On the extension of Lipschitz maps

By Sten Olof Schönbeck

Introduction

Let X and Y be metric spaces. A map T from X into Y is called a Lipschitz map if there is a constant M, such that $d\left(T x_{1}, T x_{2}\right) \leqslant M d\left(x_{1}, x_{2}\right)$ for all $x_{1}, x_{2} \in X$, and then the norm of $T,\|T\|$, is defined as the least such constant. T is called a contraction if $\|T\| \leqslant 1$. If D is a subset of X and $T: D \rightarrow Y$ a Lipschitz map, it is natural to ask whether T may be extended to a Lipschitz map $\bar{T}: X \rightarrow Y$ so that $\|\bar{T}\|=\|T\|$. This problem has been studied by several authors. A short survey of results in this connection is given in the paper of Danzer, Grünbaum and Klee [2]. In the present note we are concerned with some aspects of this problem in the case that X and Y are real Banach spaces. More precisely, we are interested in those pairs of Banach spaces X and Y, for which the extension problem formulated above always has a solution. It is obvious that, in the case of Banach spaces, it is sufficient to consider contractions, for if each contraction of a subset of X into Y may be extended to a contraction of X into Y, then also each Lipschitz map of a subset of X into Y may be extended to a Lipschitz map of X into Y, without increasing the norm. In order to abbreviate, we will say that (X, Y) has EPC (extension property for contractions) if for each subset $D \subset X$ and each contraction $T: D \rightarrow Y$, there exists a contraction $\bar{T}: X \rightarrow Y$, which extends T.

The fact that (X, Y) has EPC may also be formulated as an intersection property for cells in X and Y. A cell in a Banach space X is a set of the form $S_{X}\left(x_{0} ; r\right)=$ $\left\{x \in X:\left\|x-x_{0}\right\| \leqslant r\right\}$. The unit cell of X is the cell $S_{X}=S_{X}(0 ; 1)$. When \mathcal{F} and \mathcal{G} are families of cells in X and Y respectively, we shall write $\mathcal{F} \succ \mathcal{G}$ if there is a one-toone correspondence between \mathfrak{F} and \mathcal{G}, such that corresponding cells have equal radii and the distance between the centers of any two cells in \mathcal{G} is less than or equal to the distance between the centers of the corresponding cells in \mathcal{F}. If \mathcal{F} is a family of sets, then $\pi \mathcal{F}$ denotes the intersection of the sets belonging to \mathcal{F}. Then the following two statements are equivalent (see [2]):
(i) (X, Y) has EPC,
(ii) whenever \mathcal{F} and \mathcal{G} are families of cells in X and Y respectively, such that $\mathfrak{F}>\mathcal{G}$ and $\pi \mathcal{F} \neq \phi$, then $\boldsymbol{\pi} \mathcal{G} \neq \phi$.

We will also use the following terminology, due to Aronszajn and Panitchpakdi [1] (see also Klee [10]). For a cardinal number $\gamma \geqslant 3$, a space X is said to be γ-hyperconvex if each collection $\left\{S_{X}^{\alpha}\right\}, \alpha \in A$, of mutually intersecting cells in X with card A $<\gamma$, has a nonempty intersection. X is called weakly γ-hyperconvex if this condition holds under the further assumption that all the S_{X}^{α} have a common radius. X is

s. o. sснönbeck, Extension of Lipschitz maps

called (weakly) hyperconvex if it is (weakly) γ-hyperconvex for all γ. It was proved by Hanner [7, Theorem 6.1] that if γ is finite, then for finitedimensional spaces weak γ-hyperconvexity implies γ-hyperconvexity, and this result was extended to arbitrary Banach spaces by Lindenstrauss [11, Theorem 4.3]. Hanner also proved that, for finitedimensional spaces, 5 -hyperconvexity implies $\boldsymbol{\Sigma}_{0}$-hyperconvexity, and this, too, was extended to arbitrary Banach spaces by Lindenstrauss [11, Theorem 4.1].

It is well-known (Aronszajn-Panitchpakdi [1], Goodner [5], Kelley [9], Nachbin [12]) that the following properties of a real Banach space are equivalent:
(a) X is hyperconvex,
(b) X is a \bar{D}_{1} space, i.e. for any Banach space Z containing X as a subspace, there is a projection of norm 1 from Z onto X,
(c) X is isometric to a space $C(K)$, where K is an extremally disconnected compact Hausdorff space.

Returning now to our object in this paper, we note that the following facts are previously known (for the proper references we refer to [2]):
(1) (X, Y) has EPC for all X if and only if Y is a \bar{D}_{1} space,
(2) (X, Y) has EPC if X and Y are Hilbert spaces,
(3) If $\operatorname{dim} X=2$, then (X, X) has EPC if and only if X is a Hilbert space or a D_{1} space (Grünbaum [6]).

In section 1 we will prove that if Y is strictly convex and $\operatorname{dim} Y>1$, then (X, Y) has EPC only if X and Y are Hilbert spaces (this result was announced in [13]). Section 2 contains a proof of the fact that 3) above remains true if $\operatorname{dim} X=2$ is replaced by $\operatorname{dim} X<\infty$. Finally, we give, in section 3, some results in the case that X is a $C(K)$ space; in particular, we prove that $(C(K), C(K))$ has EPC only if K is extremally disconnected.

1. Pairs (X, Y) with Y strictly convex

In this section we prove the following theorem:
Theorem 1.1. If X and Y are Banach spaces such that Y is strictly convex, $\operatorname{dim} Y>1$ and (X, Y) has EPC then X and Y are Hilbert spaces.

Theorem 1.1 follows from the following two lemmas.
Lemma 1.2. If X and Y are Banach spaces such that Y is strictly convex and (X, Y) has EPC, then X and Y satisfy the following condition:
(A) If $x_{1}, x_{2} \in X, y_{1}, y_{2} \in Y$ and $\left\|x_{1}\right\|=\left\|y_{1}\right\|,\left\|x_{2}\right\|=\left\|y_{2}\right\|,\left\|x_{1}-x_{2}\right\|=\left\|y_{1}-y_{2}\right\|$ then. $\left\|\lambda x_{1}+\mu x_{2}\right\| \geqslant\left\|\lambda y_{1}+\mu y_{2}\right\|$ for all λ, μ.

Proof. Let $x_{1}, x_{2} \in X, y_{1}, y_{2} \in Y$ and $\left\|x_{1}\right\|=\left\|y_{1}\right\|,\left\|x_{2}\right\|=\left\|y_{2}\right\|,\left\|x_{1}-x_{2}\right\|=\left\|y_{1}-y_{2}\right\|=d$. Suppose first that $\lambda \geqslant 0, \mu \geqslant 0, \lambda+\mu=1$. Consider the cells $S_{X}^{1}=S_{X}\left(x_{1} ; \mu d\right), S_{X}^{2}=S_{X}\left(x_{2}\right.$; $\lambda d), S_{X}^{3}=S_{X}\left(0 ;\left\|\lambda x_{1}+\mu x_{2}\right\|\right)$ in X and $S_{Y}^{1}=S_{Y}\left(y_{1} ; \mu d\right), S_{Y}^{2}=S_{Y}\left(y_{2} ; \lambda d\right), S_{Y}^{3}=S_{Y}(0 ;$ $\left.\left\|\lambda x_{1}+\mu x_{2}\right\|\right)$ in Y. If we put $\mathcal{F}=\left\{S_{X}^{1}, S_{X}^{2}, S_{X}^{3}\right\}$ and $\mathcal{G}=\left\{S_{Y}^{1}, S_{Y}^{2}, S_{Y}^{3}\right\}$, we have $\mathcal{F}>\mathcal{G}$ and $\pi \mathfrak{F} \neq \phi$, because $\lambda x_{1}+\mu x_{2} \in \pi \mathfrak{F}$. Thus we get $\pi \mathcal{G} \neq \phi$ and, since $S_{Y}^{1} \cap S_{Y}^{2}=\left\{\lambda y_{1}+\mu y_{2}\right\}$
(here we use the strict convexity of Y), we must have $\lambda y_{1}+\mu y_{2} \in S_{Y}^{3}$, i.e. $\left\|\lambda y_{1}+\mu y_{2}\right\| \leqslant$ $\left\|\lambda x_{1}+\mu x_{2}\right\|$. The condition $\lambda+\mu=1$ may now be removed and so we have proved that $\left\|\lambda x_{1}+\mu x_{2}\right\| \geqslant\left\|\lambda y_{1}+\mu y_{2}\right\|$ for $\lambda \geqslant 0, \mu \geqslant 0$. If we apply this result to $x_{1}-x_{2},-x_{2}$ and $y_{1}-y_{2},-y_{2}$ instead of x_{1}, x_{2} and y_{1}, y_{2} we get $\left\|\lambda\left(x_{1}-x_{2}\right)-\mu x_{2}\right\| \geqslant\left\|\lambda\left(y_{1}-y_{2}\right)-\mu y_{2}\right\|$ for $\lambda \geqslant 0, \mu \geqslant 0$, which is equivalent to $\left\|\lambda x_{1}+\mu x_{2}\right\| \geqslant\left\|\lambda y_{1}+\mu y_{2}\right\|$ for $\lambda \geqslant 0, \mu \leqslant 0, \lambda+\mu \leqslant 0$. Similarly, replacing x_{1}, x_{2} and y_{1}, y_{2} by $x_{2}-x_{1},-x_{1}$ and $y_{2}-y_{1},-y_{1}$, we get $\left\|\lambda x_{1}+\mu x_{2}\right\| \geqslant\left\|\lambda y_{1}+\mu y_{2}\right\|$ for $\lambda \geqslant 0, \mu \leqslant 0, \lambda+\mu \geqslant 0$. The inequalities now proved together imply that $\left\|\lambda x_{1}+\mu x_{2}\right\| \geqslant\left\|\lambda y_{1}+\mu y_{2}\right\|$ for all λ, μ, and the proof is complete.

Lemma 1.3. Suppose X and Y are two normed linear spaces such that $\operatorname{dim} Y>1$. If X and Y satisfy the condition (A) of Lemma 1.2, then X and Y are euclidean (i.e. prehilbert) spaces.

Proof. In the proof we will use the concept of normality defined as follows: Let L be a real normed linear space. An element $x \in L$ is said to be normal to an element $y \in L$ if $\|x+\lambda y\| \geqslant\|x\|$ for all λ. If x is normal to y we write $x N y$. We first prove that (A) implies:
(B) If $x_{1}, x_{2} \in X, \quad y_{1}, y_{2} \in Y$ and $\left\|x_{1}\right\|=\left\|y_{1}\right\|, \quad\left\|x_{2}\right\|=\left\|y_{2}\right\|, x_{1} N x_{2}, \quad y_{1} N y_{2}$ then $\left\|\lambda x_{1}+\mu x_{2}\right\| \geqslant\left\|\lambda y_{1}+\mu y_{2}\right\|$ for all λ, μ.

It is sufficient to assume that $\left\|x_{1}\right\|=\left\|x_{2}\right\|=\left\|y_{1}\right\|=\left\|y_{2}\right\|=1$. There exist two sequences (x_{n}^{\prime}) and ($x_{n}^{\prime \prime}$) in the linear span of x_{1} and x_{2}, such that

$$
\left\|x_{n}^{\prime}\right\|=\left\|x_{n}^{\prime \prime}\right\|=1, x_{n}^{\prime \prime}-x_{n}^{\prime}=\left\|x_{n}^{\prime \prime}-x_{n}^{\prime}\right\| x_{2} \neq 0, \lim x_{n}^{\prime}=\lim x_{n}^{\prime \prime}=x_{1} .
$$

Then we can find two sequences $\left(y_{n}^{\prime}\right)$ and $\left(y_{n}^{\prime \prime}\right)$ in the linear span of y_{1} and y_{2}, such that

$$
\left\|y_{n}^{\prime}\right\|=\left\|y_{n}^{\prime \prime}\right\|=\mathbf{1}, y_{n}^{\prime \prime}-y_{n}^{\prime}=\left\|x_{n}^{\prime \prime}-x_{n}^{\prime}\right\| y_{2}, \lim y_{n}^{\prime}=\lim y_{n}^{\prime \prime}=y_{1} .
$$

From (A) it follows that $\left\|\lambda x_{n}^{\prime}+\mu x_{n}^{\prime \prime}\right\| \geqslant\left\|\lambda y_{n}^{\prime}+\mu y_{n}^{\prime \prime}\right\|$ for all λ, μ, which gives

$$
\left\|\lambda x_{n}^{\prime}+\mu\left(x_{n}^{\prime \prime}-x_{n}^{\prime}\right) /\right\| x_{n}^{\prime \prime}-x_{n}^{\prime}\| \| \geqslant \| \lambda y_{n}^{\prime}+\mu\left(y_{n}^{\prime \prime}-y_{n}^{\prime} /\left\|x_{n}^{\prime \prime}-x_{n}^{\prime}\right\| \| \text { for all } \lambda, \mu,\right.
$$

or $\left\|\lambda x_{n}^{\prime}+\mu x_{2}\right\| \geqslant\left\|\lambda y_{n}^{\prime}+\mu y_{2}\right\|$ for all λ, μ. Letting n tend to infinity we get $\left\|\lambda x_{1}+\mu x_{2}\right\| \geqslant$ $\left\|\lambda y_{1}+\mu y_{2}\right\|$ for all λ, μ, which was to be proved.

We can now show that normality is a symmetric relation in both X and Y. Suppose first that $x_{1}, x_{2} \in X$ and $x_{1} N x_{2}$. By a result of Day [3] we know that there exist two elements $y_{1}, y_{2} \in Y$ such that $\left\|y_{1}\right\|=\left\|x_{1}\right\|,\left\|y_{2}\right\|=\left\|x_{2}\right\|, y_{1} N y_{2}$ and $y_{2} N y_{1}$. Hence we get, using (B), $\left\|\lambda x_{1}+x_{2}\right\| \geqslant\left\|\lambda y_{1}+y_{2}\right\| \geqslant\left\|y_{2}\right\|=\left\|x_{2}\right\|$, which means that $x_{2} N x_{1}$. This proves that normality is symmetric in X. Now suppose that $y_{1}, y_{2} \in Y, y_{1} \neq 0, y_{2} \neq 0$ and $y_{1} N y_{2}$. Obviously, there exist two elements $x_{1}, x_{2} \in X$, such that $\left\|x_{1}\right\|=\left\|y_{1}\right\|$, $\left\|x_{2}\right\|=\left\|y_{2}\right\|, x_{1} N x_{2}$ and $\left\|x_{1}+\lambda x_{2}\right\|>\left\|x_{1}\right\|$ for $\lambda \neq 0$. Let u be an element in the linear span of y_{1} and y_{2} such that $\|u\|=\left\|y_{1}\right\|$ and $y_{2} N u$. If $u=\alpha y_{1}+\beta y_{2}$ and if we put $z=\alpha x_{1}+\beta x_{2}$, then by (B), for each ν,

$$
\left\|x_{2}+\nu z\right\|=\left\|\nu \alpha x_{1}+(\mathbf{1}+\nu \beta) x_{2}\right\| \geqslant\left\|v \alpha y_{1}+(\mathbf{1}+\nu \beta) y_{2}\right\|=\left\|y_{2}+\nu u\right\| \geqslant\left\|y_{2}\right\|=\left\|x_{2}\right\| .
$$

Hence we get $x_{2} N z$ and, since normality is symmetric in $X, z N x_{2}$. Together with the condition $\left\|x_{1}+\lambda x_{2}\right\|>\left\|x_{1}\right\|$ for $\lambda \neq 0, z N x_{2}$ implies $\beta=0$. Thus we have $u=\alpha y_{1}$ and,
since $\|u\|=\left\|y_{1}\right\|, u= \pm y_{1}$. Hence $y_{2} N y_{1}$ and it follows that normality is symmetric in Y.
We now use the following result which follows from a construction of twodimensional spaces with symmetry of normality given by Day [4, p. 330]:

Let L and M be twodimensional normed linear spaces, in both of which normality is symmetric, and let $x_{1}, x_{2} \in L, y_{1}, y_{2} \in M$ be two pairs of elements such that $\left\|x_{1}\right\|=$ $\left\|y_{1}\right\|, \quad\left\|x_{2}\right\|=\left\|y_{2}\right\|$ and $x_{1} N x_{2}, y_{1} N y_{2}$. Then if $\left\|\lambda x_{1}+\mu x_{2}\right\| \geqslant\left\|\lambda y_{1}+\mu y_{2}\right\|$ for $\lambda \mu \geqslant 0$ we have $\left\|\lambda x_{1}+\mu x_{2}\right\| \leqslant\left\|\lambda y_{1}+\mu y_{2}\right\|$ for $\lambda \mu \leqslant 0$.

From this result and what we have proved above, it follows that if $x_{1}, x_{2} \in X$, $y_{1}, y_{2} \in Y$ and $\left\|x_{1}\right\|=\left\|y_{1}\right\|,\left\|x_{2}\right\|=\left\|y_{2}\right\|, x_{1} N x_{2}, y_{1} N y_{2}$, then we have $\left\|\lambda x_{1}+\mu x_{2}\right\|=$ $\left\|\lambda y_{1}+\mu y_{2}\right\|$ for all λ, μ. In particular, we see that if Z is a twodimensional subspace of either X or Y and if $z, z^{\prime} \in Z,\|z\|=\left\|z^{\prime}\right\|=1$, then there is an isometry of Z onto itself which carries z into z^{\prime}. However, it is well-known that this is possible only if the unit circle in Z is an ellipse, i.e. if Z is an euclidean space. Hence all twodimensional subspaces of X and Y are euclidean, which means that X and Y are euclidean spaces. Thus the lemma is proved.

Remark. It may be observed that Lemma 1.2 and therefore also Theorem 1.1, is still valid under the weaker hypothesis that (X, Y) has the following property: If \mathcal{F} and \mathcal{G} are families of cells in X and Y respectively, such that $\mathcal{F} \succ \mathcal{G}, \pi \mathcal{F} \neq \phi$ and card $\mathcal{F}=3$, then $\pi \mathcal{G} \neq \phi$. This is apparent from the proof of Lemma 1.3.

2. Pairs (X, X) with $\operatorname{dim} X<\infty$

We first prove two lemmas without any restriction on $\operatorname{dim} X$.
Lemma 2.1. Let X be a Banach space such that (X, X) has EPC. Suppose that e_{1}, e_{2} are extreme points of S_{X} and $x_{1}, x_{2} \in X$ are such that $\left\|x_{1}+e_{1}\right\|=\left\|x_{2}+e_{2}\right\|,\left\|x_{1}-e_{1}\right\|=$ $\left\|x_{2}-e_{2}\right\|$. Then it follows that $\left\|\lambda x_{1}+\mu e_{1}\right\|=\left\|\lambda x_{2}+\mu e_{2}\right\|$ for $|\lambda| \geqslant|\mu|$.

Proof. It is clearly sufficient to prove that $\left\|x_{1}+\mu e_{1}\right\|=\left\|x_{2}+\mu e_{2}\right\|$ for $0 \leqslant \mu \leqslant 1$. Consider the cells $S_{1}=S\left(x_{1}-e_{1} ; 1+\mu\right), S_{2}=S\left(x_{1}+e_{1} ; 1-\mu\right), S_{3}=S\left(0 ;\left\|x_{1}+\mu e_{1}\right\|\right)$ and $S_{1}^{\prime}=S\left(x_{2}-e_{2} ; 1+\mu\right), S_{2}^{\prime}=S\left(x_{2}+e_{2} ; 1-\mu\right), S_{3}^{\prime}=S_{3}$. If we put $\mathcal{J}=\left\{S_{1}, S_{2}, S_{3}\right\}$ and $\mathcal{G}=\left\{S_{1}^{\prime}, S_{2}^{\prime}, S_{3}^{\prime}\right\}$ then we have $\mathcal{F} \succ \mathcal{G}$ and $\pi \mathfrak{F} \neq \phi$ (for $x_{1}+\mu e_{1} \in \pi \mathfrak{F}$). Since (X, X) has EPC it follows that $\pi \mathcal{G} \neq \phi$. Now, since e_{2} is an extreme point of S_{X} the intersection $S_{1}^{\prime} \cap S_{2}^{\prime}$ contains exactly one point, namely $x_{2}+\mu e_{2}$. Thus we must have $x_{2}+\mu e_{2} \in S_{3}^{\prime}=$ S_{3}, which means that $\left\|x_{2}+\mu e_{2}\right\| \leqslant\left\|x_{1}+\mu e_{1}\right\|$. By symmetry we must also have $\left\|x_{1}+\mu e_{1}\right\| \leqslant\left\|x_{2}+\mu e_{2}\right\|$ and hence $\left\|x_{1}+\mu e_{1}\right\|=\left\|x_{2}+\mu e_{2}\right\|$, which completes the proof.

Lemma 2.2. Let X be a Banach space such that (X, X) has EPC. If Y is a twodimensional subspace of X containing an extreme point e of S_{X}, there exists $y \in Y$ such that $\|y\|=1$ and $\|\lambda y+\mu e\|=\|\lambda y-\mu e\|$ for all λ, μ. If Y^{\prime} is another twodimensional subspace of X containing an extreme point e^{\prime} of S_{x} and it $y^{\prime} \in Y^{\prime}$ is such that $\left\|y^{\prime}\right\|=1$ and $\left\|\lambda y^{\prime}+\mu e^{\prime}\right\|=\left\|\lambda y^{\prime}-\mu e^{\prime}\right\|$ for all λ, μ, then the linear map T of Y onto Y^{\prime} defined by $T e=e^{\prime}, T y=y^{\prime}$ is an isometry.

Proof. It is easily seen that for each $n=\mathbf{1}, 2, \ldots$, we can find. $y_{n} \in Y$ with $\left\|y_{n}\right\|=\mathbf{l}$ such that $\left\|y_{n}+n e\right\|=\left\|y_{n}-n e\right\|$. Applying Lemma 2.1 with $e_{1}=e, e_{2}=-e, x_{1}=x_{2}=$
y_{n} / n we get $\left\|\lambda\left(y_{n} / n\right)+\mu e\right\|=\left\|\lambda\left(y_{n} / n\right)-\mu e\right\|$ for $|\lambda| \geqslant|\mu|$ or $\left\|\lambda y_{n}+\mu e\right\|=\left\|\lambda y_{n}-\mu e\right\|$ for $n|\lambda| \geqslant|\mu|$. If y is a limitpoint of the sequence $\left(y_{n}\right)$, it follows that $\|y\|=1$ and $\|\lambda y+\mu e\|=\|\lambda y-\mu e\|$ for all λ, μ. Thus the first statement of the lemma is proved.

To prove the second statement, we observe that $1=\|e\| \leqslant 1 / 2(\|\lambda y+e\|+\|\lambda y-e\|)=$ $\|\lambda y+e\|$ for all λ. Thus for each $n=1,2, \ldots$, there is a number $\varepsilon_{n} \geqslant 0$ such that $\|(y / n)+e\|=\left\|\varepsilon_{n} y^{\prime}+e^{\prime}\right\|$. Then we also have $\|(y / n)-e\|=\left\|\varepsilon_{n} y^{\prime}-e^{\prime}\right\|$. An application of Lemma 2.1 gives $\|\lambda(y \mid n)+\mu e\|=\left\|\lambda \varepsilon_{n} y^{\prime}+\mu e^{\prime}\right\|$ for $|\lambda| \geqslant|\mu|$. Putting $\mu=0$ we get $\varepsilon_{n}=1 / n$. Thus for each n we have $\|\lambda(y / n)+\mu e\|=\left\|\lambda\left(y^{\prime} \mid n\right)+\mu e^{\prime}\right\|$ for $|\lambda| \geqslant|\mu|$ or $\|\lambda y+\mu e\|=\left\|\lambda y^{\prime}+\mu e^{\prime}\right\|$ for $n|\lambda| \geqslant|\mu|$. Hence it follows that $\|\lambda y+\mu e\|=\left\|\lambda y^{\prime}+\mu e^{\prime}\right\|$ for all λ, μ, which means that T is an isometry.

Lemma 2.3. Let X be a Banach space such that (X, X) has EPC, $\operatorname{dim} X<\infty$ and X is not strictly convex. Then S_{X} is a polyhedron. Moreover, there is a number $a>0$, such that if e is an extreme point of S_{X}, if $x \in X$ and if the segment $[e, x]$ between e and x is a maximal line segment on the boundary of S_{X}, then $\|e-x\|=a$.

Proof. Since X is not strictly convex, it is clear that the boundary of S_{X} must contain a proper line segment, one endpoint of which is an extreme point of S_{X}. In other words, there exists an extreme point e of S_{X} and a point x_{0} with $\left\|x_{0}\right\|=1$, such that $x_{0} \neq \pm e$ and $\left\|\lambda e+\mu x_{0}\right\|=\lambda+\mu$ for $\lambda \geqslant 0, \mu \geqslant 0$. Let Y be the twodimensional subspace of X determined by e and x_{0}, and let y be an element of Y such that $\|\lambda y+\mu e\|=\|\lambda y-\mu e\|$ for all λ, μ (Lemma 2.2). Then we may write $x_{0}=\alpha e+\beta y$. If we put $x_{0}^{\prime}=\alpha e-\beta y$, then $\left\|x_{0}^{\prime}\right\|=1$ and $\left\|\lambda e+\mu x_{0}^{\prime}\right\|=\lambda+\mu$ for $\lambda \geqslant 0, \mu \geqslant 0$. Geometrically this means that the two line segments $\left[e, x_{0}\right]$ and $\left[e, x_{0}^{\prime}\right]$ belong to the boundary of S_{Y}. The points x_{0} and x_{0}^{\prime} determine two closed arcs of the unit circle in Y with endpoints x_{0} and x_{0}^{\prime}. One of these arcs, which we shall call Γ, does not contain e. Let d be the distance from e to Γ. Then $d>0$.

Now, if e_{1} and e_{2} are two arbitrary extreme points of $S_{X}, e_{1} \neq \pm e_{2}$, and if Z is the twodimensional subspace of X determined by e_{1} and e_{2}, there is by Lemma 2.2 an isometry of Z onto Y, which carries e_{1} into e. From the construction of Γ it is obvious that this isometry carries e_{2} into a point belonging to Γ. Hence we have $\left\|e_{1}-e_{2}\right\| \geqslant d$. Since this holds for every pair of extreme points of S_{X} and since $\operatorname{dim} X<\infty$, it follows that there are only a finite number of extreme points of S_{X}, which means that S_{X} is a polyhedron.

In order to prove the second statement of the lemma, let e_{1}, e_{2} be extreme points of S_{X} and x_{1}, x_{2} points with $\left\|x_{1}\right\|=\left\|x_{2}\right\|=1$, such that $\left[e, x_{1}\right]$ and $\left[e_{2}, x_{2}\right]$ are maximal line segments belonging to the boundary of S_{X}. We then have to prove that $\left\|e_{1}-x_{1}\right\|=$ $\left\|e_{2}-x_{2}\right\|$. Let Y_{1} and Y_{2} be the two-dimensional subspaces of X, determined by e_{1}, x_{1} and e_{2}, x_{2} respectively. According to Lemma 2.2, we may take $y_{1} \in Y_{1}$ so that $\left\|y_{1}\right\|=1,\left\|\lambda y_{1}+\mu e_{1}\right\|=\left\|\lambda y_{1}-\mu e_{1}\right\|$ for all λ, μ and so that y_{1} and x_{1} lie in the same halfplane in Y_{1} determined by the line through 0 and e_{1}. We take $y_{2} \in Y_{2}$ in the corresponding way. If T is the isometry of Y_{1} onto Y_{2} for which $T e_{1}=e_{2}, T y_{1}=y_{2}$, then it is obvious that $T x_{1}=x_{2}$. Thus $\left\|e_{1}-x_{1}\right\|=\left\|e_{2}-x_{2}\right\|$ and the proof is complete.
Theorem 2.4. Let X be a finite-dimensional Banach space such that (X, X) has EPC. Then X is either a Hilbert space or a \mathcal{D}_{1} space (i.e. the unit cell of X is either a euclidean cell or a parallelotope).
Proof. As we mentioned in the introduction, this theorem was proved by Grünbaum [6] in the case $\operatorname{dim} X=2$. Thus we may assume that $\operatorname{dim} X \geqslant 3$. If X is strictly

s. o. schönbeck, Extension of Lipschitz maps

convex, it follows from Theorem 1.1 that X is a Hilbert space. It remains to prove that if X is not strictly convex then X is a D_{1} space. In this case we know from Lemma 2.3 that S_{X} is a polyhedron. Let F be a twodimensional face of S_{X}. Then F is the convex hull of a certain set $\left\{e_{1}, \ldots, e_{m}\right\}, m \geqslant 3$, of extreme points of S_{X}. Let a be the number, whose existence was proved in Lemma 2.3. If e_{i}, e_{j} determine a side [e_{i}, e_{j}] of F and if $e_{k} \ddagger\left[e_{i}, e_{j}\right]$ then $\left[e_{k}, x\right]$ is a maximal line segment on the boundary of S_{X} for each $x \in\left[e_{i}, e_{j}\right]$. Consequently, $\left\|e_{k}-x\right\|=a$ for $x \in\left[e_{i}, e_{j}\right]$. We now prove that every two disjoint sides of F are parallel. Suppose that e_{1}, e_{2} and e_{3}, e_{4} determine two disjoint sides of F. Without loss of generality, we may assume that e_{1} and e_{4} lie on different sides of the line joining e_{2} and e_{3}. We know that $\left\|e_{2}-x\right\|=a$ for all $x \in\left[e_{3}, e_{4}\right]$. From this it follows that $\left\|e_{3}-x\right\|=a$ for all $x \in\left[e_{2}+e_{3}-e_{4}, e_{2}\right]$. Since we also have $\left\|e_{3}-x\right\|=a$ for all $x \in\left[e_{1}, e_{2}\right]$, and since $e_{2}+e_{3}-e_{4}$ and e_{1} lie on the same side of the line joining e_{3} and e_{2}, it follows that $\left[e_{2}+e_{3}-e_{4}, e_{2}\right]$ and $\left[e_{1}, e_{2}\right]$ are parallel. Thus $\left[e_{1}, e_{2}\right]$ and $\left[e_{3}, e_{4}\right]$ are parallel.

The property of F just proved implies that the boundary of F is either a triangle with vertices e_{1}, e_{2}, e_{3} or a parallelogram with vertices $e_{1}, e_{2}, e_{3}, e_{4}$. In the first case put $x_{1}=e_{1}, x_{2}=e_{2}+e_{3}-e_{1}, x_{3}=2 e_{2}-e_{3}$. Then $\left\|x_{1}-x_{2}\right\|=\left\|x_{2}-x_{3}\right\|=\left\|x_{3}-x_{1}\right\|=2 a$ and $\left\|x_{1}-e_{2}\right\|=\left\|x_{2}-e_{2}\right\|=\left\|x_{3}-e_{2}\right\|=a$. In the second case, assume that $\left[e_{1}, e_{2}\right]$ is a side of F and put $x_{1}=2 e_{1}, x_{2}=2 e_{2}, x_{3}=2 e_{3}$. Then we have $\left\|x_{1}-x_{2}\right\|=\left\|x_{2}-x_{3}\right\|=\left\|x_{3}-x_{1}\right\|=$ $2 a$ and $\left\|x_{1}-\left(e_{1}+e_{3}\right)\right\|=\left\|x_{2}-\left(e_{1}+e_{3}\right)\right\|=\left\|x_{3}-\left(e_{1}+e_{3}\right)\right\|=a$. In any case this shows that X contains three cells $S_{i}=S\left(x_{i} ; a\right), i=1,2,3$, such that $\left\|x_{i}-x_{j}\right\|=2 a$ for $i \neq j$ and $\bigcap_{i=1}^{3} S_{i} \neq \phi$. Since (X, X) has EPC, it follows that X is weakly 4 -hyperconvex. Hanner [7, p. 75] has proved that if $\operatorname{dim} X=n<\infty$ and X is weakly 4-hyperconvex, then the unit cell of X is affinely equivalent to the convex hull of some of the vertices of an n-dimensional cube. As is easily seen, this implies that for any pair of extreme points e_{1}, e_{2} of S_{X} with $e_{1} \neq \pm e_{2}$, we have $\left\|e_{1}+e_{2}\right\|=\left\|e_{1}-e_{2}\right\|=2$. Hence, since the four cells $S\left(\pm e_{i} ; 1\right), i=1,2$, have a nonempty intersection and (X, X) has EPC it follows first that P is weakly 5 -hyperconvex and from this that X is 5 -hyperconvex. But this implies that X is $\mathbf{\Sigma}_{0}$-hyperconvex and therefore X is hyperconvex, because $\operatorname{dim} X<\infty$. This completes the proof of Theorem 2.4.

Remark. From the proofs we have given it is evident that Theorem 2.4 remains true, if the hypothesis that (X, X) has EPC is replaced by the following weaker hypothesis: If \mathfrak{F} and \mathcal{G} are families of cells in X such that $\mathcal{F}>\mathcal{G}, \pi \mathcal{F} \neq \phi$ and card $\mathfrak{F} \leqslant 4$, then $\boldsymbol{\pi} \mathcal{G} \neq \phi$.

3. Pairs ($\boldsymbol{X}, \boldsymbol{Y}$) with $\boldsymbol{X}=\boldsymbol{C}(K)$

In this section we give some results concerning pairs of Banach spaces X and Y, such that (X, Y) has EPC and X is a $C(K)$ space, i.e. the space of real continuous functions on a compact Hausdorff space K. We first prove a simple lemma.

Lemma 3.1. If T is a topological space, there exists a dense subset $V \subset T$ and a mapping $\mu: V \rightarrow \mathcal{A}(T)$, where $\mathcal{A}(T)$ is the family of closed subsets of T, such that
(i) $v \not \ddagger \mu(v)$ for each $v \in V$,
(ii) If $v_{1}, v_{2} \in V, v_{1} \neq v_{2}$, we have either $v_{1} \in \mu\left(v_{2}\right)$ or $v_{2} \in \mu\left(v_{1}\right)$.

Proof. Let Ω denote the set of all pairs (U, ν), where $U \subset T$ and ν is a mapping of U into $\mathcal{A}(T)$ satisfying (i) and (ii). Clearly Ω is not empty. We order Ω by a rela-
tion \leqslant where $\left(U_{1}, \nu_{1}\right) \leqslant\left(U_{2}, \nu_{2}\right)$ means that $U_{1} \subset U_{2}$ and $\nu_{1}\left(u_{1}\right)=\nu_{2}\left(u_{1}\right)$ for $u_{1} \in U_{1}$. It is clear that each linearly ordered subset of Ω has an upper bound in Ω, and so by Zorn's lemma there exists a maximal element (V, μ) in Ω. We assert that V is dense in T. Indeed, if this were not the case, we could take a point $p \in T$ with $p \ddagger \bar{V}$, and then $\left(V^{\prime}, \mu^{\prime}\right) \in \Omega$, where $V^{\prime}=V \cup\{p\}$ and $\mu^{\prime}(v)=\mu(v)$ for $v \in V, \mu^{\prime}(p)=\bar{V}$. Since $(V, \mu)<\left(V^{\prime}, \mu^{\prime}\right)$ this would contradict the maximality of (V, μ). Hence V is dense in T and the lemma is proved.

Definition 3.2. If T is a topological space we denote by $d(T)$ the least cardinal number d, such that T contains a dense subset with d elements.

Lemma 3.3. Let K be a compact Hausdorff space and $\left\{r_{\alpha}\right\}, \alpha \in A$, a family of nonnegative numbers with card $A<d(K)$. Then there exists a family of cells $S\left(x_{\alpha} ; r_{\alpha}\right)$, $\alpha \in A$, in $C(K)$, such that $\left\|x_{\alpha}-x_{\beta}\right\|=r_{\alpha}+r_{\beta}$ for $\alpha \neq \beta$ and $\bigcap_{\alpha \in A} S\left(x_{\alpha} ; r_{\alpha}\right) \neq \phi$.

Proof. According to Lemma 3.1 there exists a family $\left\{k_{\alpha}\right\}, \alpha \in A$, of elements of K and a family $\left\{F_{\alpha}\right\}, \alpha \in A$, of closed subsets of K, such that $k_{\alpha} \notin F_{\alpha}$ and for $\alpha \neq \beta$ we have $k_{\alpha} \in F_{\beta}$ or $k_{\beta} \in F_{\alpha}$. Since K is completely regular, there is, for each $\alpha \in A$, a continuous realvalued function x_{α} on K, such that $x_{\alpha}\left(k_{\alpha}\right)=r_{\alpha}, x_{\alpha}(k)=-r_{\alpha}$ for $k \in F_{\alpha}$ and $\left|x_{\alpha}(k)\right| \leqslant r_{\alpha}$ for $k \in K$. Thus we have $\left\|x_{\alpha}\right\|=\sup _{p_{\in K} \mid}\left|x_{\alpha}(k)\right|=r_{\alpha}$ and from the properties of $\left\{k_{\alpha}\right\}$ and $\left\{F_{\alpha}\right\}$ it follows that $\left\|x_{\alpha}-x_{\beta}\right\|=r_{\alpha}+r_{\beta}$ for $\alpha \neq \beta$. Consequently, the family of cells $\left\{S\left(x_{\alpha} ; r_{\alpha}\right)\right\}, \alpha \in A$, in $C(K)$ has the required properties.

Definition 3.4. Let X be a Banach space. By dim X we understand the least cardinal number γ such that X is the closed linear hull of a subset with γ elements.
Theorem 3.5. Let K be a compact Hausdorff space and Y a Banach space such that $d(K) \geqslant \operatorname{dim} Y$. If $(C(K), Y)$ has EPC then Y is a $\mathfrak{D}_{\mathbf{1}}$ space.

Proof. If $\operatorname{dim} Y<\infty$, it suffices to show that Y is 5 -hyperconvex. Except in the trivial case $\operatorname{dim} Y=1$, we have $d(K) \geqslant 2$. Then it is easy to see that, for any $r_{i}>0$, $i=1, \ldots, 4, C(K)$ contains four cells $S\left(x_{i} ; r_{i}\right)$, such that $\left\|x_{i}-x_{j}\right\|=r_{i}+r_{j}$ for $i \neq j$ and $\bigcap_{i=1}^{4} S\left(x_{i} ; r_{i}\right) \neq \phi$. Since $(C(K), Y)$ has EPC it follows that Y is 5 -hyperconvex.

Now assume that $\operatorname{dim} Y$ is infinite. Since $d(K) \geqslant \operatorname{dim} Y$ and $(C(K), Y)$ has EPC it follows, with the aid of Lemma 3.3, that any collection $\left\{S_{\alpha}\right\}, \alpha \in A$, of mutually intersecting cells in Y with card $A=\operatorname{dim} Y$ has a nonempty intersection. Aronszajn and Panitchpakdi (Theorem 1 of section 2 in [1]) have proved the following result: If a metric space E is γ-hyperconvex and at the same time γ-separable, then E is hyperconvex (E is γ-separable means that E contains a dense subset of cardinality $<\gamma$). Using this result we may now conclude that Y is hyperconvex, i.e. Y is a \mathcal{D}_{1} space. Hence Theorem 3.5 is proved.

It is well-known that there are no separable infinite-dimensional \mathcal{D}_{1} spaces. Thus we get

Corollary 3.6. If K is an infinite compact Hausdorff space and Y a separable Banach space such that $(C(K), Y)$ has EPC, then Y is a finitedimensional \mathcal{D}_{1} space.

The result of Aronszajn-Panitchpakdi used in the proof of Theorem 3.5 may be improved in the case of $C(K)$ spaces.

Lemma 3.7. Let γ be a cardinal number and K a compact Hausdorff space containing a dense subset of cardinality $<\gamma$. If $C(K)$ is γ-hyperconvex then it is hyperconvex (and hence K is extremally disconnected).

s. o. schönbeck, Extension of Lipschitz maps

Proof. If $\gamma \leqslant \boldsymbol{\aleph}_{0}$ there is nothing to prove, and so we may assume that $\gamma>\boldsymbol{\aleph}_{0}$. Let $\left\{S_{\alpha}\right\}=\left\{S\left(x_{\alpha} ; r_{\alpha}\right)\right\}, \alpha \in A$, be a collection of mutually intersecting cells in $C(K)$. We have to prove that $\bigcap_{\alpha \in A} S_{\alpha} \neq \phi$. Let D be a dense subset of K with card $D<\gamma$ and put $f(k)=\sup _{\alpha \in A}\left(x_{\alpha}(k)-r_{\alpha}\right), g(k)=\inf _{\alpha \in A}\left(x_{\alpha}(k)+r_{\alpha}\right)$. Then $f(k) \leqslant g(k)$ for $k \in K$ and $\bigcap_{\alpha \in A} S_{\alpha}=\{x \in C(K): f(k) \leqslant x(k) \leqslant g(k)$ for $k \in K\}$. To each $k \in D$ and each natural number n we choose $\alpha=\alpha(k, n) \in A$ so that $x_{\alpha}(k)+r_{\alpha}<g(k)+(\mathrm{l} / n)$ and $\beta=\beta(k, n) \in A$ so that $x_{\beta}(k)-r_{\beta}>f(k)-(1 / n)$. The cells $S_{\alpha(k, n)}$ and $S_{\beta(k, n)}$ for $k \in D$ and $n=1,2, \ldots$, are mutually intersecting and form a family of cardinadity Since $C(K)$ is γ-hyperconvex it follows that there exists $x \in C(K)$, such that $x \in S_{\alpha(k, n)} \cap S_{\beta(k, n)}$ for $k \in D, n=1,2, \ldots$. This means that $f(k)-(\mathbf{l} / n)<x(k)<g(k)+(1 / n)$ for $k \in D, n=1,2, \ldots$, from which follows that $f(k) \leqslant x(k) \leqslant g(k)$ for $k \in D$. Since f is lower semicontinuous and g is upper semicontinuous and D is dense in K, this implies that $f(k) \leqslant x(k) \leqslant g(k)$ for all $k \in K$, i.e. $x \in \bigcap_{\alpha \in K} S_{\alpha}$ and hence $\bigcap_{\alpha \in A} S_{\alpha} \neq \phi$, which was to be proved.

We can now prove an improved version of Theorem 3.5 for the case that Y is a $C(K)$ space.

Theorem 3.8. Let K_{1} and K_{2} be compact Hausdorff spaces such that $d\left(K_{1}\right) \geqslant d\left(K_{2}\right)$. Then $\left(C\left(K_{1}\right), C\left(K_{2}\right)\right)$ has EPC if and only if K_{2} is extremally disconnected.

Proof. The if part is clear. Assume then that $\left(C\left(K_{1}\right), C\left(K_{2}\right)\right)$ has EPC. Let γ be the least cardinal number such that $\gamma>d\left(K_{1}\right)$. Then, using Lemma 3.3, we see that $C\left(K_{2}\right)$ is γ-hyperconvex, and since $d\left(K_{2}\right)<\gamma$ it follows from Lemma 3.7 that $C\left(K_{2}\right)$ is hyperconvex and hence that K_{2} is extremally disconnected.

Corollary 3.9. If K is a compact Hausdorff space, then $(C(K), C(K))$ has EPC if and only if K is extremally disconnected.

Remarks. 1. To justify the statement that Lemma 3.7 and Theorem 3.8 are improvements of the earlier results, it should be noted that there are compact Hausdorff spaces for which $d(K)<\operatorname{dim} C(K)$. It is easy to verify that the Stone-Cech compactification of a countable discrete space has this property. Less trivial examples may also be given. As a matter of fact, it is not difficult to prove that for any compact Hausdorff space we have $\operatorname{dim} C(K)=b(K)$, where $b(K)$ is the least cardinal number b, such that the topology of K has a base with b elements. It is well-known that there are K for which $d(K)<b(K)$. (See, for instance, Example M on p. 164 of Kelley [8].)
2. If K is totally disconnected, it is easy to show that $\operatorname{dim} C(K)=$ card \mathcal{H}, where \mathcal{H} is the family of all open and closed subsets of K. This fact may be used to show that the conclusion of Lemma 3.3 still holds for K, if the hypothesis card $A \leqslant d(K)$ is weakened to card $A \leqslant \operatorname{dim} C(K)$. This means that, if K is totally disconnected, Theorem 3.5 remains true, when the hypothesis $d(K) \geqslant \operatorname{dim} Y$ is replaced by dim $C(K) \geqslant \operatorname{dim} Y$. Similarly, if K_{1} is totally disconnected, we may replace $d\left(K_{1}\right) \geqslant d\left(K_{2}\right)$ by $\operatorname{dim} C\left(K_{1}\right) \geqslant d\left(K_{2}\right)$ in Theorem 3.8. We do not know whether these improvements are actually valid for all compact spaces.

[^0]
REFERENCES

1. Aronszajn, N., and Panitchpardi, P., Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6, 405-39 (1956).
2. Danzer, L., Grünbaum, B., and Klee, V., Helly's theorem and its relatives, Amer, Math. Soc. Proc. Symp. Pure Math., Vol. 7, Convexity, 101-77 (1963).
3. Day, M. M., Polygons circumscribed about closed convex curves, Trans. Amer. Math. Sac. 62, 315-19 (1947).
4. Day, M. M., Some characterizations of inner-product spaces, Trans. Amer. Soc. 62, 320-37 (1947).
5. Goodner, D. B., Projections in normed linear spaces, Trans. Amer. Soc. 69, 89-108 (1950).
6. Grünbaum, B., On a theorem of Kirszbraun, Bull. Res. Council Israel, Sect. F7, 129-32 (1958).
7. Hanner, O., Intersections of translates of convex bodies, Math. Scand. 4, 65-87 (1956).
8. Kelley, J. L., General topology, Van Nostrand, New York, 1955.
9. Kelley, J. L., Banach spaces with the extension property, Trans. Amer. Math. Soc. 72, 323-6 (1952).
10. Klee, V., Infinite-dimensional intersection theorems, Amer. Math. Soc. Proc. Symp. Pure Math., Vol. 7, Convexity, 349-60 (1963).
11. Lindenstrauss, J., Extension of compact operators, Memoirs Amer. Math. Soc., no. 48, 1964.
12. Nachbin, L., A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68, 28-46 (1950).
13. Schönbeck, S. O., Extension of nonlinear contractions, Bull. Amer. Math. Soc. 72, 99-101 (1966).

[^0]: University of Stockholm, Sweden

