
A R K I V  F O R  M A T E M A T I K  B a n d  7 n r  14 

1.67 01 3 C o m m u n i c a t e d  11 J a n u a r y  1967 b y  OTTO FROSTMAZe 

A set of uniqueness for functions, analytic and bounded 
in the unit disc 

By AKE SAMUELSSON 

1. Introduction 

The purpose  of this note  is to establish a uniqueness theorem,  similar to the  
well-known result  of F. and  M. Riesz. Before we s ta te  the  theorem,  let us in- 
t roduce  some notat ion.  

Throughout  this note  let ~ be the  class of all functions,  analyt ic  and bounded  
in the  open uni t  disc C. We will also consider the  subclass ~0 c ~ of functions,  
wi th  only  a finite n u m b e r  of zeros in C. 

I f  ~ is a poin t  on the  bounda ry  of C (henceforth denoted b y  a C ) a n d  ~ is a 
real number ,  0 ~< ~ < 1, let S(~, ~) denote  the Stolz domain  with  ve r t ex  ~ 6 aC and 
angle arcsin ~; i.e. 

S(r ~) = {z ][z ] < 1, [z - ~] < V1 - ~2, [arg (1 -- ~z) l ~< arcsin ~}. 

Moreover,  if ~ fi ~C and ~0 is a function,  defined on C, such t h a t  

we write l im s ~(z) = A or 
z-->~ 

l im ~0(z)=A for all a, 0 ~ < ~ < 1 ,  
z -~  

z e S(~, 6) 

q)(z)SA as z-+r 

We will use the first  no ta t ion  exclusively when A is a (proper) complex number ,  
while the second nota t ion  will be used not  only  when A is a proper  complex 
n u m b e r  bu t  also in the ease of a real -valued funct ion ~0 and  A = -t-oo. 

For  /, g 6 ~ consider the set 

Dz(/, g) ={~l  ~6~C, limS /(k) (z) =limSg(k)(z), k = 0 ,  1, 2 . . . .  }. 
z-->~ z-*~ 

An immedia te  consequence of F. and M. Riesz 's  theorem ([2], p. 209) is the fol- 
lowing resul t :  

I /  Ds(/,g ) has positive Lebesgue measure, then /=g. 

The main  result  to be p roved  in this note  can be s ta ted  as follows: 
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I /  Ds(/,  g) has positive Hausdor// measure where the Hausdor// measure is de- 
termined by the /unction h, given by 

0 t = O, 

h(t) = - t log t i/ 0 < t < e  -~, 

e-2 +t  t>~e -2, 
then / = g. 

(1.1) 

Since D s (/, g) c Ds ( / -  g, 0), this s ta tement  is equivalent  to the following state- 
ment  : 

I /  / e  3 and / # 0 ,  then Ds(/)=Ds(/ ,O) is o~ Hausdor// measure 1 zero. 

We will prove this last s ta tement  by  proving, first, tha t  the  set 

Dz(/) = Dz(/, O)={~1 $ ~ C ,  limS /(k) (z) = 0, k=O,  1, 2, . . .} 
z.,..->~ 

is equal to the  set 

Ls(l)={$l$eoC,(logl/(z)l)/log[~-zl5+~, as z - ~ }  

and, secondly, t ha t  the set Ls(/) is of Hausdorff  measure zero. I f / E ~ 0 ,  we will 
also prove tha t  the two sets 

D(/) ={~[ ~fiOC, lim/(k)(r~) = 0 ,  k = 0 ,  1, 2 . . . .  } 
r--~l-O 

and L(/)={C]Ce~C,(logl/(r~)])/log(1-r)-++~ as r - ~ l - O }  

are both  equal to  the set Ds(/ )=Ls( / )  , and therefore we have:  

I /  / e  3o the set D(/) is o/ Hausdor// measure zero. 

The proofs of the equalities, Ls (/) = Ds (/) if / e 5,  and, L(/) = Ls (/) = Ds (/) = D(/) 
if / E 30, are carried out  in Section 2, while Section 3 is devoted  to proving tha t  
Ls(/) is of Hausdorff  measure zero. This la t ter  proof is based on the following 
result : 

I /  u is harmonic in C and 

~:'lu(reiZ) ldx=O(1 ) as r ~ l - O ,  

then u ( r ~ ) = O ( - l o g ( 1 - r ) )  as t - + l - 0  

/or all ~ E ~C except possibly /or a set o/ Hausdor// measure zero. 

1 T h r o u g h o u t  th i s  no t e  we will exc lus ive ly  cons ider  t h e  H a u s d o r f f  m e a s u r e  d e t e r m i n e d  by  t h e  
f u n c t i o n  h, g iven  b y  (1.1). 
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2. Three l emmas  

The following lemma relates the sets Ls(l), L(/), Dz(l) and D(/), introduced 
in Section 1. 

Lemma 2.1. I1 / E ~, then 

Ls(l) = Ds(/) ~ D(/) c L(/); 

and i t  I e ,~o, then Ls(l) = Ds(l) = D(I) = L(I). 

The proof of this lemma is given in three steps. 

(i) Ls( / )cDs( / )  

Suppose tha t  ~ELs(/)  and let S(~, ~) be any Stolz domain with vertex ~. 
Choose e, such tha t  0 <  e <  1 -  ~. Then if z 6 S(~, ~), the circle Cz with center z 
and radius e I ~ -  z] is a subset of S(~, ~ + e) for all z sufficiently close to ~, and 
as z approaches ~" in S(~, ~), the points on the circle Cz approach ~ within 
S(~, ~ + e). Using Cauchy's formula 

/ (k, (Z) = ]r ! (2:Tg~) -1 ( (t - -  Z) - k - 1 / ( t )  dr,  
d Cz 

it is readily seen tha t  

I1 <~) (~)l < c(k, ~) sup I ( t - 4 )  k/(t)l, 
t~Cz 

Hence, since ~ELz(/)  obviously implies that  

�9 C ( k ,  e) = k {  (1 "~- E-1)k 

lira ( t -~)-k / ( t )=O,  k = 0 , 1 , 2 , . . . ,  
t--~r t e S(~, z t+e )  

we have lim /(k) (z) = 0, k = 0, 1, 2, ..., 
z-~ 

zeX(~,u) 

and thus Lz( / )cDz(I) .  

(ii) Ds(l) cLs(/), D(/) eL(I) 
Suppose ~ q Ds(/). If  z 6 S(~', a), let L~ be the line segment joining z and ~. 

Then for t 6L~, we have 

and therefore 

sup I1 (t) l - sup (t) l, 
tcLz t~Lz 

k =  1,2, 3, . . . .  

Repeated use of these inequalities yields 
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= s u p  I/<-,(t) l ,  n = 0 , 1 , 2  . . . .  , (2.1) 
teLz teSz(~,zt) 

where 

I t  follows from (2.1) that  

( log l / ( z ) [ ) / log l~-z]~  +~o as z ~ , z e S ( ~ , a )  

and therefore, since a, 0 ~< ~<  1, is arbitrarily chosen, we have Ds([)~Ls(]) .  Also, 
by the first part of (2.1), with z=r~,  we have D(/ )cL(] ) .  

(iii) L(I)  = Ls(l) if l E ~0 

In the proof of this step, we will use the following lemma, which follows easily 
from ttarnack's inequalities (cf. [3], p. 295). 

Lemma 2.2. Let u be a nonnegative /unction harmonic in the open ul~it disc and 
let C~ be a circle with center z, [ z ]< l  and radius a(1-]z[) ,  0 < : r  Then 

/or every t E Cz. 

l + a  1 - ~ u(z) <<- u(t) <~ u(z) 
l+zr 1 - ~  

W e  will also use the mappings (cf. [3], p. 295) 

Tr ~E~C, 0 < ~ < 1  

defined in the following way: if z ES($, ~) let Tr be the point closest to ~, 
such that  

argTr and ]z-Tr162 

Obviously (1-ae)(1-]Tc.~zi)<l~-zl<(l+ac)(1-lTc.~z]) (2.2) 

and therefore z-+~, z E S($, a) if and only if T~.~z-+$. 
Now let / e ~0. Then [ = I [ / I I 'B 'E ,  where ]i/l] denotes the supremum norm, 

B is the normalized, finite Blaschke product of / and E is analytic and zero- 
free in C. Moreover, ]]EiI <1.  Obviously Ls ( / )=Ls (E)  and L( / )=L(E) .  Thus it 
suffices to prove (iii) when / = E .  Suppose that  ~ E L(E). Then by Lemma 2.2, 
with u = - l o g [ E l  and by (2.2) 

log 1 1 - ~  loglE(Tr 
log IzZ~]~l~2" l + a  log(1- lT~. :z l )  

for all z E S(~, :r such that  IT,.~z] ~> ~, and thus L(E) c L s ( E ) .  These three steps, 
together with the obvious inclusion Ds( I )cD( / ) ,  prove Lemma 2.1. 

Let [ =  I]/I]-B-E be the decomposition of a function in 5. Then if B([)is the 
set of ~ fi ~C with the property: there exists a ~ > 0, such that  

I B ( z ) 1 4 2 - i i z - ~ ]  fora l l  zeS(~ ,2  -�89 with Iz-$]<(~,  
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and if L(/) is the set defined by 

~(/) ~--- {~ ] ~ ~O~'r--+l -0]~m l~ IE(~'~> I - : l o g  (1 - r) + oo} 

we have the following result. 

Lemma 2.3. I /  /E ~ and / # 0 ,  then 

L~(/) c B(/) u L(/). 

To prove this, suppose tha t  ~qLs( / )  but  $ ~B(/). Then there is a sequence 
(z,}•, ZveS(~,2-�89 Z v ~  as v ~  + c~, such tha t  

0 ~< lira log [B(z,) I <~ 1, 
, - ~  log Izv - ~[ 

and therefore ( l o g l E ( z , ) l ) / l o g l z , - $ [ ~  as v-+ + ~ .  

However, by  Lemma 2.2 with u(z)=- log[E(z)]  and ~ = 2  -�89 and b y  (2.2), we 
have 

loglE(T~.~z,)l > 1 . 1 - c r  log[E(z,) I 

if [Zv--~[~<(l+~) -1. Hence 

li--~ log  ]W(r$)] = + ~o 
~-+1-0 log (1 - r) 

and ~ E L(/). This proves Lemma 2.3. 

3. A u n i q u e n e s s  th eorem 

In  this section we prove that  for all / in ~, such tha t  /=#0 the set Dz(/)is  
of Hausdorff  measure zero. By Lemma 2.1 and Lemma 2.3 it suffices to prove 
tha t  the two sets B(/) and L(/) are of Hausdorff  measure zero. The fact tha t  
L(/) is of Hausdorff measure zero is an immediate consequence of the following 
theorem. 

Theorem 3.1. I /  u is harmonic in the open unit disc C and 

f~ =lu(reiX)ldx=O(1 ) as r - > l - 0 ,  

then u ( r ~ ) = O ( - l o g ( 1 - r ) )  as r - + l - 0  

/or all ~ E ~C, except possibly /or a set el Hausdor// measure zero. 
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Under  the hypotheses of the  theorem there  is a funct ion # of bounded varia- 
t ion on [0, 2~], such t h a t  ([2], p. 198) 

f[ ~ 1 - -  T 2 

u(re~X) = 1 + r ~ - 2r cos (x - t) d~t(t), 0 <~ r < 1. 

Since f [ ~  1 - r 2 
]u(rd~)]< l + r ~ _ 2 r c o s ( x _ t ) d ] # l ( t ) ,  0 < r < l ,  

where [#[(t) is the tota l  var ia t ion of # on [0, t], it  suffices to  prove the  theo- 
rem for a nonnegat ive harmonic  funct ion u, i.e. the corresponding funct ion # is 
nondecreasing. 

I n  [3], p. 290, we proved the inequali ty 

li-m u(re~) ~< zr limm/x(x + t) - # ( x -  t) 0 < x < 2Jr, 
to1-0 - l o g  (1 - r )  to+o h(t) ' 

where h is the  funct ion given b y  (1.1), and therefore it suffices to  prove t h a t  
the set 

M = {  e~xlO<x<27t'  t~+olim t t (x+t)- la(x- t)=+h(t)  co} 

is of Hausdorff  measure zero. We will prove this using a covering principle due 
to  Besieovitch ([1]). 

Definition (Besicovitch): I f  G is a set in the  plane and F is a class of discs, 
such tha t  to  each point  z in G there correspond discs in F, with center z 
and  arbi trar i ly small radii, then  we call F a covering of G in the  Vitali 
nar row sence. 

Theorem (Besicovitch): Le t  G be a bounded  set of the plane and P a cov- 

ering of G in the  Vitali nar row sense. Then  there is a subcovering F of G, 

where F can be split into 22 countable subclasses Fk ( k =  1, 2, . . . ,  22), such 
tha t  no pair  of discs in the  same subclass meet. 

Let  s and ~ be two positive numbers  and consider for each e ~x E M those open 
discs C(e t~, t), with center e ~x and  radius t ~<Q, such t h a t  

_< s #(x + t) - # ( x -  t) + t) c (0, 2~r). h(t) --~ ~ .  ~ - 2 ~  i _ ~  and ( x -  t, x 

This class of discs in then a covering of M in the  Vitali nar row sense, and  
by  Besicovitch's covering principle, there is a subcovering F = [.Je~2Fk, such t h a t  
no pair of discs in the  same subclass Fk meet.  Then, if 

['~--- 0 C( e~k'., tk.,), k = 1, 2, . . . ,  22, 

the corresponding intervals  (xk.v - tk.v, xk. ~ -4- tk. ~) are disjoint and 
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( t~ (zk . ,  + t,~.,) - t~(x,~.,  - t,~. , ) )  
~ _ 8 _ ~  v 8 

~.~ h(tk, ~) -.~ 22" #(2~) --/t(0) ~< ~ "  

22 

Thus ~ ~ h(tk. v) < e 
k ~ l  v 

and, since ~ is arbitrari ly chosen, we have proved tha t  M is of Hausdorff measure 
zero. This completes the proof of Theorem 3.1. 

Corollary 3.1. I/ /E ~ and /#0 ,  then L(/) is o/ Hausdor// measure zero. 

Prom/. Apply Theorem 3.1 to the nonnegative, harmonic function 

~(z) = - log IE(z) l. 

For a function / in ~0 the set B(/) is empty.  Therefore, by Corollary 3.1, Lemma 2.3 
and Lemma 2.1 we have the following theorem. 

Theorem 3.2'. / /  /E  ~0, then D(/) is o/ Hausdor// meazure zero. 

The corresponding result for a function / E ~ is given in the following theorem. 

Theorem 3.2. I/ /E~  and /#0,  then Ds(/) is o~ Hausdor// measure zero. 

The proof of this theorem follows immediately from Corollary 3.1, Lemma 2.3, 
Lemma 2.1 and the following lemma. 

Lemma 3.1. I/ /E ~ and /#  O, then B(/) is o/ Hausdor// measure zero. 

Prom/. Let {rn}~ be a sequence of real numbers, such tha t  1 / V - 2 < r n < l  and 
l imn-~  r~ = 1. Then B(/) = [.J~ B~, where 

Bn=~e~Z][ 1[ z-eixl'B(z)[ <lv2 for all zES(e  ~x, ~ )  with [z[~rn}. 

Obviously it suffices to prove tha t  Bn is of t tausdorff  measure zero for n = 1, 2, 3 . . . . .  
Choose any ~) such that  1 > 0 > m a x { m ,  1 - e - a } .  Then, since [e'X-oea[ < ]/2(1 -r 
for I x - t i c < l - e ,  we have for e ~xEBn 

~(x§ Ir x -  0e"l 
h(1 - ~) = - (1 - ~) log (1 - ~) ~< - log dt 

I 
x + ( 1 - 0 )  

< _ 1 log IB(Q r dt. 
x ( l - Q )  

Cover each point e ~ E B~ by  an open disc with center e ~ and radius 1 - ~. From 
this cover we can extract  a finite subcovering, such tha t  each point in B~ is 
covered by at  most two discs. Therefore, if N(Q) is the number  of discs in this 
subcovering, 
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N(~).  h(1 - e) < - f["log IB(ee'~)l dt 

and, since the limit of this integral is zero as Q approaches 1 ([2], p. 207), we 
conclude t h a t  Bn is of Hausdorff  measure zero. This completes the  proof. 

Combining L e m m a  3.1 with the  inequali ty (2.1.) we have:  

Theorem 3.3. I[ B is a Blaschke product, then the set 

{~15 E ~C, lira s B(z) = limSB'(z) = O} 
z ~  z-~ 

is o/ Hausdor// measure zero. 

Proo/. B y  (2.1) the  set in Theorem 3.3 is a subset of B(B). 
We are now able to  prove the  uniqueness theorem. 

Theorem 3.4. I /  /, g E ~ and 

lira s l(k) (z) = l i m  sg(k) (z) ,  k = O, 1, 2, . . . ,  
z ~  z ~  

/or a set o/ points ~ E ~C o/ positive Hausdor/[ measure, then [=g.  

Proo/. Suppose t h a t  h = / - g 4 = O .  Then Ds(h) is of Hausdorff  measure zero 
(Theorem 3.2), violating the assumpt ion of Theorem 3.4. Therefore, h - - / - g  = 0. 

University o/Cali]ornia, Riverside, Cal. U .S .A .  and University o] G6teborg, Sweden. 
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