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P u r e  s u b m o d u l e s  

By Bo T. STENSTROM 

1. Introduction 

The notion of puri ty  is extremely important  in abelian group theory. One reason 
for this is tha t  there are enough pure-injective (and also enough pure-projective) 
groups, which makes it possible to apply the methods of relative homological algebra. 
When extending the puri ty  concept to modules over arbi trary rings, it is therefore 
natural  to look for two types of generalizations, one giving enough pure-projectives 
and one giving enough pure-injectives. The most useful notion of puri ty  of the first 
type seems to be the one introduced by  Butler and Horrocks [2]. We will give a 
rather  detailed t rea tment  of it in sec. 6-9. By  dualization we obtain a theory of 
eopurity, with enough eopure-injectives (sec. 10). The usual examples of copurity 
in module categories are related to exactness properties of the tensor product (sec. 
11 and 13). 

C. L. Walker [15] has proposed another way of defining purity, which also gener- 
alizes the traditional notions of pur i ty  for modules over Dedekind rings, but  which 
seems somewhat less natural  for modules over more general rings (in particular it 
does not include puri ty  in the sense of Cohn [4] and Bourbaki ([1], ch. 1, w 2, exercise 
24). 

Our theory of puri ty  and copurity probably covers all reasonable notions of pur i ty  
for abelian groups and modules tha t  have been used in the literature. Most of the 
t ime we will work in an abelian category with a projective generator, thus being 
rather near to a category of modules. Actually, our examples (collected in sec. 9 
and 13) deal only with modules. 

We also study the theories of torsion and divisibility which are associated to the 
concepts of puri ty and copurity, and are "torsion theories" in the technical sense 
of Dickson [5]. 

The first five sections are of a preliminary nature. Sec. 2 and 3 contain some 
general remarks on proper classes, in sec. 4 Maranda's theory of pure-essential ex- 
tensions is generalized, and sec. 5 contains some remarks on the relative homological 
algebra associated to a torsion theory, related to the results of Walker [15]. 

2. Proper classes 

Let  ,4 be an abelian category. Consider a class E of short exact sequences of ,~, 
such tha t  every sequence isomorphic to a sequence in E also is in E. The correspond- 
ing class of monomorphisms (epimorphisms) is written Em(Ee). E is called a proper 
class if it satisfies: 
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Pl .  Every  split short exact sequence is in E. 

P2. I f  ~, fi E E~, then fl~ E E~ if defined. 

1)2 *. I f  ~, fl E Ee, then fi~ E Ee if defined. 

1)3. I f  fi~ E Em and fl is a monomorphism, then ~ E Era. 

P3*. I f  fl~ E E~ and a is an epimorphism, then fl E Ee. 

A subobject L of M is then called E-proper if the inclusion morphism L ~ M  belongs 
to Era- I t  is well-known that  Em(E~) is closed under push-outs (pull-backs). Using 
this fact one sees tha t  it is unneccessary to assume tha t  fl is a monomorphism in 
P3 and ~ an epimorphism in P3*. 

Suppose we have a functor T: . ,4~B to another abelian category B. Given any 
class :~ of short exact sequences of B, let T-I(:~) be the class of those short exact 
sequences of A which are carried into :~ by T. Using standard diagram lemmas one 
proves: 

Proposition 2.1. Suppose T is either le/t or right exact. T-I(:~) is then a proper class. 

For a proper class E of A we denote the class of E-projective objects by  ~(E). 
On the other hand, if O is a class of objects in A, we let ~-1(O) denote the class of 
all those short exact sequences of A for which the objects in O are relative projec- 
tires. E is projectively closed if E =~-1(7~(E)). 

Proposition 2.2. ~-1(O) is a proper class and is projectively closed. 

Proo/. To prove properness, apply prop. 2.1 to the functor Horn (P, .) for each 
P E O, and note tha t  any intersection of proper classes is a proper class. 

A proper class E is said to have enough E-projectives if for every object M there 
exists an epimorphism P - ~ M  in Ee with P E~(Ee). No general criteria are known for 
a proper class E to have enough E-projectives. However, there are two important  
cases in which this is known. 

Proposition 2,3. Assume that .,4 has in/inite direct sums. Let 0 be a set o/ objects 
o/.,4, including a/amily  o/generators/or A. Then: 

(i) There are enough 7e-x(O)-pro]ectives. 
(ii) ~(~-1(O)) = {direct summands o/direct sunvs o] objects in 0}.  

Proo/. ([12], sec. 2) For each M we put  I={qJ:Pr162 and ~ # 0 }  and 
consider the naturally defined morphism | 1 6 2  The sum exists because O 
is a set, and the morphism is evidently epimorphic and z-l(O)-proper.  

In  the situation described by  the above proposition we can find an object F 
which is a direct sum of copies of the generators included in O, so tha t  every object 
in O is a quotient object of F. This remark leads to the notion of purity,  as introduced 
by  Butler and Horrocks, which will be studied in sec. 6. 

The other case with enough relative projectives is the following one, which has 
been treated by  C. L. Walker in [15]. 
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Proposition 2.4. Assume that .4 is locally small, has infinite direct sums and has 
enough pro]ectives. Let 0 be a class o/objects o/.4, closed under quotients. Then: 

(i) A subobject L o/ M is ~r-l(O)-proper i/ and only i / L  is a direct summand o/ 
every subob]ect K o / M  such that L c K and K/L E O. 

(ii) There are enough z-l(O)-projective8. 
(iii) :z(xt-l(O))= {direct summands o/ direct sums o/pro]ectives and objects in 0}. 

Proo/. (i) is easy to check. For (ii), let M be any object and choose an epimorphism 
P-+M with P projective. I f  (L~)~ ~i is the set of subobjects of M, the natural ly de- 
fined epimorphism P|174 is Jr-l(O)-proper. (iii) is then easily verified. 

All definitions and results of this section may  be dualized to the injective case, 
where the notations t(E) and t-i(O) are used corresponding to ~(~) and 7e-1(0). 

3. Flatly generated proper classes 

Let now .4 be the category of right modules over a ring A. I f  E is any proper 
class of short exact sequences of .4, then a left A-module P is called E-fiat if for 
every L ~ M  in Em also L|174 is a monomorphism. The class of E-flat 
left modules is denoted by  T(E). Conversely, for any given class O of left A-modules 
we let T-I(O) be the class of those short exact sequences of .4 for which the modules 
in O act as relatively flat modules. I t  follows from prop. 2.1 tha t  z-l(O) is a proper 
class. 

Proposition 3.1. 3--1(O) i8 closed under direct limits. 

Proo/. Clear, since direct limits are exact and commute with tensor products. 
More information about  T-I(O) may  be obtained by  employing duality theory. 

For every right A-module M we denote by M* its dual Homz(M, Q/Z), where Z 
stands for the integers and Q for the rationals. M* may  be considered as a left A- 
module by  defining (a(v)(x)=q~(xa) for x E M, a E A and ~ E M*. We do analogously 
for left A-modules P and then have the duality formula 

HomA(M, P*) ~ Homz(M| AP, Q/Z) ~ HomA(P, M*). 

Since Q/Z is an injective cogenerator for the category of abelian groups, the 
functors T:M-+M* and S:P-+P* are faithful and exact. Let  0"  be the class of 
dual modules P* for P C O. The duality formula then gives: 

Proposition 3.2. 3-1(0)  = t-l(O *) = T-l(ze-l(O)). 

The functors S and T are "adjoint on the right" and hence we may  apply 
The adjoint theorem. Let T:A-~B and S:B-+A be contravariant  functors which 

are adjoint on the right, where A and B are abelian categories. Suppose T is faithful. 
I f  :~ is a projectively closed proper class of B with enough :~-projectives, then T-I(~)  
is injectively closed with enough T-l(:~)-injectives. M is T-l(:~)-injective if and only 
if M is a direct summand of S(P) for some :~-projective P. 

This theorem is proved in [14] (p. 136). Applied to our actual situation it gives: 
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Proposition 3.3. Suppose there are enough ~-l( O)-pro]ectives. Then there are enough 
v-l(O)-in~ectives. A right module M is T-l(O)-in~ective i/ and only i/ it is a direct 
summand o /P* /or  some g-l(O)-projective module P. 

4. E-essential extensions 

Maranda [11] has developed a theory of pure-essential extensions of abelian 
groups which here will be extended to the case of a proper class E of an abelian 
category ~4. 

Definitions. A monomorphism ~ :L-> M in Em is E-essential i/every q~ : M-+ N, such 
that q~:r is a monomorphism belonging to Era, is a monomorphism. A n  E-essential 
monomorphism ~ : L ~ M  is maximal i/ every monomorphism q):M--->N, with ~o~ E-es- 
sential, is an isomorphism. A n  E-essential monomorphism o~:L~M with M E-in- 
~ective is called an E-in~ective envelope. 

The following three propositions have straight-forward proofs (cf. [11]). 

Proposition 4.1. I /  z~:L-->M is E-essential and fl :L-~Q is in E,~ with Q E-in]ective, 
then there exists a monomorphism qg : M-->Q such that q~ =ft. 

Proposition 4.2. I / M  is E-injective, then it is a maximal E-essential extension o/ 
itsel/. 

Proposition 4.3. Any  two E-injective envelopes o/ L are equivalent. 

For the rest of this section we assume: 

(1) J4 is locally small and has exact direct limits. 

(2) E is closed under direct limits. 

(3) There are enough E-injectives. 

Proposition 4.4. Let ~ : L ~ M  be a maximal E-essential monomorphism. I / f l  :M-~N 
is a monomorphism and floe is in Era, then fl is a coretraction. 

Proo/. Consider the set ~ of those quotient objects 2 :N-->K of N for which ~fi~ 
is a monomorphism belonging to Era. Note tha t  also 2fl will be a monomorphism. 
Using assumptions (1) and (2) above together with Zorn's lemma, we find tha t  

has a maximal member  2 ' : N ~ K ' .  One easily verifies that  ~'flo~:L--->K' is E-es- 
sential, because of the maximali ty  of 2'. But  the maximali ty  of ~ then implies tha t  
2'fi is an isomorphism, and hence fl is a coretraction. 

Corollary. M is E-injective i / a n d  only i/ there exists a maximal E-essential mono- 
morphism ~ : L ~  M /or some L. 

Proposition 4.5. Every M has an E-in]ective envelope ~: M--->E, and ~ is a maximal 
E-essential monomorphism. 
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Proo/. One only has to show the existence of maximal E-essential extensions of 
M. By assumption (3) there exists a monomorphism M-~N in Em with N E-injective. 
I t  is easily seen that  the set of subobjects of N which are E-essential extensions of 
M contains a maximal element E. Using prop. 4.1, one verifies that  E is a maximal 
E-essential extension of M. 

5. Subfunctors of thc identity 

Let ~4 be an abelian category with enough projectives. Let  S be a subfunctor of 
the identity functor of A, and suppose S is idempotent and radical, i.e. S o S = S  
and S(M/S (M) )=0  for every M. To S there corresponds a torsion theory (in the 
sense of Dickson [5]), where M is a torsion object if S ( M ) = M  and M is torsion-free 
if S (M)=0.  Conversely, every torsion theory defines such a functor S. We denote 
by O the class of all short exact sequences which split under S. Walker [15] has 
shown that  O =~-l(ff),  where ff is the class of torsion objects. 9" is closed under 
quotients, so similarly to Prop. 2.4 we have ([15], th. 3.11): 

Proposition 5.1. There are enough O-projectives, and every O-projective object is a 
direct summand o] the direct sum o /a  projective and a torsion object. 

We write Dext n for the relative extension functor defined by the proper class O. 

Proposition 5.2. Dextl(L, M)=Im(Ext l (L /S (L) ,  M)->Extl(L, M)). 

Proo/. [15], Corollary 2.9. 
The following condition is usually satisfied: (~) For every torsion-free M there 

exists an epimorphism P ~ M  with P torsion-flee projective. 

Proposition 5.3. Suppose ( ~) is satis/ied. Then 

Dext~(L, M) ~ Extn(L/S(L), M ) / o r  n > 1. 

Proo/. The sequence O--->S(L)-->L-~L/S(L)-->O belongs to O and gives Dext~(L, M ) ~  
Dextn(L/S(L), M) for n > 1. This reduces the proof to the case of a torsion-flee L. 
But  then (~) guarantees that  L has a projective resolution which also is a O-pro- 
jective resolution. 

Note that  if (~) is satisfied, then M is O-projective if and only if M/S(M)  is pro- 
jective. Not so much is known about the O-injectives in general, and we only note 
the following two facts (cf. [9], where Prop. 5.5 and its dual are given in a special 
case). 

Proposition 5.4. M is O-injective i/ and only i/ Extl(L, M ) = 0  /or every torsion- 
/ree L. 

Proo/, Follows immediately from Prop. 5.2. 

Proposition 5.5. Suppose pro]ectives are torsion-/ree. Then every O-injective object 
has injective dimension ~ 1. 
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Proo/. If M is D-injective and L is arbitrary, choose an exact sequence 0-~K-> 
P~L-~O with P torsion-flee projective. We obtain 

Extl(K, M)-~Ext2(L, M)-~Ext2(P, M) 

with both end terms zero. 
All results in this section may be dualized to the proper class ~* of short exact 

sequences which split under the quotient functor M~-~--+M/S(M) of the identity 
functor. The explicit formulation of the dualized prop. 5.1"-5.5" may  be left to the 
reader. 

6. Purity 
A is now assumed to have sums, products and a projective generator F. Let O 

be a set of quotient objects of F, with F 6 0 .  

Definition. An  exact sequence O~L~M-->IY-->O is O-pure i/ it belongs to z~-l(O). 
L is then an O-pure subject o / M .  

We know, by Prop. 2.3, what the O-pure-projectives look like and we know that  
there are enough of them. A useful characterization of pure sequences is given by 

Proposition 6.1. An  exact sequence O-~L-->M-~N-+O is O-pure i/ and only i/ /or 
every commutative diagram 

O _ ~ G - - ~ F _ ~ H - - ~ O  

O - - ~ L - - ~ M - - ~ N - - ~ O  
,u 

with H E O, the/oUowing equivalent statements are true: 

(a) there exists ~ : H-~ M such that t~v =yJ 
(b) there exists (r: F-~L such that ay=q~. 

Proo/. O-purity is equivalent to (a) since F is projective. The equivalence of (a) 
and (b) is quite obvious. 

We will denote by O' the set obtained from O by excluding F. The set O' generates 
a torsion theory in the manner described in sec. 3 of [5], so that  M is O-torsion-free 
if and only if Horn(P, M ) = 0  for every PEO' .  The corresponding idempotent and 
radical subfunctor of the identity will be denoted by T. T(M) may be described 
as the smallest O-pure subobject of M such that  every P ~ M ,  with P E 0 ' ,  factors 
through it; in other words: 

Proposition 6.2. The/ollowing statements are equivalent: 

(a) L is O-pure in M and contains T(M). 
(b) M/L  is O-torsion-/ree. 

Proposition 6.3. Suppose that direct sums o/ F are O-torsion-]tee. The ]ollowing 
statements are then equivalent/or N: 

(a) N is O-torsion-/ree. 
(b) Every exact sequence O ~ L ~ M - + N ~ O  is O-pure. 
(c) There exists an O-pure sequence O - ~ L ~ M ~ N - ~ O  with M O-torsion-/ree. 
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Proo/. Easy verification. 
There is another subfunctor of the identity functor which also is of some interest. 

Let  us say tha t  M is of O-type if there exists an epimorphism @ P ~ M  with P~ E O'. 
Every  M contains a unique maximal subobject t(M) of O-type, and this defines 
an idempotent subfunctor t of the identity. M is O-torsion-free if and only if t(M) = O, 
and it follows tha t  T may  be described as the smallest radical containing t (cf. 
Maranda [12], p. 109-110). I f  O' is closed under quotients, then an object is of 
O-type if and only if it is the sum of its subobjects isomorphic to objects in 0'.  

7. O-injective objects 

In  the case of usual puri ty  for abelian groups it is clear that  the union of any  
ascending chain of pure subgroups of a group G is a pure subgroup of G. The anal- 
ogous result for general puri ty  is related to Bass' well-known characterization of 
noetherian rings ([3], Prop. 4.1). We now assume tha t  • has exact direct limits and 
a projective generator F. Let  O be a set of quotient objects of F and F the correspond- 
ing set of subobjects of F. An object M is called O-in]eetive if Extl(P,  M ) = 0  for 
every P E O. 

Proposition 7.1. The/ollowing statements are equivalent/or L: 

(a) L is O-in]ective. 
(b) Every exact sequence O-~L-->M--->N--->O is O-pure. 
(e) There exists an O-pure sequence O~L~M-->N-->O with M O-in]eetive. 

Proo/. Easy verification. 

Proposition 7.2. The/ollowing statements are equivalent: 

(a) Every quotient object o /an O-in]ective object is O-in]ective. 
(b) Every object in F is projective. 

Proo/. Cf. [8], Prop. 7. 

Proposition 7.3. Consider the/ollowing properties o/O:  

(a) Every object in F is o/]inite type. 
(b) For every directed /amily (Lj)j o/ O-pure subob]ects o / a n  object M, also F.IL j 

is O-pure in M. 
(c) For every directed/amily (Lj)j o/O.in]ective subob]ects o /an object M, also Y, jLj  

is O-injective. 
(d) The direct sum o] any/amily o] O-in]ective objects is O-in]ective. 

The implications (a) ~ (b) ~ (c) ~ (d) always hold. 

Proo/. (a) ~(b): We use Prop. 6.1 and consider any diagram 

G ~ F  

Z L j - - ~ M  

with G in F. Since G is of finite type,  ~ carries it into some L r The existence of 
aj: E-+Lj gives a: F->ZLj  as desired. 
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(b) ~ (c): I t  follows from Prop. 7.1 that  every Lj is O-pure in the injective envelope 
E(M) of M. By hypothesis, ELi  is then O-pure in E(M) and therefore O-injective, 
by  Prop. 7.1. 

(c) ~ (d) is clear. 

When proving the converse of this proposition we require F to be a small pro- 
jective, in which case ,4 is equivalent to the category of modules over t tom(F,  F) 
([14], ch. IV.4). 

Proposition 7.4. Let .,4 be the category o/left modules over a ring A whose left ideals 
are countably generated. I[ F is ]initely generated, then the/our conditions in Prop. 7.3 
are equivalent. 

Proo/. I t  remains to show (d)~(a).  Let  G be any module in F and consider any 
ascending chain GlcG2c. . .  with ( i F  G~=G. There is a well-defined morphism 
G~| which may  be extended to F since Extl(F/G, |162 by  
hypothesis. But  F is finitely generated and hence mapped into O'2E(F/Gn) for some 
m < ~ .  The same is then true for G, so the chain must be stationary. 

8. Pext 

The notations of sec. 6 are retained. We also assume tha t  projectives are O-torsion- 
free. The relative extension functor corresponding to the proper class of O-pure 
sequences will be written PextL We may  also consider the proper class O of short 
exact sequences which split under the O-torsion functor T, and its relative exten- 
sion functor Dext  ~. Since every object in O is O-projective, it follows tha t  

Dext  1 (L, M ) c  Pext  1 (L, M) 

for all L and M. We recall tha t  M is O-projective if and only if M/T(M) is projective, 
while O-injectives are called O-cotorsion objects in the terminology of Fuchs [7]. 

Whereas Dext  may  be described explicitly in terms of Ex t  (Prop. 5.2, 5.3), it is 
more difficult to compute Pext. 

Proposition 8.1. ([15], Th. 2.8.). Suppose O' is closed under quotients, and let (L~}~ 
be the set o/subobjects o/ L which belong to 0'. Then Pext  1 (L, M) = N J I m / j ,  where 
/ j :Ex t  1 (L/Lj, M)-~Ex t  1 (L, M) naturally. 

Proposition 8.2. I] L is O-torsion-/tee, then 

Dext n (L, M) = Pext  n (L, M) = Ext  ~ (L, M) /or all n and M. 

Proo/. L has a projective resolution which also is a O-projective and pure-projec- 
tive resolution. 

The following condition is satisfied in many  applications: (fl) For every torsion 
object L there exists an O-pure sequence O~K--->P~L~O where P is an O-pure- 
projective torsion object and also K is a torsion object. 

Proposition 8.3. I /  (fl) is satis/ied, and M is O-torsion-/ree, then 

Dext" (L, M) = Pext"  (L, M) = Ext  n (LIT(L), M) /or all n. 

Proo/. We first suppose tha t  L is a torsion object. Using the sequence given above 
by  (fi) we get 

Pext  n (K, M)-~Pext  n (L, M)-->Pext" (P, M) = 0, 
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and the result follows by  induction on n. In  the general case, the O-pure sequence 
0-+ T(L)~L-->L/T(L)~O gives Pext  n (L, M ) = P e x t  ~ (LIT(L), M)~Extn(L/T(L),  M), 
using Prop. 8.2. 

Concerning the pure-injectives, we notice tha t  every O-pure-injective object of 
course is an O-cotorsion object and hence has injective dimension ~ 1 (Prop. 5.5). 
Conversely it follows from Prop. 8.3 tha t  if M is O-torsion-flee and O-cotorsion, 
then M is O-pure-injective (assuming (fl)). 

9. Examples  of  purity 

A is now the category of left modules over a ring A. We will s tudy O-purity 
for different choices of the set O of quotient modules of a free module F. 

9.1. F is a free module on an infinite basis, and 0 is the set of modules F/G for 
all finitely generated submodules G of F.  

Proposition 9.1. The ]ollowing statements are equivalent/or an exact sequence 
O~ L-~ M-+ N-->O: 

(a) It is O-pure. 
(b) The sequence O~ V| V| V|  is exact /or every right A- 

module V. 
(c) The sequence O--->N*-->M*~L*-+O o/dual modules splits. 

Proo/. (a)~(b) has been proved by  P. M. Cohn [4]. (b)~(c) follows from Prop. 3.2. 
In  this case there are not only enough O-pure-projectives, but  also enough O-pure- 

injectives. 

Proposition 9.2. The/ollowing properties o /a  left module M are equivalent: 

(a) M is O-pure-injective. 
(b) M is a direct summand o] P*/or some right module P. 
(c) Every system o/ equations ~saijX~=y~ (where iEI,  ?'E J ,  y~EM; I and J are 

arbitrary but summation is /inite) is solvable in M whenever every /inite subsystem 
is solvable in M. 

Proo/. (a)r follows from Prop. 3.3. (a)~(c) follows by  a rather  direct generali- 
zation of the proof given in [6] for the case of abehan groups. 

9.2. F is a free module on an infinite basis of cardinality 1il, and O consists of F 
and all modules generated by < ilt elements (considered as quotients of F). This 
gives m-purity, which is studied in detail by  Walker in [15]. 

In  the remaining examples we take F = A and put  F = {left ideals I :t:0 such that  
A/IEO}.  t ( i )  is now the submodule generated by  the set { x E i i l x = O  for some 
I E F}. We note: 

(i) I f  F consists of two-sided ideals, then T is left-exact (use Th. 2.9 of [5]). 
(ii) If  F consists of two-sided ideals and for every pair 11, 12 of ideals in F there 

exists an ideal I E F  such tha t  I c  11 N 12, then t(M)= {xEM I Ix=O for some IEF} .  
(iii) Suppose T is left exact. Condition (fl) in sec. 8 is then satisfied if and only 

if t=T.  
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9.3. F = {all left ideals ~=0}. L is O-pure (we simply say pure) in M if and only if 
for every u EM/L there exists x E M, mapping canonically on u, with Ann (u) = Ann (x). 
Other descriptions of purity may be obtained by means of Prop. 6.1. A module is 
pure-projective just when it is a direct summand of a direct sum of cyclic modules. 
The O-injective modules are just the ordinary injective modules. The associated 
torsion theory is the same one as in the next example (and is trivial if A has zero- 
divisors). 

9.4. F = {all principal left ideals :#0}. L is O-pure (we say weakly pure) in M if 
and only if aM NL=aL for every aEA (prop. 6.1). M is O-injective if and only if 
it satisfies: if aEA, xEM and ba=O implies bx=O for all bEA, then xEaM ([8], 
where such modules are called "divisible"). 

9.5. F = {all principal left ideals generated by non-zero-divisors}. L is O-pure in 
M when aM N L = a L  holds for every non-zero-divisor a. M is O-injective (we say 
divisible, cf. sec. 13.3 and [10]) if and only if M = a M  for every non-zero-divisor a. 
The O-torsion-free modules coincide with those called torsion-flee by Levy [10]. 
Levy shows that  t(M)= {x E M i a x - O  for some non-zero-divisor a} exactly when A 
has a left ring of fractions, and in that  case t and T obviously coincide and are left 
exact. 

9.6. 1 ~ = {maximal left ideals}. O-pure submodules are called neat. A module is 
neat-projective if and only if it is a direct summand of the direct sum of a free 
module and a semi-simple module. The modules of type O are just the semi-simple 
modules, t(M) is the socle of M, and T(M) is the minimal neat submodule of M 
containing the socle of M. 

Proposition 9.3. T(M) is the sum o/ all artinian submodules o/M. 

Proo/. Put  S(M)= sum of all artinian submodules of M. S is an idempotent and 
radical subfunctor of the identity functor and therefore defines a torsion theory. 
But this torsion theory coincides with the one determined by T, since the torsion- 
free modules obviously are the same in both cases. 

Both t and T are left exact functors in this case. This torsion theory has also been 
studied by Dickson ([5], sec. 4). When A is a commutative noetherian ring, T 
coincides with the functor X used by Matlis in [13]. 

10. Copurity 
A dualization of the purity theory introduced in sec. 6 gives a theory of copurity, 

which also is a generalization of the usual notion of purity for abelian groups. The 
abelian category A is assumed to have sums, products and an injective cogenerator 
K. Let y be a set of subobjects of K, with K E Y. 

Definition. A short exact sequence is Y-copure i / i t  belongs to t-l(Y). 

By prop. 2.3* we know that  there are enough Y-eopure-injectives. Let Y' be the 
set obtained from y by excluding K. The set Y' eogenerates a torsion theory ([5], 
sec. 3; instead of the terms "torsion" and "torsion-flee" we use the terms "divisible" 
and "reduced") with L Y-divisible if and only if Hom (L, Q)=O for every QEY'. 
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The corresponding idcmpotent and radical subfunctor of the identi ty functor will 
be denoted by  D. D(M) is the largest y-copure subobject of M such tha t  every 
M-+Q, with QE Y', factors through M/D(M).  Dually to Prop. 6.2 and 6.3 we have: 

Proposition 10.1. The/ollowing statements are equivalent: 

(a) L is Y-copure in M and L c  D(M). 
(b) L is Y-divisible. 

Proposition 10.2. Suppose the products o / K  are y.divisible. The/ollowing statements 
are then equivalent/or L: 

(a) L is Y-divisible. 
(b) Every exact sequence O-->L-~ M-~ N->O is y-copure. 
(c) There exists an Y-copure sequence O->L~M->N~O with M Y-divisible. 

11. Copurity in module catcgories 

The general notions of the preceding section will now be applied to the s tudy of 
copurity in the category A* of right A-modules. Let  F be a projective generator for 
the category A of left A-modules and let O be a set of quotient objects of F, F E O. 
F* = H o m  z (F, Q/Z) is then an injective cogenerator for A* and to O there corres- 
ponds a set O* of subobjects of F*. Prop. 3.2 gives: 

Proposition 11.1. The /ollowing statements are equivalent [or an exact sequence 
O~L~M-+N-+O in A*: 

(a) It  is O*-copure. 
(b) O---> N*-+ M*--->L* ~O is O-pure. 
(c) O-+L|174  is exact/or PEO. 

M is O*-copure-injective if and only if M is a direct summand of a direct product 
of modules P* with P E O. Also note tha t  t- l(O *) is closed under direct limits (prop. 
3.1), so the theory of relative essential extensions (sec. 4) works in the case of O*- 
copurity. 

There are some relations between O-torsion and O*-divisibility, which are de- 
scribed in the following propositions. The proofs are obvious. 

Proposition 11.2. The/ollowing properties o /a  right module M are equivalent: 

(a) M is O*-divisible. 
(b) M|  /or every P ~ F  in O. 
(c) M* is O-torsion-/tee. 

Proposition 11.3. I / M  is an O-torsion left module, then M* is O*-reduced. 

Proposition 11.4. I / L  is an O*-divisible right module and M is an O-torsion le/t 
module, then L | A M = O. 

Proposition 11.5. Assume A is commutative. Then: 

(i) I / L  or M is O*-divisible, then L|  is O*-divisible. 
(ii) I / L  is O*-divisible or M is O-torsion-/ree, then Horn A (L, M) is O-torsion-/tee. 
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12. O-fiat modules 

We keep the notations of the preceding section. The theory of O-fiat modules is 
obtained by a dualization of the theory of O-injective modules (see. 7). 

Definition. A right A-module M is O-fiat i /Tor~ (P, M)= 0 ]or every P E O. 

The duality formula Ext~ (L, M*)~Homz  (Tore (L, M), Q/Z) gives: 

Proposition 12.1. M is O-fiat i /and  only i / M *  is O-injective. 

The proofs of the following two results are dual to the proofs of Prop. 7.1 and 7.2. 
As in sec. 7 we write F for the set of submodules of F corresponding to O. 

Proposition 12.2. The/ollowing statements are equivalent/or a given right module 5[: 

(a) N is O-/lat. 
(b) Every exact sequence O--->L---> M ~ N ~O is O*-copure. 
(c) There exists an O*-copure sequence O~L-+M--->N~O with M O-fiat. 

Proposition 12.3. The/ollowing statements are equivalent: 

(a) Every submodule o/an O-]lat module is O-/lat. 
(b) All modules in F are fiat. 

13. Examples of copurity 

In the following examples of O*-copurity we choose F = A  and put  F = {left ideals 
I~=0 such that  A/IEO}.  A submodule L of M is O*-copure in M if and only if 
L N M I = L I  for every I E F  (Prop. 11.1). M is O*-divisible if and only if M = M I  
for every I E F. 

13.1. F = {all left ideals 4 0}, or equivalently {all finitely generated left ideals 4 0}. 
O*-copure sequences will simply be called copure. The O-fiat modules are just the 
ordinary flat modules. 

13.2. F =  {all principal left ideals4=0}. The O*-copure sequences are just the 
weakly pure sequences (9.4). So in the case of weak puri ty there are both enough 
relative projectives and enough relative injectives. M is O-flat if and only if it 
satisfies: if aEA, x E M  and xa=0 ,  then xEMb for some bEA with xa=O ([8], where 
such modules are called "torsion-flee"). 

13.3. F =  {all principal left ideals generated by non-zero-divisors}. O*-eopurity 
coincides with the kind of puri ty introduced in sec. 9.5. The O*-divisible modules 
coincide with those called divisible in sec. 9.5 and [10]. M is O-flat if and only if 
it satisfies: if aEA, x C M  and xa=O, then x = 0  or a is a zero-divisor. 

14. Purity over Priifer rings 

We will compare the various notions of purity for right modules over a ring A. 
A sequence which is pure in the sense of Cohn (sec. 9.1) is necessarily O*-copure, 
for any choice of O, and it is Ol-pure for O1 = {A/II I finitely generated left ideal}. 
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Proposit ion 14.1. Let A be a Prii/er ring. The ]ollowing properties o] a short exact 
sequence are equivalent: 

(a) I t  is weakly pure. 
(b) I t  is pure in the sense o/Cohn. 
(c) I t  is copure. 

I / A  is a Dedekind ring, they are also equivalent to: 
(d) I t  is pure. 

Proo/. I t  
proof over 
exerciee 6). 

only remains to show (a)~(b).  After localization it suffices to do the 
a valuation ring, where it is easy (and well-known, cf. [1], ch. 6, w 5, 

Proposit ion 14.2. Let A be an integral domain. A is a Prii/er ring i] and only i] 
every pure short exact sequence o/A-modules is eopure. 

Proo/. Necessity follows from prop. 14.1. Conversely, if every pure sequence is 
copure, then every torsion-flee module is flat, by  Prop. 6.2 and 12.2. But  in such 
a case A must  be a Priifer ring by  [3], Th. 4.2. 
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