,~<x~<b, y l (X)  ] al<X<O 1 (x23-a2)  �89 (x~+b~) �89 (bl+a~)�89 �89 

and  in the same way M~ < (b2-  a2)2 
(b~ % a~l) �89 (a~ 3- bl~) �89 

and  thus (MIM2)2 ~< (~  +-a~a2~) �89 (b~ + a~) �89 < 1 al - ~ < 1. (12.5) 
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From (12.1)-(12.4) it follows tha t  

Ilvlll, = IIv~lll < 2 �89 s Ilvslls < 2-�89 M s Iluslls = I~12-�89 Ms Ilu~lls 

<~ �89 I~IM1Ms ]]u,H, <~ �89 I/alMiMs ]lv, ll,. 

From this and (12.5) we finally have 

liu] ~> 2(M1M2) -1 > 2. 
Theorem 12.1 is proved. 

13. General conclusions 

I n  (!0.1) we normalize D so tha t  F1 is a fixed slit on the real axis of length 1. There 
is no loss of generali ty in supposing the length I of Ps to be ~< 1. Let  d be the distance 
between F1 and Fs. Let  E '  be the set of parameters  p (see p. 126) for which A has 
solutions and E~ the subset of E '  for which I#1 > k holds for every solution. Let  E" 
be the set for which A has no solutions and let Ek = E'k U E". We sum up some general 
conclusions in a theorem: 

Theorem 13.1. For Problem A the/ollowing is true: 

1 ~ pEE'~##~I.  

2 ~ p e E ' ~  I#1 >~d4l-~(d+l+�89 -1" 

3 ~ pEE'  and F 1 and Fi are parallel~ I/~1 >1.  

4 ~ E 1 is open. 

Proo/o/1~ Suppose tha t  A has a solution with # = 1 and functions [l(z) and/s(z) .  
Then the function F(z) =/l(z) -/s(z) is analyt ic  and bounded in D and I m  e-*~,Y(z) = 0  
on F, ,  v = 1, 2. This clearly implies t ha t  F(z)~-const. and h e n c e / , ( z ) - c o n s t . ,  v = 1, 2, 
which gives a contradiction. 

Proo[ o/2 ~ Let  v(z) be a real-valued continuous function on F~. We write 

]]v]], = Max ]v(z')-v(z")l, v = l , 2 .  (13.1) 
Z', ZttE~y 

Fur ther  we write y ( z ) =  [ ( z - a )  ( b - z ) ]  �89 where a and b ( = a +  1) are the end-points 
of F 1. Since 

- ' z )  - 1  l "~ I m  [1 (x )  
/ l ( z ) = Y ( ~ - J a  ~ _ ~  y(x)dx, zeDl ,  (13.2) 

it follows elementari ly t ha t  

.< l  
IIIm e -~'/1(~)11~-~ h~ (d + l +  �89 

and in a similar way  

(13.3) 
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IIIm/2 (z)lh ~ ~ II Im e-i~'/2 (z)ll2. 

From (10.1), (13.3) and (13.4) it now follows that  

IIIm 11 (z)]ll < d ~ 

l 
IIIm e-'='/2 (z)l12-< lal ~ (d + Z+ ~)IIIm 11 (z)lll. 

Thus I~1 ~>~'~-l(d+Z+ 21-)-1(d +//~+ 1) -1 and 2 ~ is proved. 

Remark. In  particular we obtain from this that  

Proo/ o/ 3 ~ We have ~12~220 .  Letting [[v[[,, v = l ,  2, have the same meaning 
as above we deduce from the maximum principle for harmonic functions that  

IIIm 11(~)112 <qlll Im 11(~)111, 
]l "Ira /2(Z)l[1 <qdl Im/#)112' 

where q v < l ,  v = l ,  2. Thus as above we have 

I~1 > (qlq2) -1 > 1: 

Prool o/4 ~ Let  p C E 1. Suppose contrary to the hypothesis, tha t  there exists a 
sequence {p~}~ with pv->p such that  A has for v = l ,  2 ... . .  solutions (/~,,/Iv, 12,) 
corresponding to p ,  with I#,  [ ~< I. We may  suppose without loss of generality that  
/,~-+/~, 0 <  ]/,[ -<<1. We write (see (13.2)) 

�9 ~ ) - 1  Pb 
Ime-'='/l(z)=Ime - ~ ' ~  | Im-l-~(x)y(x)dx, zer~  

,Ja X - - Z  

in the form I m  e-t~']l (Pz) = P~I (Ira/1(P1)) 

and analogously we may  write 

Im/z (Pl) = P12 (Im e - i~' /z  (P2))- 

Writing v(x)=Im/l(X), a<~x<~b and T=P12P=~ we obtain A in the equivalent form 

(I-izT)v =0, v ~ const, 

In  the present case we have 

(I-lu,Tv)v~=O, u = l ,  2 ..... 

(13.5) 

(13.6) 
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/x~-~#, ]#] ~<1, p~-+p and IIv ll   1 f ~ v 2 ~ d x = l ,  

where 7 = 7 ( x ) =  [ (x -a) (b-x)]  -�89 According to (13.6) v,(x) coincides with the imagi- 
na ry  par t  of a funct ion which is analyt ic  in the simply comiected domain D~(p,) 
bounded by  the slit F~(p,). These functions (v = 1, 2 ..... ) are analytic and uniformly 
bounded  in a fixed domain containing F 1. Thus it is possible to select a subsequence 
{v,,}~, which converges to a continuous funct ion v in the norm, i.e. IIv-v,,ll-.0 
and so Ilvll = 1. Suppose this subsequence already selected and  let T correspond to p.  
Obviously II T - T~[ I -+0. We have 

II(I-~T)vll ~< III-~T~llllv-v~ll § I ~ - ~ 1  IITII § I~,l l IT-  T~II �9 

The r ight  hand  side becomes arbitrari ly small for v sufficiently great. The left hand  
side being independent  of v thus equals zero. Hence ( I - t t T ) v = O  and  obviously 
v ~ const, contradicting the hypothesis  tha t  p EE~. Thus E x is open. Theorem 13.1 
is proved. 

I n  (10.2) let b = a  + 1 (the parameters  p then  are a and ~) and let E~ have the same 
meaning as before. 

Theorem 13.2. For Problem B the/ollowing is true: 

1 ~ p E E ' ~ # < O , # = ~ - l o r / x > l .  
--1~ 

2 ~ . p E E ' * I #  [>~8a~sm~ 4 a s i n ~ §  

3 ~ E 1 is open. 

Proo/. The proofs of 2 ~ and 3 ~ are analogous to the corresponding ones in Theo- 
rem 13.1. I n  1 ~ suppose first tha t  ]#1 =1 .  The F(z)=/(z)-#et~/(ze -~) is bounded 
and analytic in D (the domain bounded by  F and ei~F) and observing tha t  [(5) = - / (z)  
we have I m  F(z) = 0  on F and I m  e-~F(z) = 0  on ei~F. I t  follows tha t / ( z )  ~cons t .  

Suppose now tha t  there exists a solution with # such tha t  0 < #  < 1. The funct ion 
v(z) = I m  [(/(z)-](O))/z] is harmonic and bounded outside F. F rom (10.2) we obtain 

v(r) = Ar -1 + /xv(re~), a <~ r <~ b, 

v(~) =0, 
(13.7) 

where A = B ( #  cos : r  and iB=/(O). According to the max imum principle, (13.7) 
with 0 < t t <  1 is possible only if A :~0. We m a y  suppose tha t  A >0 .  Wri te  v(re in) = 
Pv(r), where P is the Poisson transformation.  Then (13.7) is equivalent  to 

~o  

v(r) = A ~=o#~Pnr -1, 

v(~)=o. 

(13.s) 

Since v(r)>0 and  v (oa )=0 ,  (13.8) is a contradiction. Theorem 13.2 is proved. 
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14. Description o f  the set K 

Before concluding the s tudy of the eigeavalue problems of Section 10 we devote 
this section and the next  one to a s tudy of the properties of a certain point set K 
described below. In  Section 16 it is shown that  the properties of K may  be of some 
importance for the eigenvalue problems. Besides K plays an important  par t  in 
Koebe's  mapping theorem concerning the circle domain referred to in the introduc- 
tion (p. 102). 

Let  D o be a k-connected domain on the z-sphere (k>~3) bounded by  circles C~<~ = 
C~:[z-a~} = R , > 0 ,  v = l , 2  ..... k, ~ E D  o. Let  s~ be the reflection operator with 
respect to C~ i.e. s~(z)=a~ +R~/(5-5~). The circles C~ ~) :s~,st,_~ ... si,(Cio), 1 <~il,<~k, 
i,+x # i , ,  # = 0 ,  1, 2, ..., n - -1 ,  constitute the boundary of a domain D= of connectiv- 
i ty  / x~=k(k -1 )L  Also D~-+D, a domain on the z-sphere. We denote its comple- 

r  meat  by  K. I t  is completely determined by  the circles ~ yl, which we call the 
fundamental  circles of K. A circle C~ (~) is said to be of generation n. 

Let  W be ~ domain on the z-sphere. We define WEPa, WEPAB and WEPAD 
respectively if Green's function exists in W, if there exist nomconstant,  bounded, 
analytic functions in W and if there exist non-constant analytic functions in W with 
finite Dirichlet's integral over W. The complements of Pa, PAB and PAD are denoted 
On, OAB and OAO respectively. If  W EPAB the complement of W has positive analytic 
capacity, otherwise the analytic capacity is zero. 

First we prove a lemma. 
15. Remarks on K 

Lemma 15.1. Let A be the class o~ linear trans/ormations s~,s~,_l ... si,(z) (n even) 
or ~i,s~,_~ ... s~,(z) (n odd), ip+l # i  ~. Let a=#c~ be a / ixed  point ED o. Then there exist 
positive constants b and B such that 

/or any l(z) EA. 

k 

bll'(a)[<~Jl'(z)l<Bll'(a)[, z e~Do= 0 C(~ ~ 
v=l  

Proo]. Apart  from the trivial case l(z)~z, the l(z) are uniformly bounded, z E D O 0 
aD o. The statement  now follows from Koebe's  distortion theorem. 

K has a number of well-known properties, some of which we list below. For 1~ ~ 
see [16], p. 111. The third property should be compared with [16], p. 422. 

1 ~ The measure o / K ,  m(K) is zero. 

2 ~ . D E P a  (k~>3). 

3 ~ I / / ( z )  is analytic in D and i] /or  any e > 0 there exists n~ such that 

~n 

Y o & < e  /or n>n~ 

where wv,= Max ]/(z~)-l(zl)l then /(z)------const. 
zx, z~ e C~ n) 

4 ~ DeOA~. 
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Proo/. We use the criterion of Theorem X.22 ([16], p. 446). I t  is required to con- 
s truct  a regular covering of {~Dn} such tha t  ~ = l N * ( n )  -1= oo where N*(n) has the  
meaning of Theorem X.22. Let  the discs C,~, tt = 1, 2 . . . . .  N(v)  < c~, be centred a t  
C~ (~ v = l ,  2 .. . . .  k. Fur ther  we demand tha t  C ~ , ~ , A C ~ = r  vl:#v 2, C ~ A ~ D I =  r 
and  C~.,+I f3 C~, # r  (where Cv, N(v)+l=Cvl). Then U0= U~.gC~, is a covering of ~D 0. 
Wi th  the aid of the reflection operators we can map U 0 (directly or indirectly) 
conformally onto U~ to cover ~D~, n = 1, 2 .. . . .  I t  is readily seen tha t  {U~} is a regular 
covering of {~D~} such tha t  N * ( n ) = N = M a x ,  N(v).  Thus EN*(n) -1 diverges and 
hence D E OAD. 

Remark.  Koebe 's  proofs, ment ioned in the previous section, are connected with 
p roper ty  3 ~ A modification showing the connection with proper ty  4 ~ can be made 
as follows. We temporar i ly  adopt  the notat ion of Theorem IX.35  ([16], pp. 424426 )  
and give a slightly modified form of the proof of tha t  theorem as follows. The re- 
flection proper ty  of Cv means tha t  there  exists a function/~(~) analyt ic  and univalent  
in a neighbourhood of the unit  circle so tha t /v( l~ l  = 1)=C~. A suitable covering of 
the unit  circle, similar to the above, can then with the aid of ]~(~) and the transfor- 
mations of G be mapped  directly or indirectly conformally to cover ~ z  (N.B. the 
~ z  exhaust  ~).  As above it follows tha t  ~ E OAD. Since ~q,(o)) is meromorphic  and 
univalent  in ~ it follows tha t  ~q~(~o) is linear ([16], p. 445) and it follows in an ele- 
men ta ry  way  tha t  Cv is a circle. 

Since Oa~ OABC OaD with strict inclusions it is a natural  question to ask whether  
it is in general t rue tha t  D EP~.  or Oas- The following points, 50-8 ~ show tha t  the 
answers to both questions are negative. 

5 ~ D E OAB i/ C,, v = 1, 2 . . . . .  k, are orthogonal to one and the same circle C. 

Proo/. We may  suppose tha t  C is the real axis since the proper ty  D E OAB is invariant  
under  linear t ransformations of D. Then C~("): I z-a~(n) I = R~ (n) with I m  a~ (~) =0 ,  
v = 1, 2 .. . . .  /t~, n =0 ,  1, 2 ..... Let  the circle of generation n + 1, C~(~ +1), be interior to 
C(~ n). From the geometric positions of these circles and Lemma 15.1 it follows t h a t  

k - 1  
~ R ( n + l )  ~ n ( n )  _.~ ~qx~ b , # = 1, 2, . . . ,  #n, 

for some fixed q < 1. Thus 

/~n+l /in 
2 R(~n+l)<~q2R(~n), n = 0 , 1 , 2 ,  " - ' '  

v = l  i ,=1 

,a n 

I t  follows tha t  ~ R~ (n) = O(q n)-+ O. Thus K has linear measure zero and this implies 
v = l  

t ha t  D E OaB ([1], p. 252). 

6 ~ �9 k = 3 ~ D E O a B .  

Proo/. 6 ~ is an immediate  corollary of 5 ~ 

7 ~ la~-a j l  > R ( 1  + R ( k - 1 ) ) ~ D e O A B  where R = M a x p  R v. 
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Proo/. Let a circle C with radius r interior to Ci be reflected in Cj, i # j ,  to a circle 

(~ with radius ~. Then 
R~ r qr 

~<~ia_a~l--R < ~ - 1 ,  0 < q < l .  

ten+l ten 
I t  follows that  ~ R~ (~+~) ~< q ~ R~ (n). 

v-1 v-1 

Thus K has linear measure zero and D E OAB. 

8 ~ There exists K positive analytic capacity, i.e. D EPAB. 

Proo/. According to Theorem 4 ([2], p. 613) there exists K with Hausdorff dimen- 
sion d(K) > 1. This implies that  there exists a distribution # of the unit mass with 
support on K, and constants A and a > l ,  such that / t (C) <~AR a for any disc C of 
any radius R. Then 

fKd~(~) / ( z )  = ~ - z 

is a non-constant, bounded, analytic function in D. 

16. Analytic continuation 

The method of analytic continuation used in Section 11 can be generalized and 
this shows a connection between the eigenvalue problems A and B and the classi- 
fication problem for certain l~iemann surfaces. The special case of Section l l gives 
a very simple surface, which however is not so for other choices of parameters p 
determining F 1 and 1~2. The aim of this section is to exemplify this method. 

Let a in (10.2) equal x~r ( 0 < r < l )  where r is a rational number and write s=e ~". 
Then there is a smallest natural number AT such that  e N= 1. Let I?~ = eT,  v =0,  _+ 1, 
_+2 ..... (F~+N~l~) and let /r(z)=/(e-~z), v=0,  _+1, _+2 ..... (/v+N(z)=/,(z)). Then 

[v(z) is analytic and bounded outside F~ and from (10.2) it follows that 

Im/v(z) =1~ Im ~/v_l(z), z E F,. (16.1) 

Let S o be the z-sphere slit along F~, v =0,  1 ..... N - 1 .  We connect replicas S~ of S o 
to S o crosswise along F~, v =0,  1 ..... N - 1 .  Let P~(z) be the point of Sv lying over 
zES o. From (16.1) it follows that  [,(z) can be continued into Sv and observing the 
property (10.3) we obtain 

/,(Pv(z))= -/v(z)+tt~/v_l(z)+tts/v+l(Z), v=0,  + I ,  _+2 ..... (16.2) 

Let F(z)= ~__-01 a~/,(z) w h e r e  {g~}~ r-1 a r e  complex constants. From (16.2) it follows 
that F(z) can be continued into a Riemann surface R obtained by connecting to 
each other an infinity of replicas of S 0 crosswise along the slits according to a rule 
whose form depends on r. We exemplify this rule briefly as follows. If r=2 /3  then 
N = 3  and R is a surface of planar character (see [16], p. 421) such that each sphere 
is connected to three others. If  r #2/3 (0 < r  < 1) then AT >3  and it follows from (16.2) 
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P 

\ 

v=1/3 v=%13 
Fig. 3. 

that  continuations over non-consecutively numbered slits (e.g. I '  o and P2) , commute.  
Thus the associated Riemann surface It  is not of planar character. (In Fig. 3 I t  is 
indicated in the cases r =2/3 and r = 1/3.) In  this case the Riemann surface of planar  
character, R, obtained by  connecting to each S o first S~ (v =0 ,  1 ... . .  N - 1) and then 
to each S~ N - 1 new replicas and so on, is a covering surface of It. (Thus R = I t  in the 
case r = 2/3). Also R is couformally equivalent to a domain ~ on the to-sphere bound- 
ed by  the point set K of Section 14 (see [16], p. 424) which has the circles (orthogonal 
to the unit circle) 

C v : l c o - e ~ U l + ~  ~] =~, ~=0 ,  1, ..., N - l ,  

as fundamental  circles. Here C~ corresponds to I '~ES 0 and ~ depends on the para- 
meters p only. Let  P=h( to)  be the inverse mapping and let g(to)=F(h(to)). We 
exhaust ~ by  ~n where ~ is bounded by  the union of the circles of generation n. 
Letting l~(~) be the total length of these circles and writing M~(/x)=Max~eon n I g(eo) ] 
we have 

I 1  fo g(r dtoI<<.V,,,l,,(~)M,,(p), toofif~o, n = 0 , 1 , 2  . . . . .  (16.3) Ir n.(to- o) 

Thus if lim 1 n (~) Mn (ju) = 0 then B lacks solutions for the/~ and p concerned. 
n - ~ o v  

I t  follows from the proof of 5 ~ tha t  ln(~)~ Aq~ where 0 < q0 < 1 and that  qe becomes 
arbitrarily small if Q is sufficiently small. Further  it is possible to estimate M. (p)  
ill various ways essentially in terms of # only. For  instance it follows from (16.2) 
that  

M~(p) <~M(1 + ]P I)"" 

With these estimates the sufficient condition above is satisfied if 

(1 + J~J)q~< 1. 
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IV. On co nfo r ma l  m a p p i n g s  onto  rect i l inear sl it  domains  

17. Definitions and notation 

Let  D be a k-cormectcd domain  on the z-sphere bounded by  k cont inua (C,}~, 
ooED.  Let  {~}~ be a ny  set of real numbers  such tha t  0~<~,<:z,  v = l ,  2, ..., k. A 
rectilinear slit F making the angle ~ (0~<cr with the positve real axis we call an 
o~-slit for short. There exists a unique funct ion oo=/(z )EZ' (D)  mapping D onto a 
domain bounded  by  rectilinear slits {F,}I k, where F ,  corresponds to C,, v = 1, 2 .. . . .  k, 
such tha t  F ,  is an ~,-slit. This can for example be proved as a limiting case of more 
general mapping  theorems. The question of whether  the iterative process can be 
applied in general to this canonical domain m a y  be difficult to answer. P robab ly  
we can expect  to find neither a simple "measure of deviat ion" acting monotonical ly  
as we could for the mappings  of Chapter  I nor  a simple functional  as in [7] for the 
parallel slit mapping.  However  something would be gained if it were possible to 
apply  the iterative process in the case when D is of "near ly"  desired shape. Then 
the mapping  functions are available for approximat ions  with the aid of which we 
obtain the convergence of the process in certain cases. 

We confine ourselves to the case k =2 .  Let  ~ be a mixed slit domain on the ~-sphere 
bounded by  an ~l-slit, F1, and an  ~2-slit, F~. We m a y  normalize ~ by  the require- 
ment  t ha t  one of the slits be identical with a pre-assigned slit. 

Then ~ =s is determined by  a set, p ,  of 4 real parameters.  Let  D = D ( A 0 ;  p) 
on the z-sphere be conformally equivalent  to E/(p) under  a mapping in Z ' (~(p)) .  
Let  the boundary  of D be an ~x-slit, F~ ~ and another  slit *2P(~ which "deviates 
ve ry  l i t t le" f rom an ~2-slit (in some suitable definition of the term), the measure of 
devia t ion being at  most  A 0. More precisely we prescribe F~ ~ to be rectilinear and such 
tha t  M a x a . ~ r  < 0 ) I I m e - ~ ( a - b ) l  ~<A o. We can map  ~ conformally onto such a 
domain as was remarked above. Wi th  D as s tar t ing-point  an  i tcrative mapping  chain 
is constructed as follows: 

1 ~ Zn+l=Zn+l(Zn)=z~+r~+l(z~), n=O, 1, 2 .....  (Zo=Z). z~(Zm)=z~(z~_l(...(Zm)...)), n > m ;  
zn(z) =z~(z; Ao, p). 

~ v  T~(0) 2 ~ z ~ ( D ) = D  (~) where D (~) is bounded  by  l~(n) corresponding t o . ,  , v = 1, 2. Let  
D(~ ) be the simply connected domain  bounded by  F(~ ). 

3 ~ z~+I(Zn)EY/(D~ )) and  F ~  +1) is an ~v~-slit, n = 0 ,  1, 2 .. . . .  where % = 1  if n is odd, 
v~ = 2 if n is even. 

The bounda ry  components  of D (n) i.e. F(1 n) and Fi  n) will also be denoted by  ~(n)= 

the ~,n+l-slit and F(n)= the other  slit. B y  the width of I ~(n) we mean the quan t i ty  

A n = Maxa. 0 ~V n) e - ~ n  (a - b). 
Let  Fn(~)= $ + R~(~)EY,'(~(p)) be the mapping  of ~ onto D (n). 
Let  U~={~[d($,  F~)~<d0} and Lv=~U~,  v = l ,  2. 
We choose d o > 0  so small t ha t  U 1 fl U2=r  Let  L(, n) =F~(L~) and let U(~ n) be the 

point  set consisting of the domain  corttaining F (n) and  bounded by  L <n) together  with 
J / / ' ( n )  T ( n ) ~ > +  this boundary ,  v = 1, 2. F rom the compactness  of Z'(~2( it follows tha t  ~ 1  , ~2 j 

k l > 0  and d(F~ <~), L(v n)) >~k2>O , v = l ,  2, where k 1 and  k 2 are independent  of n. 
Let  h(z; F, v) be the uniquely determined function, which (1 ~ is bounded  and 

analyt ic  in the domain bounded  b y  the rectilinear slit F, (2 ~ is zero at  infinity and 
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(z) .-':., 

,<.~ r m"// /  2, / -' r~ ." ,) U ~ /~ , /  
Uz ,. z ~.J.,! 

~; Zo  Z I 7"1, 

F ig ,  4, 

(3 ~ has, with respect to F, a symmetric imaginary part  with continuous boundary 
values v + C, where C is a constant determined from (2~ 

We make the 

Definition 17.1. The domain ~(p)  is an iteratively stable domain i/ there exists a 
number A(p) > 0 depending only on p such that l im._~  z.(z; Ao, p) exists/or all A o ~< A(p). 

I f  lim._+oo z.(z; A0, p) exists then necessarily the limit function belongs to Z ' (D)  
and maps D onto ~.  

18. Lemmas 

Lemma 18.1. There exists a constant K independent o / n  such that 

Ir.+x(zn){ <~KA._,, z. e("("), (18.1) 

I R.(O I ~<KA,_ x, ~qF  l O F2, n = l ,  2 ... . .  (18.2) 

and Iq(z)l ~<KAo, zer(2 ~ (18.3) 

{ R0(~) { ~<KA o, ~ EF1 U I? 3. (18.4) 

Pro@ From the compactness of Z ' (~ )  it follows that  the inequalities are true if 
An-1 >~ A > 0. Hence we suppose that  An-1 is small. Let ~ denote z, reflected in F-(~). 
The constants K,, i = 1 ,  2, 3, 4, appearing below are all independent of n which fol- 
lows from the compactness of Z ' (~) .  

We now prove (18.1). Since I m  e-~%,-1 r~(z, 1) ~<A=-I, z,-1 el~(~-l) it follows tha t  
]rn(z~ 1)1 ~<KIAn 1, z, 1EL(~a 1) and in particui~r that  A~<2KaA~ ~. Thus 

{r.+l(z.) { ~<K,A._1, z.eL(~: ). (18.5) 

The function Z.+l(Z.) can be analytically continued over F(") to a double-sheeted 
Riemann surface branched at  the endpoints of F("). The continuation is given by  

Z*n + 1 (Zn) = Zn +1 (Zn ( in  - l ( Z n ) ) )  = Zn -}- an "~- r*n +1 (Za)  

where r*+l (oo) = O. I t  follows tha t  (z.-1 = zn-1 (z.)) 
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{r*+l(zn){ <lrn(zn-1){+ + {rn+l( n( n 1)){ 

and  tha t  {an{ ~<2K1An 1. 

I f  An_l ~<A (independent of n) then the cont inuat ion over F(~)is certainly pos- 
sible up to and onto L~(: ), which is though t  of here as lying in the second sheet and 
also 

{z*+l(zn)-zn{<K3An 1, z~eL(~ ). (18.6) 

Apply ing  the max imum principle we deduce (18.1) from (18.5) and (18.6)~ 

To prove (18.2) we observe tha t  Ime-~n+lR~(~)=Cn,  ~EF~+~, where Cn is a 

constant .  Since we also have R n ( ~  ) = 0 it necessarily follows tha t  {Im e-~Rn(~){ <~ A~, 

e F~, tJ f2. Thus {R~(~)I ~< K4An ~< 2KIK4An-1,  ~ e L1 tJ L2. Wri t ing F~ (~) = 
/ ~ n + l  (~) --  ( F n + l  (~) - F n  (~)) w e  realize tha t  {Cn { ~< An+l + K l A n  ~ 3 K l A n  ~ 6K~An-1. 
With  these observations it is possible to conclude tha t  

{ Rn(~) { ~ K4An_l,  ~ E F 1 ~J 112, 

in the same way  as in the proof of (18.1) where we now continue Fn(~ ) over F1 as 
well as over F2. The continuations are given by  _P.(~) and zn(Pn-l(()) where the 
reflections are made in a slit and its image. 

The function zl(z ) can simply be wri t ten explicitly and (18.3) is readily verified 
b y  elementary means. 

To prove (18.4) we have l i m e  '~'R0(~) { ~<A0, ~e  F2 U ~ and IR0(~){ <~g4A 0, 
E L 1 (J L 2 as above. Fur ther  

{Im e -'~' R 0 (~){ ~< 3K 1A0, ~" e F 1. 

Using the condition tha t  F~ (~ v = 1, 2, are rectilinear, we obtain (18.4) with the aid 
of  analytic cont inuat ion as above. L e m m a  18.1 is proved. 

Lemma 18.2. There exist ~1>0 and A independent o / n  such that i/ A~_I~(~ 1 then 

i:% -gv 
rn+i (Zn) = -- e .h(zn; Fv., Im e "rn) + en§ (Zn), (18.7) 

- T ( n )  where {en+l(zn){<AA~n_l, z n e ~ + ~  , n = l , 2  . . . . .  

Proo/. To avoid complicated nota t ion we  perform the proof for the special case 
n = 1. I t  is readily seen from the text  tha t  we can determine ~1 and A independent ly  
of n. This is a consequence of the compactness of Z'(D). The constants  Ai, i = 1, 2, 
3, 4, appearing in the present proof are of this kind. Of course we do not  use here 
the condition tha t  F(2 ~ is rectilinear. 

I f  n = 1 then (18.7) becomes 

r2 (z l )  = --  et~h(Zl; F~, I m  e-~'rl) + ~2(Zl).  

We have I m  e i~'r2(zl) = c 2 -  Im  e-~='zl, z 1 E F (1) 

or Im  e -~=' r 2 (z + r 1 (z)) = c2 - c o - Im  e ~=~ r I (Z), Z ~ F(10), 
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where c o and c a are constants.  Le t  v(z) be the  bounded harmonic  funct ion in D~ ~ 
which takes  the values c a -  c o - I m  e-~'rl  (z) on F(1 ~ Le t  a and  b be the endpoints  
of F(t ~ and  z = S(w) = (b - a) (co + g o - 1 ) / 4  Jr (b + a)/2. Then  r 1 (S(to)) is analyt ic  in a 
ring e -~ ~<]eo] ~<e, where e >  1 depends only on the  length of F(~ ~ and  d(r?  ), r~~ I f  

R(t~ = 21~i f l  ~'1 =~ rt(S(w'))de~ ' - to (18.8) 

then  rl(S(~o)) = R(co) + R(co -1) + const. 

and  hence v(S(eo)) = - I m  e -i~' (R(eo) + R(&)) + eonst.  (18.9) 

Since Irl(z) l ~<KA o (Lemma  18.1) it follows f rom (18.8) and  (18.9) t h a t  

I v(S(o~)) - v(S(~Ou))l < Ke,KA o leo1 -o)~ [ (18.10) 

if ]wl ], I w21 ~< Q' < ~" Here  K e, depends on 9' and  ~ only. 
Le t  l ( z ) = B z + B '  be such tha t  l-l(a)=zl(a) and l-l(b)=zl(b}. Then l(F(11)) is a slit 

with end-points  a and  b. 

Now we choose 81 > 0 so small t ha t  A0 ~< 81 implies the following: (1 ~ I(F(11)) ~ U(l~ 
(2 ~ is the image under  S(co) of a s tar -shaped (with respect  to m = O) analy t ic  
arc to = R(O)e ~~ 0 <~ 0 <~7r connecting to = + 1; (3 ~ F1, 1-1 (F(1 ~ ~ U(11). I n  (2 ~ we ob- 
serve t ha t  [r~ (z)[ ~< K Ao implies t ha t  [r; (z)[ ~< g 'Ao ,  z e F~ (~ which ensures t ha t  (2 ~ 
can be satisfied. 

Now let S(e '~ =z and S(R(yJ)e iv) =l(z+rl(z)) where zEF(1 ~ and  0 ~<0, ~o ~<~. Then  i t  
is e lementar i ly  verified t ha t  

[ R e ~ -  e'O[ <~ A 1A~ o . 

Inser t ing this in (18.10) and  using (1 ~ we obta in  

[v(l(z + rl(z))) - v(z)[ ~< A2Ao ~, z E F(1 ~ 

or according to the definit ion of v(z) 

[v(l(zl)) - I m  e-'~Ira(Zl)l <~A2AJo, zl e r (1,. 

F r o m  the m a x i m u m  principle it follows t h a t  this is t rue  for z 1 E D(11) U F(11) and  
hence if A0 ~ 81 t ha t  

r a (zl) = et~'h(Zl; l -I  (F(l~ - I m  e -l~' r 1 (/(Zl)) + e~', (18.11) 

where le~ ] <AaAo t, z~ e L(# ). 
Using (3 ~ and  L e m m a  18.1 we have  for Ao<81 tha t  

[h(zl; F1, - I m  e-~'r~) -h ( z l ; / -1  (1~(10)), --  I m  e-'~lrl(l(Zl))[ ~<A4A~, z1 ~ L(1). (18.12) 
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Combining (18.11) and (18.12) we obtain the s ta tement  of the lemma for n = l  and  
referring to the prel iminary remark  we find tha t  Lemma 18.2 is proved. 

Remark. Using the rectil inearity of F~ ~ we find tha t  Lemma 18.2 is t rue for n = 0  
with the formal difference tha t  [Qi(z)l ~<AA0~ , z~i(~ ~ The proof is analogous to  
the above and it m a y  also be carried through in a direct way  since the funct ion Zl(Z) 
can be wri t ten down explicitly. 

19. The main theorem 

Let  E~ have the meaning of Section 13 (p. 130). 

Theorem 19.1. I / p  ~ Et then ~(p) is iteratively stable. 

Proo/. Let  v 1 be a real-valued, continuous funct ion given on F~. Then  denote 
I m  e~(~'-~)h(z; F1, -v~), z~F2, by  v~ and write v~=T2~v 1. Fur ther  let v3=T~v~ be 
the function which takes the values h n  e~(~'-~~ F~, -v2),  z ~ F~. Hence v3 = TI~T~lV ~ 
and we pose the eigenvalue problem 

,~v = T1eT21v. (19.1) 

If  F~ can be obtained from F 1 by  a rotat ion T12 = T21 = T where Vl, v~. and  v a are 
thought  of as being defined on F1. In  this case we pose the problem 

~v = Tv. (19.2) 

I f  (19.1) has a solution (;t, v), 2 #0 ,  v ~ 0, we define/l(z)  =e*~ih(z; F1, - v )  and [2(z)= 
ei~'h(z; F2, -Te l v  ). Then /,(z) is analyt ic  outside F~, v = l ,  2. F rom (19.1) follows 
tha t  v coincides on F1 with the values of a funct ion tha t  is harmonic outside F2. 
In  part icular  this implies tha t / t ( z )  is bounded. In  the same way  we conclude tha t  
[2(z) is bounded. F u r t h e r / , ( ~ )  =0 ,  v = l ,  2, and so (19.1) takes the form 

~t I m  e-~'[1 (z) = ~ C  1 - I m  e-~/2(z), z E 1~1, 

I m  e-~[2 (z) = C 2 - I m  g-man/1 (Z), Z ~ F2 ,  
(19.3) 

where C 1 and C 2 are real constants  due to the conditions [ ~ ( ~ ) = 0 ,  v = 1, 2. I n  (19.3) 
~ t# l ,  which follows in the same way as in Theorem 13.1, see 1 ~ p. 130. 

I f  ~:t=cos ~ (~2 -x i )  then we can replace /l(z) by  2-Vl(z)+ie~Ai  and /~(z) by  
-/~(z) +iet~'A2 where A 1 and A 2 are determined by  

2A 1 + A~ cos (~2 - ~1) =2C1, 

A 1 cos (a2 - e l )  + A 2  - C2" 

Writing/~ = ~t -1 we obtain 

Ime-~ / i ( z )=Ime- i~ /2 ( z ) ,  zEF1, } 

I m  e-~'/~ (z) = # Im  e-t~'/1 (z), z E F2, 

I~e e - ' ~ / ,  ( ~ )  = 0 ,  v =  1, 2. 

(19.4) 
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Now (19.4) is identical with (10.1) in Problem A (p. 126) together  with the condi- 
t ion (10.3). I f  2 - c o s  ~ (~2 al) then 2 < 1 (~ = 1 is excluded). 

I n  a similar way  (19.2) can be rewri t ten in the form of (10.2) together  with the  
condition (10.4) (p. 126) for ~t # - c o s  (~2-~1). Here necessarily ~ ~ +_ 1 and if t he  
exceptional case ;t = - cos ( ~  - ~1) occurs then I~t < 1. 

Thus  if p E E  1 with respect to A then necessarily 12[ <1  in (19.1) if there are a n y  
solutions and analogously I;tl < 1 in (19.2). We perform the proof in the former case. 
The latter one can be handled analogously. The t ransformat ion T12T21 has a con- 
t inuous and bounded kernel and it follows tha t  there exist q, 0 < q < 1, and ra 0 depend- 
ing only on p such tha t  (HvH see below) 

H(T12T21)~H <q~, m ~ m  o. (19.5) 

We now turn  to the iterative process. Suppose tha t  Lemma 18.2 can be applied 
to 2m (m~mo) consecutive functions r,(z~_l) start ing with r~+l(Z~), n>~l. Then 

I m  e-~a'r2m+2n+l(Z2m+2n) = (TinT21) ~ (Im e-i~tr2n+l) + ~m, Z~+2~ E F1, (19.6) 

where [ ml <K~A2~_~. Here K~ depends on p and m only. Let  

Ilvllr = M a x  I 
zeI ~ 

From L e m m a  18.1 we obtain  

I[[Im e-'~,r~m+Z~+lllr,?.+~)- Him e t~'r2m+Zn+l[[F, I < K"mA~zn-l' (19.7) 

where K:~ depends on p and m only. Observing that II!me-'~ 
where K is the number  of Lemma 18.1 we deduce from (19.5)-(19.7) t ha t  

-it6 r [l ime em+2~+ll[r(~+2,)<~Kq~A2~ I + KmA2~_I, (19.8) 

where K m depends on p and m only. I n  part icular  

.< m KmA~n_l. (19.9) A2m+2n+l-~2Kq Az~-I + 2 

The same argument  holds if n = 0. I n  this case A2~-1 is replaced by  Ao, and A~m+2~+l 
by  A~m+l. 

Let  ql be a number  such tha t  0 <q l  < 1. Then we fix a number  m >~m o such t h a t  

qm ~ 4--K' 

I t  follows from Lemma 18.1 tha t  it is possible to find a number  3m>0 depending 
only on p and m such tha t  the a rgument  above, (19.6)-(19.9), is justified as soon as 
A2n--i < (~m(Ao < (~rn). 

Thus with m and  6m fixed we prescribe tha t  Ao~<Min (6m, (ql/4Km) 2) = A ( p ) > 0 .  
We now deduce f rom (19.9) t ha t  with A o replacing A~n_ 1, 

A2m+l ~ qlAo < A(p) .  
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T h e  c o n d i t i o n s  fo r  a n  a p p l i c a t i o n  of t h e  a r g u m e n t  l e a d i n g  f r o m  (19.6) to  (19.9) a r e  
a/ortiori sa t i s f i ed  w i t h  r~m+a as  s t a r t i n g - p o i n t .  W e  o b t a i n  

A4m+a < q~A o < A ( p )  

a n d  i n d u c t i v e l y  A2N(m+l)-i ~ ql A0, N = 1, 2 . . . . .  

w h i c h  imp l i e s  t h a t  l imn_,~  zn(z; A0, p )  ex i s t s  if  A0~<A(p  ). T h u s  f~(p) is i t e r a t i v e l y  
s t a b l e .  W e  h a v e ,  m o r e o v e r ,  a c c o r d i n g  t o  L e m m a  18.1, 

T h e o r e m  19.1 is p r o v e d .  
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