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Convergence and invariance questions for point systems in R1 
under random motion 

By TORBJSRN THED~EN 

ABSTRACT 

In  section 2 we introduce and study the independence property for a sequence of two-dimen- 
sional random variables and by means of this property we define independent motion in section 3. 
Section 4 is mainly a survey of known results about the convergence of the spatial distribution 
of the point system as the time t ~  co. In  theorem 5.1 we show that  the only distributions which 
are time-invariant under given reversible motion of non-degenerated type are the weighted 
Poisson ones. Lastly in section 6 we study a more general type of random motion where the 
position of a point after translation is a function ] of its original position and its motion ability. 
We consider functions / which are monotone in the starting position. Limiting ourselves to the 
ease when the point system initially is weighted Poisson distributed with independent motion 
abilities, we prove in theorem 6.1 that  this is the case also after the translations, if and only if 
the function f is linear in the starting position. In  the paper also some implications of our results 
to the theory of road traffic with free overtaking are given. 

1. Introduction 

I n  t h e  s t u d y  of r o a d  t ra f f i c  t h e  s impl ies t  case is w h e n  t h e  cars can  o v e r t a k e  a n d  
m e e t  each  o t h e r  w i t h o u t  de lay .  T h e  fo l lowing  so-ca l led  i sove lox ic  m o d e l  for  t r a f f i c  
(see F .  H a i g h t  [8] pp.  114-123)  has  b e e n  p r o p o s e d  for  th i s  case. 1 

T h e  cars  a re  cons ide red  as po in t s  on  an  in f in i t e  r o a d  w i t h  no in te r sec t ions .  T h e y  
can  o v e r t a k e  a n d  m e e t  each  o t h e r  w i t h o u t  d e l a y  a n d  t h e y  will  f o r eve r  m a i n t a i n  
t he i r  once  chosen  speeds.  T h e  t r a j e c t o r i e s  in t h e  r o a d - t i m e  d i a g r a m  wil l  t h u s  be  
lines. T h e  in i t i a l  speeds  a re  i n d e p e n d e n t  a n d  i d e n t i c a l l y  d i s t r i b u t e d  r a n d o m  v a r i a b l e s  
a n d  t h e y  a re  also i n d e p e n d e n t  of t h e  in i t i a l  pos i t ions  of t h e  cars.  

I t  has  been  s h o w n  t h a t  u n d e r  r a t h e r  w e a k  cond i t i ons  t h e  spa t i a l  d i s t r i b u t i o n  of 
t h e  cars  will  t e n d  to  a w e i g h t e d  Po i s son  d i s t r i b u t i o n  (as de f ined  in  sec t ion  2) as  t h e  
t i m e  t ~  ~ (see ref.  [1], [2], [4], [10] a n d  [12]). F u r t h e r  if t h e  in i t i a l  pos i t ions  a re  
w e i g h t e d  Po i s son  d i s t r i b u t e d  t h e  spa t i a l  d i s t r i b u t i o n  a n d  t h e  i n d e p e n d e n c e  condi-  
t i ons  i m p o s e d  a t  t = 0  a re  c o n s e r v e d  for  a l l  t > 0  (see co ro l l a ry  6.1). I f  n o w  t h e  m o d e l  
s h o u l d  be  t i m e - i n v a r i a n t ,  i.e. t h e  spa t i a l  d i s t r i b u t i o n  a n d  t h e  i n d e p e n d e n c e  condi -  
t i ons  i m p o s e d  a t  t = 0  a re  c o n s e r v e d  fo r  al l  t > 0 i t  wil l  be  s h o w n  t h a t  t h e  spa t i a l  
d i s t r i b u t i o n  m u s t  be  a w e i g h t e d  Po i s son  one.  I t  has  also b e e n  poss ib le  to  s o m e w h a t  
r e l a x  t h e  c o n s t a n t  speed  a s s u m p t i o n .  

1 The model description is taken from T. Thed6en [11]. 
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After  some i n t roduc to ry  s tudies  in sections 2-3,  sect ion 4, gives a shor t  su rvey  
of the  convergence of the  po in t  sys tem and  i ts  set of mot ion  as t ~  c~. I n  sect ion 5 
we shall  give some resul ts  abou t  the  t ime- invar iance  of the  spa t ia l  d i s t r ibu t ion  of a 
po in t  sys tem under  w h a t  we will call reversible  independen t  mot ion.  These resul t s  
conta in  as a special  case (corollary 5.1) the  above  ment ioned  one abou t  t i m e - i n v a r i a n t  
d i s t r ibu t ions  in the  cons tan t  speed case. L a s t l y  in sect ion 6 we shall  s t udy  ano the r  
t y p e  of independen t  mot ion  conserving weighted  Poisson d i s t r ibu t ions  for the  p o i n t  
sys tem.  

The inves t iga t ions  will be res t r i c ted  to  po in t  sys tems in R 1 because of the  traffic-  
theore t ica l  backg round  of the  problems.  However  i t  is clear t h a t  wi th  some modif ica-  
t ions  corresponding resul ts  can be p roved  for po in t  sys tems in Rk. 

L a s t l y  i t  should be r e m a r k e d  t h a t  the  resul ts  of sections 5 and  6 in the  special  
case of cons tan t  speeds were presented  b y  the  au thor  a t  The Thi rd  I n t e r n a t i o n a l  
Sympos ium on the  Theory  of Traffic F low in New York  1965 (see T. Thedden [ l l ] ) .  

2. Prdiminades 

Let  {Zn} be a sequence of r a n d o m  var iables  (r.v. 's). F o r  a n y  ]3orel set B let  

N(B) = number  (no.) of Z n C B. 

We shall  say  t h a t  {Zn} has no finite limit point if for any  f ini te  in te rva l  I the  r .v.  
N(I)  is proper ,  i.e. 

P(N(I)  < c~) - 1. 

Let  us assume t h a t  th is  is the  case. Then  we can associate  to  {Z~} a counting process 
N(x) 1 defined by  

I no. of Zn E (0, x], x > 0 

N(x) = ~0, x = 0 
/ 

[ - no. of Z~ e (x, 0], x < 0. 

Then a lmos t  sure ly  (a.s.) the  sample  funct ions  of such a count ing process  are  non- 
decreasing in teger -va lued  s tepfunct ions  wi th  in teger -va lued  jumps .  Le t  now {Zn} 
be the  sequence of posi t ions  for po in ts  in R 1. W e  shall  say  t h a t  one or  more  po in ts  
form a cluster if t h e y  have  the  same posit ions.  This  in t u r n  corresponds  to  a j u m p  
of the  count ing process N(x). The size of the  cluster  is equal  to  the  size of the  corre- 
sponding j u m p  of N(x). To the  sequence {Zn} then  corresponds a sequence of clusters 
charac te r ized  b y  the i r  posi t ions  and  sizes. We  can a.s. order  the  clusters af ter  the i r  
posi t ions  thus  ge t t ing  the  ordered  cluster  posi t ions  

. . ,  <Z(-2) <ZI-~) <~ 0 <Z(~) <Z(2) < . . .  

The size of a cluster  wi th  pos i t ion  Z (k~ will be called Nk. Thus  to  a sequence {Zn} 
with no finite l imi t  po in t  corresponds a count ing process N(x) a n d  a sequence 
{(g(k), Nk)}. The d i s t r ibu t ion  of N(x) and  {(g(k~, N~)} is g iven by  the  d i s t r ibu t ion  
of (N(I,)  ...... N(Ik)) for any  f ini te  set  of d i s jo in t  f ini te  in te rva ls  11 . . . .  , Ik  (open, 

1 To simplify the notation we shall use N(') in two senses where the actual meaning will be 
clear from the argument used. Notice e.g. the difference between N(x) and N({x}). 
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semi-closed or closed). (This can be shown by the same method as in Doob [5] p. 
403.) This distribution is in turn given by the generating function (g.f.). 

k 

~(s~ . . . . .  sk; I~ . . . .  , Ik) = E 1-I sH <x;) 
j - 1  

Now the indexing of a sequence {Z.} may depend on the sizes of the r.v.'s Zn. Thus 
two sequences {Z~} and {Z~} can have different distributions but their correspond- 
ing counting processes can nevertheless have the same distribution. We shall some- 
what inadequately characterize the distribution of {Z.} by that  of N(x) (or {(Z (k), 
Nk)}). Let Ia ..... Ik be any disjoint finite intervals. The following distributions given 
by their g.f.'s will be of interest in the following. 

The distribution corresponding to a Poisson process 

k 

. . . ,  . . . . .  1-I { x i / , I ( s , -  1)} 
. i=1  

where ]Ij] is the length of Ij  and 2 a positive constant. We shall then say that  
{Z=} is Poissou distributed (with the parameter 2). 

The distribution corresponding to a weighted Poisson process 

~(s~, ..., sk; I~ . . . . .  Ik) = exp {~[Ijl(sj - I} dW(~) 

where W(;t) is a distribution function (d.f.) on (0, ~ ) .  We shall then say that  {Z~} 
is weighted Poisson distributed (with the parameter d.f. W(;t)). 

If {Z~} has any of these distributions then a.s. all the clusters have the size one. 
In  the following ease clusters of larger sizes are possible. 

The distribution corresponding to a weighted compound Poisson process 

~9(81  . . . . .  S k ;  I 1 . . . . .  Ik) = e x p  { lI, 1 ) d W ( 2 )  

where a(s) is the g.f. of a positive integer-valued r.v. and W(2) a d.f. on (0, ~ ) .  We 
shall then say that  {Zn} is weighted compound Poisson distributed. 

Let us now consider a sequence {(Zn, Vn)} where {Z.} has no finite limit point 
and {Vn} is a sequence of r.v.'s. By ordering the clusters of {Zn} by position and 

, V ( k ) ~  the r.v. s V, in the clusters by size we get the sequence {(Z ~), Nk; V1 (k), ..., Nk/~ 
where V(1 ~) ~< ~< V (k) "*" N k "  

�9 o , t p ) Dehnltlon 2.1. Let {(Z,, V,)} and {(Z~, Vn)~ be such that {Z,} and {Z~} have no 
/inite limit points. {(Z~, V~)} and {(Z~, Vn)} are said to have the same distribution but 
/or indexing i/ the associated sequences {(Z (k~, Nk; V(~ k), ..., V(k)~N~IS and {(Z '(k~, N~; 
V~ '(~), ..., VN~)} have the same distributions. 
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I n  the  following sections we shall often consider sequences of the t ype  {(Z~, Vn)}. 
We shall see t h a t  two such sequences having the  same dis t r ibut ion bu t  for indexing 
can replace each other  in the  problems to be considered wi thout  changing the  results. 
W i t h  this r emark  in mind  we shall now introduce the  independence p rope r ty  of 
{(z., v.)}. 

Definition 2.2. Let {(Z,, V'n)} be a sequence o/r.v. 's ,  where {Z,}  has no / in i t e  limit 
point, such that 

(i) {Zn} and { V'~} are independent and 
(ii) {V~} is a sequence o/independent identically distributed (i.i.d.) r .v . ' s  with the 

common d./. F(v). 
The sequence ((Z~, Vn)} has the independence property with the d./. F(v) i /  

{(Z~, V~)} and {(Z~, V'~)} has the same distribution but /or  indexing. 

For  any  Borel set B in R 2 let 

M ( B )  =no .  of (Z~, Vn)EB 

and denote the g.f. of (M(Bz) . . . . .  M(Bk)  ) b y  y~(s 1 . . . . .  sk; B1 . . . . .  Be) where B 1 . . . .  , B k 
are Borel  sets in R 2. The following l emma gives an equivalent  character izat ion of 
the  independence proper ty .  Le t  for any  d.f. F(x) 

A Borel  set. 

F(A)  = fA dF(x),  

L e m m a  2.1. ((Zn, V~)} where (Z~} has no ]inite limit point has the independence 
property with the d./. F(v) i/  and only i / / o r  any disjoint finite intervals 11 . . . . .  Ik and 
/or any disjoint Borel sets BSl . . . .  , Bj, j  with ~Jni_ l B j , = R 1 ,  j = l ,  ..., lc the g./. 

~)(811 . . . .  , Sl . . . . . . .  Ski . . . . .  Sknk; I 1 • Bl l  . . . .  , 11 • B1 . . . . . . .  Ik • Bkz . . . . .  Ik • Bkn~) = 

- - ~ O ( P l l 8 1 1  -[- "'" + P l n l 8 1  . . . . . . .  P k l S k l  A7 "'" + p k n k S k n k ;  I 1 ,  " " ,  Ik) (2.1) 
where 

Pjv = F(Bjv),  r = 1 . . . . .  nj, j = 1 . . . . .  k 

Proo/. Necessity.  The sequence {(Z~, V~)} of definition 2.2 determines  g.f. 's ~o 
and  ~0 which fulfil (2.1). Fur the r  {(Zn, V,)} and  {(Z,, V~)} have  the  same distribu- 
t ion bu t  for indexing and  thus  determine equal  g.f. 's ~o and  % Then  the  g.f. 's given 
b y  {(Zn, V,)} also fulfil (2.1). 

Sufficiency. I n  the  proof  we shall use an idea f rom Doob [5] p. 403. Now {Z~} 
has no finite l imit  point .  Then to the sequence ((Z~, V~)} corresponds another  se- 
quence {(Z 0), Nj;  V(1 j), V ~  We have  to prove  t h a t  this last  sequence has the  �9 ..~ N i I J .  

same dis tr ibut ion as the  sequence {(Z (jl, Nj;  V~ (j) . . . . .  V~]))} of definit ion 2.2. This  
is the  case if and only if any  finite set of r .v . ' s  f rom the sequence {(Z r Nj;  V(1 j) . . . .  , 
V (j)~ has the same dis tr ibut ion as the  corresponding set  f rom the sequence Nits 

"(D 
{(ZO>, Nj;  V~ ~ . . . . .  V~j )}. I t  is easily seen t h a t  i t  is no restr ict ion to  choose the  r .v . ' s  

(D f rom {(Z (J), Nj; V(1 j) . . . . .  VNj)} with consecutive indexes (j). I n  order to  avoid  no ta -  
t ional  complications we shall here consider only posit ive indexes and  choose t he  
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i ndexes  1 . . . . .  k. (The case w i th  some n e g a t i v e  indexes  can  be t r e a t e d  in  t he  s ame  
way.)  Le t  for a n y  Bore l  set  B in  R z 

Z s ( B ) = n o .  of V<})EB 

Z; (B) -- no.  of Vs (j) E B 

The  d i s t r i b u t i o n  of (Z (j), N i ;  V(~ ", v ( ,  . . . . .  Nj, j = I ,  ..., k) is d e t e r m i n e d  b y  t h a t  of 

(Z (j), Ni;  z j (Bt l )  . . . .  , zj(Bjnj), ] = 1  . . . . .  k) for all  d i s jo in t  Bore l  sets  B m, ] = 1  . . . . .  k, 
U~La Bi~=R1.  T h u s  we h a v e  to  p rove  t h a t  (Z (j), N i ;  z~(Bil), ..., z~(Bj,j), j = l  . . . . .  k) 
has  t he  s a m e  d i s t r i b u t i o n  as (Z (j), N f  z ; (Bj l ) ,  ..., z~(Bjn~), i = I ,  ..., k). Le t  n o w  
0 = z 0 < z 1 < . . .  < z k a n d  let  atv, v = 1, ..., hi,  ~ = 1, ..., k be  n o n - n e g a t i v e  in tegers  w i th  
~,% ..., ~ j ~ = n j ,  j = l ,  k. P u t  

p(~)- l~ n/  ~P~~ Pm - -  ~jn I 

i = 1  0~i1! . . .  0~1n1. 

I t  is eas i ly  seen f rom t h e  de f in i t ion  2.2 t h a t  P(ZIJ)<~z i, N j = n i ,  z ~ ( B i . ) = a j . ,  v =  
1 . . . . .  nt, j =  1 . . . . .  k) = P ( Z  O) <~zs, N j = n j ,  j =  1 . . . . .  k) .p(~).  

The  suf f ic iency  of (2.I)  is p roved  if 

P = P(Z  (j) <~z i, N j  =ni ,  zj(Bj~), v = 1 . . . . .  nj, ~ = 1 . . . . .  k) 

= P ( Z  (j) ~< zj, N i = hi,  ~ = 1 . . . .  , k).p(oO (2.2) 

Le t  us  for j = 1 . . . . .  k d iv ide  the  i n t e r v a l  (zi_1, zi) i n to  n i n t e rva l s  of equa l  l e n g t h  
],,=(a~, by), v = n ( j - 1 ) + l  . . . . .  n j ,  where  the  i n t e r v a l s  are n u m b e r e d  f rom left  to  
r ight .  No te  t h a t  

~a, ,  I~r~l < ~ / . ,  (2.3) 
l ~ v < ~ k n  

P u t  f u r t h e r  
A = {zI(Bj,)  = ai~, v = 1 . . . . .  nj ,  j = 1, ..., k} 

T h e n  a p p r o x i m a t i n g  P b y  t h e  p r o b a b i l i t y  i n  t h e  case w h e n  no  Z(J)'s fal l  i n  t he  s ame  
I v we get  

[ P -  ~ P(Z~ N j =  hi, j = 1, . . . ,  k, Z(*+a'E 'I,k; A)] 
V a < . , . < v I r  

vi<~.~n, J =  1 . . . . .  /c 

k k n  

< ~ ~ P(Z<J)EG, Z(J+I)~L) 
) = 1  v = l  

F r o m  (2.3) a n d  the  fac t  t h a t  0 < Z  (11 < . . .  < Z  (k+l) we get  

k n  k 

Z ~ P(Z" )  E Iv, Z,,+l, E Iv) ~< ~ P(I Z<~+I) - Z<t, [ < zk /n )  -+ O, n--+ 
1 = 1 v : 1  3 ~ 1  

T h u s  

P =  l im  
n ---~ oo 

P(Z(J~E/~j, N i = n j ,  j =  l . . . .  ,k; Z(k+l)E'Ivk; A)  
~ l < . . .  ( Vk 

vi<~tn, 1= 1 . . . . .  k 

a n d  in  t he  s ame  w a y  we f ind  t h a t  

(2.4) 

(2.5) 
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P ( Z  m <~ z~, N~ = n~, j = 1 , . . . ,  k) 

Z E Iv~ (2.6) = l i r a  ~ P ( Z ( ~ ) E L r 1 6 2 1 6 2  . . . .  ,k;  (k+l) , 
n - - - > ~  r l < . . . < ~ / z  

v ] ~ n , j = l , . . . ,  l~ 

We shall now es t imate  the s u m m a n d s  of (2.5) and  (2.6). P u t  b~~ =0 .  Le t  us approxi-  
ma te  

! . P ( Z  (j) E Lj, N j = n j ,  j = 1 . . . . .  k; Z (k+~) E I ~ ,  A) by  

P ( N ( ( b , j _ ,  a~j]) = 0, M(I~ j  • Big) = o~j/~, i z = 1 . . . .  , nj ,  j = 1 . . . . .  k) (2.7) 

F r o m  (2.1) we get  

P(N((b~j_,, a~j]) = 0, M ( L j  • Bst,) ~jz, # = 1 . . . .  , nj ,  j = 1 . . . .  , k) = 

P(N((b~j_,, a~s]) = 0, N ( I ~ j ) = n j ,  j =  1 . . . . .  k) .p(~)  (2.s) 

Combining (2.7), (2.8) with (2.5) we get 

P = p(e) lira ~ P(N((b~j_,, a,j]) = 0, 1V(l~) = nj, j = 1 . . . . .  k) (2.9) 
n - - > r  v l <  , . .  < ~ k  

vi<~in, j = l  ... . .  k 

in the same way  as we got (2.4). 
Le t  us fur ther  approx ima te  

P ( Z I J ) E L j ,  N j = n j ,  j - 1  . . . . .  k; Z(k+~)E "I~) by 

P(N((b~j_,, a~j]) = 0, N(/ ,~)=ns ,  j = 1 . . . . .  k) (2.10) 

Using (2.4) we get f rom (2.10) and  (2.6) t ha t  

P ( Z  r <~ zj, N j  = ns, j = 1 . . . .  , k )  

= lira ~ P(N((b~j_ ,  a~j]) = O, N(/~j) = nj, j = 1, . . . ,  k) 

vj<~]n,j~l . . . . .  k 

(2.11) 

(2.9) and  (2.11) proves  (2.2) and  thus  the  sufficiency of (2.1) is shown. 
A weaker  type  of independence p rope r ty  is given b y  the  following. 

DeTinition 2.3. A sequence {(Z~, V~)} where {Z~} has no f ini te  l imi t  po in t  has the 
weak  independence property  wi th  the d./. F(v )  i f / o r  any  Borel  sets B 1 . . . . .  B k and a n y  
dis jo int  f in i te  intervals  11, ..., Ik  

~o(Sll, sl~ . . . .  , s~l, skz; 11 • B1, 11 • 91 . . . . .  I~ • B~, I~ • Bk) 

= q)(plSn § ..., pkSkl § I1 . . . .  , Ik) 

where p j  = F ( B j ) ,  9j = 1 - pj, ] = 1 . . . . .  k. 

The relat ion between the  independence p rope r ty  and  the  weak  independence 
p rope r ty  is given by  the  following 
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Lemma 2.2. Let {(Z~, V~)} be a sequence with {Zn} having no finite limit point. Then 

(i) i/ {(Z~, V=)} has the independence property with the d./. F(v) it also has the weak 
independence property with the d./. F(v) 

(ii) i/ no two el the Z~'s are equal with positive probability the weak independence 
property with the d./. F(v) implies the independence property with the d./. F(v). 

Proo/. (i) follows at once from lemma 2.1. Let  now {(Zn, Vn)} have the weak inde- 
pendence proper ty  with the d.f. F(v) and suppose tha t  no two of the Z~'s are equal 
with positive probabili ty.  Then 

P ( N k = l , k - + l , + 2  . . . .  ) = 1  

and  using the same technique as in the sufficiency par t  of lemma 2.1, (ii) can be 
proved. 

Denote by  ~v(sl, ..., sk; B~ ... . .  Bk) the g.f. of N(B~) ..... N(Bk), where B1, ..., B k 
are Borel sets in R 1. 

The case when {Z~} is weighted Poisson distr ibuted and {(Zn, Vn)} has the inde- 
pendence proper ty  will be of part icular  interest in the sequel. Lemma 2.4 will give 
a characterization of this case. I n  the proof of t ha t  lemma we shall need the following 

Lemma 2.3. Let {Z~} be weighted Poisson distributed with the parameter d./. W(;t). 
Let/urther B 1 . . . . .  B~ be disjoint Borel sets in R 1 with/inite Lebesgue measures #(B1), 
.... iz(B~). Then 

9)(81 . . . . .  8 k ; B  1 . . . . .  B k ) = I ~ e x p t , ~ # ( B j ) ( s j - l , t d W ( X ,  
d O  [. J j = l  

Remark. This simple lemma m a y  be found in the literature bu t  since the same 
technique will be used in the proof of lemma 2.4 the proof will be given below. 

Proo/. Let  us first consider the case k = 1. Let  B be a Borel set with/~(B) < ~ .  
We shall prove tha t  N(B)  has the g.f. 

~v(s; B) = qp(s; B) = f o  exp (~#(B) (s - 1)} dW(~). (2.12) 

(2.12) is easily seen to  hold for B = (.J ~ j=l I j  where Ij ,  ] = 1, 2 ... are disjoint inter- 
vals with ~;~ # ( I j ) <  ~ .  Let  ~t be the class of all intervals (open, semielosed and 
closed). We know tha t  

/~(B) = inf i z ( I j ) ; B = U I j ,  I j f ' l I k = r  IjE~t, / = 1 , 2  . . . . .  
1 j=l 

Thus given any  (~ > 0  there is a sequence of disjoint intervals {Ij} such tha t  

B =  UIj ,  Bo = U I . i - B  where #(B~)<5.  
j - 1  j - 1  
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I n  the  same way  we see t ha t  there  is a sequence of disjoint intervals  {I~} such t h a t  

B ~ c  U I ; ; # ( B ~ ) ~ < / ~  I <28 .  
J=l 

Note  t h a t  

= fo~ (1 - e-~)dW(2) H(x) 
do 

is a continuous d.f. with H ( 0 ) = 0 ,  since W(O)=O. Thus given e > 0  there  is a 8 > 0  
such t h a t  H(x)<e, 0-~<x<28. Choose 8 in accordance to this requirement .  Now 

Bu t  for 0 ~<s~< 1 

~ ( s ; j~  I s ) -q~v(s ;  B) I 

= exp 2 j ~  # ( I j )  (s - 1) dW(2) - ~ exp {2#(B) ( s -  1)} dWQ.) 

I ~ I~ - exp { - , ~ ( B ~ ) }  IdW(~) = H(~(B~)) < ~ ~< 
d o  

Fur the r  for 0 ~< s ~< 1 

~(s; B) -- q) (s; 5=I lJ) I = ,EsN(~) -- EsZC(B)+N(B~) , 

<EII-sN~I<P _~ I > 0  < H ( 2 8 ) < e  
J 

Thus  I~0(s; B ) - ~ p ( s ;  B)I <2e ,  0 ~ < s ~ l  which proves  the ease k = l .  In  the  general  
case we use the same approx imat ion  procedure for each of the  Borel sets B 1 . . . .  , Be. 

L e m m a  2.4. The sequence {(Zn, Vn)} has the independence property with the d./. F(v) 
and {Zn} is weighted Poisson distributed with the parameter d./. W(~) i /and  only if 
/or any disjoint Borel sets B 1 ..... B k in R 2 such that 

o~ where n(Bi) = f dxdF(v), i = 1 . . . . .  k < 

3~ i 

the r.v. (M(B1) . . . . .  M(Bk) ) has the g./. 

~(sl . . . . .  sk; B1, -..,  Be) = exp u(B,) (s t - 1) d g ( 2 ) .  (2.13) 

Remark. I n  the sufficiency pa r t  we need only (2.13) to hold for the  BTs being 
products  of intervals.  
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Proo/. Sufficiency. Put  B j = I j  x R 1 where the I j ' s  are disjoint finite intervals. 
Then it follows at  once from (2.13) tha t  {Z~} is weighted Poisson distributed with 
the parameter  d.f. W(~). Taking the B / s  as products of intervals it follows from 
definition 2.3 that  {(Z~, V~)} has the weak independence property with the d.f. F(v). 
Since {Z~} is weighted Poisson distributed no two of the Z . ' s  are equM with positive 
probability. The independence property then follows from lemma 2.2 (ii). 

Necessity. 

1. From lemma 2.3 it follows tha t  (2.13) holds for B~=Ai x R1, i = 1  ..... k, where 
the A / s  are disjoint Borel sets in R 1 with)u(Ai)< 0% i = 1 ..... k. 

2. The independence property implies (2.13) to hold for disjoint products of Borel 
sets of finite u-measure. 

3. (2.13) is easily seen to hold aiso for disjoint sets of finite u-measure in the 
algebra generated by all finite unions of measurable rectangles. 

4. Let  B be a Borel set in R 2 with finite n-measure. In  a similar way as tha t  used 
in the proof of lemma 2.3 we can approximate this set in u-measure by a union of 
disjoint products of measurable rectangles and prove (2.13) for k = 1. 

5. The proof of (2.13) for any k is done in the same way. 

3. The point system and its set of  motion 

We shall consider a countable number  of points distributed on R 1 and performing 
a random motion in time. The positions of the points at t = 0  are given by the se- 
quence of r.v. 's {Xn} the points being arbitrarily enumerated. In  the following we 
shall always assume tha t  {Xn} has no finite limit point. I f  the position of point n 
a t  t (t >0) is denoted by X~(t) the positions at t (t > 0) are given by the sequence of 
r.v. 's {Xn(t)}. Using the notation 

y~ ( t )  = x ~ ( t )  - x ~  

we shall call { Y~(t)}, following J. Goldman [7], the set o/motion for the point, system. 
The special case when for all t > 0. 

Y~(t) = Un.t 

will be called the constant speed ease (in this case the trajectories will be straight 
lines). We shall here deal with the case when the points do not interact with each 
other in their motions and we will thus introduce the following definitions. 

Definition 3.1. {X~(t)} has (or {Y~(t)} is) an independent set o/ motion at t with 
the d.]. Ft(y) i/ {(X~, Y~(t))} has the independence property with the d.]. Ft(y). 

Definition 3.2. {X~(t)} has (or {Yn(t)} is) an independent set o/ motion with the 
/amily { F t(y ) } i / i t  has an independent set o/motion at twith the d./. F t(y) /or all t>0 .  

In  the constant speed case we replace the family {Ft(y)} in this definition by 
the d.f. of the speed G(u). 

4. The asymptotic distribution of  the point system 

We shall here study the asymptot ic  distribution of {Xn(t)} when {Yn(t)} is an 
independent set of motion for all t >0.  Let  {X ~ } be a sequence of r.v. 's with no finite 
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limit point. Similarly to section 2 we introduce the following r.v. 's  and associated 
g.f.'s 

N(I )  - no. of X~ E I ,  g.f. ~v 

Nt ( I  ) = no. of X~(t) E I, g.f. ~vt, N~ = no. of X ~ C I, 

where I is a finite interval. 

Definition 4.1. {Xn(t)} is said to converge in distribution to {X ~ } i I /or  any disjoint 
finite intervals 11 . . . .  , I k the distribution o/ ( N t ( I i )  , . . . ,  2Vt(Ik) ) converges to that o/ 
(N~ ..., N~ as t ~  oo. 

Such a convergence will take place if and only if we have convergence of the 
corresponding g.f.'s. The convergence problem was first studied by  R. Dobrushin  
[4] and G. Maruyama [10]. Later  similar results were obtained by  L. Breiman [1] 
and [2] and T. Thedden [12]. These results were summarized and completed by  
J. Goldman [7]. We shall in this section somewhat  generalize the results of Goldman. 
Our t rea tment  will also serve as a mot ivat ion and introduct ion to the invariance 
problems dealt  with in section 5. 

Let  us assume tha t  {Xn(t)} has an independent  set of mot ion with the family 
{Ft(y)}. I t  follows from definition 2.2 tha t  when we consider the distr ibution of 
Nt(Ij)  , j = 1 .. . . .  k, we will get the same distribution if we replace the last assumption 
by  the following assumptions for {(Xn, Yn(t))} 

(i) {X~} and { Yn(t)} are independent  
(ii) {Y~(t)} is a sequence of i . i .d . r .v . ' s  with P(Y~(t)<~y)=Ft(y ). 

With  these assumptions it is easily seen tha t  

~t(sl . . . . .  sk;I  1 . . . .  , I k ) : E ' f l l ~ s ,  E t ( I y - X n ) q - l - ~  F t ( I , - X n , t .  (4.1) 
n [  J j = l  j = l  

I t  should be noted tha t  this g.f. does not  necessarily have the value one for 

81 - -  . . .  - -  8 k ~ l .  

In  order to get any  general results about  the convergence of ~0 t it seems natura l  to 
s tudy  the g.f. 

~ 2 4 7  j = l ~ J ~ j ( I j - - X n ) }  

where {xn} is an infinite sequence of real numbers.  This is the g.f. of a sum of inde- 
pendent  r.v. 's. The equivalent  in this case to the so called 'uan ' -condi t ion (see 
Lo~ve [9] p. 290) is 

lira sup F t (I  - xn) = 0 (4.2) 
t--~or n 

for all finite intervals I ,  I f  (4.2) should hold for all sequences {Xn} then we will require 

lim sup F t ( I -  x) = 0 (4.3) 
t --1,oo XfiR1 
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for all finite intervals I .  Following J.  Goldman [7] we shall then say tha t  we have 
a spread out set o] motion. 

In  the s tudy  of the convergence of at under  (4.3) we shall use a slight generaliza- 
t ion of the fundamenta l  lemma by  J .  Goldman [7] p. 23. First  we shall give the 
following notat ions and definitions. Let  us consider arrays {Xt~} of k-dimensional 
r.v. 's, n = l ,  2, ... and t indexed on the positive integers or positive real numbers  
where Xtn = ~n ,~  ~:<~) ..., :~v<k)~. The row sums are denoted by  

Yt ~ ~ Xtn 
n = l  

Definition 4.2. A n  array {Xt~ } will be called a null array i/ 

lim sup ~,.~/vcJ)t~ > O) = 0 
t--->~ j , n  

Definition 4.3. A Bernoulli sequence is a sequence o/independent k-dimensional r.v.' s 

X 1 = ( X ( 1 ) . o . ,  x(k)), X 2 = (X(9.1) . . . . .  X (k>) . . . .  

assuming only the values 

(0,0 . . . . .  0), (1, 0, 0, ..., 0), (0, 1,0,  ..., 0) . . . . .  (0 ,0  . . . . .  0, 1). 

Definition 4.4. A Bernoulli array (X t , )  is an array such that/or any t (Xt~} is a 
Bernoulli sequence. 

Definition 4.5. A r.v. X has a k-dimensional Poisson distribution with parameter 
(21 . . . .  ,2k) q 

P ( X  = (nl, ... , nk)) = I-[ "" e-X~ 
j=l n /  

/or all non-negative integers nj. 

Lemma 4.1. Let {Xtn} be a Bernoulli null array. Then 

(i) the only possible limit distributions /or Yt are the Poisson ones (including those 
with some 2~ equal to zero). 

(ii) the distribution o/ Yt  converges to a Poisson distribution with parameter (21 .. . . .  2k) 
i / and  only i/ 

lim ~ :~P/V(J)tn = 1 )  = 2 i j = 1, ....�9 k. (4.4) 
t ----> 0r n = l  

Proo/. The sufficiency of (4.4) was proved for k =  1 by  L. Breiman [2] and for 
any  k by  T. Thedden [12]. (ii) was proved by  J.  Goldman [7] p. 23. Thus we only 
need to prove (i). Let  

n = l  

and fix ?" for a while. Y~+) m a y  be an  improper  r.v. More precisely Y~+) being a sum 
of independent  r .v. 's  mus t  be a.s. finite or infinite. Wi th  the nota t ion 
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the  g.f. of Y~J) is 
p / v o )  = 1) -- ~(~) 

\ ~  t n  - -  F t n  

fl~J) (s) = f l  (1 - p ~  (1 - s)). 
n = l  

In  order t h a t  fl~'(s) should converge to a g.f. of a proper  r .v.  it is necessary t h a t  
l imt_~ ~n~ vtn~(" exists and  is equal  to a constant  e.g. 2j. Using the same a rgumen t  
for j = 1 . . . . .  k we see t ha t  (4.4) (for some (~1 . . . . .  2k)) is necessary for the  complete  
convergence of the  d.f. of Yr. The sufficiency of (4.4) then  proves  (i). 

Following J.  Goldman  [7] we now give the following definitions. 
In  the following two definitions let {In} be any  sequence of finite intervals,  

I i c  I ~ c  .... lim [Inl =oo. 
n"--) 'r  

Definition 4.6. A point system {Xn} is well-distributed with a parameter d./. W(2) i/ 

l im N(In) / l ln]  = A  a.s. 
n - - ~ o o  

where A is a r.v. with d./. W(2). 

Definition 4.7. A set o /mot ion  {Yn(t)} is well-distributed i/ /or any finite 2 a n d / o r  
any set o /numbers  {xn} such that 

l im (no. of    In)/llnl : ~  
n . - - )  o r  

we have l im F , r  zn) = lzl 
t ---~oo n 

/or any finite interval I .  

J.  Goldman  proved  using his equivalent  to l emma 4.1 (ii) the  following theorem 
(this is his theorem 6.2 where we have  just  somewhat  changed the  formulat ion) .  

: Theo rem 4.1. Let {Yn(t)} be a spread out set o/motion.  Then a necessary and su//i- 
cient condition /or every initially well-distributed point system under an independent 
set o / m o t i o n / o r  all time u > 0 to be in the limit t ~  ~ weighted Poisson distributed is 
that { Yn(t)} is well-distributed. 

Remark.  The case when the  weighted Poisson distr ibution has a p a r a m e t e r  d.f. 
W(2) wi th  W(0) > 0  is not  excluded. Using l emma 4.1 (i) and  (ii) we get  

Theorem 4.2. Let {Yn(t)} be a spread out set o/motion.  
Then a necessarg condi t ion/or  every initially well-distribvted point s~stem under an 

independent set o / m o t i o n / o r  all time u > 0  to converge in distribution as t--> oo is that 
{Yn(t)} is well-distributed. 

The proo] is omit ted.  
I n  the  following example  the  set of mot ion  is well-distr ibuted and spread out. 
Le t  Yn(t)= Un' t  (the constant  speed case) and  let U n have  an absolute ly  conti- 
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nuous d.f. G(u) with the density g(u). Assume g(u) bounded, almost everywhere 
continuous and with compact support. (Cf. L. Breiman [2] and T. Thedden [12].) 
Let now {X~} be an initially well-distributed point system with the parameter 
d.f. W(2) and let {Y~(t)} be the independent set of motion above. Then by theorem 
4.1 we have convergence to a weighted Poisson distribution with the parameter 
d.f. W(2). Further it can be shown that  {(X~(t), Un)} has the independence property 
with the d.f. G(u) in the limit t ~  o~. 

More precisely: Let for any Borel set B~ in R2, i = 1  ..... k, M(B~)=no. of 
(Xn(t), V~) E B, 

with the g.f. ~ ( s  1 ..... sk; B1 ..... B~). 

Definition 4.8. {(X~(t), Un)} has asymptotically the independence property with the 
d./. G(u) and {Xn(t)) is asymptotically weighted Poisson distributed with the parameter 
d./. W(,~) i / /or  any disjoint/inite intervals I x . . . . .  I k and intervals J l  . . . . .  Jk 

lim ~V~(Sn, Sx2 . . . . .  ski, sk2; 11 • J1, 11 • ]1 . . . . .  Ik• Ik • ]k) 

= f /  exp {~ ~ ]L](G(J~)sn + G(J~)s~- l)} dW(~) 

Remark. Compare with definition 2.3, lemma 2.2 and lemma 2.4 and the remark 
following that lemma. 

By the same method of proof as that used by L. Breiman [2] we get 

Theorem 4.3. Let {Xn} be a well-distributed point system with the parameter d.]. 
W(,~) and let { Yn(t)= Unt} be an independent set o/motion /or all t >0  (the constant 
speed case). The d./. o] U~, G(u), is absolutely continuous with the density g(u) being 
bounded, almost everywhere continuous and with compact support. 

Then {(X~(t), U~)} has as /mptoticall~ t@ independence property with the d./. G(u) 
and {Xn(t)} is as]mptotically weighted Poisson distributed with the parameter d./. 
W(~). 

Remark. I t  should be possible to weaken the conditions on g(u). This we have 
not done since the theorem is included mainly as a motivation for the condition 
about reversible independent motion used in section 5. 

5. Time-invariant distributions for point systems under reversible 
independent motion 

The important role of weighted Poisson distributions as limit distributions for 
point systems with independent sets of motion stands out clearly from section 4. 

Doob [5] p. 404 showed that if a point system is Poisson distributed at t = 0 and 
has an independent set of motion its spatial distribution will be conserved for all 
t > 0. The same result for weighted Poisson distributions was shown by J. Goldman 
[7]. From these results it is rather easily seen that  a point system with E N ( I ) <  oo 
for any finite interval I has the same distribution for all t ~> 0 for all independent 
sets of motion if and only if it is weighted Poisson distributed (see R. L. Dobrushin 
[4] and J. Goldman [7]). Here we shall t ry  to characterize those distributions for 
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point  systems which are t ime-invariant  for a given independent  set of motion. Le t  
us first note t ha t  in the special case t reated in theorem 4.3 the sequence {(X~(t), U~)} 
has the independence proper ty  in the limit t-+ ~ .  This means tha t  in the limit we 
have a kind of backwards independent  set of motion. I n  the general case we have 
the following definition of this concept. 

Definition 5.1. {Xn(t)} has (or {Y~(t)} is) a backwards independent set ol motion 
at t with the d./. Ft(y) i~ {X~(t)} has no finite limit point and {(Xn(t), Yn(t))} has the 
independence property with the d./. Ft(y). 

Definition 5.2. {X~(t)} has (or {Y~(t)} is) a backwards independent set ol motion 
with the /amily {Ft(y)} i / i t  has a backwards independent set o/motion at t with the 
d. 1. Ft(y ) /or all t > O. 

If  in these definitions we have the weak independence proper ty  in place of the 
independence proper ty  we shall say tha t  we have a backwards weak independent set 
o/motion. We can now introduce the concept of t imc-invariance under  a reversible 
set of motion. 

Definition 5.3. {X,~} has an invariant distribution at t /or a d./. Ft(y) under reversible 
independent motion i/ {Xn(t)} has an independent set o/motion at t and a backwards 
independent set o/ motion at t both with the d./. Ft(y) and {X~} and {X~(t)} have the 
same distribution. 

DeIinition 5.4. {Xn} has a time-invariant distribution under reversible independent 
motion/or the ]amily {Ft(y)} i/ the distribution o / {X~)  is invariant at t under reversible 
independent motion/or the d./. Ft(y )/or all t > O. 

If  in definition 5.3 we instead of a backwards  independent  set of mot ion have a 
weak one we shall say tha t  {Xn} has a invariant  distr ibution under  weak reversible 
independent  motion. We shall in this section show tha t  the distributions of {Xn} 
which are t ime-invariant  under  reversible independent  mot ion for a non-degenerated 
family {Ft(y)} (see definition 5.5) are the weighted Poisson ones. We shall need 
the following two simple lemmas about  g.f. 's for random vectors. Let  Y = ( Y1, -.., Yk) 
and Z = (Z 1 .. . . .  Zk) be two random vectors the components  of which are non-negat ive 
and integervalued and let their g.f. 's be yl(sl . . . . .  sk) and y2(sl, ..., sk) respectively. 

Lemma 5.1. I~ 
~21(81 . . . .  , 8k) = y 2 ( 8 1 ,  - . . ,  8k) 

/or s~E(a~, b~) where - 1  ~<a~<b~<l, i = l  ..... k, then Y and Z have the same distribu- 
tion. 

The proo/ follows at  once from the generalization of the ident i ty  principle for 
holomorphic functions of a complex variable to the case with several complex 
variables. 

Lemma 5.2. I /  Y~ <~Z~, i = 1 . . . . .  k a.s. then 

y,(sl . . . . .  sk) ~>y~(s, . . . . .  sk), s~ E [0, 1], i = 1 . . . . .  k. 
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Proo/. The given inequalities imply  tha t  

sY1 *'" ~176176 . . . . . .  s zk a.s. for s~E[0, 1], i = 1 ,  , k 

f rom which inequali ty the lemma follows at  once. 
Let  for any  Borel set B in R~ 

Mf.t(B) = n o .  of (X~, Y~(t))EB, Mb. t (B)=no.  of (X~(t), Y~(t))EB 

and denote the corresponding g.f. 's by  ~0f. t and YJb.t respectively (cf. section 2). Let  
fur ther  for any  d.f. F(y) and a Borel set B in R 1 with F ( B ) > 0  

FB(y) -- F (B  N ( - 0% y])/F(B) 

be the conditional d.f. given B. 

Lemma 5.3. Let the distribution o /{Xn}  be invariant at t under reversible independent 
motion/or a d./. Ft(y ). Then it is also invariant at t under weak reversible independent 
motion/or the d./. Ft. B(Y). 

Remark. Actual ly  the lemma is t rue also when weak is omit ted  but  this we do 
not  need in the following. 

Proo/. Pu t  Ft(B ) - p ,  q = l - p .  Let  I 1 .. . . .  I k be any  disjoint finite intervals and 
B 1 . . . .  , B k any  Borel sets in R 1. Pu t  fur ther  

Aj = Bj N B, Cj = Bj N B, PJl = Ft(As), PJ2 = Ft(Cj), j = 1 .... , k 

Note  tha t  for the distributions considered in this section {(Xn, Yn(t))} can be assumed 
to fulfil the conditions (i) and (ii) just  above (4.1). Then 

~b. t(su, 812 . . . . .  ski, sk2; 11 x A1, 11 x 0 1  . . . . .  Ik • Ak, Ik • Ck) 

= E ~n {,=1 ~ Sj lFt((Iy-  Xn) N At) +,=I ~ sy2Ft((I ' -  Xn) N Cj) 

+ 1 -  ~ F t ( ( I , - X n ) N B ) }  
./=1 

= qD(PnSu + p12s12 + q . . . . .  PklSkl + Pk2 8k2 + q; I1  . . . . .  Ik) (5.1) 

where the last equali ty follows from the assumed invariance under  reversible inde- 
pendent  mot ion together  with lemma 2.1. Pu t t ing  

s[j = ps~j + q, i = 1 ..... k, j = 1, 2 
we get f rom (5.1) 

E~n {j=IZ S;1Ft'B((I]-X~) NAj)+ j=i ~ s;2Ft'B((Iy-Xn) O Cy)+ 1 -  t=1 ~ Ft, B ( I j - X ~ ) }  

= V ( p l l S / 1 / p  + pl Sl /p . . . . .  p lS; l/p . . . . .  f o r  

s[ je[q-p ,  1], i =  1 . . . . .  k, j =  1,2. (5.2) 
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Under  an independent  set of mot ion at t with the d,f. F~.~(y) we have for any  
finite interval I and any  Borel set A in R~ 

Mb,t(I • A)  - Mo.t(I • (A fl B)) a.s. 

Using the index B for the g.f. of Mb.t in this case we get 

%.t,.(s11, s12, ..., ski, sk2; 11 • B1, I1 x /~  . . . . .  Ik x B~, I k •  

= %. t . , (Su ,  s12 . . . . .  ski, sk2; I1 x A1, 11 x C 1 . . . . .  Ik • Ak, Ik • Ck) 

= E r ]  ~ sjlFt B ( ( I j - X ~ )  N A~)+ s j2Ft ,~(( I~-X~)  ~ C~) 
n I . i=1 ' j = l  

- ~ 1 - i ~ I F t ,  B ( I , -  Xn)} (5.3) 

But  for sij=s[j, i = 1 . . . . .  lc, j ~ 1, 2, the right member  of (5.3) equals the left member  
of (5.2). Thus 

~l)b,t,B(S11' S12 . . . . .  Skl' 8k2; 11 • ~ 1 ,  11 • .. . . .  Ik • Bk, Ik • 

= q~(pns~l/p +P12S12/p . . . . .  p~lskl/p +pk2Sk2/p; 11 . . . . .  Ik) (5.4) 

for s~jE[q-p,  1] and by  lemma 5.1 for s ,~E[-1 ,  1], i = 1  . . . . .  k, j = l ,  2. Now 

Ft,s(Bj)  = Pn/P, Ft,~(BJ) = P~21P, J = 1 . . . . .  k 

which pu t  into (5.4) proves the lemma. Note  tha t  the distr ibution of {X~(t)} is the 
same as t ha t  of {X~} under  an independent  set of mot ion with the d.f. Ft.B(y ). This 
is seen by  put t ing  B 1 . . . . .  B k = R 1 in (5.4). The lemma is proved. 

In  order to get our results about  t ime-invariant  distributions for point  systems 
we shall have to require tha t  arbitrari ly small displacements and unequal  displace- 
ments  arbitrari ly close to each other  are possible. These requirements are made 
precise in the following definition 5.5. Let  the support set S F of a d.I. F(x) be 

S F = { x ; F ( x + h ) - F ( x - h ) > O ,  all h > 0 }  

Definition 5.5. A /amily o/ d./.'s {Ft(y), 0 <t  < ~ } is said to be non-degenerated i/  

( i ) /or  any given e > 0  there is a t and a y such that yESF, and 0 <  lYl < e  and 
(if) /or any given ~ > 0  there is a t and Yl ~:Y2 such that Yl, y2ESFt and lYl-Y21 <e.  

Remark. I n  the constant  speed case when Yn( t )=Un' t  and G(u)=P(Un<~u) the 
non-degeneracy of {Ft(y)} is equivalent  to the d.f. G(u) being non-degenerated.  

I n  deciding whether  (if) holds or not  the following lemma m a y  be useful. 

Lemma 5.4. I /  at least one o/ the Ft(y)'s is not purely discontinuous the condition 
(if) o/ de/inition 5.5 is/ul/i l led. 

The proo/follows at  once from the following 

Lemma 5.5. Let F(x) be a d.[. which is not purely discontinuous. Then /or any 
given e > 0  there are numbers Xl ~X  2 such that xl, x2ES F and Ix l -x21  <e. 
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Proo/. Let  D be the discontinuity set of F(x) and pu t  C = / 3  ~ St. Let  us for a mo- 
ment  assume tha t  there is a s0>0  such tha t  for all Xl=4=x 2 with xl, x~EC we have 
]xl-x~l  >s0. This implies tha t  C is countable which contradicts  F(x) being no t  

purely discontinuous. This proves the lemma. 

Lemma 5.6. Let the distribution o/ (Xn) be time-invariant under reversible indepen- 
dent motion/or a non-degenerated family {Ft(y)}. Then 

(i) the counting process corresponding to {Xn} has a.s. no fixed discontinuity points, 
(ii) /or a monotonely decreasing (or increasing) sequence o/ intervals {ln} such that 

l imn_~ I n = I where I is a ]inite interval we have 

lim ~v(s; In)=(v(s; I) uniformly for s E [ - 1 ,  1]; 
n-->~ 

Proo/. (i). Let  us assume tha t  (i) does not  hold. Then there is an  x 1 such t h a t  

P(N({xl}  ) > 0) = p > 0. 

B y  the non-degeneracy assumption given ~ > 0 there is a t and a y such tha t  y E SF, 
and 0 <  ]y] <s .  Pu t  B = (  - e ,  0) U (0, s). Then Ft(B)>O and by  lemma 5.3 it follows 
t h a t  the distribution of {Xn} is invariant  at  t under  weak reversible independent  
mot ion  for the d.f. Ft.B(y). This implies t ha t  with A = ( x l - s  , Xl)U (x 1, Xl+S) and 
an  independent  set of mot ion at  t with the d.f. F• . . . . . . .  

Nt(A) >~N({Xl} a.s. 

But  N(A) and Nt(A) have the same distribution. Thus 

P(N(A)  >0)  >~P(N( {xl) ) >0)  

and with a probabil i ty no less than  p there is a point  arbitrari ly near but  separate 
f rom the position x 1. This contradicts (Xn) having no finite limit point  and (i) is 
proved. 

(ii) follows at  once from (i) and the fact  tha t  g.f. 's are bounded and continuous 
in [ - 1 ,  1]. 

Theorem 5.1. 

(i) (Xn} is time.invariant under reversible independent motion/or the/amily (Ft(y)} , 
i/ (Xn} is weighted Poisson distributed. 

(ii) Let ( Ft(y) } be a non-degenerated/amily o/d./. 's. 
Then the distribution o/ (Xn} is time-invariant under reversibe independent motion 

]cr the/amily (Ft(y)} only i/ (Xn} is weighted Poisson distributed. 

Remark. I n  comparison with the invariance theorems by  R. L. Dobrushin  [4] and 
J.  Goldman [7], (ii) of our theorem on the one hand  demands  reversible independent  
mot ion but  on the other hand  characterize distributions for point  systems which 
are t ime-invariant  under  reversible independent  mot ion  for an arbi t rary  fixed non- 
degenerated family (Ft(y)). 
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Proo[. (i). The proof follows from the more general s ta tement  of theorem 6.1 if 
in tha t  theorem we put  V~ = Yn(t), Fl(y) = Ft(y) and/ (x ,  y) =x +y. 

(if) In  the proof we shall rely on the results by H. Bfihlmann [3] 4. Kap.  concerning 
processes on [0, 1] with exchangeable increments. I t  is however easy to see tha t  
his results still hold also for processes on ( - ~ ,  + ~ )  in which case his proofs can 
be done in the same way. He considers processes which are separable with the set 
of the diadie numbers as a separating set. In  our case it is seen from the definition 
of the counting process N(x) defined by {X~} tha t  N(x) is separable with any count- 
able set which is dense in R 1 as separating set. Let  us divide R 1 into disjoint intervals 
I s  of equal length I I I .  The counting process N(x) is a process with exchangeable 
increments if for any such division the distribution of N(Lk) ... . .  N(Ijk) where 
Jl #. . .  =~]k only depends on k and the length I I I .  Let now :~ be the class of distribu- 
tions for random processes with stationary independent increments having infinitely 
divisible distributions. Then Bfihlmann proved that  any process which is separable 
with the set of diadic numbers as a separating set a n d  which has exchangeable 
increments has a distribution weighted over :~. In  our case the increments are non- 
negative and integer-valued. The only infinitely divisible distributions of non- 
negative integer-vMued r.v. 's are the compound Poisson ones (see e.g. Feller [6] 
p. 271). We shall show that  N(x) has exchangeable increments (point 1 4  below). 
Then it is seen tha t  {X~} must  have a weighted compound Poisson distribution. 
Lastly in point 5 we shall prove tha t  this distribution cannot be compound. Now 
{X~} was assumed to be a countable set of r.v.'s, which set we tacitly assume to be 
non-empty.  By this the case when the parameter  d.f. W(2) has W(0)>0 is excluded. 

1. The distribution of N(I )  where I is a finite interval is independent of the 
position of 1. 

Let I i - I + y  where yES~t for some t. For any intervals I + ~ I D I  - we have by  
lemma 5.2 

~(s; I +) ~<~(s; I)~<~(s; I - ) ,  sE[0, 1] (5.5) 

By lemma 5.6 (if) we can choose I+ and I -  such tha t  given e > 0  

I~(s; I - ) - ~ ( s ;  1+)1 <e, se[O, 1] (5.6) 

and such tha t  I + - I  and I - I -  are unions of intervals with positive lengths. There 
is an interval B with y E B such tha t  

M~, t(I-  x B) <~Mb, t(I 1 x B) <~Mr.t(I+ x B). (5.7) 

For an independent set of motion at  t with the d.f. Ft. s(Y) we get from lemma 5.2, 
lemma 5.3 and (5.7) 

~(s; I +) ~<~0(s; 11) <~0(s; I - ) ,  se[0,  1]. (5.S) 

(5.5), (5.6) and (5.8) together with lemma 5.1 give tha t  

q~(s; I)  =~(s ;  I1), s E [ - 1 ,  1] 

and thus 2V(I) and N(I1) have the same distribution. Let  n be a positive integer. 
Then it follows that  for any intervals I and J such tha t  J = I + n y  or J = I - n y  
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with  yESFt for some t the  r .v . ' s  N(I) and  /V(J) have  the  same d is t r ibu t ion .  Le t  
now Yo be a n y  posi t ive  number  and  p u t  

I01 = I + y 0 ,  102 = I-yo. 

I n  the  same w a y  as in l emma  5.6 (ii) i t  can be shown t h a t  g iven e > 0  there  is a 
(~ > 0 such t h a t  

I~(s; Ioj+h)-~(s;  I0j)l <~, I~(s; I0 j -h)-~(s ;  I0J)l <~, se[0, 1], j = l ,  2, 0<h<~.  
(5.9) 

B y  the  non-degeneracy  as sumpt ion  there  is a t, an  in teger  n > Yo/5 and  a n u m b e r  y 
such t h a t  

yeS~ and  yo/(n§ <~yo/n 

Le t  us first  assume t h a t  y > 0. Then 

101 = I +ny+hl = I +(n + l)y-h2,  O<~h~ <(~, i= l ,  2. (5.10) 

W e  have  a l r eady  p roved  t h a t  N(I), IV(I+ny) and  N(I+(n+l )y )  have  the  same 
d is t r ibu t ion .  Then this  fact  toge ther  wi th  (5.9), (5.10) and  l emma 5.1 gives t h a t  N(I) 
and  N(I+yo) have  the  same d is t r ibut ion .  I f  on the  o ther  hand  y < 0  

lo2 =I  + n y - h  1 = I +(n + l)y+h2, 0 < h ~ < 5 ,  i= l ,  2 

f rom which re la t ion  we b y  the  same reasoning prove  t h a t  N ( I )  and  N(I -yo)  have  
the  same d is t r ibu t ion .  

Thus the  d i s t r ibu t ion  of N(I) does no t  depend  on the  pos i t ion  of the  in te rva l  I .  

2. Le t  De s t and  for the  d i scon t inu i ty  set of a d . f . F .  Choose for any  ~ > 0 a t and  
yl>Y2 such t h a t  Yl, Y2CSF, Yl-Y2 <~ (see def ini t ion 5.5 (ii)). I t  is easi ly  seen t h a t  
Yl and  Y2 can be chosen such t h a t  e i ther  

(a) Yl, Y2 E DFt or 
(b) Yl, Y2 E 'DF, and  ne i the r  Yl nor  Y2 are  accumula t ion  po in ts  of D~t. 

B y  consecut ive in terva ls  we shall  in the  following mean  dis jo int  f inite in te rva l s  
n u m b e r e d  f rom the  left  to  the  r ight  and  with  the i r  union also being an  in te rva l .  
Le t  now J1 and  Je  be two consecut ive in te rva ls  wi th  Ig i l  = Ig21 =Yl-Y2. I n  th is  
po in t  we shall  show t h a t  (-N(JI) , /u  has the  same d i s t r ibu t ion  as (At(J2), N(J1) ) 
and  t h a t  this  d i s t r ibu t ion  is i ndependen t  of the  posi t ion of J~. P u t  J = J1 + y~ = J2 + Y2 
and  choose s imi lar ly  to po in t  1 of the  proof  for given ~ > 0 two in te rva ls  J +  and  J -  
such t h a t  (1) J + D J ~ J - ,  (2) J+--J and  J - J -  are  unions of non-degenera ted  
in tervals ,  (3) ~(s; J - ) - ~ ( s ;  J + ) < e ,  sE[0,  1]. 

There  exist  d is jo int  in te rva l s  B 1 and  B e wi th  y~ E B~ and  Y2 E B 2 for which 

Mo, d J -  x B~) ~Mr.dJ ~ x B~) ~Mb.dJ + x B~), i = 1, 2. (5.11) 
F u r t h e r  

M~, d J -  x B~) ~< Mb. d J  x B~) ~< Mo. d J  + x B~), i = 1, 2. (5.12) 

Le t  B = B  1U B 2 and  p u t  Ft.B(B~)=p~ , 0 < p ~ < l ,  i = 1 ,  2. I n  case (a) we choose B 1 
and  B 2 degenera ted  a t  Yl and  Y2 respec t ive ly  and  in this  case p~, i - 1, 2 are  indepen-  
den t  of the  chosen e, J +  and  J - .  Consider now the  case (b) and  fix two numbers  
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p~, 0 < p i < l ,  i = l ,  2, p l + P 2 = l .  We shall p rove  t ha t  we can choose B~ and B 2 such 
t ha t  Ft.s(B~)=pt , i = 1 ,  2 and (5.11) (and (5.12))is  fulfilled. Consider the intervals  
Bi(h~) =(y i -h t ,  yi+h~], h i>0 ,  and pu t  p~(hi)=Ft(Bi(ht)), i = 1 ,  2. There exist num- 
bers h~, h~, such t h a t  for h~<~h~, i = 1 ,  2, B~(h~) and B2(h2) arc disjoint and (5.11) 
holds (with Bi =Bi(hi) ,  i =  1, 2). For  h i > 0  the functions pi(ht) arc non-decreasing 
and posit ive and limm_~0p~(hi) =0 ,  i = 1, 2. Now y~ and Y2 are not  accumula t ion  points  
of Dpt. Thus  there  exists h~' such t ha t  O<h~'<<.h~ and Bi(h~') f3 Dr t=~,  i = 1 ,  2. Hence  

(y; Pi(hi) = y  for some 0 < hi ~< h~'} = (0, pt(h~')], i = 1, 2 (5.13) 

F r o m  (5.13) it is easily seen t ha t  we can choose~ht with 0<hi~<h~, i = 1 ,  2 such t h a t  

Pl(hl)/p2(h2) = Px/P2 

Note  t h a t  given a h > 0 we can in the last  relat ion choose bo th  h i and  h 2 less t han  h. 
Then  Bi=B~(h~), i = l ,  2 fulfil (5.11) (and (5.12)) and Ft, s(Bi)=p~, i = 1 ,  2. 

For  any  in terval  I we get f rom l emma 5.3 

~b,t,B(81, 82; I • B 1, I x B 2 )  =q)(plsl  +p282; I) (5.14) 

Using (5.14) and  l emma 5.2 we get f rom (5.11) 

(Pl Sl + P2 s2; J+) ~ ~(Pl Sl + P2, Pl + P2 s2; J~, J2) ~< ~(P~ sl + P2 s2; J - ) ,  s~, s 2 E [0, 1 ] 

(5.15) 
and f rom (5.12) 

cf(p~sx +p2s2; J+) <~q~(p~sx +pzS2; J) <~cf(pls~ +p2s2; J - ) ,  s~s2E[O, 1] (5.16) 

Le t  us now pu t  81=plSlA-p2 and  s~=pl+p2s ~ in (5.15) and  (5.16). Then  

~v(s; +s~ - 1; J~)  <~(s; ';  s2; J1; J2) ~cf(s;+s~ - I ;  J = )  

~(Sl +s~ - 1; J+) ~<~0(s; +s~ - 1; J )  ~<~(s; +s~ - 1; J - )  

for s~ E [P2, 1], ss E [P l ,  1]. 
Observing t ha t  Pl and  P2 are independent  of e we get by  l emma 5.1 

~(81, 82; J1, J~) = q9(81-~82-1; J ) ,  Sx, s2E[-1 ,  1] (5.17) 

Since by  point  1 of the proof the  r ight  m e m b e r  of (5.17) does not  depend on the posi- 
t ion of J point  2 is proved.  

3. Le t  J1 .... Jk+l be consecutive intervals  with ]Ji  ] = [Y~- Yl [, i = 1 . . . . .  k + 1 
where Yl and Y2 are the  same as in point  2 of the  proof. We shall show b y  induct ion 
t h a t  

~(sl . . . . .  Sk+l; J1, ..., Jk+l) = ~V(Sl + ..- +sk+~ - k ;  J )  (5.18) 

where J is any  in terval  with I J I  = l y 2 - y l  [. Le t  us assume t h a t  

(p(81 . . . .  , 8k; 51  . . . .  , Jk) = ~(sl + . . -+sk - -k  + l ;  J )  (5.19) 
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Le t  the  d i s t ance  b e t w e e n  two  i n t e rv a l s  A 1 a n d  A 2 be 

d(A1, As) = inf { I x -  Y I; x eA1, y eA2} 

Choose t h e  i n t e rv a l s  J~.h, i = 1, ..., k + 1, such t h a t  

J ~ . h c J ~ ,  d(J~.h, J i + l . h ) = h ,  i = 1  . . . . .  /c a n d  J k . h + y l = J k + l . h + y 2  

L e t  J;.  h = J~. h + Yl, i = 1 . . . .  , k. Choose s imi la r ly  to  p o i n t  2 i n t e rva l s  J~'.+h a n d  J~'.-~ 
such  t h a t  

t +  �9 i _  
(1) J ~ . h ~ J ~ . h D J ~ . h ,  i = 1 ,  . . . .  h, 

(2) g ; +  -g~" h a n d  g '  ' -  . ~, h - J~. h are  u n i o n s  of n o n - d e g e n e r a t e d  in te rva l s ,  
i = l ,  . . . ,  k, 

t l_ , 
(3) Ji.  h, * = 1 . . . . .  k are  d i s jo in t  in te rva l s ,  

(4) ~0(s 1, . . . , sg;  Jl.h'- . . . . .  J'k_a)--qD(sl . . . . .  sk; Jl.h'+ . . . . .  Jk.h)<e'+ 
for s ,E[0,1],  i =  l . . . .  , k  (5.20) 

I n  t he  case w h e n  Yl, Y2 e DF~ let  us  choose B 1 = {Yl} a n d  B 2 = {Y2}. I f  Yl, Y2 e / )F ,  
we choose B t = B i ( h , )  wi th  h , < h  (see the  r e m a r k  j u s t  above  (5.14)) as i n  p o i n t  2 
of t he  proof.  T h e n  

Mb.~(J;.-h x B I )  <~Mf.~(J~. h x B~) <~M~.t(J;.+h •  i = 1, . . . ,  k 

Mb, t (g~Th • B2) ~< M I . t  (Jk  + 1. h • B2) ~< Mb.t (J~+h • B2) (5.21) 

N ( g , . h ) ~ N ( J , . h ) ~ N ( g [ . + h ) ,  i = l ,  k (5.22) 

W e  get  b y  l e m m a  5.3 w i th  B = B  1 U B 2 in  the  s ame  w a y  as i n  p o i n t  2 f rom (5.21) 

t +  t +  ~§ 
~0(plSl q-P2 . . . . .  p18~-1 -kP2, p18k q-P28g+1; J1. h . . . . .  J k  1. h, J~.  ~) 

~< 9(p181 + P2 . . . . .  PlSk + 1)2, 101 ~-p2Sk+l; g l .  h, . . . ,  gk+h, gk+l. h) 

for s,e[0,1], i = l  . . . . .  k + l  (5.23) 

Le t  us  p u t  s; = p l s ,  +P2,  i = 1 . . . . .  k a n d  s~+l = p ~  +p2s~+ l  i n  (5.23). T h e n  

~ ( 8 1  . . . .  , S k - 1 ,  S k - ~  S k +  1 - -  1; J1. ~ . . . . .  Jk -1 .  ~, J~. ~) ~ ~0(81 . . . .  ' 8 k + 1 ;  J L  a . . . . .  J*+~. a) 

i = 1, . . . ,  k, s~+l e [Pl, 1] (5.24) 

F r o m  (5.22), l e m m a  5.2 a n d  l e m m a  5.3 we get  

99(81 . . . .  , 8k; J1. h . . . .  , J e. ~ ) <~ q)( s~ , . . . ,  se; J1. ~ . . . .  , J e. ~ ) 

~<~ ~ 0 ( 8 1 , - . . ,  8k; J~]a, . . . ,  J'~:~), s, e [0,1], i = 1 . . . . .  k (5.25) 

W e  get  f rom (5.20), (5.24) a n d  (5.25) t h a t  

~0(sl, . . .  , se+l; J1. a, - . . ,  Je+l,  a) = ~0(st . . . .  , s~ 1, se + Se+l - 1; J ; .  ~, . . . ,  I~  1. a, J;~. a) 
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If  we let h ~ 0 in this relation we get using lemma 5.6 

~(Sl, ..., Sk~l; J1 . . . . .  Jk+l) = q(sl . . . . .  sk-1, sk + sk+l -- 1; J~ . . . . .  J~- l ,  J~) 

where J~ = J~ + Yl, i = 1 . . . .  , k and Jk = Jk+l + Y2 

From the induct ion assumption (5.19) we then get 

~(sl . . . . .  sk+l; J1, -" ,  g k + l ) =  ~/)(81 ~- "-21-8k+1- k;  J) 

But  (5.19) holds for k = 2  by  (5.17). This proves point  3. 
4. Let  11 ..... I k be consecutive intervals all with the length I I [ .  We wish to show 

tha t  the g.f. 
q~(sl, ..., sk; 11 . . . .  , Ik) =q~(sl +.. .  + sk - -k  § l; 11) (5.26) 

F rom lemma 5.6 it is easily seen tha t  given ~ > 0 there is a 50 > 0  such tha t  

1~(81 . . . . .  s~; 11 . . . . .  I ~ ) - ~ ( s l ,  . . . ,s~; I1, . . . , Z ~ ) l < s , s ~ e [ - 1 ,  1], i = 1  . . . .  , k  (5.27) 

where I f  . . . . .  I~ are disjoint intervals with 

I;cS, j = l , . . . , / c - 1  

Let  now j(ln), ..., j(n),,, be consecutive intervals all with the length ] j(n) ] and with 
the left endpoint  of j / , )  coinciding with tha t  of I~ and the r ight endpoint  of j(n) 
being the first to  lie to the r ight of the r ight endpoint  of I~. Let  for any  n the numbers  
Yl and Y2 be such tha t  they  fulfil the conditions in the first par t  of point  2 with 
(~= ]I'j[/n. There are arbitrari ly large n for which Yl and Y2 can be chosen such 
tha t  ]Yl --Y2 ] - ]j(n)[ with ] I i I / ( n  + 1) < ]j(n> I <~ I l i l /n"  Then I i is included in an 

+ j +  interval  In,j  which is a union of (n+2)  consecutive intervals from { n,j} and in- 
eludes an interval I~,j which is a union of (n 1) consecutive intervals f rom {j~n)}. 
Choose n so large tha t  the intervals I +, r are disjoint. 

F rom point  3 it follows tha t  

~ / ) ( 8 1  ' . . . . .  .,8ran; j(n), , j(n),mn)= (fl(sl + ... + S m , , - - m n + l ;  J(1 n)) 

and from this 

~(s 1, ..., se; I +n,1, .... I t .  ~) = ~((n + 2) (s 1 + ... + sk) + 1 - k(n + 2); Jp) )  (5.28) 

~(81, ...,8k; In . i ,  . . . , I ~ , k ) = q ~ ( ( n - - 1 ) ( s l + . . . + s ~ ) + l - - k ( n - - 1 ) ;  J(a n)) (5.29) 

Fur ther  by  point  3 
~0(s; I~. 1) = ~(n + 2)8 - n - 1; J1 (n)) 

~(s; I~. 1) = ~((n - 1) s - n + 2; J(1 n)) 

(5.30) 

(5.30) 

From (5.28) and (5,30) we get using lemma 5.1 
+ + 

�9 = ... In. 1 )  ~(s l , . . . , sk ; In .1  . . . .  In.k) ~ ( s l +  + s k - - k + l ;  + 

and from (5.29) and (5.31) 

(p(Sl . . . .  , sk; I ~  1 . . . . .  I ~  k) = ~(sl + . . .  + s k -  k + 1; I ~  1) 

(5.32) 

(5.33) 
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Using lemma 5.6 and (5.27), (5.32) and (5.33) it is easily shown that  (5.26) holds. 
This proves the exchangeability of N(x) .  

5. From point 4 and the beginning of the proof it follows that  {X~} must have 
a weighted compound Poisson distribution. We shall now show that  this distribution 
cannot be compound. This is equivalent with no two of the X~(t)'s being equal 
with positive probability. We shall deal with two cases separately. 

(a) Ft(y  ) has a continuous part  for some t>0 .  By lemma 5.3 we can without any 
loss of generality assume that  Ft(y  ) is purely continuous for this t. Let us consider 
the point system at this t. Now 

P(X,( t )  = Xj(t)) = P(X~ + Y~(t) = X j  + Ys(t)) = P(Y~(t) - Yj(t) = X j - X ~ ) .  

But Yi(t) - Yj(t) has a continuous distribution. Thus by the independence property 

P(X,(t) =Xj(t ) )  = 0, i # i  

which proves the proposition in case (a). 
(b) All Ft(y) are purely discontinuous. Let 11 and 12 be disjoint intervals with 

the same length such that  I i + y 1 = I 2 + y 2 = I  where yl, Y2ESFt for some t. Pu t  
B =  {YI} (j {Y2} and Ft, s({y~})=p, , i=1 ,  2. Now 

q(sl, s~; 11, I s )=  f :  exp {2[II(a(s0 - l + a(s~) - 1)}dW(~) (5,34) 

where a(s) is a g.f. and W(2) a d.f. on (0, oo). By lemma 5.3 we have for an indepen- 
dent set of motion at t with the d.f. Ft.B(y) 

Mr . t ( I  1 x {Yl}) + Mf.t(I2 x {Y2}) = Nt(I).  (5.35) 

From (5.34) and (5.35) we get 

f ? e x p  ]I[(a(pls P2) 0~(Pl P28) --  2)} W(2) { + + + d 

I ~ exp {2]II (a(s) - 1)}dW(2). (5.36) 
J 0  

From the uniqueness of the Laplace-Stieltjes transform of W(2) we get from (5.36) 

~(Pl )  A- ~(P2) = 1. 

Since ~(0)=0, ~(1)=1 and ~(s) is convex and continuous it follows that  ~(s)=s 
which proves the impossibility of a compound distribution in case (b). 

The theorem is proved. 
In the constant speed case we have Yn(t)=U,~' t  with P(Un<~u)=G(u).  In  this 

case time-invariance under reversible motion with a non-degenerated family {Ft(y))  
is equivalent to that  for all t>O{(Xn, Vn) } and {(Zn(t), Vn) } have the independence 
property with the same non-degenerated d.f. G(u) and {Xn} and {X=(t)} have the 
same distribution. 
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Corollary 5.1. The distribution o/ {X=} is time-invariant under reversible independent 
motion in the constant speed case for a non-degenerated d./. G(u) i /and  only i/ {X~} 
is weighted Poisson distributed. 

Proof. From the remark following definition 5.5 we see that  a non-degenerated 
d.f. in the constant speed case corresponds to a non-degenerated family in the general 
case. Then the corollary follows at once from theorem 5.1. 

6. Sets of motion conserving weighted Poisson distributed point systems 

For point systems with reversible independent sets of motion the role of weighted 
Poisson distributions was clarified by the results of section 5. In this section we 
shall give a result indicating in which cases weighted Poisson distributions are con- 
served for more general types of motion than those considered earlier in this paper. 
Let us think of Y~(t) as measuring the motion ability of point no n. The actual 
motion can, however, also be dependent of the starting position of the point. This 
leads us to consider the position at t of point n, X~(t), as a function of the starting 
position X~ and the motion ability Y~(t), i.e. 

X~(t) =/(Xn, Y~(t)) (6.1) 

which with fix, y )=x  §  includes the case studied in the earlier sections. Similarly 
to that  case we shall here require the independence property for the positions of 
the point system and its set of motion abilities. 

Definition 6.1. The distribution class C consists o/ the distributions /or sequences 
{(Z~, V~)} where {Z~} is weighted Poisson distributed with some parameter d./. W(~) 
(with W(O)=0) and {(Z,, V~)} has the independence property with some d./. F(v). 

If  the distribution of {(Z~, V~)} belongs to C it is characterized by the parameter 
d.f. W(2) and the d.f. F(v) and we shall in the following just write: ((Z~, V~)} has 
the distribution (W, F)C C. Suppose that the motion is given by (6.1). We shall t ry  
to describe those functions fix, y) for which both {(Xn, Y~(t))) and {(X~(t), Yn(t))} 
have distributions in C. We have to place two main restrictions on the functions/ .  

(i) /(x, y) should be a function from R 2 onto R~. This means that  all positions 
are possible at time t. 

(ii) /(x, y) should be a monotone function in x for any fixed y. This will be the 
case e.g. if points with the same motion ability have the same internal order at t 
as initially. Since t is fixed in the problem studied in this section we shall in the 
following theorem use another notation than that  used above. 

Theorem 6.1. Let {(Z~, V~)} have the distribution (W1, F1)EC. Let further/(z, v) be 
a Borel-measurable function from R 2 onto R 1 such that/(z, v) is a monotone function 
of z/or a.s. 1 all v. Let 

Z~ =/(Zn, V~) a.s. 

1 Almost surely in this theorem is with respect to the probability measure v~ on the Borel 
sets in R 1 induced by Fl(v ). 
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Then the distribution o~ {(Z~, V~)} belongs to C i /and only i/ 

/ (z ,  v) = a(v) .  z + b(v) a.s.  (6.2) 

where 0 < d F  l(v)Aa(v)[ < c~. (6.3) 

The distribution o/ ((Z'~, V~)} is then given by 
W1(2), FI(y)  and a(v) by 

W2 (4) = Wl(k/c)  

(W2, F2) which is obtained/rom 

(6.4) 

where c = dF l(v)/la(v)[ (6.5) 

and F2(v ) = 1/c dF~(u)/la(u) 1" (6.6) 
o ~  

Given (W~, F1) and (W2, F2), ]a(v) I is determined a.s. /rom (6.4) and (6.6), whereas 
b(v) is arbitrary. 

Remark 1. I f  for a.s. all v,/(z,  v) is one-to-one and continuous then  it is also mono-  
tone  for a.s. all v. 

Remark 2. Let  us drop  the  assumpt ion  {(Z~, V.)} EC and replace it  by  the  assump-  
t ion t h a t  {Z~} is weighted Poisson distr ibuted.  Then (6.2) does not  necessarily hold. 
This is seen f rom the following example:  

Let  Fl(z ) have  the j u m p  �89 a t  z=O and a t  z=l .  P u t  

z, z<:0  
{ z , z < 0  1) =1�89 0 ~ < z < 2  

](z, O)= Iz + 1, z >~ 0 /(z, 
1,z 2 

Then  it is easily seen t h a t  {Z~ } is weighted Poisson dis t r ibuted with the same para-  
me te r  d.f. WI(~ ) as {Zn}. 

Proo/. Sufficiency. Le t  us introduce the  following nota t ion  (cf. section 2). 

MI(B)  =no .  of (Zn, V,~)EB, g.f. ~l(s; B) 

M2(B) =no .  of (Z~, V,)EB, g.f. ~2(s; B), B a Borel set in R2. 

Let  fur ther  Vl and v2 denote the  probabi l i ty  measures  on the  Borel sets in R1 
induced b y  Fl(V ) and F2(v ) respect ively and # the  Lebesgue measure  in R 1. These 
measures  induce in R 2 the produc t  measures  ul = #  • v~, i - 1, 2. In  the proof  we shall 
use l emma 2.4 and the  r emark  following this lemma.  Let  us choose finite in tervals  
I i  and J~, i = 1 . . . . .  k such t h a t  the sets B~ = I~ • J~ are disjoint. We have  to  show 
t h a t  the g.f. of (M2(B~) .... , M2(Bk) ) 
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f0 0 } ~02(sl, . . . ,  sk; Bt  . . . . .  Bk) = exp tt(It)v2(Ji) (st- I) dW2(2) (6.7) 

where W2(2) and  F2(v ) (which induces v2) are given b y  (6.4), (6.5) and  (6.6). Denote  
by  T the  t rans format ion  f rom R 2 onto  R~ given b y  

T(z,  v) = if(z, v), v) 
Now by  (6.2) 

?)I({V; /(Z, V) ~a(v)'z+b(v)}) = 0 

and b y  (6.3) the set {(z, v); a(v)=0} has ul -measure  zero. Then 

~1 (T-1B,) =/~ (I,).f~, dF1 (v)/[ a(v)[ < co (6.8) 

The event  
{/2(B~) =n~} = {MI( T-I B,) =n~}, i = l .... , Ic 

where T-1Bi are disjoint Borel sets. L e m m a  2.4 gives t h a t  the r .v . ' s  M~(B~), i = 
1 . . . . .  k have  the  g.f. 

~02 (s I . . . .  , Sk; B1 . . . . .  Bk) = exp Ul (T- lB, )  ( 8 / -  1) dW 1 (2) (6.9) 

Using (6.8) it is seen t h a t  (6.9) can be wri t ten  in the  form 

~(sl .... 'sk; B1 ..... Bk)= I~expI2c~ ~ t~(I')v~(J') (s~- l)ldWl(2) J 0 ( = i  J (6.10) 

where c is given by  (6.5). Pu t t ing  W,(2) = Wl(2/c) in (6.10) we obta in  (6.7). We have  
thus  p roved  the sufficiency of (6.2) and  (6.3) and  the val id i ty  of (6.4), (6.5) and  (6.6). 

Necessity.  Suppose t h a t  {(Z~, V~)} has the  dis t r ibut ion (Wi, F1)EC and  t h a t  
{(Z~, V~)} has  the  dis t r ibut ion (W2, F , )EC.  The  sequences are related th rough  the  
t rans format ion  T defined above.  F rom l emma  2.4 we get t h a t  for any  disjoint 
Borel sets B,, i = 1, ..., k with finite u2-measures 

~ /  exp{2 ~l~2(B~) (s~- l)}dW2(]O= f /  exp{]~ ~lNl(T-1B~) (s~- l)}dWl(2 ). (6.11) 

We shall first show t h a t  We(A) = W,(2/c), where c is a constant .  Le t  

B~ = (i, i + 1 ]  • R1, i = l  . . . .  

Then u ~ ( B , )  = 1,  i = 1 . . . .  and  f rom ( 6 . 1 1 )  

(r162 exp {~(8--1 )}dW2 (~) = ~ exp {2g l(T-1ui) (8--1)} d W  1 (~) 
j 0  j 0  

i = 1, .. .  (6.12) 

I f  F(x) is a d.f. on (0, co) and ~(u)  its Laplace-Stiel t jes  t r ans form then  

(a) F(x) and _P(u) are in a one-to-one correspondence with  each o ther  
(b) /~(u) is a decreasing funct ion of u, 0 ~< u < ~ .  
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Using these proper t ies  on (6.12) we ge t  

~I(T-1B~) = cons tan t  = c (6.13) 

a n d  f rom (6.11) W2(2) = Wl(2/c). (6.14) 

(6.14) toge the r  wi th  (6.11) give t h a t  for a n y  Borel  set  wi th  f ini te  ~2-measure 

us(B) = 1/c. u~(T-1B). (6.15) 

Le t  us now choose B = [zl, z2] • C where C is a Borel  set  in  R 1 and  le t  B 0 = [Zl, z2] x 
( - o  o, + oo). Le t  fu r the r  for a n y  set  A in the  (z, v)-plane A~ be the  sect ion a t  v. 
Then  we ge t  from (6.15) 

(Z2--Z1)Y2 (C) :  1/c fc #((T-IB)vdyl= l / c  fc/~((T-XB~ 

Thus  v2 is abso lu te ly  cont inuous  wi th  respect  to  ~1 and  b y  the  l ~ a d o n - N i k o d y m  
theorem 

~2 (O) = .It g (v )d~  

where for f ixed z 1 and  z~ 

g(v) = 1/c. #((T-1Bo)v)/(z2 - z i )  a.s. (6.16) 

Le t  ~ be a dense countab le  set in R 1. Then  

rl{V; g(v)=#l/c.#((T-1Bo)v)/(z~-zl) for some zl, z2EO, zl<z2} = 0. (6.17) 

W e  shall  need  the  following l emma 

L e m m a  6.1. Let h(x) be a monotone/unction/rom R 1 onto R 1 and suppose that 

(i)/~{x; Yl ~< h(x) < Y2}/(Y2-Yl) = constant = c/or all Yl <Y2 such that y~, y~ E 0 where 
l )  is a dense countable set in R 1. Then 

(ii) h(x) is a linear/unction o/ x, i.e. h (x )=ax+b where ]a[ = l / c > 0 .  

Remark 1. (ii) impl ies  (i) w i thou t  the  res t r ic t ion  of Yl, Y2 E ]0. 

Remark 2. If  h(x) is one- to-one and  cont inuous  then  i t  is also monotone.  

Proo/. Le t  us f irst  note  t h a t  a monotone  funct ion  is measurab le  so t h a t  (i) has  a 
meaning.  W e  shall  f i rs t  show t h a t  eve ry  monotone  funct ion  which satisfies (i) is 
s t r i c t ly  monotone.  Le t  us now for s impl ic i ty  suppose  t h a t  h(x) is non-decreas ing.  
I n  order  to  p rove  the  s t r ic t  m o n o t o n y  le t  u s  suppose  the  opposi te ,  i.e. the re  exis t  
two numbers  x l < x  ~ such t h a t  h(xl)=h(x~)=yl<h(x),  x>x2. Le t  us f irst  consider  
the  case when Yl E ~0. Then  for a n y  (~ > 0 such t h a t  Yl +(~ E O we have  

c = ~u{x; y~ <. h(x) <~ Yl + (~}/~ > (x2 -x~)/~ 

F o r  5 suff icient ly small  and  wi th  Yl + 5  E O this  cannot  be t rue  and  thus  

h(x+e) -h (x )>O for e > 0  and  x E h - l ( O )  
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Let  us now consider the case when y l E ' ~ .  Choose an e such tha t  O<E<(X2--Xl)/C 
and let y~ be a number  such tha t  ylEO, y~<y~ and y l - y~<e .  Then for any  ~ > 0  
such tha t  Yl +~ E ~ we have 

c >~#{x; y; <~h(x) <Yl +(~}/((~ § > (x2 - Xl)/((~ +~) 

Let  now ~-+0 such tha t  y l + ~ E ~ .  Then 

c >~ (x~ - x l ) / ~  

But  e < (x 2 Xl)/C m e a n s  a contradict ion and thus h(x) is str ict ly increasing and in 
the general case strictly monotone.  F rom this we see tha t  the inverse function h -1 
is well defined and also strictly monotone.  Then (i) can be wri t ten in the form 

/~{x; Yl •h(x) <~Y2}/(Y2 -Yl)  = ] h-l(Y2) -h- i (y l )  I/(Ye -Yl )  - c 

or all yl<y2 such tha t  Yl, Y2EO �9 This means tha t  for xEh- l (O) ,  h(x) is of the form 

h(x)=ax+b where l a ]=l / c>O (6.18) 

Now h-l(O) is also a dense countable set in R 1 and this fact  together  with the mono- 
tony  of h(x) implies t ha t  h(x)=ax+b for all x. la] is determined by  (6.18) and b 
is arbitrary.  The val idi ty of the two remarks follows at  once. This ends the proof 
of the lemma. 

B y  applying lemma 6.1 to (6.17) the necessity of (6.2) and (6.3) is easily shown. 
The funct ion l a(v) I is determined a.s. from (6.4) and (6.6). 

Corollary 6.1. In  order that in the theorem 6.1 

W2(~)=WI(~) and F2(v)= Fl(v ) 

it is necessary and su//icient that 

]a(v) [ = 1 a.s. with respect to v 1. 

The proo/follows at  once from theorem 6.1. 

Remark. For  the case a(v) = 1 the sufficiency of theorem 6.1 implies the sufficiency 
par t  of theorem 5.1. 

An application to road tra//ic/low. Let  the car positions at  t =0 ,  {Xn}, be weighted 
Poisson distr ibuted and suppose tha t  the cars can overtake (and meet) each other 
wi thout  any  delay. The trajectories in the  road-t ime diagram are assumed to be 
lines, i.e. we have the constant  speed case. Fur ther  the sequence of car positions 
and speeds at t = 0  {(Xn, U~)} has the independence property.  Let  L be a fixed line 
in the road-t ime diagram and denote the intersections between the trajectories and 
L and the corresponding speeds by  {(X~, U~)}. F rom theorem 6.1 it then follows 
t h a t  {X~} is weighted Poisson distr ibuted and tha t  {(X~, U~)} has the independence 
proper ty  (if (6.3) holds with the relevant a(.) and d.f. FI(.)). I n  the case when L 
is the t-axis this has been t reated by  F. Haigh t  [8] p. 121 for {Xn} Poisson distributed.  
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