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On stochastic stationarity of renewal processes 

By TORBJORN THEDI~EN 

A B S T R A C T  

We shall consider point systems in R 1 which are stationary renewal distributed. We let the 
points undergo random translations which are assumed to be independent identically distributed 
random variables with a non-degenerate distribution function. The translations are also inde- 
pendent of the starting positions. I t  is shown in theorem 3.1 that the only distribution of the 
points which is conserved after the random translations is the Poisson one. Finally in section 4 
we give a characterization of renewal processes on the positive semiaxis in terms of conditional 
mean values. 

1. Introduction 

I n  a p a p e r  on po in t  sys tems in R 1 under  i ndependen t  r a n d o m  mot ion  (see T. 
Thedden [8]) we p roved  t h a t  the  only  t ime - inva r i an t  spa t ia l  d i s t r ibu t ions  for the  
po in t  sys tem are  the  weighted  Poisson ones. We,  however ,  had  to  impose  cer ta in  
independence  condi t ions to  hold for all  t ime  t >0 .  We shall  in th is  pape r  assume 
t h a t  the  po in t  sys tem in i t ia l ly  is s t a t i ona ry  renewal  d i s t r ibu ted  and  t h a t  t he  po in ts  
are  subjec t  to  independen t  iden t ica l ly  d i s t r i bu t ed  r a n d o m  t rans la t ions  (see theorem 
3.1). This resul t  has some impl ica t ions  for the  t h e o r y  of road  t raff ic  flow. I n  the  
s tochast ic  model  for low dens i ty  t raff ic  the  cars are  usua l ly  considered as poin ts  
which move  i ndependen t ly  of each other .  Then  i t  follows f rom theorem 3.1 t h a t  
the  only  renewal  d i s t r ibu t ion  for the  po in ts  which is conserved in t ime  is the  Pois- 
son one (cf. F.  H a i g h t  [5] Ch. 4). 

I n  our  t r e a t m e n t  in the  following sect ion we shall  however  no t  use the  no t ion  of 
po in t  sys tems under  r andom mot ion,  which was the  origin to  our  in te res t  in th is  
field. L a s t l y  we shall  in sect ion 4 consider  a charac te r iza t ion  of renewal  processes 
on (0, oo). 

2. Preliminaries 

Let  {Xn, n = + l ,  + 2 ,  ...} be an  ordered  sequence of r a n d o m  var iables  (r.v. 's) 
such t h a t  a lmos t  sure ly  (a.s.) 

�9 . .  X _ 2 < X _ I < O < X I < X 2 < . . .  

P u t  X 0 = 0  and  Yn:Xn--Xn_ 1. W e  shall  assume t h a t  {Xn} is stationary renewal 
distributed with  the  d i s t r ibu t ion  funct ion  (d.f.) F(y), i.e. 

(i) {(Y0, Y1), Y~, n4 :0 ,  1} is a set of i ndependen t  posi t ive  r .v . ' s  and  
(ii) {Yn, n # 0 ,  1) is a set of i ndependen t  iden t ica l ly  d i s t r ibu ted  (i.i.d.) r .v . ' s  wi th  

P(Yn<~y)=F(y), F(O)=O and  E Y , = I / m < ~  and  
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(iii) ~ P( Y0 > Y0, Y~ > Yl) = m(1 - F(y)) dy. 
a + Y l  

Let for any finite interval I 

N(I) = no. of Xn E I ,  n 4=0. 

(2.1) 

Then it is well-known tha t  EN(I) =m]I[ .  (2.2) 

I t  follows from the theory of renewal processes on (0, oo) tha t  the distribution of 
{X~} is determined by  the so-called renewal/unction 

k = l  

where * stands for convolution. We shall define H(x) for negative x as 

H ( x ) = - H ( - x - O ) ,  x < 0  (2.3) 

and this equation (2.3) should be used to define any renewal function for a negative 
argument. Then any renewal function H(x) is a right-continuous non-decreasing 
function on ( - o o ,  +oo). Let  us note tha t  if H(x)=mx then {X~} has the same 
distribution as the set of discontinuity points of a Poisson process with intensity 
m, shortly {X~} is Poisson distributed with the parameter  m. In  the case when 
there exists a d > 0 such tha t  

P ( Y ~ = k d ) = l ,  n=~0,1 (2.4) 
k = l  

we will say tha t  {Xn} is discrete. The largest d for which (2.4) is fulfilled is called 
the span. I f  P(Y~=d)=l  we shall say tha t  {in} is deterministic. I f  { in} is not 
discrete it will be called continuous. 

Let Z~, n =  _1 ,  •  . . . .  be i . i .d . r .v . ' s  with P(Zn<~z ) =G(z). Let  us further assume 
tha t  {Xn} and {Zn} are independent. Define {X~, n =  q-l ,  +_2 . . . .  } by 

Xln = Xn +Zn. 

We shall say tha t  {Xln } is s tat ionary renewal distributed with the d.f. F(y) if the 
sequence obtained by ordering {Xln } is stat ionary renewal distributed with the d.f. 
F(y). (I t  can be shown tha t  with NI(I ) =no.  of XI~ E I ,  I finite interval, we always 
have ENI(I  ) =m III. Thus {/ in} can, irrespective of its distribution, almost surely 
(a.s.) be ordered.) I t  is seen at  once tha t  if G(z) is degenerated then {XI~ } is stat ionary 
renewal distributed with the d.f. F(y). Further  for any d.f. G(z) if {Xn} is Poisson 
distributed with the parameter  m, then {XI~ } has the same distribution (see Doob 
[2] pp. 404-407). The Poisson distribution is a stationary renewal distribution which 
is, what we shall call, stochastic stationary. Using the notation introduced above 
we have 

Definition 2.1. Let G(z) be a non-degenerated d./. The stationary renewal distribution 
o/ (Xn} is stochastic stationary with respect to G(z) i/ (Xin) is stationary renewal 
distributed with the same d./. as {X~}. 

1 Cf. Feller [3] p. 371, problem 3. 
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I n  the  following section we shall prove tha t  the only s ta t ionary  renewal distribu- 
t ion which is stochastic s ta t ionary  with respect to a non-degenerated d.f. G(z) is 
the Poisson one. 

3. Stochastic stationarity 

We shall need the following lemma in the proof of theorem 3.1. 

Lemma 3.1. Let Ks(x), i = 1, 2 and F(x) be d.f.' s on (0, ~ )  and let 

HK, (x) = Ks (x) + * (x), 0 < x < 

[ - - H ~ ( - - x - - O ) , - -  < x < 0 ,  i = 1 , 2 .  

Then i/  Kl(x)<-..Ks(x), 0~<x<c~ we have 

HK,(x)<~HK:(x), 0 ~ < x < ~  

HK,(x)~>HK,(x), - ~  < x < 0 .  

The proo/fol lows at  once f rom the given definition of HK~(x), i = 1, 2. 

Theorem 3.1. Let {Xn} be stationary renewal distributed. Then the distribution o/ 
{X~} is stochastic stationary with respect to a non-degenerated d./. G(z) i / a n d  only i/  
{X~} is Poisson distributed. 

Proo]. The sufficiency is well-known (see Doob [2] pp. 404407) .  
Necessity. The idea of the proof is the following. We shall in point  1-7 of the  

proof deduce the integral equat ion 

H (x) (H (x - z 1 + zs) - H (z s - zl) ) dG(zl) dG(z2). (3.1) 

Using known results we shall in point  8 show tha t  the only possible solutions of 
(3.1) are H ( x ) = a l x  and in the case when G(z) is d-lattice H ( x ) = [ a 2 x  ] where a 1 and  
a s are constants.  Las t ly  we shall rule out  H ( x ) =  [asx ]. Thus 

H ( x )  = a l " x  

which corresponds to {Xn} being Poisson distributed. 

1. We shall use the following nota t ion:  

M ( B )  = no. of (Xn, Zn) E B, B Borel set in R2, 

M I ( B  ) = no. of (Xln , Zn) E B,  B Borel set in R s. 

Let  B~ be the q-algebra of Borel sets in the zi-axis L s and let ~ut be the probabi l i ty  
measure on Bs corresponding to the  d.f. G(zs), i = 1, 2. 

Let  fur ther  #=~u 1 • s be the produc t  measure on (L, B ) = ( L  1 •  s, B1 • Le t  
11 = ( - h, 0] and I s = (0, x]. 
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Then Vl(B1)=MI(I 1 x B1) and v2(B2)=Ml(I2x B2) are a.s. finite measures on 
(LD B1) and (L2, B~) respectively. They generate an a.s. finite product  measure 
V=Vl • on (L, B). Since Ev(L)<oo (cf. point 4 of the proof) the set function z 
defined by 

z(B) = Ev(B), BEB 
is a finite measure on (L, ]g). 

Let  now for B E B 

S 1, Xlj E I~, Xik E Is, (Zj, Zk) E B 
X~(B) I 

[ 0 otherwise. 

Then v(B)= ~ Zjk(B). 
all j. k 

But /x(B)=0 implies tha t  EZjk(B)=O. Since u(B)=Eu(B) we conclude tha t  ~ is 
absolutely continuous with respect to #. 

By  the Radon-Nikodym theorem there is a function/(zl,  z~) such tha t  

g(B) = f f B/(Zl, 2:2) dG(z:) dG(z2). (3.2) 

The results of the following points 2-4 will make it possible to estimate /(Zl,  Z2). 
We shall return to equation (3.2) in point 5. 

2. Pu t  Y = Y0 + Y1. Using the definition of a stationary renewal distribution we 
get the conditional d.f. of Y given Y0 

0, Y<Yo 
F(yiYo) = ~ F(y) - F(yo) 

L 1 - F ( ~ 0 )  ' 
Y >~Y0 

for y0<sup {y; F(y)< l} (which we assume to hold in the following). 
For 0 ~ h <~ hn we have 

F(y)>~F(y]h)~F(Yihn), 0~<y< oo. 

Further  it is seen tha t  

(3.3) 

lim F(y]  h) = F(y); lim F(y ]hn) = F(y]  h). (3.4) 
h~0 h,~h 

Using the notation of lemma 3.1 we define 

Hr(yl~)(x)=F(xih)§ ~ F(xih)-)eFk*(x), x>~O k=l 

and HF(ul~,)(x) in the same way. Let us put  H~n(x)for Hy(ulhn)(x) and Hh(x) for 
HF(ylh)(X). Then we get from lemma 3.1 

H~,(x)~Hh(x)<~H(x), 0~<x<oo,  0<h~<h,.  (3.5) 
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By the definitions of H(x), Ha~(x) and Ha(x) also for negative x (see p. 2) and (3.4) 
it is easily shown tha t  

lira Hhn(x) = Ha(x); lira Ha(x) = H(x), - ~ < x < ~ .  (3.6) 
a,~a a~o 

Let  N ( I ) = n o .  of XneI, where I is a finite interval. Then 

2v((0, x]) = N((x_I,  x]) 

and hence EN((O, x]) I X 1  = EN((X=I , x]) I X_I a.s. (3.7) 

Consider the case when X_ 1 > - h  or since Y. = - X - 1  equivalent ly ]10 <h .  Using 
(3.5) and (3.7) we get for x~>0 

EN((O, x]) I X _  1 = EN(( - Yo, x])l Y0 = HF(yJ yo)(x z~ Yo) < HF(~T yo)(x + h) <~ H(x + h) a.s. 

I n  the same way  it is seen tha t  

EN((O,x] ) IX_i>Hh(x  ) a.s. x~O.  
Thus for x ~> 0 

Hh(X ) < EN((O, x ] ) ] X  1 <H(x + h ) ,  X _  1 > - h ,  a.s.  (3.8) 

In  the same way it can be proved tha t  for x < - h  

- H a ( x  +h) <~ EN((x,  - h ] ) l X  1 ~ - H ( x ) ,  X_  1 > - h ,  a.s. (3.9) 

3. Let  J1 and J2 be two finite semi-closed intervals closed to the r ight  and let 
B 1 and B 2 be Borel sets in R 1 with G(B~) > 0, i = 1, 2 (Here G(B~) stands for S~dG(z).) 

We shall in this point  give upper  and lower bounds for EM(J1 • BI)M(J2 • Be) 
in the cases (i) J1 N J2 = O and (ii) J1 c J2, B1 N B2 = •. F rom the s tat ionari ty  of the 
renewal distr ibution of {Xn} we conclude tha t  for any  finite number  c 

EM((J1 + c) • B1)M((J2 + c) z B2) = E M ( J  1 • BI)M(J2  • Be). 

Then we can always choose the r ight  endpoint  of J1 as our origin wi thout  changing 
the value of E M ( J  1 • B1)M(J  ~ • Be). P u t  J l = (  - a ,  0] and J2=(b, d] 

(i) J1 N J2 = O  

For  any  disjoint finite intervals I and J 

E M ( I  • B1)M(J  • Be) = G(B~)G(B2) E N ( I ) N ( J ) .  (3.10) 

Now EN(J~)N((O, x]) = E(Xl>_~}EN(Ji)  IX_~EN((O, x]) ]X_I. (3.11) 

Fur ther  E(x 1>- ~} EN(J1) I X-1 = EN(J1) = ma. (3.12) 

Using (3.8) and (3.12) in (3.11) we get for x~>0 

Ha(x) ma <~ EN(J1)N((O, x]) <~H(x +a) ma. (3.13) 

I n  the same way  we get, using (3.9), tha t  for x <  - a  

-- Ha(x § a) ma ~ EN(J1) .N((x, - a]) ~ - H(x) ma. (3.14) 
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Now if b > 0  EN(J1)N(J2) = EN(J1)N((O , d ] ) - E N ( J 1 ) N ( ( O ,  b]). (3.15) 

F rom (3.10), (3.13) and  (3.15) we get  

H a ( d ) - H ( b + a ) < ~ E M ( J I x B 1 ) M ( J 2 x B 2 ) < ~ H ( d + a ) - H a ( b ) ,  b > 0 .  (3.16) 
maG(B1) G(B~) 

For  b = 0  we get f rom (3.10) and  (3.13) 

H a ( d ) ~ E M ( J ~ x B ~ ) M ( J 2 •  b = 0 .  (3.17) 
maG(B1) G(B2) 

For  d < - a  we have  

EN(J~)N(J2) = EN(JI)N((b,  - a ] )  - EN(J~)N((d, - a ] ) .  (3.18) 

B y  (3.10), (3.14) and  (3.18) we have  

H ( d ) - H a ( b §  ) <~ E M ( J ~ x B ~ ) M ( J 2 x B 2 )  -~Ha(d§  d< - a .  (3.19) 
maG(B1) G(B2) 

For  d = - a  we get f rom (3.10) and  (3.14) 

- H a (b + a) ~ EM(J~ x BI) M(J2 x B2) ~< _ H(b), d = - a. (3.20) 
maG(B1) G(B2) 

(ii) J l c J 2 ,  B 1N B 2 = O  

We have  

E M ( J  1 x B1)M(J 2 x B2) 

- E M ( J  1 x B1)M((b, - a ]  x B2) + E M ( J  1 x B1)M(J 1 x B2) 

+ EM(J~ x BI)M((0,  d] x B2). (3.21) 

The  first  and  last  t e rms  in the  r ight  m e m b e r  of (3.21) can be es t imated  by  means  
of (3.20) and  (3.17). We get b y  considering the  generat ing funct ion of (M(J 1 x B1), 
M ( J  1 x B2) ) t ha t  for B 1 (1 B 2 = O  

w i ( g ~  x BI )M(J~  x B2) = G(BI)G(B2) EN(J~)(N(J~) - 1). 

Bu t  (see e.g. Cox [1] p. 56) 

EN(J1)  ( N ( J 0  - 1) = 2m H(y) @.  

Now o<~l f~H(y)dy<~H(a) 

and  thus  0 <. EM(J1 x B1) M ( J  1 x B2) <~ 2 H(a). (3.22) 
maG(B~) G(B2) 
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Using (3.17), (3.20) and (3.22) on (3.21) we get  

Ha(d ) - Ha(b + a) < EM(J1 • B1) M(J2 • B2) <~ H(d + a) - H(b) + 2H(a).  
maG(B 0 G(B~) 

(3.23) 

4. Le t  I and  J be finite intervals.  We shall here show t h a t  

EN(I )  N(J)  
II I <~clH(llI)+c2H(IJI)+%' (3.24) 

where Cl, c 2 and c a are finite constants.  I t  is easily seen t h a t  it is no restr ict ion to 
choose I and  J semi-closed, closed to the  right.  We shall deal wi th  two cases (i) 
and  (ii) separately.  

(i) I N J = O .  Suppose t h a t  J is s i tuated to the r ight  of I .  I t  is no restr ict ion to 
choose the  left endpoint  of J as our origin. Then  it is easily seen t ha t  

E ( N ( J ) I X _  1,X_ 2 .... )~E(N([X1,  X~ + ]J I]]X_I ,X_  2 . . . .  ) < H ( I J I ) + I  a.s. (3.25) 

Since EN( I )  = m[ I ]  we get f rom (3.25) 

EN(I )  N(J)  
i i  I <~m(H(IJ[) + 1). (3.26) 

The  same result  holds when J lies to the  left of I ,  which can be p roved  in the same 
way.  

(ii) I N J q=O B y  the  s ta t ionar i ty  of the  dis t r ibut ion of {Xn} it is no restr ict ion 
to choose the  origin such t ha t  I = ( - ] I I ,  0]. Then  J c J ' = ( - I I 1 -  IJI, IJI] and 
I c J ' .  

E N ( I ) . N ( J ) < E N ( I ) N ( ( -  IJl - I I ] ,  - I I I ] ) §  I J ] ] ) .  (3.27) 

Using (3.26), (3.22) and  (3.25) we get  f rom (3.27) t h a t  also in this case (ii) the  in- 
equal i ty  (3.24) holds. 

5. Le t  us consider the  left m e m b e r  of (3.2), ~(B) for B = L  1 x L  2. 
Now b y  (3.10) with B 1 =L1, B 2 = L  2 and the  stochastic s ta t ionar i ty  

u(L1 • L2) = EN(I1)N(I2).  

<~ ~(L1 • L2) <~ H(x + h) B y  (3.13) we get Hh(x) mh " (3.28) 

and  f rom (3.6) l im ~(L1 • L2) - H(x). (3.29) 
h~o mh 

6. Le t  now D G = {Ul, U 2 . . . .  } be the  discont inui ty  set of G(z) with the  correspond- 
ing jumps  Pl, P2 . . . .  and pu t  D = D~ • D G. Then (3.2) can be wri t ten  
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~(S)= BFID ~ P]Pk/ik -~ ~fB ND/(zI'Z2)dG(z1)dG(z2) (3.30) 

where/sk =/(us,  uk) and ~ n D  denotes  the sum over  all ~, k such tha t  (u s, uk) E B (3 D. 
I n  this point  we shall consider/sk. F rom (3.30) follows t h a t  

E M i  (I1 x {us} ) M 1 ( I  2 x {Uk} ) 
/ jk= 

PsP~ 

Now M~ (11 • {u: )) = M((I~  - us) • {u  s }) 

i l  (Iz • {u~}) = / ( ( I 2  - uk) x {uk}) 

and thus  /jk _ E M ( ( I ~ -  us) x {us} ) M ( ( I 2 -  uk) • {uk}) (3.31) 
PsPk 

We shall deal with three cases (i), (ii) and (iii) separately.  

(i) uj>~u k. From (3.16) we get 

/jk <~ H ( x  + uj - u~ + h) - HA (us -- uk). HA (x + u s - uk) -- H(u j  - uk + h) ~ (3.32) 

(ii) u j - u k < - x .  For  sufficiently small h we have  u j - - u k < - x - - h  and hence 
( 1 1 - u s )  f3 ( I z - u k ) = ~ .  From (3.19) we get 

H ( x + u j - u k ) - - H A ( u j - - u k + h )  ~ /Jk < - . H A ( x + u j - - u k + h ) - - H ( u s - - u k ) .  (3.33) 
m h  

(iii) - x ~< uj - uk < 0. For  sufficiently small h we have  uj - uk < - h and  (11 -- us) c 
( I z - u k ) .  Using (3.23) we get 

Hh (x + u s -- uk) -- Hh (us-- uk + h) <~ ~ h  <~ H (x + u s - uk + h) - H ( u r  uk) + 2H(h). 

(3.34) 

Using (3.6) and the definit ion of renewal functions for a negat ive  a rgumen t  we get  
f rom (3.32), (3.33) and (3.34) t h a t  

l im /sk h ~ o ~ = H ( x  § uj - u~) - H(u j  - uk). (3.35) 

7. Le t  

7~n={A~) ;  A ~ ) = [ j . 2  n , ( / + l ) 2  n) x [ k . 2 - n , ( k + l ) 2 - n ) ,  ] , k = 0 ,  •  •  .. .}. 

In  the sense of Saks [7] p. 153, T/In is a net  in L 1 •  2 wi th  the meshes A ~  ) and  
{T?/n, n = 1, 2 . . . .  ) is a regular  sequence of nets. The suppor t  set of a d.f. F(x)  is 

S F =  {x; F ( x + h ) - F ( x - h ) > O ,  all h > 0 ) .  
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Let  now 2:1, z2ES ft. For  any  n there is a mesh Jln • with ZlEJln, z2EJ2,~. 
From a theorem by  Saks [7] p. I55 and the definition of u(B) we have 

lira EM1 (11 • Jl~) M1 (I~ • J2,~) /(zl ' z2 ) 
n-~:r G(J~n) G(J2~) 

(3.36) 

for a.s. all (zl, z2). Let  now 

I~n + = ( I ~ - z ~ - 2  -~) U ( I ~ - z ~ + 2  -n) 

I~,~- = ( I ~ - z ~ + 2  -n) N ( I ~ - z ~ - 2  - ' )  n = l ,  2 ... .  ; i = l ,  2. (3.37) 

For  sufficiently large n (we shall in the following just  consider such n) both  I~n + 
and I~n- are non-degenerated intervals such tha t  

I~n+ ~ I~-- z ~  I ~  - ,  i = 1 , 2  

M ( I ~ -  •  • ~ •  i = 1 ,  2. (3.38) 

By  (3.38) we get  

EM(II,~- • Jln)M(I2n - • J2n) ~ EMI(I1 • JI~)MI(I2 • J2~) 

<~ E M ( I l n  + • J ln)M(I2,  + • J2,)" (3.39) 

Now ]I~n + I = I i~l +2- '+1" Using this fact, (3.10), (3.24) and (3.36) on (3.39) we see 
tha t  for fixed x there is a h 0 < ~ and a finite constant  C, such tha t  for sufficiently 
large n 

/(Zl, z2) <~ C a.s., h < h 0. (3.40) 
h 

Let  D H be the (countable) discontinuity set of H(x).  Let  us now consider the case 
when (zl, z2)E.D N (SG• and z1=4=z2, zl=4=z2-x and fur ther  Zl--z2EDH. We shall 
deal with three cases separately. 

(i) Z l < Z  2 - x .  Choose h < z  2 - z  1 - x .  Then for sufficiently large n we have 
Ii,~+~ I 2 n + = 0  so tha t  we can use (3.19) in the est imation of the first and last 
member  of (3.39). We get 

h - 2  -n+l EMI( I1  • Jln) Ml ( I2  z Je~) 
(H(z 1 - z~ § x) - Hh_~_,~+l (z 1 - z2 § h)) h <~ mhG(J ln)  G(J2n) 

h + 2 - ~ + 1  
<~ h ( H h + e _ n + l ( Z l - Z 2 + x + h + 2 - n + l ) - H ( Z l - Z ~ - 2 - n + l ) ) .  (3.41) 

Then if first n ~ o r  and then  h r 0 in (3.41) we get using (3.6) 

lim lim EM1 (I1 • Jln) M ,  (Is • J2n) _ H(x  § z 1 -- z2) -- H(z  1 - z2). 
~4o n~o mhG(J ln)  G(J~n) 

(3.42) 
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(ii) z l>z  2. For sufficiently large n we have I ln  + ['] I2n + = 0 .  Using (3.16) we get 

(Hh_2_.+l (Z 1 - -  Z 2 + X )  - -  H (z  1 - z 2 + h ) ) h - 2 -n+l < E M 1  (I1 • J , ,~)  M1 (12 • J ~ )  
h mhG(Jln) G(J2~) 

h+2-~+I  
~ (H(z  I - z 2 + x + h + 2 - n + l )  - Hh+2-~+l  (Z 1 -- Z 2 --  2 - n + l ) ) .  (3.43) 

Letting n-~ ~ and then h ~ 0 in (3.43) we get again (3.42). 

(iii) z 2 - x < z l < z  2. Choose h < z 2 - z  1. For sufficiently large n we have 

I u /  c I~n +, I v (  c I2n- and Jln N J2n = 0 .  
Then from (3.23) 

- 2-n+1 E M 1  (I1 • J ln)  M I  (12 • J2n) 
(Hh-~ ' ~ + l ( z l - z 2 + x ) - H h - 2 - ' ~ + l ( z l - z 2 + h ) ) h ~  <~ mhG(Jln) G(J~n) 

h+2-~+1 
<. ~ ( H ( z ~ - z ~ + x + h +  2 -~+~) - H ( z l -  z 2 - 2  -n+~) +2H(h+2-n+~)). (3.44) 

Letting first n - + ~  and then h r 0 we obtain again (3.42). For fixed h > 0  we see 
from (3.36), (3.32), (3.33), (3.34), and the inequalities (3.41), (3.43) and (3.44) that  
there exist functions/~*(zi, z2) and ]h-(zi, z~) such that  

~ + [h-  (Zl, Z2) • "~"/h (Zl, g2) (3.45) 

for (Zl, Z2)6A h where #(Ah)=0. Put  

/(ZI'  Z2) l(/h+ (Z1, Z2) ~-/h (Zl, Z2)) 
mh 

for (zl, z2)6A h. This will not change the value of the integral in (3.2). Then from 
{3.35) and (3.42) we have 

lim/(zl'  z2) -- H ( x  + z 1 -- z2) --  H(z  1 - z2) (3.46) 
h~o mh 

in the set A =A 1 tJ (A2 N Aa) where 

A 1 = Dz • D a 

A 2 = / 5  n (So • Sa) 

A 3 = {(zi, z2); z I :~=z2, 2:1 :~=z 2 - x ,  z 1 - z  2 6 DH}" 

Since D~ is countable we have t t (A)= l  and thus (3.46) holds a.s. By (3.40) we 
have /(zl, z2)/(mh)<~C1, except for a fixed (independent of h) #-null set. Putt ing 
B = L  1 •  2 in (3.2) and using (3.29) and (3.46) we get from the Lebesgue bounded 
convergence theorem that  
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H(x) = (H(x -~- Z 1 - -  Z 2 )  - -  H ( z  I - z2) ) dG(zl) d a ( z 2 )  (3.47) 
O0 O0 

~or x~>0.  

8. Define the  d.f. K(z) as 

K(z) _ G(z+y) dG(y). 

Using t h a t  H(x)= - H ( - x - 0 )  we can wr i te  (3.47) 

H(x)= f ~ ( H ( x - z ) + H ( z - O ) ) d g ( z ) ,  x>~O. (3.47') 

F u r t h e r  for x < 0  we get  f rom (3.47') 

. ( x )  = x o (3.48) 
d - o o  

Le t  y > 0 be a f ixed number .  Then  b y  (3.25) 

cry(x) = H(x +y) - H ( x )  <~H(y) + 1. 

I n  the  cases when x~>0 or x + y < 0  we ge t  from (3.47') and  (3.48) 

f: q~ (x) = _ q~ ( x -  z) dK(z). (3.49) 

F o r  x<O, x+g>~O we get  

~ (x)  = ( ~  (x  - z )  - (H (~)  - H ( ~  - 0 ) )  d g ( z ) .  

f2 N o w  _ (H(z) - H(z - 0)) dK(z) = 2 Z AH(z~) AK(z~) 

where the  sum is over  all  z , > 0  wi th  z, EDH and  AH(zv) and  AK(z~) are  the  j u m p s  
of H(z) and  K(z) in z~. I n  order  t h a t  th is  sum should be larger  t h a n  zero we m u s t  
have  DHfl DK4=O. Suppose  t h a t  e.g. ZlEDHN DK. F r o m  ZlED ~ we see t h a t  there  
is a n such t h a t  Fn*(x) also has  a d i scon t inu i ty  po in t  a t  z 1. Then 

P(Xn+ 1 -  X 1 =Zl) } 0  

and  since z 1E DK also P(Z1 - Zn+I = Zl) > O. 

Thus  we see t h a t  P(X11=Xl. ~+1)>0 

which cont rad ic t s  the  a s sumpt ion  of F ( 0 ) = 0  (i.e. no Xn's or Xl~'S can coincide). 
Thus  (3.49) holds for all  x. 
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I t  is well-known (see e.g. Feller [4]) t ha t  the only bounded solutions of (3.49) a re  

(i) % ( x ) =  constant ,  when K(z )  is nonlatt ice,  

(ii) % ( n d ) =  constant ,  n -  0, + 1, _ 2 . . . .  when K(z )  is d-lattice. 

We shall deal wi th  the cases (i) and  (ii) separately.  

(i) We have  H ( x  + y ) -  H(x )  = H(y) ,  K( z )  non-latt ice.  

But  H(x)  is bounded in e.g. [0, 1] and then  (see e.g. Parzen  [6] p. 123, p rob lem 10) 

H(x)  = constant ,  x 

I t  follows f rom the so-called renewal theorem t h a t  

lim H(Ixl)_ (3.50) 

and thus  H(x)  = m x  (3.51) 

which corresponds to {Xn} being Poisson dis t r ibuted with the pa rame te r  m. 

(ii) We have  H ( n d  + y) - H(nd)  = H(y )  (3.52) 

Consider first  the  case when {Xn} is continuous (see p. 2). Then  we get by  Blackwell 's  
theorem (see e.g. Feller [3] p. 347) t h a t  

H ( n d  § x) - H(nd)  
+m,  n ~  

x 

where the  left member  by  (3.52) is independent  of n. This implies t h a t  

H(x) = m x  

and {Xn} mus t  be Poisson distr ibuted.  
Consider last ly the case when {Xn} is discrete with the  span  d 0. F r o m  Blackwell 's  

theorem 

lim H (x + y) - H (x) = m,  y = ndo, n positive integer.  (3.53) 
x ~  y 

Let  now x ~ = n d .  Then by  (3.53) 

H ( n d  + kdo) - H(nd )  
kd ~ -+ m,  n-+ ~ .  

But  by  (3.52) the  left member  is independent  of n. Thus 

H ( n d  + kdo) - H(nd)  = m k d  o. (3.54) 

Pu t t ing  n = 0  in (3.54) we get 

H(kdo) = mkdo, k =0 ,  1, 2, ... (3.55) 
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I f  {X~} is discrete with the span d o, H(x) is a non-decreasing step-function with 
the jumps in kd o. (3.55) implies tha t  all the jumps have the size mdo and this in 
turn  gives tha t  {X~} is deterministic. 

Further  by  (3.50) and (3.52) we have 

H(nd) = mnd 

and thus d must  be a multiple of d o. Then it is easily shown tha t  with positive prob- 
abili ty some of the Xln'S coincide, which contradicts the assumption tha t  F ( 0 ) -  0, 
i.e. {Xn} can have no multiple points. The theorem is proved. 

4. A character izat ion  o f  r enewa l  processes  on (0 ,  ~ )  

Let {X~, n = 1, 2 . . . .  } be an ordered sequence of r .v. 's  such tha t  a.s. 

0 < X I < X 2 < . . .  

Pu t  formally X 0 = 0  and let Y,~=Xn-X~_I ,  n = l ,  2 ..... I f  {X=, n = l ,  2, ...} is (ordi- 
nary) renewal distributed, i.e. Y~, n = 1, 2 ... .  are i.i.d, positive r.v. 's with the d.f. 
F(y), then the distribution of {X~} is given by the renewal function 

H(x) = EN((Xn, X~ +x]) = ~ F~*(x), 
k - 1  

where N ( I ) = n o .  of X= E I ,  I finite interval. 
Further  we have in this case 

EN((Xn, X ~ + x J ) [ X  o ... . .  X n = H ( x  ) a.s., n=O, 1, 2 ... .  

Note tha t  for n =0, (4.1) can be written 

(4.1) 

EN((O, x]) = H(x). 

We shall here show that  if (4.1) holds then {Xn} must  be ordinary renewal distrib- 
uted with the renewal function H(x). 

Theorem 4.1. Let {Xn, n = 0 ,  1, 2 . . . .  } be an ordered sequence o/ r.v.'s with X0= 
0 < X  1 < X  2 < ... a.s. and such that E N ( I ) <  ~ /or I / i n i t e  interval and 

EN((Xn, Xn +XJ)[X o ..... X n = H(x) a.s., n = 0 ,  1, 2 . . . .  

Then {X~} is ordinary renewal distributed with the renewal/unction H(x). 

(4.1) 

Proo/. From (4.1) we see that  

H(x) =E(N((Xn_I,  Xn_l § Y1 ..... Yn-1) a.s. 

Pu t  x~(y)= 0 otherwise. 

(4.2) 
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Then E(N((X~_ 1, X~_ 1 +x])[  Y1 ... . .  Y~) 

= E((zn(x)+N((X,~_I + Y,,  Xn_~ +x]))[  Y~, ..., Y=) 

= Z~(x) + E(N((X, ,  X n -  Yn +x])[  Y1, "", Yn) a.s. (4.3) 

since X n _  1-4- Y n  = X n ,  X n - 1  -~- x = X n - Yrt -~- x .  

From (4.2) and (4.3) we get  

H(x)= E(E((Zn(x) + N((Xn, X , , -  Y=+x]))[ Y~ .... , Yn)]  Y1 . . . . .  Yn-1) 

= E(z=(x)[ Y1 . . . . .  Yn-x) + E ( H ( x -  Y.)] Y~ ... . .  Y~-I) a.s. (4.4) 

where H(x) = O, x <~ O. 
Let  now F~=-x(x) be the conditional d.f. of Y~ given the  sub-a-algebra of Borel 

sets generated by  Y1 ... .  , Y~-I in the sample space of {Y,}. Then the first and last  
member  of (4.4) can be written. 

= FS,, 1 (x) + f [  H(x - y) dF ~'-~ (Y). (4.5) H(x) 

Denote for a momen t  F s ' - I  by  F .  Outside a set of probabil i ty zero we then get  

n a  

H = F + ( F + H - ) e F ) ~ e F = . . . =  ~ F k * + H % F  ~~ 
k = l  

P u t  F~, (x) = F ~~ (x). Now H ( 0 ) =  0 and hence 

f o i l ( x -  y) dF o(y) = 

Since F(0) = 0 <  1 it is easily seen tha t  F,~~ no-+ r and thus 

[ H ( x - y )  dF,~o(y)~O, no-+ c~. 

Returning  to the original nota t ion we have 

H ( x ) =  ~ (F~"-~(x)) k*. (4.6) 
k f f i l  

But  (4.6) holds for any  n >~ 1 and thus we can pu t  

FS~-l(x) = F(x), n =  1, 2 .. . .  a.s. (4.7) 

where F(x) is a d.f. on (O, ~ ) .  
F rom (4.7) we get  by  induct ion 

n 

P(Y~ ~< Yk, k = 1, . . . ,  n) = 1-[ F(yk) 
k f f i l  

for any  n ~> 1 which proves the theorem. 
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Corollary 4.1. Let (X~, n=O, 1, 2 . . . .  } be an ordered sequence o/ r.v.'s with X 0 =  
0 < X  1 < X  2 < ... a.s. with E N ( I ) <  ~ ,  I / i n i t e  interval and such that 

EN( (Xn ,  Xn + X])IX o . . . . .  X n = ~x a.s . ,  n=O, 1, 2, ... (4.8) 

Then (Xn} is Poisson distributed (on (0, ~ ) )  with the parameter 2. 
I t  s h o u l d  b e  r e m a r k e d  t h a t  f r o m  (4.8) i t  is  pos s ib l e  b y  e l e m e n t a r y  m e t h o d s  t o  

d e d u c e  a d i f f e r e n t i a l  e q u a t i o n  fo r  t h e  c o n d i t i o n a l  f r e q u e n c y  f u n c t i o n  of Yn g i v e n  
Y1 . . . . .  Yn-1 a n d  h e n c e  d i r e c t l y  p r o v e  t h e  c o r o l l a r y  w i t h o u t  u s i n g  t h e o r e m  4.1. 
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