1.66 13 2 Communicated 26 October 1966 by T. NAGELL and O. FROSTMAN

High submodules and purity

By Bo T. STENSTRÖM

1. Introduction

The N-high subgroups of an abelian group G were defined by Irwin [5] as maximal subgroups having zero intersection with the given subgroup N of G. In this note we extend some well-known relations between neat and N-high subgroups ([2], § 28 and [4], p. 327) to abelian categories and in particular to modules over general rings. As an application we will generalize a characterization of intersections of neat subgroups, due to Rangaswamy [7]. The term "high" will here be used in a sense more general than that it has in [5].

Notation. \mathcal{A} is an abelian category in which every object M has an injective envelope E(M). For any subobject L of M we consider E(L) as a well-defined subobject of E(M).

2. High subobjects

Let M be an object in \mathcal{A} with a given subobject K. A subobject L of M is called K-high if $L \cap K = 0$ and L is maximal with respect to this. K-high subobjects do exist for any K ([3], p. 360). We obviously have

Proposition 1. A subobject L of M is K-high if and only if the composed morphism $K \rightarrow M \rightarrow M/L$ is an essential monomorphism.

Corollary. If L is K-high in M, then

(i) L+K is essential in M. (ii) $E(M) = E(L) \oplus E(K)$.

The K-high subobjects of M may be described in terms of injective envelopes, as was done in [5] and [6] for abelian torsion groups.

Proposition 2. The K-high subobjects of M are just the intersections of M with complementary summands of E(K) in E(M).

Proof. If L is K-high, then $E(M) = E(L) \oplus E(K)$ by the corollary, and $L = E(L) \cap M$ since also $E(L) \cap M \cap K = 0$. Conversely, suppose $E(M) = E(K) \oplus H$. Then $H \cap M \cap K = 0$, and if L is K-high in M with $L \supset H \cap M$, then $E(L) \supset E(H \cap M) = H$. Clearly it follows that E(L) = H, and $H \cap M = E(L) \cap M = L$ is K-high. B. T. STENSTRÖM, High submodules and purity

Proposition 3. Let L be a subobject of M. The following statements are equivalent:

- (a) L is K-high for some K in M.
- (b) L is the intersection of M with a direct summand of E(M).
- (c) L is essentially closed in M, i.e. $L = E(L) \cap M$.
- (d) For every essential subobject H of M such that $L \subset H$, also $H|L \to M|L$ is essential.

Proof. The proof of (a) \Leftrightarrow (b) \Leftrightarrow (c) is similar to the proof of prop. 2. (a) \Rightarrow (d): Let H be an essential subobject of M with $L \subset H$. Suppose F is any subobject of M with $F \supset L$ and $F/L \cap H/L = 0$. This means that $F \cap H = L$, and we should show that F = L. If L is K-high in M, then $F \cap K \cap H = L \cap K = 0$ and hence $F \cap K = 0$. By the maximality of L it follows that F = L.

(d) \Rightarrow (a): Choose any *L*-high subobject *K* of *M*. K + L is an essential subobject of *M* (cor. of prop. 1), so $K + L/L \rightarrow M/L$ is essential by hypothesis, and hence *L* is *K*-high (prop. 1).

3. High sequences

A short exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is called *high* if it makes L a K-high subobject of M for some K.

Proposition 4. The high sequences form a proper class.

Proof. We have to verify the axioms for a proper class as given e.g. in [8]. Suppose $\alpha : L \to M$ and $\beta : M \to N$ are monomorphisms. We will make repeated use of prop. 3 (c) when verifying axioms P2 and P3, and of prop. 3 (d) when verifying P2* and P3*. P2. If α and β are high, then $\beta \alpha$ is high. For $L = E(L) \cap M = E(L) \cap E(M) \cap N = E(L) \cap N$.

P2*. If $\beta \alpha$ and $M/L \rightarrow N/L$ are high, then β is high. For if H is essential in N and $M \subset H$, then $H/L \rightarrow N/L$ is essential and hence $H/M \cong H/L/M/L \rightarrow N/L/M/L \cong N/M$ is essential.

P3. If $\beta \alpha$ is high, then also α is. For if $L = E(L) \cap N$ then $L = E(L) \cap M$.

P3*. If β is high, then also $M/L \rightarrow N/L$ is. For if H/L is essential in N/L and $H \supset M$, then H is essential in M and hence $H/L/M/L \simeq H/M \rightarrow N/M \simeq N/L/M/L$ is essential.

An object M is called *simple* if it has no subobjects except 0 and M. Following the terminology of [8] (sec. 9.6), we call a short exact sequence *neat* if every simple object is a relative projective for it.

Proposition 5. Every simple object is high-projective.

Proof. Suppose $0 \rightarrow L \rightarrow M \rightarrow P \rightarrow 0$ is a high sequence with P simple. If L is K-high in M, then $K \simeq P$ and K + L = M, so the sequence splits.

Corollary. Every high sequence is neat.

As a result in the reverse direction we have

Proposition 6. Let O be a class of objects such that for every $M \neq 0$ there exists a monomorphism $P \rightarrow M$ for some $P \neq 0$ in O. Then $\pi^{-1}(O) \subset \{\text{high sequences}\}$.

ARKIV FÖR MATEMATIK. Bd 7 nr 11

Proof. Let $0 \to L \to M \to N \to 0$ be in $\pi^{-1}(O)$. Then also $0 \to L \to E(L) \cap M \to E(L) \cap M/L \to 0$ belongs to $\pi^{-1}(O)$ by axiom P3 for proper classes. We want to use prop. 3 and therefore assume $L \neq E(L) \cap M$. But then there exists a monomorphism $\varphi: P \to E(L) \cap M/L$ with $P \neq 0$ in O. We may lift φ to a monomorphism $\bar{\varphi}: P \to E(L) \cap M$. But then $\operatorname{Im} \bar{\varphi} \cap L = 0$, which is impossible.

Remark. The notion of high subobjects may, of course, be dualized. We call a subobject L of M K-low if K+L=M and L is minimal with respect to this. K-low subobjects do not necessarily exist for all K, unless \mathcal{A} has projective envelopes. But in any case one may verify that the class of low sequences is a proper class, and that every simple object is relatively injective for it.

4. High submodules

We now let \mathcal{A} be the category of left modules over a ring A. Choosing O in prop. 6 to be the class of cyclic modules, we obtain

Proposition 7. Every pure sequence is high.

The term "pure" is here used in the sense of [8] (sec. 9.3). When A is commutative, we may take O to be $O_p = \{A/I \mid I \text{ prime ideal or } (0)\}$ and apply [1] (§ 1), which gives

Proposition 8. Let A be a noetherian, commutative ring. Then every O_p -pure sequence is high.

Corollary. Let A be a noetherian, commutative ring where every prime ideal ± 0 is maximal. Then a short exact sequence is neat if and only if it is high.

5. Intersections of neat submodules

In this section A is assumed to be a noetherian, commutative ring with every prime ideal ± 0 maximal. So A is either a noetherian integral domain of Krull dimension 1 or an artinian ring (assume not a field). As was found above, the concepts of neat and high sequences coincide over A, and this fact makes it possible to extend a result on intersections of neat subgroups of an abelian group, proved by Rangaswamy [7], to modules over A.

Let M be an A-module. Denote by Soc M its socle and by Soc_mM the homogenous component of Soc M determined by the maximal ideal m. If L is any submodule of M, $E(L) \cap M$ is a minimal neat submodule of M containing L. We call it a *neat hull* of L in M. Every neat submodule of M containing L also contains a neat hull of L in M. If N is a neat hull of L in M, then L contains the socle of N.

Proposition 9. Let L be a submodule of M and put $O' = \{A/\mathfrak{m} \mid \mathfrak{m} \text{ maximal ideal with } Soc_\mathfrak{m} M \subseteq L\}$. The following statements are equivalent:

- (a) L is an intersection of neat submodules of M.
- (b) L is the intersection of its neat hulls in M.
- (c) M/L has no simple submodules of type in O'.
- (d) L is O-pure in M (where $O = O' \cup (0)$).

B. T. STENSTRÖM, High submodules and purity

Proof. The equivalence of (a) and (b) is obvious. The condition (c) means that M/L is *O*-torsion-free, so the equivalence of (c) and (d) follows from [8] (prop. 6.2).

(a) \Rightarrow (c): Suppose $L = \cap N_i$ with N_i neat in M. Then $M/L = M/\cap N_i \subset \prod M/N_i$, which is O-torsion-free since every M/N_i is O-torsion-free ([8], prop. 6.2).

(c) \Rightarrow (a): For each $x \notin L$ we have to find a high submodule of M containing L but not x. If $Ax \cap L = 0$, this is trivial to do. So suppose $Ax \cap L \neq 0$ and put

$$I = \{a \in A \mid ax \in L\}.$$

I is a product of primary ideals, and each primary ideal contains a power of its radical. Therefore we have $m_1 \cdot \ldots \cdot m_n x \subset L$, where m_i are maximal ideals and $m_2 \cdot \ldots \cdot m_n x \notin L$. Choose a $y \in m_2 \cdot \ldots \cdot m_n x$ such that $y \notin L$; then $m_1 y \subset L$. It will be sufficient to look for a high submodule containing *L* but not *y*. The hypothesis (c) implies that $A/m_1 \notin O'$, so there is a $z \notin L$ with $m_1 z = 0$. Put u = y + z and let *N* be a neat hull of L + Au in *M*. If $y \notin N$, then we are done. If $y \in N$, then $z \in Soc N$ and hence $z \in L + Au$ by the remark just preceding the proposition. Write z = v + au with $v \in L$ and note that $a \notin m_1$ since otherwise $z = v + ay \in L$. We get (1-a)z = v + ay, which gives $m_1(v + ay) = 0$. Since $v + ay \notin L$ and m_1 is maximal, we conclude that

 $L \cap A(v+ay) = 0$. Any A(v+ay)-high submodule N' containing L will now do, because $y \notin N'$.

Corollary. Let A be a noetherian integral domain of dimension 1. Suppose L is a torsion-free submodule of M. L is then an intersection of neat submodules of M if and only if Ass(M/L) = Ass(M).

Proof. Ass(M) denotes the set of prime ideals which are annihilators of elements in M. When L is torsion-free, $O' = \{A/\mathfrak{m} \mid \mathfrak{m} \notin \operatorname{Ass}(M)\}$ and the result follows.

Dept. of Mathematics, Royal Institute of Technology, Stockholm 70, Sweden

REFERENCES

- 1. BOURBAKI, N., Algèbre commutative (ch. 4), Hermann, Paris 1961.
- 2. FUCHS, L., Abelian groups, Budapest 1959.
- 3. GABRIEL, P., Des catégories abéliennes, Bull. Soc. Math. France, 90, 323-448 (1962).
- HARRISON, D. K., IRWIN, J. M., PEERCY, C. L., and WALKER, E. A., High extensions of abelian groups, Acta Math. Acad. Sci. Hung., 14, 319-330 (1963).
- 5. IRWIN, J. M., High subgroups of abelian torsion groups, Pac. J. Math., 11, 1375-1384 (1961).
- IRWIN, J. M., and WALKER, E. A., On N-high subgroups of abelian groups, Pac. J. Math., 11, 1363-1374 (1961).
- 7. RANGASWAMY, K. M., Characterization of intersections of neat subgroups of abelian groups, J. Indian Math. Soc., 29, 31-36 (1965).
- 8. STENSTRÖM, B., Pure submodules, Arkiv för Matematik 7, 159 (1967).

Tryckt den 25 maj 1967

Uppsala 1967. Almqvist & Wiksells Boktryckeri AB