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On the existence of the scattering operator

By Einar LunpQvisT

1. Introduction

Scattering, in its most simple form, can be described as a process during which two
elementary particles collide. The particles are assumed to be infinitely separated in
space both at the beginning and at the end of the process. The state at each instant
is given by a function y € L*(#,,). The particles interact with a certain force V, which
decreases to zero as the distance between the particles tends to infinity. With each
initial state (at the time #= —oo) is uniquely associated a final state (at the time
t=o00) by means of the Schrédinger equation

ia%qp(t) = H,p(t), 1)

where H, is the total Hamiltonian operator. H, is defined as a self-adjoint extension
of the operator Hy+ V, where H, represents the kinetic energy and V the potential
energy. H, and V are self-adjoint. (1) describes the time development

’l/)(S) — e—iH;(s—t),lp(t) (2)
for a state .

One introduces a time-dependent representation of the Hilbert space L*(E,) so
that e’y represents the function 9 €L2(E,,). In this representation, “the interaction
picture”, the unitary operator Ul(s, t)=e™ s ¢ H1s~D ot takeg a state at the time
¢ to the corresponding state at the time s. The operator U has the following properties

U, )=Uls, YU, t),} )

U*s,t)= UL, s).

Under the assumption that lim; ., ., U(0, t) = U(0, & oo) exist in some sense,one defines
the scattering operator S ag

8 = U*(0,00) U(0, — o). 4)

Then § transfers an initial state to the corresponding final state.
In the formal scattering theory one assumes that the wave operators U(0, £ o)
exist and that § is unitary. A rigorous mathematical theory for scattering was
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given in 1957 by J. M. Jauch [1]. Earlier K. O. Friedrichs [2] and J. M. Cook [3]
gave sufficient conditions for the existence of U(0, 1 oo). Further contributions to
the theory were later given by M. N. Hack [4], Jauch-Zinnes [5] and S. T. Kuroda
[6]- As a sufficient condition for the existence of the strong limits

U(0, £ o0) = lim ¢tH1g~#*0 (5)

t—>t00
with Hy=—A and H, = —A + V(x) - Kuroda [6] stated
V(x)(1+|x|)" it e LA(E,), >0, (6)

In theorem 1 we shall give an estimate sharper than that in (6).
Jauch [1] bases his theory of scattering on the following definition of a simple
scattering system:

I. U(0, + o) exist as strong limits in the whole of L*(E,) with the ranges R
and B_.
II. R,=R_=R.
III. M, =R.

M is defined as the subspace spanned by the eigenfunctions of H;.

If condition I holds true, then condition II is equivalent with the requirement
that §=U%*(0,c0) U(0, — o) be unitary. We shall show in theorem 2 that the con-
ditions for a simple scattering system are not satisfied for a function V(x) in Z,,
which decreases as 1/|x| when |z|—>co.

2. On the existence of the strong limits lim,_, ., "7 ¢ #%

Let E,, be an m-dimensional euclidian space and H,; the differential operator
—~A+V(x): in L¥E,), where A=>", 82/(05), and V is a multiplication operator
such that V(x) is real and measurable in E,. The operator Hy= —A, with region of
definition

Dy, = {u| |k|*i(k) €LA(E,,)}, 1)

is self-adjoint.? (@(k) is the Fourier transform of u(x).) The region of definition of
V is the totality of all u(x) €L3(E,,) such that V(x)-u(x)€EL* E,). V(X) is assumed to
belong to L*(E,) locally. H;=H,+V is defined on a dense set, and is symmetric
and real. Thus, it has at least one self-adjoint extension. Let H; be one of them.
We set

Ut — eitHl e—itHo

and write
t

(U,—U)u =71f ¢t et e,

s

from which it follows that
1 Kato [7].
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t
|@-vuli< [ 17 ula

since ¢*#* is unitary.
‘We thus have

Lemma 1. Suppose there exist a ¢ >0 such that
=] -
f | Ve-itvu|dt < oo, f |V eitFeu]|di < oo
c — o0

for all w€L, where L is a set, dense in L2(E,). Then the strong limits
Uimy_yy oo ' e= 180 4, exist for all w€LA(E,,).
We shall need the following formula

¢~ itHy(x) = | tcln;’" fE exp (_ 11)(_—%:_82) u(8)ds,

(1 + ¢ signum (£))™
2;-3711 n%m

where Cn=

Derivation of formula (3). Let 4(y) be the Fourier transform of u. That is,

ay) - (2‘;)—% f L ¢ T Tulxdx,

where the integration is over the whole of E,, and X'y =>/"1%;y;.

et u(x) = (2m)~tm f XYV Y gi(y)dy

Em

= lim (2n)”’"f eix'ye”y'yf eV Su(s)dsdy
lvI<E Em

R—>00

= (2m)™" f u(s) f T THIES) gy gy
Em Em

m 0
ity -Y+iy(X—-8) — ity +iyg(Tp—sg)
f € dy—Hf e TR dyy.
Em k=1J oo

For >0 one gets

oo N . — 2 = 2
J‘ eitkayk(zk—sk)dyk =exp (_ %(xk4t Sk) ) f e“”dyk
]

— o0

Y | - .
=exp(—’-(’”"4+’°))-ﬁl/g(l +i).

(6), (5) and (4) leads to formula (3) for £>0.
The case where £ <0 is treated analogously.

(2)

(4)

147



E. LUNDQVIST, On the existence of the scattering operator

Theorem 1. If |V(x)| <V*(|x|), where V*(|x|)€ELXE,,) locally, and there exist o
number N >0 such that V*(|x|) is monotonically decreasing for |x| >N, and V*(|x|)€
LMM, ), 0<M < oo, then the strong limats exist for all w€L2(E,,).

By virtue of lemma 1 it is sufficient to prove

0 -M
f | Ve i#Hoy||< o and f || Ve itHoy||dt < oo (7)
M

for all % in a dense set.
Formula (3) gives

R = P e
e u(x)—t%mJ‘Emexp( yr )(s)ds t%mexp( ).,

2

X exp (_%1'4_}(2—.:@) u(s)ds.

For ¢t > M >0 we have

oy < oo

§? .
f mexp (— 4—tz+ —2—{@) u(s)ds

[oveesmeamated 754"
f Vz(x)f exp(——z+x—§z)u(s ds

Definition. £ = {u(8) =u,(s;) - Us(85) " ... Upn($,,) [ (A" /sy Yu, (s ) €LY —o0,00),m,0=1,2...

u,(s,) has compact support and 4. (O) =0 for v=1,2 .. .

One can show that the set £ is dense in L(E,). We shall Verify (7) for a function
u(s) € L.

le

and

dx} . (8)

Lemma 2. For the function

F(x,t)=

= $°8. X'S.
7°°exp (———‘It«z-l-z‘tz) Uy (81) Ua(Sg) * oo Up(S) Sy ... A8y,

where u(s) =] [7_,u,(s,) € L, we have

Fix (H ) (1) for %ao and t—>oo, 9)
F(x,t)=0(9—§-m) for |—|=0, ¢v=12,....m, t=1. (10)
v v
Proof.
m A
F(x,t)= Hf exp (xv2t 7)"/) Vy(8,)dsy
v=1dJ —4

148



ARKIV FOR MATEMATIK. Bd 7 nr 9

Each factor in the first term is an entire function of the variable z,/t. From 4,(0) =0
it now follows that

fA ex (x’li 8'1)
AP T
This takes care of the first term in (9). For the second term in (9), we use the in-
equality
ex —Lsz —1 <2sm§—s—0(1)
P\7w 8 ~\t

when ¢{—> oo in (11). (10) is obtained by partial integration.
It is easily seen that F(z, t) is bounded. Thus we have

@) Uu,($,)ds, = 0(%—”) when

/

ol 0.
t

F(x,t)<D. (12)
Put 7= (x-x)¥. From (9) and (10) it follows that
Fix, 1) =0(§) +OoEY)  for ’—;—>0 and ¢-> oo.

F(x,t)=0(f) for (f)»o, t>1.
7 7

For convenience, in the remainder of this paper we shall reserve the letter ¢ for
real constants in the open interval (0, o).

For F?(x, t) the following inequalities hold

2m
Fx,t)<c (%) +et™2 for t>r and t>1, (13)

2m
Fi(x, t)<c(;) for r>t=1. (14)

We can set the lower limit of integration equal to M =1.

fl tgf"{f f V3(x) F¥(x, t)dx} <
[l () ) )
vef o)) e s
oo

-~ | =
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% dt t *2 m—1 ¥
+c amtl V (7‘)7’ dr (17)
1 ! o

e Al

For the term (16) we have

® dt %2 3m~1 s ot *2 3m-1 :
f 13m {f V=) d"} f 2 {f V()™ dry
1t neo lJ2-n-1;

w fa-nt
where {z f V*z(r)r?""'ldr} <ec V* g-nlg)y g idmngidm

u[\/18

n=0, 2-n-1t
thus j titm{ f V*3(r)r 3'"—1d¢} <c 2 g 9mn f V*2 " 1)de
n=0 0

=c¢ > 274D | PHoydr < oo,
0

n=0

For (17) we have

0 t ¥
f %{f V*z(r)r”‘_ldr} < oo
1t 0

because V*(r)€ L*(E,,) locally implies that [§ V*3(r)r™ 'dr < oo and from
V*(r)€ LY(1, o0) follows, for example, f{V**(r)r™ 'dr=0(@""%). For (18) we have

Jol Q) o = RSS2 o f) o)

dt o0 on+1t ¥
<c| Z3e %"<m+l>{ f V*z(r)dr}
VZ ang

0 % It on+1f 3
<e¢ Z 2—§n(m+1)‘f _{ V*z(r)dr} < oo
n=0 1 Vi 2n¢

because

oodt on +1¢ 3
f —{f V*z(r)dr} <K forall n. (19)
1 Veld 2ne

(19) follows from V*(r)€LY(1, o0) and V*(r)\ 0 for r >N, because

=) dt on +1g
f i{f V*z(r } f f V*z Z"t) (2n+1 2n)t}% <K,
1 Vt ant

where ¢ =max (1, N2-%).
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According to (15) and (8) we thus have
f | V(x)e *Hou(x) || dt < o
1

for all w€ L. This implies that U(0, =) exists.

The inequality [~L || V(x)e *#°u(x)||dt < oo, which is proved analogously, implies
the existence of the strong limit U(0, — o).

This completes the proof of theorem 1.

3. On the conditions for a simple scattering system

Theorem 2. There exists a function u(x) belonging to L*(— oo, o0) and not identically
zero such that
Lim (u, e #Hoy) =0 1)

t—>o00

for all vE€L2(—oco,00) if Hy= —A+ V(x), where
1
— for |z]|>1,
V(x)=1l%]
h(z), h(z) € L¥(—1,1), h(x) >0 and is even for |z|<1.
For the particular choice of the function V(z) made in theorem 2, one can easily
see that the conditions I, IT and III in section 1 for a simple scattering system are
not fulfilled. (1) implies that u(z) L B, . From III it then follows that w(x) € M, where

M is the subspace spanned by the eigenfunctions of H,. But this yields a contradic-
tion, because H, in theorem 2 has no eigenfunctions. This fact is seen by considering

(Hlf,f)=||]"||2+fi° V(x)|f(z)[Pdz>0 for all f€L*(— oo, oc0),f£0.

which shows that H; has no non-positive eigenvalues. Furthermore, it follows from
the Sturmian separation theorem that all solutions of the differential equation

H.f=if

are oscillatory for A>0. Thus H, has no eigenfunctions.
For the proof of theorem 2 let us consider the differential equation

~y" 4+ V(x)y=£%. 2)

Lemma 1.1 There exists a solution K(x, &) of (2) with the following properties:

1°. K(z, &) =exp ('» fz Ve — V(s)ds) +Ry(x, &) for z>1,
2| v'(s) 1
IRI(%NS)I<2J‘I m d8<;:.

1 Essentially Bellman [8], pp. 50-54.
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2°. Kz, &) =exp ( —ifﬁl V§2— V(s)ds) + By(x, &) for x< —1,
T | P(s) 1
rsol<e ||l
3°, |K(x, &) <C for |z]|<L
4°, K(x, &) = K(—=, &).

Set u(x) = [3K (x, £)dE. Then u(x) is an even function. The secalar product in (1) is
then equal to zero for all ¢ if v is an odd function, since e*#: ¢~y ig odd if v is odd.

It is thus sufficient to prove (1) for all v in a dense subset of L3(0, o). Let us choose
#,=e %", @>0, which functions generate a dense subset of L%(0,cc). We set a=1
to simplify the calculations. Then

n 2\k
eitHlu_ hm Z (ltHl) u(.’l}') . - z Zt& d§ J‘ 1t§‘ x 5) E
n—>00 =0 n->0 J 2520
and e’“”"v=(2n)’%f e Wt G(nydy  with  d(n) =

3 oo

(u’ eitHlevitHov) — (evitHlu’ e*itHo,U)___, (f

2

e K (x, £)dE, (2m) f e*”"””"*"*dn)

-

o ' . 2 0 l/_ 1‘2
—zm’+zrn-n'd — . ad —(1+1t)7l‘d i ( — __) .
Lf 7 e"p( 4(1+it))f_ e P\ 41+

We thus have

(u eitH‘e’itH“v)=——l_fw ex (— i —1 ta? )fge—itf"K(x £)déda
’ V2Vi—al - P\Taase) " aaTe) ’ '
(3)
We perform the z-integration separately over the three intervals (— oo, —1)

(—1,1) and (1, ).

. 1 -1 ! *
(u, ¢t g itHoy z__r(f +f _}.J‘ )=I +7I,+1,.
armal) LT ) TR

3° and (3) imply

|| < : 1 i de< ¢ 0, t—>oo
T = _ = - -
SNTETREEIT Bl W T ) AN TE N E I

According to 1° and 2°, each of I, and I, can be divided into two integrals I, = I{"
+IP and I,=I{ +IP, where I® and I ® correspond to the contributions from
Ry(x, &) and R, (x, &).
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IP and I tend to zero, as ¢ tends to infinity.

xz

()
12| < ¢ f 4(1 -+ ) e *0(logt) fos oo
1

V2@ + )t x Vi

Set x =1yt

2

i Y
ooexp(— 2) ocexp(— ’ 2 ) 1
f 4(1 +1%) dx==f 4(1 + (1/t%) dy<J d_y
1 x 1/t Yy 1 Y

” y2 = — oQ
+ J‘1 exp ( —m) dy=0(logt),t .

In the same way it is seen that

x2

o)
e [ s Loy RS

V2.1 +¢2)% x Vi

It remains to show that I{® and I® tend to zero as t tends to infinity.

2 ¢ .’172

L 1 o x . 3 . N EETERS
= mf : eXP(_m )4 +t2))f P ("“Egﬂf JE ‘”s)ds) asde.

2
Set = = yt. There is no essential restriction here in replacing 2

2
(1+t 2) by y“/4. Now

we must estimate
t 5] y2 . tyz “3 . . yi l/—i
- L L - + 2 _ds|déd
V2V1—itf1/texp( 4 ! 4 Jzexp e+ 1 d s s | dedy
¢ 4-5 (3 418 P2+ 446 y/2 —814 6-3 py/2+0/4
e e — +
V2V1—7:t(f1/t fz fpaj‘z f f f4+a f4+af

yi2—0/4

([ N I AR W @

We shall show that each integral in (4) tends to zero faster than ¢ ¥ as ¢ tends to
infinity. With =t it is seen that the 2nd and 8th integrals have absolute values
which are less than 2-§2=2-¢"¥, since the integrands have absolute values less than 1.

For the remaining integrals, except the 5th, we shall use the following lemma to
estimate the integrals over £.
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Lemma 2.1 If |f(u)| >4>0 and f () is monotonic in the interval (a,b) then the
following inequality holds
)
J‘ &1 g
a

vt 1
Set - —_
° 16 = — 1+ f 1 Ve _ds,

then we have the following lemma.

<&
A

Lemma 3. |f(&)|>t4/4 and f'(£) <0 hold for ¢ sufficiently large,

y>t1 and |y—2§|>t—2—.

: w1\
Proof. f(§)=—2t§+f (1-5——28) ds

1

1 (*ds 3 [(*1 0\ -5
__2t§+yt—l+ﬁzfl ;—F@J‘l ;2(1—;?) ds
=ty — 2&) + O(log yt), (0<0<1)
If,(f)l>t't‘2——|0(10gyt)|>tz, for t large enough,
' v 1 1 -#
o= a(i-g) <o

For all integrals in (4) we have y > 1/f, and for all except the 2nd, 5th and 8th
the inequality |y —2£|> 1¢~* holds. By lemma 2 we thus have for these integrals

[J|= Jeras] Jroas
ie. f f =0@ %),

It remains to show that the 5th integral

6—0 (y/2+d/4

da < % {e‘ @iy,

I;=

4448 J y/2-0/4

tends to zero faster than ¢t% as ¢ tends to infinity.

y/2+6/4 yt —l—
S=f exp(—itfz-l-if l/é‘z—;ds)dé‘
1

y/2-6/4

. . yi 1
= fh exp (—- e+ 4 fl (§ —ggs-!- R, (¢, s)) ds) d&

:eiityzf exp(_it(g_g)z—i-log yt—igb) d&
I 2] 2% ’

1 Van der Corput.

154



ARKIV FOR MATEMATIK. Bd 7 nr 9

vt 1 1
h = - -8 5%
where ) fl {l/§2 ; §+2§s}ds+§.
§ =ty ' O il i — ("il t))d&-
smers | exp(—it(e=5)" - ig) (oxp (- gtonst) —exp( = oo
+ ettty? exp ((—7@) log yt) f exp (_ 1t (E—' 5) - ’IA;{)) &= 8 + 8.

t
|31l<f eXP( 2§logyt)—exp(__logyt)|d§<(6) log t—()(l(;% )’
Ji —5

t—>c0 for 4+0<y<6-—4.
Thus we have

6—0 _y2 2 y 2 .
Iy=o(t )+ f exp (— ——log yt) f exp ( —il (f— —) - ng) dédy. (5)
4+ 4 Yy J1 2
Lemma 4.
- 2
85= th exp (—it (5-%) —igb) dg
J1
converges uniformly to

R R [ LS P

when t—co for 4 <y<6.

Proof. We can replace ¢ by v in the integral since the error thereby introduced
is less than

lftmauxjv |e~®—e~ “”]ol.{-‘<lftlt“E maxf [V§2———-§ ] =0 ¥
<

1<y<6 4<y<6

Set Vi(£—4y) =7 and let J, be the interval | 5| < 3¢t

Sa=f e (iv(§e D))= (<in(E)) [, e
[ (e (=in(g ) e (-iv(3)) o

The fist integral on the right side converges to (1 —¢) V%—nexp( —ip(3y)) when
t— co. The second integral tends to zero uniformly as - oo for 4 <y <6 since it is
in absolute value less than
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: 2 ’7) (9)l 3
— max S+ —vls) S5
2 s ”’(2 v Ve T2
Inl<t®/4

lw(y+9/Vt)— p(3y) | < c|5/Vt]| follows from |y’ | <ec. This proves the lemma.
The integral
1 448 ( yz s )
— exp| —% —-logyt) s,d
ViJv4+5 p 4 y g Y 30y
in (5) is equal to

2 .

lfM 5 —g(y)) (~3J—1 t)d/+lf6vah( ex (_—ilo t)d (6)
Vi 4M(Ss(y,) g9(y)exp| 7 y 08 vt) dy Vil s yyexp |~ ~logt)dy,

2

where h(y) = exp (%~§log y) 9(y)- (7)

The first integral in (6) is o(¢%). This also holds for the second, since

6-4 —3 -1 p(]
f h(y) exp (7Z log t) dy= f M éx) exp (—1xlogt)

440 ©-6-1 X

tends to zero, when {— oo, according to the Riemann-Lebesgue lemma, because, by
(7), the integral
J‘<4+a>~1
©-5-1

exists. Thus I;=o(t™ ), o0 and I§ >0, t—>co. Analogously it is shown that
I{’ -0, t+ co. Finally, lemma 1 and lemma 2 imply that

h(1/)
x2

dz

3
2
which proves theorem 2.
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