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O n  the  ex i s t ence  o f  the  scat ter ing  o p e r a t o r  

By Eimtn  L~r~DQVIST 

1. Introduction 

Scattering, in its most  simple form, can be described as a process during which two 
elementary particles collide. The particles are assumed to be infinitely separated in 
space both  at  the beginning and a t  the end of the process. The state at  each ins tant  
is given b y  a function y)6L2(Em). The particles interact  with a certain force V, which 
decreases to zero as the distance between the particles tends to infinity. Wi th  each 
initial state (at the t ime t = -  ~ )  is uniquely associated a final state (at the t ime 
t = ~ )  b y  means of the Sehr6dinger equat ion 

i~t~P(t ) = Hly,(t), (1) 

where H 1 is the total  Hamil tonian operator.  H 1 is defined as a self-adjoint extension 
of the operator  H 0 + V, where H 0 represents the kinetic energy and V the potential  
energy. H 0 and  V are self-adjoint. (1) describes the time development  

~(s) = e-*"(~-*)~(t) (2) 

for a state % 
One introduces a t ime-dependent  representat ion of the Hilbert  space L2(Em) so 

tha t  e~tHoy~ represents the funct ion ~p 6Le(Em). In  this representation, " the interaction 
picture",  the uni ta ry  operator  U(s, t ) :e  iH~ e - i H ' ( s - t )  e -~H~t takes a state at  the t ime 
t to  the corresponding state at  the t ime s. The operator  U has the following properties 

U(s,  t) = u ( s ,  t') u ( t ' ,  t),] 

U*(s,  t) = u ( t ,  ~). 
(3) 

Under  the assumption tha t  limt_,~ ~ U(O, t) = U(O, • ~)  exist in some sense,one defines 
the scattering operator S as 

s = u*(0, ~)  u ( 0 , -  ~). (4) 

Then S transfers an initial state to the corresponding final state. 
I n  the formal scattering theory  one assumes tha t  the wave operators U(O, ++_ oo) 

exist and tha t  S is uni tary.  A rigorous mathemat ica l  theory  for scattering was 
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given in 1957 by  J. M. Jauch [1]. Earlier K. 0. Friedrichs [2] and J. M. Cook [3] 
gave sufficient conditions for the existence of U(0, • c~). Further contributions to 
the theory were later given by M. N. Hack [4], Jaueh-Zinnes [5] and S. T. Kuroda 
[6]. As a sufficient condition for the existence of the strong limits 

U(O, +_ ~ )  = lim eUme -u~~ (5) 
t - -~•  r162 

with H o = - A  and H 1= - A  + V(x). Kuroda [6] stated 

V(X)(I§189 e > 0 ,  (6) 

In  theorem 1 we shall give an estimate sharper than that  in (6). 
Jauch [1] bases his theory of scattering on the following definition of a simple 

scattering system: 

I. U(0, ___ ~ )  exist as strong limits in the whole of L2(Em) with the ranges R+ 
and R_. 

II.  R+=R_=R.  
III .  M • = R. 

M is defined as the subspace spanned by the eigenfnnctions of H i. 

If condition I holds true, then condition I I  is equivalent with the requirement 
that  S =  U*(O, ~ )  U(O, - ~ )  be unitary. We shall show in theorem 2 that  the con- 
ditions for a simple scattering system are not satisfied for a function V(x) in El, 
which decreases as 1/1  I when Izl 

2. On the existence of the strong limits lim,_.•162 eUme -u~~ 

Let E~ be an m-dimensional euclidian space and H 1 the differential operator 
- A §  V(x)- in L2(Em), where A=~m_l ~2/(~x~), and V is a multiplication operator 
such that  V(x) is real and measurable in Em. The operator Ho= - A ,  with region of 
definition 

DHo = {U [ I k[2d(k) eL2(Em)}, (1) 

is self-adjoint. 1 (~(k) is the Fourier transform of u(x).) The region of definition of 
V is the totality of all u(x)EL2(Em) such that  V(x)'u(x)EL2(Em). V(x) is assumed to 
belong to L2(Em) locally. HI=Ho§ V is defined on a dense set, and is symmetric 
and real. Thus, it has at least one self-adjoint extension. Let  H 1 be one of them. 
We set 

and write 

U~ = e ltH~ e - f~H~ 

f 
t 

(Ut -  Us)u =i e *tnl Ve-Un'udt, 
$ 

from which it follows that  

1Kato [7]. 
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since e i t m  is unitary. 
We thus have 
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II (u:-  U~)u II ~< f '  II w,-"" u ll dt (2) 
d s  

Lemma 1. Suppose there exist a c > 0 such that 

f? f-: II ve-"~"ull dr< oo, II Ve'*"'ulldt< oo 

/or all uEF~, where s is a set, dense in L2(Em). Then the strong limits 
limt~:~ e ~tm e-Um u exist/or all u EL2( Em). 

We shall need the following formula 

e-ttH~ ~:  Cm f exp ( - - i (x--s) ' (X--S))u(s)ds ,  
' '  I t l~m. j  ~ .  4t 

(1 + i signum (t)) a 
where C m - -  2�89 7~�89 

Derivation o//ormula (3). Let 4(y) be the Fourier transform of u. That is, 

1 fE ~ u(Y) (2~)�89 e-~X'Yu(x) dx, 

m X where the integration is over the whole of Em and x ' y = ~ = l  ~Yi. 

eU~u(x)= (2~)-�89 m f e~X'ye~tY'y4(y)dy 
J Em 

=--*~lim (27~)-m fl y ,<n etXyettY'YfEme-iY'Su(s)dsdy 

=(2~)-ms163 

(3) 

(4) 

f E e~tY'Y +~Y(X-S) dy = ~_l f~_: e ~ty +t~k(~k-~k) dy k. (5) 

For t > 0 one gets 

4t ] e t~dyk 

exp(  i(xk -- Sk)~ "1 7~ = ~ ! ~ V i ( l + i ) "  (6) 

(6), (5) and (4) leads to formula (3) for t >0. 
The case where t < 0 is treated analogously. 
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Theorem 1. I /  IV(x) ~< v * ( x l ) ,  where V*(IxI)eL2(Em) locally, and there exist a 
number N > 0  such that V*( x ) is monotonically decreasing/or x >~N, and V*( x ) E 
LI(M, ~) ,  0 < M <  cr then the strong limits exist/or all uEL2(E~). 

By virtue of lemma 1 it is sufficient to prove 

f ~  II II < oo Ve-itHo u 

for all u in a dense set. 
Formula (3) gives 

e-""u(x)=~ f~ exp( 

f-: and II V e - " " u l l d t <  oo (7) 

(x - s) 2 i~ ca 
4t ] 4t ] J~,,, 

S 2 . X �9 S .'~ 
• exp - ~ + ~ i - ~ )  u(s)ds.  

i 

For t > M > 0 we have 

]e-itz-IOu(x) ]= I~ml dE., ~ exp ( - -  ~ + 2 t -  s2" X 'Si )u(s )ds  

and 
f:r dt 

I L  I L~ 
D e l i n i t i 0 n .  s = {u(s) = Ul(Sl). u2(s2)..... Urn(Sin) [ (d~/ds~)u~(s~) EL l (  - o% oo),n,  v = 1,2.. .  

m; u~(s~) has compact support and ~ ( 0 ) = 0 / o r  v = l ,  2 ..., m} .  
One can show that  the set s is dense in L2(Em). We shall verify (7) for a function 

u(s) e s  

Lemma 2. For the function 

F(x,t)=[f~ ...f~ exp(-~i+Vi)ul(Sl)U~(S2)'...'ua(sm)dsl...asa, 
where u(s)= ]-[~'=1 uv(s,)E s we have 

f ( x ,  t) = 0 + O(t -~) 

o i a v - o ,  F(x,t)= (x~)for t 
Proo/. 

v = l ,  2 , . . . ,m ,  t>~l. (10) 

�9 A S'S.  m exp Xv'S, i ds 1 +f:A"f_A(exP(--~')--l)~l ~'(sv) ( 2 t )  ""dsml" (ii) 
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Each factor in the first term is an entire function of the variable x,/t. From d~(0) =0 
it now follows that  

This takes 
equality 

exp ( -  ~ t s i )  - 1  "<< 2 sin ~ts = 0(~)  

when t-+ co in (11). (10) is obtained by partial integration. 
I t  is easily seen that/V(x, t) is bounded. Thus we have 

F(x, t) < D. 

Put  r = (x" x) �89 From (9) and (10) it follows that  

A X v .  8v . 
f _ A e x p ( T ~ ) u v ( s , ) d s , = O ( ~ ' )  when t"  -->0. 

care of the first term in (9). For the second term in (9), we use the in- 

~(X,t)=O +O(t -1) for r--+0 and t-+co. 
t 

(12) 

(16) 
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For convenience, in the remainder of this paper we shall reserve the letter c for 
real constants in the open interval (0, oo). 

For F2(x, t) the following inequalities hold 

[ r \ ~,n 
F2(x , t )<-c~)  5-ct -~ for t > r  and t > l ,  (13) 

for (14) 

We can set the lower limit of integration equal to M = 1. 

+cf~V*~(r)(~)m-l(~)-~mdr} ~ (15) 

<<-cf~t,Am,~{f:v*e(r)r~m-ldr}~5- 
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(~ dt V,2(r)rm_ldr}' +c j l  t,m+~{f' ~ 

(r162 ~(~ / t \  m+l I' 
-'-~ ~tJ, v.~(r)(~) ,~r I . 

For the term (16) we have 

f~ dt V,2(r)r3m_ldr}�89 f~  dt - 
1 W-~ {fl <J~ t~ ~o{fi-[[1, V*~(r)ram-ldr} ' 

where I,.=oI~f2-ntv*2'r)rSm-~dr}�89 = 

}' f: thus J l  t ~ [ , ] o  V*2(r)ram-ldr <C~_o~ 2 - ' ~  V*(2-~-le)de 

Y = c  2 -~('am-1) V*(r)dr< oo. 
n = O  0 

For (17) we have 

V (r)r - dr <c~ ,I1 (dO J 

(17) 

(i8) 

(~176 ~ 2-,n(m+l) I f 2n+lt }�89 
~<c~1 Vt~=o tJ ~nt V*2(r)dr 

~c~2-,n(m+l) f~176 }' 
n=O J l ~t t 2nt V*2(r)dr < c~ 

f 
~dt l f2n+lt }�89 
1 ~td2nt V*2(r)dr < K  for all n. 

(19) follows from V*(r) ELl(l, c~) and V*(r)'~ 0 for r ~>N, because 

flV~(d2n tdttf2n+itw*2(r)dr}�89189 

where a =max  (1, N2-n). 
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(19) 

because 

because V*(r)E L~(Em) locally implies that ~o 1 V*2(r)rm-ldr < ~ and from 
V*(r) ELl(l, ~ )  follows, for example, ~t V,2(r)rm-ldr=O(tm-~). For (18)we have 
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According to (15) and (8) we thus have 

f ~  ]] V(x)e-'tHou(x)[,dt < c~ 

for all u E/~. This implies that  U(0, ~ )  exists. 
- 1  The inequality ~_ oo I] V(x) e-*~H~ ]] dt < ~ ,  which is proved analogously, implies 

the existence of the strong limit U(0, - ~ ) .  
This completes the proof of theorem 1. 

3. On the  condi t ions  for a s imple  scat ter ing  s y s t e m  

Theorem 2. There exists a/unction u(x) belonging to L2 ( -  0% oo) and not identically 
zero such that 

lim (u, eitHle-tttt~ =0 (1) 
t-->oO 

/or all veL2( - 0% ~ )  4 /Hi=  - A +  V(x), where 

V ( x ) = [ ~  for ,x,>~l,  

[h(x), h(x) e L~(- 1,l), h(x) >10 and ks even/or ]xl < 1. 

For the particular choice of the function V(x) made in theorem 2, one can easily 
see that  the conditions I, I I  and I I I  in section 1 for a simple scattering system are 
not fulfilled. (1) implies that  u(x) • R+. From I I I  it then follows that  u(x) E M, where 
M is the subspace spanned by the eigenfunetions of H r But  this yields a contradic- 
tion, because H 1 in theorem 2 has no eigenfunctions. This fact is seen by considering 

(Hi/,/)=II/ 'II~+~ ~ v (x ) l / ( x ) l~x>o  for all / E L 2 ( - ~ o , ~ ) , / ~ O .  
j -  

which shows that  H 1 has no non-positive eigenvalues. Furthermore, it follows from 
the Sturmian separation theorem that  all solutions of the differential equation 

1tl l  =.~1 

are oscillatory for ~ > 0. Thus H 1 has no eigenfunctions. 
For the proof of theorem 2 let us consider the differential equation 

- y "  + V(x)y =~2y. (2) 

Lemma 1.1 There exists a solution K(x, ~) o/(2) with the/ollowing properties: 

V(s) - ~2 ds < x-" 

1 Essentially Bellman [8], pp. 50-54. 

151 



E. LUBIDQVIST, On the existence of the scattering operator 

2 ~ K ( x , ~ , = e x p ( - i f [ 1 v ~  - r~)d~)+R~(~,t)  for x ~< - 1, 

/-x I V'(s) I 1 
IR~(x,~)l<2J_~[~(~-~:~_t~ ds<~- I. 

3 ~ IK(x,t)l <~C /or I~1 <1.  

4 ~ K(x, ~) = K( -x ,  ~). 

Set u(x) = ~ K ( x ,  ~)d~. Then u(x) is an even function. The scalar p roduc t  in (1) is 
then  equal  to zero for all t if v is an  odd function, since e ~tm e -~tH" v is odd  if v is odd. 

I t  is thus  sufficient to prove  (1) for all v in a dense subset  of L~(0, oo). Le t  us choose 
@~=e - ~ ' ,  a > 0 ,  which functions generate  a dense subset  of Z2(0, oo). We set a = l  
to s implify the calculations. Then  

~- (itH~)~u(x) ~ " ~ f l  ~ (~t~) ~, eitH'u = l im -- l im | 2. --k.~---~( x, ~ )d~= e~t~'K(x, ~)d~ 
n-+0r k=0 ]r n--~oo ~/2 k=0  �9 

and 

f~e-it~+ix'-v'd'=exp( 4,'~-it)] ~_r162 4 ( 1 ~ )  " 

We thus  have  

U, eitHle itH~ l ( 
= _ _  exp ~ )  e-U~K(x, ~)d~dx. 

V2 Vl - i t  -~o 4 ( 1 + t  ~) 
(3) 

We per form the  x- integrat ion separa te ly  over  the three  intervals  ( -  o~, - 1 )  
( -  1,1) and  (1, o~). 

1 - 1  1 oo 

(U'gitHl~-'tH'v): V2 t / ~ - i t ( f - ~ +  f - l +  f l )  =I1+12+I3" 

3 ~ and  (3) imply  

1 ( ) 
- - ( e x p  - -< dx t ---> ]I2[<~[/2]l_it]�89 4 ( l - J t  2) ~ ( - ~ 2 ) t  ~-0, ~ .  

According to 1 ~ and 2 ~ each of 11 and  I a can be divided into two integrals 11 = I ( ?  
+ 1(12) and  I a - -  i(1)~ + 1 (2)~ , where I~ 2) and I~ 2) correspond to the  contr ibut ions f rom 

//2(x, ~) and  Rl(x , ~). 
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1(12) and  I(~ ) t end  to zero, as t tends to infinity.  

( x2) 
c foo exp 4( i  ~- t 2) o ( l o g  t~ 11(~2)[<V~(1-+t2)~3x x dx= k V-t ]' t - ~ .  

Set x = yt 

f l e x p (  dx~_fl / texp(-4'I~z ' l / t2)))dy<<~l dY 
y J i l t  Y 

r162 y2 

I n  the same way  it  is seen t h a t  

( x2) 
c f - 1  exp 4(1- ~- t 2) 0 {log t~ 

[/(12)[<1~(1+t~)~ _~ x d x =  \ T t - ] '  t ~ o o .  

I t  remains  to show t h a t  i~1) and  I~1) t end  to zero as t tends to infinity. 

i 1,_ e#- "~ W2Vl-it,]l [ 4 ( l+ t2 ) - z~} j2exp[ - i t~2+i  V~i---~ds d~dx. 

y2 
Set x = yt. There  is no essential  restr ict ion here in replacing b y  y~/4. Now 

4(1 + U 2 ) 

we mus t  es t imate  

o o  3 y t  - -  

V2V~-itfl/texp(-Y2-itY2~ f exp(-it~2+i 4 ] ~ 2  \ V~2-~ds) d~dy 

- V2 V l ~ / , ~ , ~  ~ + + ~ .,2-~,,+ J4 ~ J4-($,J 2+(~ J4+~$. 2 J4+(~ Jy/2-~14 

+ + 
J4+~ Jy/2+~14 d6-(~ J2 J6-~ J3-~ J6+($ J2/ 

(4) 

We shall show tha t  each integral  in (4) tends to zero faster  than  t -�89 as t tends  to  
infinity. Wi th  ~ = t -~ it  is seen t h a t  the 2rid and  8th integrals have  absolute  values  
which are less than  2 .8  2 = 2 .  t - t ,  since the  in tegrands have  absolute  values less t han  1. 

For  the  remaining integrals,  except  the 5th, we shall use the following l emma  to  
es t imate  the integrals over  ~. 
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Lemma 2.1 I /  [ f (u ) [ />2>0  and/'(u) is monotonic in the interval (a,b) then the 
/ollowing inequality holds 

fbae'r(U)du-<4 "~-2" 

I*yt l ~  
Set 1(~) = - t~ ~ + I V ~  ~ - -  d~, 

31 -- 8 
then we have the following lemma. 

Lemma 3. I/'(~)] > t~ /4 and/"(~) < 0 hold ]or t su//idently large, 
1 t - � 8 9  

y > -  and l y - 2 5 1 > ~  -. 
t 

Proo/. / ' ( ~ ) = - 2 t ~ +  fl  t (1 - ~ ) 1  -�89 

1 ~Ytds+ 3 FYt l /  O) -512 
- -  2 t ~ + y t - l + ~ 2 J 1  s 4 - ~ J l - ~ 1 - ~ - ~  ds 

= t(y - 2~) + O(logyt), (0 < 0 < 1) 

I/'(#) 1/> t . -~ - -  I O(log yt) l >1 4 '  for t large enough, 

= - 2 t - f l  t l  1 1"(~) ~( -~)-'d~<O. 
For all integrals in (4) we have y > 1/t, and for all except the 2nd, 5th and 8th 

the inequality l Y -  2~] >~ �89 holds. By lemma 2 we thus have for these integrals 

Iffl< fe-  'dylfe")d  dx<~ fe-Wdy, 

i.e. f f =  O(t-J). 

I t  remains to show that  the 5th integral 

4+(~ fl y /2-O/4 

tends to zero faster than t -�89 as t tends to infinity. 

S =  exp - i t~  2 +i ds d~ 
y l2 -~ /4  

r ( ( )  ) �9 Y ~, =e  ~ty' exp --,t ~--~ ---~-~logyt--i~ d~, 
J J ~  

1 Van der Corput. 
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where r f : t { (~2_~_~+~s}ds+~.  

i _/log t~ 

t-->oo for 4 + ~ < y ~ 6 - ~ .  

Thus we have 

Lemma 4. 

converges un#ormly to 

g (Y ) : (1 - - i )~2exp ( - iYJ (Y ) ) ,Y~(~ )=- f l [~2 - -~ -~+~s]  ds+~ 

when t ~ co /or 4 ~ y <~ 6. 

Proo/. We can replace r by  ~ in the integral since the error thereby introduced 
is less than 

Vtmax  ~ [e-ir189 fcc[V~2-1--~+2~s]ds=O(t -') 
4~<y~<6 J J x  4~<y~<6 J y t  8 

Set ~ ( ~ -  �89 = ~ and let 52 be the interval I~]] ~< �88 ~. 

The fist integral on the right side converges to (1- i )~exp(- iy~( �89 
t ~ ~ .  The second integral tends to zero uniformly as t-+ ~ for 4 ~ y ~< 6 since it is 
in absolute value less than 
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t~ max  y ~/ c - t  ~ 

1 

[ V (�89 + ~//~) - V (�89 ~< c [ ~/]/t[ follows from [ V'] K c. This proves the lemma. 

The integral 
1 ( 4  ~ y 2 ~." 

in (5) is equal to 

1 (6-~ (s3(y, t)_g(y))exp( y2 i 1 6-~ _ �9 

[ _y2  i 
where h(y) = exp ~ - ~ -  - Y log y) g(y). (7) 

The first integral in (6) is o(t-�89 This also holds for the second, since 

J(6-o)-1 x ~ p ( - i x log t )  

tends to zero, when t-+ oo, according to the Riemann-Lebesgue lemma, because, by  
(7), the integral 

f(4+~)-1 h(1/X)ld x 
(6-~)-1 

exists. Thus I5=o(U�89 t-+ o~ and I~1)-~0, t-+ o~. Analogously it is shown tha t  
1(11) -+ 0, t-+ or Finally, lemma 1 and lemma 2 imply tha t  

u(x)=f:K(x,~)d~eL2(-o~,~), 
which proves theorem 2. 
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